]>
Commit | Line | Data |
---|---|---|
e23eba97 NC |
1 | /* RISC-V-specific support for NN-bit ELF. |
2 | Copyright 2011-2016 Free Software Foundation, Inc. | |
3 | ||
4 | Contributed by Andrew Waterman ([email protected]). | |
5 | Based on TILE-Gx and MIPS targets. | |
6 | ||
7 | This file is part of BFD, the Binary File Descriptor library. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; see the file COPYING3. If not, | |
21 | see <http://www.gnu.org/licenses/>. */ | |
22 | ||
23 | /* This file handles RISC-V ELF targets. */ | |
24 | ||
25 | #include "sysdep.h" | |
26 | #include "bfd.h" | |
27 | #include "libbfd.h" | |
28 | #include "bfdlink.h" | |
29 | #include "genlink.h" | |
30 | #include "elf-bfd.h" | |
31 | #include "elfxx-riscv.h" | |
32 | #include "elf/riscv.h" | |
33 | #include "opcode/riscv.h" | |
34 | ||
35 | #define ARCH_SIZE NN | |
36 | ||
37 | #define MINUS_ONE ((bfd_vma)0 - 1) | |
38 | ||
39 | #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) | |
40 | ||
41 | #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) | |
42 | ||
43 | /* The name of the dynamic interpreter. This is put in the .interp | |
44 | section. */ | |
45 | ||
46 | #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" | |
47 | #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" | |
48 | ||
49 | #define ELF_ARCH bfd_arch_riscv | |
50 | #define ELF_TARGET_ID RISCV_ELF_DATA | |
51 | #define ELF_MACHINE_CODE EM_RISCV | |
52 | #define ELF_MAXPAGESIZE 0x1000 | |
53 | #define ELF_COMMONPAGESIZE 0x1000 | |
54 | ||
55 | /* The RISC-V linker needs to keep track of the number of relocs that it | |
56 | decides to copy as dynamic relocs in check_relocs for each symbol. | |
57 | This is so that it can later discard them if they are found to be | |
58 | unnecessary. We store the information in a field extending the | |
59 | regular ELF linker hash table. */ | |
60 | ||
61 | struct riscv_elf_dyn_relocs | |
62 | { | |
63 | struct riscv_elf_dyn_relocs *next; | |
64 | ||
65 | /* The input section of the reloc. */ | |
66 | asection *sec; | |
67 | ||
68 | /* Total number of relocs copied for the input section. */ | |
69 | bfd_size_type count; | |
70 | ||
71 | /* Number of pc-relative relocs copied for the input section. */ | |
72 | bfd_size_type pc_count; | |
73 | }; | |
74 | ||
75 | /* RISC-V ELF linker hash entry. */ | |
76 | ||
77 | struct riscv_elf_link_hash_entry | |
78 | { | |
79 | struct elf_link_hash_entry elf; | |
80 | ||
81 | /* Track dynamic relocs copied for this symbol. */ | |
82 | struct riscv_elf_dyn_relocs *dyn_relocs; | |
83 | ||
84 | #define GOT_UNKNOWN 0 | |
85 | #define GOT_NORMAL 1 | |
86 | #define GOT_TLS_GD 2 | |
87 | #define GOT_TLS_IE 4 | |
88 | #define GOT_TLS_LE 8 | |
89 | char tls_type; | |
90 | }; | |
91 | ||
92 | #define riscv_elf_hash_entry(ent) \ | |
93 | ((struct riscv_elf_link_hash_entry *)(ent)) | |
94 | ||
95 | struct _bfd_riscv_elf_obj_tdata | |
96 | { | |
97 | struct elf_obj_tdata root; | |
98 | ||
99 | /* tls_type for each local got entry. */ | |
100 | char *local_got_tls_type; | |
101 | }; | |
102 | ||
103 | #define _bfd_riscv_elf_tdata(abfd) \ | |
104 | ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) | |
105 | ||
106 | #define _bfd_riscv_elf_local_got_tls_type(abfd) \ | |
107 | (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) | |
108 | ||
109 | #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ | |
110 | (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ | |
111 | : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) | |
112 | ||
113 | #define is_riscv_elf(bfd) \ | |
114 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
115 | && elf_tdata (bfd) != NULL \ | |
116 | && elf_object_id (bfd) == RISCV_ELF_DATA) | |
117 | ||
118 | #include "elf/common.h" | |
119 | #include "elf/internal.h" | |
120 | ||
121 | struct riscv_elf_link_hash_table | |
122 | { | |
123 | struct elf_link_hash_table elf; | |
124 | ||
125 | /* Short-cuts to get to dynamic linker sections. */ | |
e23eba97 NC |
126 | asection *sdyntdata; |
127 | ||
128 | /* Small local sym to section mapping cache. */ | |
129 | struct sym_cache sym_cache; | |
130 | }; | |
131 | ||
132 | ||
133 | /* Get the RISC-V ELF linker hash table from a link_info structure. */ | |
134 | #define riscv_elf_hash_table(p) \ | |
135 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ | |
136 | == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL) | |
137 | ||
138 | static void | |
139 | riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, | |
140 | arelent *cache_ptr, | |
141 | Elf_Internal_Rela *dst) | |
142 | { | |
143 | cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info)); | |
144 | } | |
145 | ||
146 | static void | |
147 | riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
148 | { | |
149 | const struct elf_backend_data *bed; | |
150 | bfd_byte *loc; | |
151 | ||
152 | bed = get_elf_backend_data (abfd); | |
153 | loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | |
154 | bed->s->swap_reloca_out (abfd, rel, loc); | |
155 | } | |
156 | ||
157 | /* PLT/GOT stuff. */ | |
158 | ||
159 | #define PLT_HEADER_INSNS 8 | |
160 | #define PLT_ENTRY_INSNS 4 | |
161 | #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) | |
162 | #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) | |
163 | ||
164 | #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES | |
165 | ||
166 | #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) | |
167 | ||
168 | #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) | |
169 | ||
170 | static bfd_vma | |
171 | riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info) | |
172 | { | |
173 | return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt) | |
174 | + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE); | |
175 | } | |
176 | ||
177 | #if ARCH_SIZE == 32 | |
178 | # define MATCH_LREG MATCH_LW | |
179 | #else | |
180 | # define MATCH_LREG MATCH_LD | |
181 | #endif | |
182 | ||
183 | /* Generate a PLT header. */ | |
184 | ||
185 | static void | |
186 | riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry) | |
187 | { | |
188 | bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); | |
189 | bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); | |
190 | ||
191 | /* auipc t2, %hi(.got.plt) | |
192 | sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 | |
193 | l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve | |
194 | addi t1, t1, -(hdr size + 12) # shifted .got.plt offset | |
195 | addi t0, t2, %lo(.got.plt) # &.got.plt | |
196 | srli t1, t1, log2(16/PTRSIZE) # .got.plt offset | |
197 | l[w|d] t0, PTRSIZE(t0) # link map | |
198 | jr t3 */ | |
199 | ||
200 | entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); | |
201 | entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); | |
202 | entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); | |
203 | entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12)); | |
204 | entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); | |
205 | entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); | |
206 | entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); | |
207 | entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); | |
208 | } | |
209 | ||
210 | /* Generate a PLT entry. */ | |
211 | ||
212 | static void | |
213 | riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry) | |
214 | { | |
215 | /* auipc t3, %hi(.got.plt entry) | |
216 | l[w|d] t3, %lo(.got.plt entry)(t3) | |
217 | jalr t1, t3 | |
218 | nop */ | |
219 | ||
220 | entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); | |
1d65abb5 | 221 | entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); |
e23eba97 NC |
222 | entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); |
223 | entry[3] = RISCV_NOP; | |
224 | } | |
225 | ||
226 | /* Create an entry in an RISC-V ELF linker hash table. */ | |
227 | ||
228 | static struct bfd_hash_entry * | |
229 | link_hash_newfunc (struct bfd_hash_entry *entry, | |
230 | struct bfd_hash_table *table, const char *string) | |
231 | { | |
232 | /* Allocate the structure if it has not already been allocated by a | |
233 | subclass. */ | |
234 | if (entry == NULL) | |
235 | { | |
236 | entry = | |
237 | bfd_hash_allocate (table, | |
238 | sizeof (struct riscv_elf_link_hash_entry)); | |
239 | if (entry == NULL) | |
240 | return entry; | |
241 | } | |
242 | ||
243 | /* Call the allocation method of the superclass. */ | |
244 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
245 | if (entry != NULL) | |
246 | { | |
247 | struct riscv_elf_link_hash_entry *eh; | |
248 | ||
249 | eh = (struct riscv_elf_link_hash_entry *) entry; | |
250 | eh->dyn_relocs = NULL; | |
251 | eh->tls_type = GOT_UNKNOWN; | |
252 | } | |
253 | ||
254 | return entry; | |
255 | } | |
256 | ||
257 | /* Create a RISC-V ELF linker hash table. */ | |
258 | ||
259 | static struct bfd_link_hash_table * | |
260 | riscv_elf_link_hash_table_create (bfd *abfd) | |
261 | { | |
262 | struct riscv_elf_link_hash_table *ret; | |
263 | bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table); | |
264 | ||
265 | ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); | |
266 | if (ret == NULL) | |
267 | return NULL; | |
268 | ||
269 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, | |
270 | sizeof (struct riscv_elf_link_hash_entry), | |
271 | RISCV_ELF_DATA)) | |
272 | { | |
273 | free (ret); | |
274 | return NULL; | |
275 | } | |
276 | ||
277 | return &ret->elf.root; | |
278 | } | |
279 | ||
280 | /* Create the .got section. */ | |
281 | ||
282 | static bfd_boolean | |
283 | riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | |
284 | { | |
285 | flagword flags; | |
286 | asection *s, *s_got; | |
287 | struct elf_link_hash_entry *h; | |
288 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
289 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
290 | ||
291 | /* This function may be called more than once. */ | |
ce558b89 | 292 | if (htab->sgot != NULL) |
e23eba97 NC |
293 | return TRUE; |
294 | ||
295 | flags = bed->dynamic_sec_flags; | |
296 | ||
297 | s = bfd_make_section_anyway_with_flags (abfd, | |
298 | (bed->rela_plts_and_copies_p | |
299 | ? ".rela.got" : ".rel.got"), | |
300 | (bed->dynamic_sec_flags | |
301 | | SEC_READONLY)); | |
302 | if (s == NULL | |
303 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
304 | return FALSE; | |
305 | htab->srelgot = s; | |
306 | ||
307 | s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | |
308 | if (s == NULL | |
309 | || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
310 | return FALSE; | |
311 | htab->sgot = s; | |
312 | ||
313 | /* The first bit of the global offset table is the header. */ | |
314 | s->size += bed->got_header_size; | |
315 | ||
316 | if (bed->want_got_plt) | |
317 | { | |
318 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | |
319 | if (s == NULL | |
320 | || !bfd_set_section_alignment (abfd, s, | |
321 | bed->s->log_file_align)) | |
322 | return FALSE; | |
323 | htab->sgotplt = s; | |
324 | ||
325 | /* Reserve room for the header. */ | |
326 | s->size += GOTPLT_HEADER_SIZE; | |
327 | } | |
328 | ||
329 | if (bed->want_got_sym) | |
330 | { | |
331 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
332 | section. We don't do this in the linker script because we don't want | |
333 | to define the symbol if we are not creating a global offset | |
334 | table. */ | |
335 | h = _bfd_elf_define_linkage_sym (abfd, info, s_got, | |
336 | "_GLOBAL_OFFSET_TABLE_"); | |
337 | elf_hash_table (info)->hgot = h; | |
338 | if (h == NULL) | |
339 | return FALSE; | |
340 | } | |
341 | ||
342 | return TRUE; | |
343 | } | |
344 | ||
345 | /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and | |
346 | .rela.bss sections in DYNOBJ, and set up shortcuts to them in our | |
347 | hash table. */ | |
348 | ||
349 | static bfd_boolean | |
350 | riscv_elf_create_dynamic_sections (bfd *dynobj, | |
351 | struct bfd_link_info *info) | |
352 | { | |
353 | struct riscv_elf_link_hash_table *htab; | |
354 | ||
355 | htab = riscv_elf_hash_table (info); | |
356 | BFD_ASSERT (htab != NULL); | |
357 | ||
358 | if (!riscv_elf_create_got_section (dynobj, info)) | |
359 | return FALSE; | |
360 | ||
361 | if (!_bfd_elf_create_dynamic_sections (dynobj, info)) | |
362 | return FALSE; | |
363 | ||
e23eba97 NC |
364 | if (!bfd_link_pic (info)) |
365 | { | |
e23eba97 NC |
366 | htab->sdyntdata = |
367 | bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", | |
368 | SEC_ALLOC | SEC_THREAD_LOCAL); | |
369 | } | |
370 | ||
9d19e4fd AM |
371 | if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss |
372 | || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) | |
e23eba97 NC |
373 | abort (); |
374 | ||
375 | return TRUE; | |
376 | } | |
377 | ||
378 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ | |
379 | ||
380 | static void | |
381 | riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, | |
382 | struct elf_link_hash_entry *dir, | |
383 | struct elf_link_hash_entry *ind) | |
384 | { | |
385 | struct riscv_elf_link_hash_entry *edir, *eind; | |
386 | ||
387 | edir = (struct riscv_elf_link_hash_entry *) dir; | |
388 | eind = (struct riscv_elf_link_hash_entry *) ind; | |
389 | ||
390 | if (eind->dyn_relocs != NULL) | |
391 | { | |
392 | if (edir->dyn_relocs != NULL) | |
393 | { | |
394 | struct riscv_elf_dyn_relocs **pp; | |
395 | struct riscv_elf_dyn_relocs *p; | |
396 | ||
397 | /* Add reloc counts against the indirect sym to the direct sym | |
398 | list. Merge any entries against the same section. */ | |
399 | for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) | |
400 | { | |
401 | struct riscv_elf_dyn_relocs *q; | |
402 | ||
403 | for (q = edir->dyn_relocs; q != NULL; q = q->next) | |
404 | if (q->sec == p->sec) | |
405 | { | |
406 | q->pc_count += p->pc_count; | |
407 | q->count += p->count; | |
408 | *pp = p->next; | |
409 | break; | |
410 | } | |
411 | if (q == NULL) | |
412 | pp = &p->next; | |
413 | } | |
414 | *pp = edir->dyn_relocs; | |
415 | } | |
416 | ||
417 | edir->dyn_relocs = eind->dyn_relocs; | |
418 | eind->dyn_relocs = NULL; | |
419 | } | |
420 | ||
421 | if (ind->root.type == bfd_link_hash_indirect | |
422 | && dir->got.refcount <= 0) | |
423 | { | |
424 | edir->tls_type = eind->tls_type; | |
425 | eind->tls_type = GOT_UNKNOWN; | |
426 | } | |
427 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
428 | } | |
429 | ||
430 | static bfd_boolean | |
431 | riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, | |
432 | unsigned long symndx, char tls_type) | |
433 | { | |
434 | char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); | |
435 | ||
436 | *new_tls_type |= tls_type; | |
437 | if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) | |
438 | { | |
439 | (*_bfd_error_handler) | |
440 | (_("%B: `%s' accessed both as normal and thread local symbol"), | |
441 | abfd, h ? h->root.root.string : "<local>"); | |
442 | return FALSE; | |
443 | } | |
444 | return TRUE; | |
445 | } | |
446 | ||
447 | static bfd_boolean | |
448 | riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, | |
449 | struct elf_link_hash_entry *h, long symndx) | |
450 | { | |
451 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
452 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
453 | ||
454 | if (htab->elf.sgot == NULL) | |
455 | { | |
456 | if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) | |
457 | return FALSE; | |
458 | } | |
459 | ||
460 | if (h != NULL) | |
461 | { | |
462 | h->got.refcount += 1; | |
463 | return TRUE; | |
464 | } | |
465 | ||
466 | /* This is a global offset table entry for a local symbol. */ | |
467 | if (elf_local_got_refcounts (abfd) == NULL) | |
468 | { | |
469 | bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); | |
470 | if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) | |
471 | return FALSE; | |
472 | _bfd_riscv_elf_local_got_tls_type (abfd) | |
473 | = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); | |
474 | } | |
475 | elf_local_got_refcounts (abfd) [symndx] += 1; | |
476 | ||
477 | return TRUE; | |
478 | } | |
479 | ||
480 | static bfd_boolean | |
481 | bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) | |
482 | { | |
483 | (*_bfd_error_handler) | |
484 | (_("%B: relocation %s against `%s' can not be used when making a shared " | |
485 | "object; recompile with -fPIC"), | |
486 | abfd, riscv_elf_rtype_to_howto (r_type)->name, | |
487 | h != NULL ? h->root.root.string : "a local symbol"); | |
488 | bfd_set_error (bfd_error_bad_value); | |
489 | return FALSE; | |
490 | } | |
491 | /* Look through the relocs for a section during the first phase, and | |
492 | allocate space in the global offset table or procedure linkage | |
493 | table. */ | |
494 | ||
495 | static bfd_boolean | |
496 | riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, | |
497 | asection *sec, const Elf_Internal_Rela *relocs) | |
498 | { | |
499 | struct riscv_elf_link_hash_table *htab; | |
500 | Elf_Internal_Shdr *symtab_hdr; | |
501 | struct elf_link_hash_entry **sym_hashes; | |
502 | const Elf_Internal_Rela *rel; | |
503 | asection *sreloc = NULL; | |
504 | ||
505 | if (bfd_link_relocatable (info)) | |
506 | return TRUE; | |
507 | ||
508 | htab = riscv_elf_hash_table (info); | |
509 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
510 | sym_hashes = elf_sym_hashes (abfd); | |
511 | ||
512 | if (htab->elf.dynobj == NULL) | |
513 | htab->elf.dynobj = abfd; | |
514 | ||
515 | for (rel = relocs; rel < relocs + sec->reloc_count; rel++) | |
516 | { | |
517 | unsigned int r_type; | |
518 | unsigned long r_symndx; | |
519 | struct elf_link_hash_entry *h; | |
520 | ||
521 | r_symndx = ELFNN_R_SYM (rel->r_info); | |
522 | r_type = ELFNN_R_TYPE (rel->r_info); | |
523 | ||
524 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
525 | { | |
526 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), | |
527 | abfd, r_symndx); | |
528 | return FALSE; | |
529 | } | |
530 | ||
531 | if (r_symndx < symtab_hdr->sh_info) | |
532 | h = NULL; | |
533 | else | |
534 | { | |
535 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
536 | while (h->root.type == bfd_link_hash_indirect | |
537 | || h->root.type == bfd_link_hash_warning) | |
538 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
539 | ||
540 | /* PR15323, ref flags aren't set for references in the same | |
541 | object. */ | |
542 | h->root.non_ir_ref = 1; | |
543 | } | |
544 | ||
545 | switch (r_type) | |
546 | { | |
547 | case R_RISCV_TLS_GD_HI20: | |
548 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
549 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) | |
550 | return FALSE; | |
551 | break; | |
552 | ||
553 | case R_RISCV_TLS_GOT_HI20: | |
554 | if (bfd_link_pic (info)) | |
555 | info->flags |= DF_STATIC_TLS; | |
556 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
557 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) | |
558 | return FALSE; | |
559 | break; | |
560 | ||
561 | case R_RISCV_GOT_HI20: | |
562 | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | |
563 | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) | |
564 | return FALSE; | |
565 | break; | |
566 | ||
567 | case R_RISCV_CALL_PLT: | |
568 | /* This symbol requires a procedure linkage table entry. We | |
569 | actually build the entry in adjust_dynamic_symbol, | |
570 | because this might be a case of linking PIC code without | |
571 | linking in any dynamic objects, in which case we don't | |
572 | need to generate a procedure linkage table after all. */ | |
573 | ||
574 | if (h != NULL) | |
575 | { | |
576 | h->needs_plt = 1; | |
577 | h->plt.refcount += 1; | |
578 | } | |
579 | break; | |
580 | ||
581 | case R_RISCV_CALL: | |
582 | case R_RISCV_JAL: | |
583 | case R_RISCV_BRANCH: | |
584 | case R_RISCV_RVC_BRANCH: | |
585 | case R_RISCV_RVC_JUMP: | |
586 | case R_RISCV_PCREL_HI20: | |
587 | /* In shared libraries, these relocs are known to bind locally. */ | |
588 | if (bfd_link_pic (info)) | |
589 | break; | |
590 | goto static_reloc; | |
591 | ||
592 | case R_RISCV_TPREL_HI20: | |
593 | if (!bfd_link_executable (info)) | |
594 | return bad_static_reloc (abfd, r_type, h); | |
595 | if (h != NULL) | |
596 | riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); | |
597 | goto static_reloc; | |
598 | ||
599 | case R_RISCV_HI20: | |
600 | if (bfd_link_pic (info)) | |
601 | return bad_static_reloc (abfd, r_type, h); | |
602 | /* Fall through. */ | |
603 | ||
604 | case R_RISCV_COPY: | |
605 | case R_RISCV_JUMP_SLOT: | |
606 | case R_RISCV_RELATIVE: | |
607 | case R_RISCV_64: | |
608 | case R_RISCV_32: | |
609 | /* Fall through. */ | |
610 | ||
611 | static_reloc: | |
612 | /* This reloc might not bind locally. */ | |
613 | if (h != NULL) | |
614 | h->non_got_ref = 1; | |
615 | ||
616 | if (h != NULL && !bfd_link_pic (info)) | |
617 | { | |
618 | /* We may need a .plt entry if the function this reloc | |
619 | refers to is in a shared lib. */ | |
620 | h->plt.refcount += 1; | |
621 | } | |
622 | ||
623 | /* If we are creating a shared library, and this is a reloc | |
624 | against a global symbol, or a non PC relative reloc | |
625 | against a local symbol, then we need to copy the reloc | |
626 | into the shared library. However, if we are linking with | |
627 | -Bsymbolic, we do not need to copy a reloc against a | |
628 | global symbol which is defined in an object we are | |
629 | including in the link (i.e., DEF_REGULAR is set). At | |
630 | this point we have not seen all the input files, so it is | |
631 | possible that DEF_REGULAR is not set now but will be set | |
632 | later (it is never cleared). In case of a weak definition, | |
633 | DEF_REGULAR may be cleared later by a strong definition in | |
634 | a shared library. We account for that possibility below by | |
635 | storing information in the relocs_copied field of the hash | |
636 | table entry. A similar situation occurs when creating | |
637 | shared libraries and symbol visibility changes render the | |
638 | symbol local. | |
639 | ||
640 | If on the other hand, we are creating an executable, we | |
641 | may need to keep relocations for symbols satisfied by a | |
642 | dynamic library if we manage to avoid copy relocs for the | |
643 | symbol. */ | |
644 | if ((bfd_link_pic (info) | |
645 | && (sec->flags & SEC_ALLOC) != 0 | |
646 | && (! riscv_elf_rtype_to_howto (r_type)->pc_relative | |
647 | || (h != NULL | |
648 | && (! info->symbolic | |
649 | || h->root.type == bfd_link_hash_defweak | |
650 | || !h->def_regular)))) | |
651 | || (!bfd_link_pic (info) | |
652 | && (sec->flags & SEC_ALLOC) != 0 | |
653 | && h != NULL | |
654 | && (h->root.type == bfd_link_hash_defweak | |
655 | || !h->def_regular))) | |
656 | { | |
657 | struct riscv_elf_dyn_relocs *p; | |
658 | struct riscv_elf_dyn_relocs **head; | |
659 | ||
660 | /* When creating a shared object, we must copy these | |
661 | relocs into the output file. We create a reloc | |
662 | section in dynobj and make room for the reloc. */ | |
663 | if (sreloc == NULL) | |
664 | { | |
665 | sreloc = _bfd_elf_make_dynamic_reloc_section | |
666 | (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, | |
667 | abfd, /*rela?*/ TRUE); | |
668 | ||
669 | if (sreloc == NULL) | |
670 | return FALSE; | |
671 | } | |
672 | ||
673 | /* If this is a global symbol, we count the number of | |
674 | relocations we need for this symbol. */ | |
675 | if (h != NULL) | |
676 | head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs; | |
677 | else | |
678 | { | |
679 | /* Track dynamic relocs needed for local syms too. | |
680 | We really need local syms available to do this | |
681 | easily. Oh well. */ | |
682 | ||
683 | asection *s; | |
684 | void *vpp; | |
685 | Elf_Internal_Sym *isym; | |
686 | ||
687 | isym = bfd_sym_from_r_symndx (&htab->sym_cache, | |
688 | abfd, r_symndx); | |
689 | if (isym == NULL) | |
690 | return FALSE; | |
691 | ||
692 | s = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
693 | if (s == NULL) | |
694 | s = sec; | |
695 | ||
696 | vpp = &elf_section_data (s)->local_dynrel; | |
697 | head = (struct riscv_elf_dyn_relocs **) vpp; | |
698 | } | |
699 | ||
700 | p = *head; | |
701 | if (p == NULL || p->sec != sec) | |
702 | { | |
703 | bfd_size_type amt = sizeof *p; | |
704 | p = ((struct riscv_elf_dyn_relocs *) | |
705 | bfd_alloc (htab->elf.dynobj, amt)); | |
706 | if (p == NULL) | |
707 | return FALSE; | |
708 | p->next = *head; | |
709 | *head = p; | |
710 | p->sec = sec; | |
711 | p->count = 0; | |
712 | p->pc_count = 0; | |
713 | } | |
714 | ||
715 | p->count += 1; | |
716 | p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative; | |
717 | } | |
718 | ||
719 | break; | |
720 | ||
721 | case R_RISCV_GNU_VTINHERIT: | |
722 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
723 | return FALSE; | |
724 | break; | |
725 | ||
726 | case R_RISCV_GNU_VTENTRY: | |
727 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
728 | return FALSE; | |
729 | break; | |
730 | ||
731 | default: | |
732 | break; | |
733 | } | |
734 | } | |
735 | ||
736 | return TRUE; | |
737 | } | |
738 | ||
739 | static asection * | |
740 | riscv_elf_gc_mark_hook (asection *sec, | |
741 | struct bfd_link_info *info, | |
742 | Elf_Internal_Rela *rel, | |
743 | struct elf_link_hash_entry *h, | |
744 | Elf_Internal_Sym *sym) | |
745 | { | |
746 | if (h != NULL) | |
747 | switch (ELFNN_R_TYPE (rel->r_info)) | |
748 | { | |
749 | case R_RISCV_GNU_VTINHERIT: | |
750 | case R_RISCV_GNU_VTENTRY: | |
751 | return NULL; | |
752 | } | |
753 | ||
754 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
755 | } | |
756 | ||
757 | /* Update the got entry reference counts for the section being removed. */ | |
758 | ||
759 | static bfd_boolean | |
760 | riscv_elf_gc_sweep_hook (bfd *abfd, | |
761 | struct bfd_link_info *info, | |
762 | asection *sec, | |
763 | const Elf_Internal_Rela *relocs) | |
764 | { | |
765 | const Elf_Internal_Rela *rel, *relend; | |
766 | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); | |
767 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); | |
768 | bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd); | |
769 | ||
770 | if (bfd_link_relocatable (info)) | |
771 | return TRUE; | |
772 | ||
773 | elf_section_data (sec)->local_dynrel = NULL; | |
774 | ||
775 | for (rel = relocs, relend = relocs + sec->reloc_count; rel < relend; rel++) | |
776 | { | |
777 | unsigned long r_symndx; | |
778 | struct elf_link_hash_entry *h = NULL; | |
779 | ||
780 | r_symndx = ELFNN_R_SYM (rel->r_info); | |
781 | if (r_symndx >= symtab_hdr->sh_info) | |
782 | { | |
783 | struct riscv_elf_link_hash_entry *eh; | |
784 | struct riscv_elf_dyn_relocs **pp; | |
785 | struct riscv_elf_dyn_relocs *p; | |
786 | ||
787 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
788 | while (h->root.type == bfd_link_hash_indirect | |
789 | || h->root.type == bfd_link_hash_warning) | |
790 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
791 | eh = (struct riscv_elf_link_hash_entry *) h; | |
792 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) | |
793 | if (p->sec == sec) | |
794 | { | |
795 | /* Everything must go for SEC. */ | |
796 | *pp = p->next; | |
797 | break; | |
798 | } | |
799 | } | |
800 | ||
801 | switch (ELFNN_R_TYPE (rel->r_info)) | |
802 | { | |
803 | case R_RISCV_GOT_HI20: | |
804 | case R_RISCV_TLS_GOT_HI20: | |
805 | case R_RISCV_TLS_GD_HI20: | |
806 | if (h != NULL) | |
807 | { | |
808 | if (h->got.refcount > 0) | |
809 | h->got.refcount--; | |
810 | } | |
811 | else | |
812 | { | |
813 | if (local_got_refcounts && | |
814 | local_got_refcounts[r_symndx] > 0) | |
815 | local_got_refcounts[r_symndx]--; | |
816 | } | |
817 | break; | |
818 | ||
819 | case R_RISCV_HI20: | |
820 | case R_RISCV_PCREL_HI20: | |
821 | case R_RISCV_COPY: | |
822 | case R_RISCV_JUMP_SLOT: | |
823 | case R_RISCV_RELATIVE: | |
824 | case R_RISCV_64: | |
825 | case R_RISCV_32: | |
826 | case R_RISCV_BRANCH: | |
827 | case R_RISCV_CALL: | |
828 | case R_RISCV_JAL: | |
829 | case R_RISCV_RVC_BRANCH: | |
830 | case R_RISCV_RVC_JUMP: | |
831 | if (bfd_link_pic (info)) | |
832 | break; | |
833 | /* Fall through. */ | |
834 | ||
835 | case R_RISCV_CALL_PLT: | |
836 | if (h != NULL) | |
837 | { | |
838 | if (h->plt.refcount > 0) | |
839 | h->plt.refcount--; | |
840 | } | |
841 | break; | |
842 | ||
843 | default: | |
844 | break; | |
845 | } | |
846 | } | |
847 | ||
848 | return TRUE; | |
849 | } | |
850 | ||
851 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
852 | regular object. The current definition is in some section of the | |
853 | dynamic object, but we're not including those sections. We have to | |
854 | change the definition to something the rest of the link can | |
855 | understand. */ | |
856 | ||
857 | static bfd_boolean | |
858 | riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, | |
859 | struct elf_link_hash_entry *h) | |
860 | { | |
861 | struct riscv_elf_link_hash_table *htab; | |
862 | struct riscv_elf_link_hash_entry * eh; | |
863 | struct riscv_elf_dyn_relocs *p; | |
864 | bfd *dynobj; | |
865 | asection *s; | |
866 | ||
867 | htab = riscv_elf_hash_table (info); | |
868 | BFD_ASSERT (htab != NULL); | |
869 | ||
870 | dynobj = htab->elf.dynobj; | |
871 | ||
872 | /* Make sure we know what is going on here. */ | |
873 | BFD_ASSERT (dynobj != NULL | |
874 | && (h->needs_plt | |
875 | || h->type == STT_GNU_IFUNC | |
876 | || h->u.weakdef != NULL | |
877 | || (h->def_dynamic | |
878 | && h->ref_regular | |
879 | && !h->def_regular))); | |
880 | ||
881 | /* If this is a function, put it in the procedure linkage table. We | |
882 | will fill in the contents of the procedure linkage table later | |
883 | (although we could actually do it here). */ | |
884 | if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) | |
885 | { | |
886 | if (h->plt.refcount <= 0 | |
887 | || SYMBOL_CALLS_LOCAL (info, h) | |
888 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
889 | && h->root.type == bfd_link_hash_undefweak)) | |
890 | { | |
891 | /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an | |
892 | input file, but the symbol was never referred to by a dynamic | |
893 | object, or if all references were garbage collected. In such | |
894 | a case, we don't actually need to build a PLT entry. */ | |
895 | h->plt.offset = (bfd_vma) -1; | |
896 | h->needs_plt = 0; | |
897 | } | |
898 | ||
899 | return TRUE; | |
900 | } | |
901 | else | |
902 | h->plt.offset = (bfd_vma) -1; | |
903 | ||
904 | /* If this is a weak symbol, and there is a real definition, the | |
905 | processor independent code will have arranged for us to see the | |
906 | real definition first, and we can just use the same value. */ | |
907 | if (h->u.weakdef != NULL) | |
908 | { | |
909 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
910 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
911 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
912 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
913 | return TRUE; | |
914 | } | |
915 | ||
916 | /* This is a reference to a symbol defined by a dynamic object which | |
917 | is not a function. */ | |
918 | ||
919 | /* If we are creating a shared library, we must presume that the | |
920 | only references to the symbol are via the global offset table. | |
921 | For such cases we need not do anything here; the relocations will | |
922 | be handled correctly by relocate_section. */ | |
923 | if (bfd_link_pic (info)) | |
924 | return TRUE; | |
925 | ||
926 | /* If there are no references to this symbol that do not use the | |
927 | GOT, we don't need to generate a copy reloc. */ | |
928 | if (!h->non_got_ref) | |
929 | return TRUE; | |
930 | ||
931 | /* If -z nocopyreloc was given, we won't generate them either. */ | |
932 | if (info->nocopyreloc) | |
933 | { | |
934 | h->non_got_ref = 0; | |
935 | return TRUE; | |
936 | } | |
937 | ||
938 | eh = (struct riscv_elf_link_hash_entry *) h; | |
939 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
940 | { | |
941 | s = p->sec->output_section; | |
942 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
943 | break; | |
944 | } | |
945 | ||
946 | /* If we didn't find any dynamic relocs in read-only sections, then | |
947 | we'll be keeping the dynamic relocs and avoiding the copy reloc. */ | |
948 | if (p == NULL) | |
949 | { | |
950 | h->non_got_ref = 0; | |
951 | return TRUE; | |
952 | } | |
953 | ||
954 | /* We must allocate the symbol in our .dynbss section, which will | |
955 | become part of the .bss section of the executable. There will be | |
956 | an entry for this symbol in the .dynsym section. The dynamic | |
957 | object will contain position independent code, so all references | |
958 | from the dynamic object to this symbol will go through the global | |
959 | offset table. The dynamic linker will use the .dynsym entry to | |
960 | determine the address it must put in the global offset table, so | |
961 | both the dynamic object and the regular object will refer to the | |
962 | same memory location for the variable. */ | |
963 | ||
964 | /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker | |
965 | to copy the initial value out of the dynamic object and into the | |
966 | runtime process image. We need to remember the offset into the | |
967 | .rel.bss section we are going to use. */ | |
968 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) | |
969 | { | |
9d19e4fd | 970 | htab->elf.srelbss->size += sizeof (ElfNN_External_Rela); |
e23eba97 NC |
971 | h->needs_copy = 1; |
972 | } | |
973 | ||
974 | if (eh->tls_type & ~GOT_NORMAL) | |
975 | return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdyntdata); | |
976 | ||
9d19e4fd | 977 | return _bfd_elf_adjust_dynamic_copy (info, h, htab->elf.sdynbss); |
e23eba97 NC |
978 | } |
979 | ||
980 | /* Allocate space in .plt, .got and associated reloc sections for | |
981 | dynamic relocs. */ | |
982 | ||
983 | static bfd_boolean | |
984 | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
985 | { | |
986 | struct bfd_link_info *info; | |
987 | struct riscv_elf_link_hash_table *htab; | |
988 | struct riscv_elf_link_hash_entry *eh; | |
989 | struct riscv_elf_dyn_relocs *p; | |
990 | ||
991 | if (h->root.type == bfd_link_hash_indirect) | |
992 | return TRUE; | |
993 | ||
994 | info = (struct bfd_link_info *) inf; | |
995 | htab = riscv_elf_hash_table (info); | |
996 | BFD_ASSERT (htab != NULL); | |
997 | ||
998 | if (htab->elf.dynamic_sections_created | |
999 | && h->plt.refcount > 0) | |
1000 | { | |
1001 | /* Make sure this symbol is output as a dynamic symbol. | |
1002 | Undefined weak syms won't yet be marked as dynamic. */ | |
1003 | if (h->dynindx == -1 | |
1004 | && !h->forced_local) | |
1005 | { | |
1006 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1007 | return FALSE; | |
1008 | } | |
1009 | ||
1010 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) | |
1011 | { | |
1012 | asection *s = htab->elf.splt; | |
1013 | ||
1014 | if (s->size == 0) | |
1015 | s->size = PLT_HEADER_SIZE; | |
1016 | ||
1017 | h->plt.offset = s->size; | |
1018 | ||
1019 | /* Make room for this entry. */ | |
1020 | s->size += PLT_ENTRY_SIZE; | |
1021 | ||
1022 | /* We also need to make an entry in the .got.plt section. */ | |
1023 | htab->elf.sgotplt->size += GOT_ENTRY_SIZE; | |
1024 | ||
1025 | /* We also need to make an entry in the .rela.plt section. */ | |
1026 | htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); | |
1027 | ||
1028 | /* If this symbol is not defined in a regular file, and we are | |
1029 | not generating a shared library, then set the symbol to this | |
1030 | location in the .plt. This is required to make function | |
1031 | pointers compare as equal between the normal executable and | |
1032 | the shared library. */ | |
1033 | if (! bfd_link_pic (info) | |
1034 | && !h->def_regular) | |
1035 | { | |
1036 | h->root.u.def.section = s; | |
1037 | h->root.u.def.value = h->plt.offset; | |
1038 | } | |
1039 | } | |
1040 | else | |
1041 | { | |
1042 | h->plt.offset = (bfd_vma) -1; | |
1043 | h->needs_plt = 0; | |
1044 | } | |
1045 | } | |
1046 | else | |
1047 | { | |
1048 | h->plt.offset = (bfd_vma) -1; | |
1049 | h->needs_plt = 0; | |
1050 | } | |
1051 | ||
1052 | if (h->got.refcount > 0) | |
1053 | { | |
1054 | asection *s; | |
1055 | bfd_boolean dyn; | |
1056 | int tls_type = riscv_elf_hash_entry (h)->tls_type; | |
1057 | ||
1058 | /* Make sure this symbol is output as a dynamic symbol. | |
1059 | Undefined weak syms won't yet be marked as dynamic. */ | |
1060 | if (h->dynindx == -1 | |
1061 | && !h->forced_local) | |
1062 | { | |
1063 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1064 | return FALSE; | |
1065 | } | |
1066 | ||
1067 | s = htab->elf.sgot; | |
1068 | h->got.offset = s->size; | |
1069 | dyn = htab->elf.dynamic_sections_created; | |
1070 | if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) | |
1071 | { | |
1072 | /* TLS_GD needs two dynamic relocs and two GOT slots. */ | |
1073 | if (tls_type & GOT_TLS_GD) | |
1074 | { | |
1075 | s->size += 2 * RISCV_ELF_WORD_BYTES; | |
1076 | htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); | |
1077 | } | |
1078 | ||
1079 | /* TLS_IE needs one dynamic reloc and one GOT slot. */ | |
1080 | if (tls_type & GOT_TLS_IE) | |
1081 | { | |
1082 | s->size += RISCV_ELF_WORD_BYTES; | |
1083 | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); | |
1084 | } | |
1085 | } | |
1086 | else | |
1087 | { | |
1088 | s->size += RISCV_ELF_WORD_BYTES; | |
1089 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)) | |
1090 | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); | |
1091 | } | |
1092 | } | |
1093 | else | |
1094 | h->got.offset = (bfd_vma) -1; | |
1095 | ||
1096 | eh = (struct riscv_elf_link_hash_entry *) h; | |
1097 | if (eh->dyn_relocs == NULL) | |
1098 | return TRUE; | |
1099 | ||
1100 | /* In the shared -Bsymbolic case, discard space allocated for | |
1101 | dynamic pc-relative relocs against symbols which turn out to be | |
1102 | defined in regular objects. For the normal shared case, discard | |
1103 | space for pc-relative relocs that have become local due to symbol | |
1104 | visibility changes. */ | |
1105 | ||
1106 | if (bfd_link_pic (info)) | |
1107 | { | |
1108 | if (SYMBOL_CALLS_LOCAL (info, h)) | |
1109 | { | |
1110 | struct riscv_elf_dyn_relocs **pp; | |
1111 | ||
1112 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) | |
1113 | { | |
1114 | p->count -= p->pc_count; | |
1115 | p->pc_count = 0; | |
1116 | if (p->count == 0) | |
1117 | *pp = p->next; | |
1118 | else | |
1119 | pp = &p->next; | |
1120 | } | |
1121 | } | |
1122 | ||
1123 | /* Also discard relocs on undefined weak syms with non-default | |
1124 | visibility. */ | |
1125 | if (eh->dyn_relocs != NULL | |
1126 | && h->root.type == bfd_link_hash_undefweak) | |
1127 | { | |
1128 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | |
1129 | eh->dyn_relocs = NULL; | |
1130 | ||
1131 | /* Make sure undefined weak symbols are output as a dynamic | |
1132 | symbol in PIEs. */ | |
1133 | else if (h->dynindx == -1 | |
1134 | && !h->forced_local) | |
1135 | { | |
1136 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1137 | return FALSE; | |
1138 | } | |
1139 | } | |
1140 | } | |
1141 | else | |
1142 | { | |
1143 | /* For the non-shared case, discard space for relocs against | |
1144 | symbols which turn out to need copy relocs or are not | |
1145 | dynamic. */ | |
1146 | ||
1147 | if (!h->non_got_ref | |
1148 | && ((h->def_dynamic | |
1149 | && !h->def_regular) | |
1150 | || (htab->elf.dynamic_sections_created | |
1151 | && (h->root.type == bfd_link_hash_undefweak | |
1152 | || h->root.type == bfd_link_hash_undefined)))) | |
1153 | { | |
1154 | /* Make sure this symbol is output as a dynamic symbol. | |
1155 | Undefined weak syms won't yet be marked as dynamic. */ | |
1156 | if (h->dynindx == -1 | |
1157 | && !h->forced_local) | |
1158 | { | |
1159 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
1160 | return FALSE; | |
1161 | } | |
1162 | ||
1163 | /* If that succeeded, we know we'll be keeping all the | |
1164 | relocs. */ | |
1165 | if (h->dynindx != -1) | |
1166 | goto keep; | |
1167 | } | |
1168 | ||
1169 | eh->dyn_relocs = NULL; | |
1170 | ||
1171 | keep: ; | |
1172 | } | |
1173 | ||
1174 | /* Finally, allocate space. */ | |
1175 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
1176 | { | |
1177 | asection *sreloc = elf_section_data (p->sec)->sreloc; | |
1178 | sreloc->size += p->count * sizeof (ElfNN_External_Rela); | |
1179 | } | |
1180 | ||
1181 | return TRUE; | |
1182 | } | |
1183 | ||
1184 | /* Find any dynamic relocs that apply to read-only sections. */ | |
1185 | ||
1186 | static bfd_boolean | |
1187 | readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
1188 | { | |
1189 | struct riscv_elf_link_hash_entry *eh; | |
1190 | struct riscv_elf_dyn_relocs *p; | |
1191 | ||
1192 | eh = (struct riscv_elf_link_hash_entry *) h; | |
1193 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
1194 | { | |
1195 | asection *s = p->sec->output_section; | |
1196 | ||
1197 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
1198 | { | |
1199 | ((struct bfd_link_info *) inf)->flags |= DF_TEXTREL; | |
1200 | return FALSE; | |
1201 | } | |
1202 | } | |
1203 | return TRUE; | |
1204 | } | |
1205 | ||
1206 | static bfd_boolean | |
1207 | riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) | |
1208 | { | |
1209 | struct riscv_elf_link_hash_table *htab; | |
1210 | bfd *dynobj; | |
1211 | asection *s; | |
1212 | bfd *ibfd; | |
1213 | ||
1214 | htab = riscv_elf_hash_table (info); | |
1215 | BFD_ASSERT (htab != NULL); | |
1216 | dynobj = htab->elf.dynobj; | |
1217 | BFD_ASSERT (dynobj != NULL); | |
1218 | ||
1219 | if (elf_hash_table (info)->dynamic_sections_created) | |
1220 | { | |
1221 | /* Set the contents of the .interp section to the interpreter. */ | |
1222 | if (bfd_link_executable (info) && !info->nointerp) | |
1223 | { | |
1224 | s = bfd_get_linker_section (dynobj, ".interp"); | |
1225 | BFD_ASSERT (s != NULL); | |
1226 | s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; | |
1227 | s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | /* Set up .got offsets for local syms, and space for local dynamic | |
1232 | relocs. */ | |
1233 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
1234 | { | |
1235 | bfd_signed_vma *local_got; | |
1236 | bfd_signed_vma *end_local_got; | |
1237 | char *local_tls_type; | |
1238 | bfd_size_type locsymcount; | |
1239 | Elf_Internal_Shdr *symtab_hdr; | |
1240 | asection *srel; | |
1241 | ||
1242 | if (! is_riscv_elf (ibfd)) | |
1243 | continue; | |
1244 | ||
1245 | for (s = ibfd->sections; s != NULL; s = s->next) | |
1246 | { | |
1247 | struct riscv_elf_dyn_relocs *p; | |
1248 | ||
1249 | for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) | |
1250 | { | |
1251 | if (!bfd_is_abs_section (p->sec) | |
1252 | && bfd_is_abs_section (p->sec->output_section)) | |
1253 | { | |
1254 | /* Input section has been discarded, either because | |
1255 | it is a copy of a linkonce section or due to | |
1256 | linker script /DISCARD/, so we'll be discarding | |
1257 | the relocs too. */ | |
1258 | } | |
1259 | else if (p->count != 0) | |
1260 | { | |
1261 | srel = elf_section_data (p->sec)->sreloc; | |
1262 | srel->size += p->count * sizeof (ElfNN_External_Rela); | |
1263 | if ((p->sec->output_section->flags & SEC_READONLY) != 0) | |
1264 | info->flags |= DF_TEXTREL; | |
1265 | } | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | local_got = elf_local_got_refcounts (ibfd); | |
1270 | if (!local_got) | |
1271 | continue; | |
1272 | ||
1273 | symtab_hdr = &elf_symtab_hdr (ibfd); | |
1274 | locsymcount = symtab_hdr->sh_info; | |
1275 | end_local_got = local_got + locsymcount; | |
1276 | local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); | |
1277 | s = htab->elf.sgot; | |
1278 | srel = htab->elf.srelgot; | |
1279 | for (; local_got < end_local_got; ++local_got, ++local_tls_type) | |
1280 | { | |
1281 | if (*local_got > 0) | |
1282 | { | |
1283 | *local_got = s->size; | |
1284 | s->size += RISCV_ELF_WORD_BYTES; | |
1285 | if (*local_tls_type & GOT_TLS_GD) | |
1286 | s->size += RISCV_ELF_WORD_BYTES; | |
1287 | if (bfd_link_pic (info) | |
1288 | || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) | |
1289 | srel->size += sizeof (ElfNN_External_Rela); | |
1290 | } | |
1291 | else | |
1292 | *local_got = (bfd_vma) -1; | |
1293 | } | |
1294 | } | |
1295 | ||
1296 | /* Allocate global sym .plt and .got entries, and space for global | |
1297 | sym dynamic relocs. */ | |
1298 | elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); | |
1299 | ||
1300 | if (htab->elf.sgotplt) | |
1301 | { | |
1302 | struct elf_link_hash_entry *got; | |
1303 | got = elf_link_hash_lookup (elf_hash_table (info), | |
1304 | "_GLOBAL_OFFSET_TABLE_", | |
1305 | FALSE, FALSE, FALSE); | |
1306 | ||
1307 | /* Don't allocate .got.plt section if there are no GOT nor PLT | |
1308 | entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ | |
1309 | if ((got == NULL | |
1310 | || !got->ref_regular_nonweak) | |
1311 | && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) | |
1312 | && (htab->elf.splt == NULL | |
1313 | || htab->elf.splt->size == 0) | |
1314 | && (htab->elf.sgot == NULL | |
1315 | || (htab->elf.sgot->size | |
1316 | == get_elf_backend_data (output_bfd)->got_header_size))) | |
1317 | htab->elf.sgotplt->size = 0; | |
1318 | } | |
1319 | ||
1320 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
1321 | determined the sizes of the various dynamic sections. Allocate | |
1322 | memory for them. */ | |
1323 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1324 | { | |
1325 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1326 | continue; | |
1327 | ||
1328 | if (s == htab->elf.splt | |
1329 | || s == htab->elf.sgot | |
1330 | || s == htab->elf.sgotplt | |
9d19e4fd | 1331 | || s == htab->elf.sdynbss) |
e23eba97 NC |
1332 | { |
1333 | /* Strip this section if we don't need it; see the | |
1334 | comment below. */ | |
1335 | } | |
1336 | else if (strncmp (s->name, ".rela", 5) == 0) | |
1337 | { | |
1338 | if (s->size != 0) | |
1339 | { | |
1340 | /* We use the reloc_count field as a counter if we need | |
1341 | to copy relocs into the output file. */ | |
1342 | s->reloc_count = 0; | |
1343 | } | |
1344 | } | |
1345 | else | |
1346 | { | |
1347 | /* It's not one of our sections. */ | |
1348 | continue; | |
1349 | } | |
1350 | ||
1351 | if (s->size == 0) | |
1352 | { | |
1353 | /* If we don't need this section, strip it from the | |
1354 | output file. This is mostly to handle .rela.bss and | |
1355 | .rela.plt. We must create both sections in | |
1356 | create_dynamic_sections, because they must be created | |
1357 | before the linker maps input sections to output | |
1358 | sections. The linker does that before | |
1359 | adjust_dynamic_symbol is called, and it is that | |
1360 | function which decides whether anything needs to go | |
1361 | into these sections. */ | |
1362 | s->flags |= SEC_EXCLUDE; | |
1363 | continue; | |
1364 | } | |
1365 | ||
1366 | if ((s->flags & SEC_HAS_CONTENTS) == 0) | |
1367 | continue; | |
1368 | ||
1369 | /* Allocate memory for the section contents. Zero the memory | |
1370 | for the benefit of .rela.plt, which has 4 unused entries | |
1371 | at the beginning, and we don't want garbage. */ | |
1372 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); | |
1373 | if (s->contents == NULL) | |
1374 | return FALSE; | |
1375 | } | |
1376 | ||
1377 | if (elf_hash_table (info)->dynamic_sections_created) | |
1378 | { | |
1379 | /* Add some entries to the .dynamic section. We fill in the | |
1380 | values later, in riscv_elf_finish_dynamic_sections, but we | |
1381 | must add the entries now so that we get the correct size for | |
1382 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1383 | dynamic linker and used by the debugger. */ | |
1384 | #define add_dynamic_entry(TAG, VAL) \ | |
1385 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) | |
1386 | ||
1387 | if (bfd_link_executable (info)) | |
1388 | { | |
1389 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1390 | return FALSE; | |
1391 | } | |
1392 | ||
1393 | if (htab->elf.srelplt->size != 0) | |
1394 | { | |
1395 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1396 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1397 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1398 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1399 | return FALSE; | |
1400 | } | |
1401 | ||
1402 | if (!add_dynamic_entry (DT_RELA, 0) | |
1403 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1404 | || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) | |
1405 | return FALSE; | |
1406 | ||
1407 | /* If any dynamic relocs apply to a read-only section, | |
1408 | then we need a DT_TEXTREL entry. */ | |
1409 | if ((info->flags & DF_TEXTREL) == 0) | |
1410 | elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info); | |
1411 | ||
1412 | if (info->flags & DF_TEXTREL) | |
1413 | { | |
1414 | if (!add_dynamic_entry (DT_TEXTREL, 0)) | |
1415 | return FALSE; | |
1416 | } | |
1417 | } | |
1418 | #undef add_dynamic_entry | |
1419 | ||
1420 | return TRUE; | |
1421 | } | |
1422 | ||
1423 | #define TP_OFFSET 0 | |
1424 | #define DTP_OFFSET 0x800 | |
1425 | ||
1426 | /* Return the relocation value for a TLS dtp-relative reloc. */ | |
1427 | ||
1428 | static bfd_vma | |
1429 | dtpoff (struct bfd_link_info *info, bfd_vma address) | |
1430 | { | |
1431 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1432 | if (elf_hash_table (info)->tls_sec == NULL) | |
1433 | return 0; | |
1434 | return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; | |
1435 | } | |
1436 | ||
1437 | /* Return the relocation value for a static TLS tp-relative relocation. */ | |
1438 | ||
1439 | static bfd_vma | |
1440 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1441 | { | |
1442 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1443 | if (elf_hash_table (info)->tls_sec == NULL) | |
1444 | return 0; | |
1445 | return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; | |
1446 | } | |
1447 | ||
1448 | /* Return the global pointer's value, or 0 if it is not in use. */ | |
1449 | ||
1450 | static bfd_vma | |
1451 | riscv_global_pointer_value (struct bfd_link_info *info) | |
1452 | { | |
1453 | struct bfd_link_hash_entry *h; | |
1454 | ||
1455 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); | |
1456 | if (h == NULL || h->type != bfd_link_hash_defined) | |
1457 | return 0; | |
1458 | ||
1459 | return h->u.def.value + sec_addr (h->u.def.section); | |
1460 | } | |
1461 | ||
1462 | /* Emplace a static relocation. */ | |
1463 | ||
1464 | static bfd_reloc_status_type | |
1465 | perform_relocation (const reloc_howto_type *howto, | |
1466 | const Elf_Internal_Rela *rel, | |
1467 | bfd_vma value, | |
1468 | asection *input_section, | |
1469 | bfd *input_bfd, | |
1470 | bfd_byte *contents) | |
1471 | { | |
1472 | if (howto->pc_relative) | |
1473 | value -= sec_addr (input_section) + rel->r_offset; | |
1474 | value += rel->r_addend; | |
1475 | ||
1476 | switch (ELFNN_R_TYPE (rel->r_info)) | |
1477 | { | |
1478 | case R_RISCV_HI20: | |
1479 | case R_RISCV_TPREL_HI20: | |
1480 | case R_RISCV_PCREL_HI20: | |
1481 | case R_RISCV_GOT_HI20: | |
1482 | case R_RISCV_TLS_GOT_HI20: | |
1483 | case R_RISCV_TLS_GD_HI20: | |
1484 | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | |
1485 | return bfd_reloc_overflow; | |
1486 | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); | |
1487 | break; | |
1488 | ||
1489 | case R_RISCV_LO12_I: | |
1490 | case R_RISCV_GPREL_I: | |
1491 | case R_RISCV_TPREL_LO12_I: | |
45f76423 | 1492 | case R_RISCV_TPREL_I: |
e23eba97 NC |
1493 | case R_RISCV_PCREL_LO12_I: |
1494 | value = ENCODE_ITYPE_IMM (value); | |
1495 | break; | |
1496 | ||
1497 | case R_RISCV_LO12_S: | |
1498 | case R_RISCV_GPREL_S: | |
1499 | case R_RISCV_TPREL_LO12_S: | |
45f76423 | 1500 | case R_RISCV_TPREL_S: |
e23eba97 NC |
1501 | case R_RISCV_PCREL_LO12_S: |
1502 | value = ENCODE_STYPE_IMM (value); | |
1503 | break; | |
1504 | ||
1505 | case R_RISCV_CALL: | |
1506 | case R_RISCV_CALL_PLT: | |
1507 | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | |
1508 | return bfd_reloc_overflow; | |
1509 | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) | |
1510 | | (ENCODE_ITYPE_IMM (value) << 32); | |
1511 | break; | |
1512 | ||
1513 | case R_RISCV_JAL: | |
1514 | if (!VALID_UJTYPE_IMM (value)) | |
1515 | return bfd_reloc_overflow; | |
1516 | value = ENCODE_UJTYPE_IMM (value); | |
1517 | break; | |
1518 | ||
1519 | case R_RISCV_BRANCH: | |
1520 | if (!VALID_SBTYPE_IMM (value)) | |
1521 | return bfd_reloc_overflow; | |
1522 | value = ENCODE_SBTYPE_IMM (value); | |
1523 | break; | |
1524 | ||
1525 | case R_RISCV_RVC_BRANCH: | |
1526 | if (!VALID_RVC_B_IMM (value)) | |
1527 | return bfd_reloc_overflow; | |
1528 | value = ENCODE_RVC_B_IMM (value); | |
1529 | break; | |
1530 | ||
1531 | case R_RISCV_RVC_JUMP: | |
1532 | if (!VALID_RVC_J_IMM (value)) | |
1533 | return bfd_reloc_overflow; | |
1534 | value = ENCODE_RVC_J_IMM (value); | |
1535 | break; | |
1536 | ||
1537 | case R_RISCV_RVC_LUI: | |
1538 | if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value))) | |
1539 | return bfd_reloc_overflow; | |
1540 | value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)); | |
1541 | break; | |
1542 | ||
1543 | case R_RISCV_32: | |
1544 | case R_RISCV_64: | |
1545 | case R_RISCV_ADD8: | |
1546 | case R_RISCV_ADD16: | |
1547 | case R_RISCV_ADD32: | |
1548 | case R_RISCV_ADD64: | |
45f76423 | 1549 | case R_RISCV_SUB6: |
e23eba97 NC |
1550 | case R_RISCV_SUB8: |
1551 | case R_RISCV_SUB16: | |
1552 | case R_RISCV_SUB32: | |
1553 | case R_RISCV_SUB64: | |
45f76423 AW |
1554 | case R_RISCV_SET6: |
1555 | case R_RISCV_SET8: | |
1556 | case R_RISCV_SET16: | |
1557 | case R_RISCV_SET32: | |
e23eba97 NC |
1558 | case R_RISCV_TLS_DTPREL32: |
1559 | case R_RISCV_TLS_DTPREL64: | |
1560 | break; | |
1561 | ||
1562 | default: | |
1563 | return bfd_reloc_notsupported; | |
1564 | } | |
1565 | ||
1566 | bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); | |
1567 | word = (word & ~howto->dst_mask) | (value & howto->dst_mask); | |
1568 | bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); | |
1569 | ||
1570 | return bfd_reloc_ok; | |
1571 | } | |
1572 | ||
1573 | /* Remember all PC-relative high-part relocs we've encountered to help us | |
1574 | later resolve the corresponding low-part relocs. */ | |
1575 | ||
1576 | typedef struct | |
1577 | { | |
1578 | bfd_vma address; | |
1579 | bfd_vma value; | |
1580 | } riscv_pcrel_hi_reloc; | |
1581 | ||
1582 | typedef struct riscv_pcrel_lo_reloc | |
1583 | { | |
1584 | asection * input_section; | |
1585 | struct bfd_link_info * info; | |
1586 | reloc_howto_type * howto; | |
1587 | const Elf_Internal_Rela * reloc; | |
1588 | bfd_vma addr; | |
1589 | const char * name; | |
1590 | bfd_byte * contents; | |
1591 | struct riscv_pcrel_lo_reloc * next; | |
1592 | } riscv_pcrel_lo_reloc; | |
1593 | ||
1594 | typedef struct | |
1595 | { | |
1596 | htab_t hi_relocs; | |
1597 | riscv_pcrel_lo_reloc *lo_relocs; | |
1598 | } riscv_pcrel_relocs; | |
1599 | ||
1600 | static hashval_t | |
1601 | riscv_pcrel_reloc_hash (const void *entry) | |
1602 | { | |
1603 | const riscv_pcrel_hi_reloc *e = entry; | |
1604 | return (hashval_t)(e->address >> 2); | |
1605 | } | |
1606 | ||
1607 | static bfd_boolean | |
1608 | riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) | |
1609 | { | |
1610 | const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; | |
1611 | return e1->address == e2->address; | |
1612 | } | |
1613 | ||
1614 | static bfd_boolean | |
1615 | riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) | |
1616 | { | |
1617 | ||
1618 | p->lo_relocs = NULL; | |
1619 | p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, | |
1620 | riscv_pcrel_reloc_eq, free); | |
1621 | return p->hi_relocs != NULL; | |
1622 | } | |
1623 | ||
1624 | static void | |
1625 | riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) | |
1626 | { | |
1627 | riscv_pcrel_lo_reloc *cur = p->lo_relocs; | |
1628 | ||
1629 | while (cur != NULL) | |
1630 | { | |
1631 | riscv_pcrel_lo_reloc *next = cur->next; | |
1632 | free (cur); | |
1633 | cur = next; | |
1634 | } | |
1635 | ||
1636 | htab_delete (p->hi_relocs); | |
1637 | } | |
1638 | ||
1639 | static bfd_boolean | |
1640 | riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, bfd_vma value) | |
1641 | { | |
1642 | riscv_pcrel_hi_reloc entry = {addr, value - addr}; | |
1643 | riscv_pcrel_hi_reloc **slot = | |
1644 | (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); | |
1645 | ||
1646 | BFD_ASSERT (*slot == NULL); | |
1647 | *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); | |
1648 | if (*slot == NULL) | |
1649 | return FALSE; | |
1650 | **slot = entry; | |
1651 | return TRUE; | |
1652 | } | |
1653 | ||
1654 | static bfd_boolean | |
1655 | riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, | |
1656 | asection *input_section, | |
1657 | struct bfd_link_info *info, | |
1658 | reloc_howto_type *howto, | |
1659 | const Elf_Internal_Rela *reloc, | |
1660 | bfd_vma addr, | |
1661 | const char *name, | |
1662 | bfd_byte *contents) | |
1663 | { | |
1664 | riscv_pcrel_lo_reloc *entry; | |
1665 | entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); | |
1666 | if (entry == NULL) | |
1667 | return FALSE; | |
1668 | *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr, | |
1669 | name, contents, p->lo_relocs}; | |
1670 | p->lo_relocs = entry; | |
1671 | return TRUE; | |
1672 | } | |
1673 | ||
1674 | static bfd_boolean | |
1675 | riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) | |
1676 | { | |
1677 | riscv_pcrel_lo_reloc *r; | |
1678 | ||
1679 | for (r = p->lo_relocs; r != NULL; r = r->next) | |
1680 | { | |
1681 | bfd *input_bfd = r->input_section->owner; | |
1682 | ||
1683 | riscv_pcrel_hi_reloc search = {r->addr, 0}; | |
1684 | riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); | |
1685 | if (entry == NULL) | |
1686 | { | |
1687 | ((*r->info->callbacks->reloc_overflow) | |
1688 | (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0, | |
1689 | input_bfd, r->input_section, r->reloc->r_offset)); | |
1690 | return TRUE; | |
1691 | } | |
1692 | ||
1693 | perform_relocation (r->howto, r->reloc, entry->value, r->input_section, | |
1694 | input_bfd, r->contents); | |
1695 | } | |
1696 | ||
1697 | return TRUE; | |
1698 | } | |
1699 | ||
1700 | /* Relocate a RISC-V ELF section. | |
1701 | ||
1702 | The RELOCATE_SECTION function is called by the new ELF backend linker | |
1703 | to handle the relocations for a section. | |
1704 | ||
1705 | The relocs are always passed as Rela structures. | |
1706 | ||
1707 | This function is responsible for adjusting the section contents as | |
1708 | necessary, and (if generating a relocatable output file) adjusting | |
1709 | the reloc addend as necessary. | |
1710 | ||
1711 | This function does not have to worry about setting the reloc | |
1712 | address or the reloc symbol index. | |
1713 | ||
1714 | LOCAL_SYMS is a pointer to the swapped in local symbols. | |
1715 | ||
1716 | LOCAL_SECTIONS is an array giving the section in the input file | |
1717 | corresponding to the st_shndx field of each local symbol. | |
1718 | ||
1719 | The global hash table entry for the global symbols can be found | |
1720 | via elf_sym_hashes (input_bfd). | |
1721 | ||
1722 | When generating relocatable output, this function must handle | |
1723 | STB_LOCAL/STT_SECTION symbols specially. The output symbol is | |
1724 | going to be the section symbol corresponding to the output | |
1725 | section, which means that the addend must be adjusted | |
1726 | accordingly. */ | |
1727 | ||
1728 | static bfd_boolean | |
1729 | riscv_elf_relocate_section (bfd *output_bfd, | |
1730 | struct bfd_link_info *info, | |
1731 | bfd *input_bfd, | |
1732 | asection *input_section, | |
1733 | bfd_byte *contents, | |
1734 | Elf_Internal_Rela *relocs, | |
1735 | Elf_Internal_Sym *local_syms, | |
1736 | asection **local_sections) | |
1737 | { | |
1738 | Elf_Internal_Rela *rel; | |
1739 | Elf_Internal_Rela *relend; | |
1740 | riscv_pcrel_relocs pcrel_relocs; | |
1741 | bfd_boolean ret = FALSE; | |
1742 | asection *sreloc = elf_section_data (input_section)->sreloc; | |
1743 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
1744 | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); | |
1745 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | |
1746 | bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); | |
1747 | ||
1748 | if (!riscv_init_pcrel_relocs (&pcrel_relocs)) | |
1749 | return FALSE; | |
1750 | ||
1751 | relend = relocs + input_section->reloc_count; | |
1752 | for (rel = relocs; rel < relend; rel++) | |
1753 | { | |
1754 | unsigned long r_symndx; | |
1755 | struct elf_link_hash_entry *h; | |
1756 | Elf_Internal_Sym *sym; | |
1757 | asection *sec; | |
1758 | bfd_vma relocation; | |
1759 | bfd_reloc_status_type r = bfd_reloc_ok; | |
1760 | const char *name; | |
1761 | bfd_vma off, ie_off; | |
1762 | bfd_boolean unresolved_reloc, is_ie = FALSE; | |
1763 | bfd_vma pc = sec_addr (input_section) + rel->r_offset; | |
1764 | int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; | |
1765 | reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type); | |
1766 | const char *msg = NULL; | |
1767 | ||
1768 | if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) | |
1769 | continue; | |
1770 | ||
1771 | /* This is a final link. */ | |
1772 | r_symndx = ELFNN_R_SYM (rel->r_info); | |
1773 | h = NULL; | |
1774 | sym = NULL; | |
1775 | sec = NULL; | |
1776 | unresolved_reloc = FALSE; | |
1777 | if (r_symndx < symtab_hdr->sh_info) | |
1778 | { | |
1779 | sym = local_syms + r_symndx; | |
1780 | sec = local_sections[r_symndx]; | |
1781 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
1782 | } | |
1783 | else | |
1784 | { | |
1785 | bfd_boolean warned, ignored; | |
1786 | ||
1787 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
1788 | r_symndx, symtab_hdr, sym_hashes, | |
1789 | h, sec, relocation, | |
1790 | unresolved_reloc, warned, ignored); | |
1791 | if (warned) | |
1792 | { | |
1793 | /* To avoid generating warning messages about truncated | |
1794 | relocations, set the relocation's address to be the same as | |
1795 | the start of this section. */ | |
1796 | if (input_section->output_section != NULL) | |
1797 | relocation = input_section->output_section->vma; | |
1798 | else | |
1799 | relocation = 0; | |
1800 | } | |
1801 | } | |
1802 | ||
1803 | if (sec != NULL && discarded_section (sec)) | |
1804 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | |
1805 | rel, 1, relend, howto, 0, contents); | |
1806 | ||
1807 | if (bfd_link_relocatable (info)) | |
1808 | continue; | |
1809 | ||
1810 | if (h != NULL) | |
1811 | name = h->root.root.string; | |
1812 | else | |
1813 | { | |
1814 | name = (bfd_elf_string_from_elf_section | |
1815 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
1816 | if (name == NULL || *name == '\0') | |
1817 | name = bfd_section_name (input_bfd, sec); | |
1818 | } | |
1819 | ||
1820 | switch (r_type) | |
1821 | { | |
1822 | case R_RISCV_NONE: | |
45f76423 | 1823 | case R_RISCV_RELAX: |
e23eba97 NC |
1824 | case R_RISCV_TPREL_ADD: |
1825 | case R_RISCV_COPY: | |
1826 | case R_RISCV_JUMP_SLOT: | |
1827 | case R_RISCV_RELATIVE: | |
1828 | /* These require nothing of us at all. */ | |
1829 | continue; | |
1830 | ||
1831 | case R_RISCV_HI20: | |
1832 | case R_RISCV_BRANCH: | |
1833 | case R_RISCV_RVC_BRANCH: | |
1834 | case R_RISCV_RVC_LUI: | |
1835 | case R_RISCV_LO12_I: | |
1836 | case R_RISCV_LO12_S: | |
45f76423 AW |
1837 | case R_RISCV_SET6: |
1838 | case R_RISCV_SET8: | |
1839 | case R_RISCV_SET16: | |
1840 | case R_RISCV_SET32: | |
e23eba97 NC |
1841 | /* These require no special handling beyond perform_relocation. */ |
1842 | break; | |
1843 | ||
1844 | case R_RISCV_GOT_HI20: | |
1845 | if (h != NULL) | |
1846 | { | |
1847 | bfd_boolean dyn, pic; | |
1848 | ||
1849 | off = h->got.offset; | |
1850 | BFD_ASSERT (off != (bfd_vma) -1); | |
1851 | dyn = elf_hash_table (info)->dynamic_sections_created; | |
1852 | pic = bfd_link_pic (info); | |
1853 | ||
1854 | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | |
1855 | || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) | |
1856 | { | |
1857 | /* This is actually a static link, or it is a | |
1858 | -Bsymbolic link and the symbol is defined | |
1859 | locally, or the symbol was forced to be local | |
1860 | because of a version file. We must initialize | |
1861 | this entry in the global offset table. Since the | |
1862 | offset must always be a multiple of the word size, | |
1863 | we use the least significant bit to record whether | |
1864 | we have initialized it already. | |
1865 | ||
1866 | When doing a dynamic link, we create a .rela.got | |
1867 | relocation entry to initialize the value. This | |
1868 | is done in the finish_dynamic_symbol routine. */ | |
1869 | if ((off & 1) != 0) | |
1870 | off &= ~1; | |
1871 | else | |
1872 | { | |
1873 | bfd_put_NN (output_bfd, relocation, | |
1874 | htab->elf.sgot->contents + off); | |
1875 | h->got.offset |= 1; | |
1876 | } | |
1877 | } | |
1878 | else | |
1879 | unresolved_reloc = FALSE; | |
1880 | } | |
1881 | else | |
1882 | { | |
1883 | BFD_ASSERT (local_got_offsets != NULL | |
1884 | && local_got_offsets[r_symndx] != (bfd_vma) -1); | |
1885 | ||
1886 | off = local_got_offsets[r_symndx]; | |
1887 | ||
1888 | /* The offset must always be a multiple of the word size. | |
1889 | So, we can use the least significant bit to record | |
1890 | whether we have already processed this entry. */ | |
1891 | if ((off & 1) != 0) | |
1892 | off &= ~1; | |
1893 | else | |
1894 | { | |
1895 | if (bfd_link_pic (info)) | |
1896 | { | |
1897 | asection *s; | |
1898 | Elf_Internal_Rela outrel; | |
1899 | ||
1900 | /* We need to generate a R_RISCV_RELATIVE reloc | |
1901 | for the dynamic linker. */ | |
1902 | s = htab->elf.srelgot; | |
1903 | BFD_ASSERT (s != NULL); | |
1904 | ||
1905 | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | |
1906 | outrel.r_info = | |
1907 | ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
1908 | outrel.r_addend = relocation; | |
1909 | relocation = 0; | |
1910 | riscv_elf_append_rela (output_bfd, s, &outrel); | |
1911 | } | |
1912 | ||
1913 | bfd_put_NN (output_bfd, relocation, | |
1914 | htab->elf.sgot->contents + off); | |
1915 | local_got_offsets[r_symndx] |= 1; | |
1916 | } | |
1917 | } | |
1918 | relocation = sec_addr (htab->elf.sgot) + off; | |
1919 | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation)) | |
1920 | r = bfd_reloc_overflow; | |
1921 | break; | |
1922 | ||
1923 | case R_RISCV_ADD8: | |
1924 | case R_RISCV_ADD16: | |
1925 | case R_RISCV_ADD32: | |
1926 | case R_RISCV_ADD64: | |
1927 | { | |
1928 | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | |
1929 | contents + rel->r_offset); | |
1930 | relocation = old_value + relocation; | |
1931 | } | |
1932 | break; | |
1933 | ||
45f76423 | 1934 | case R_RISCV_SUB6: |
e23eba97 NC |
1935 | case R_RISCV_SUB8: |
1936 | case R_RISCV_SUB16: | |
1937 | case R_RISCV_SUB32: | |
1938 | case R_RISCV_SUB64: | |
1939 | { | |
1940 | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | |
1941 | contents + rel->r_offset); | |
1942 | relocation = old_value - relocation; | |
1943 | } | |
1944 | break; | |
1945 | ||
1946 | case R_RISCV_CALL_PLT: | |
1947 | case R_RISCV_CALL: | |
1948 | case R_RISCV_JAL: | |
1949 | case R_RISCV_RVC_JUMP: | |
1950 | if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) | |
1951 | { | |
1952 | /* Refer to the PLT entry. */ | |
1953 | relocation = sec_addr (htab->elf.splt) + h->plt.offset; | |
1954 | unresolved_reloc = FALSE; | |
1955 | } | |
1956 | break; | |
1957 | ||
1958 | case R_RISCV_TPREL_HI20: | |
1959 | relocation = tpoff (info, relocation); | |
1960 | break; | |
1961 | ||
1962 | case R_RISCV_TPREL_LO12_I: | |
1963 | case R_RISCV_TPREL_LO12_S: | |
45f76423 AW |
1964 | relocation = tpoff (info, relocation); |
1965 | break; | |
1966 | ||
1967 | case R_RISCV_TPREL_I: | |
1968 | case R_RISCV_TPREL_S: | |
e23eba97 NC |
1969 | relocation = tpoff (info, relocation); |
1970 | if (VALID_ITYPE_IMM (relocation + rel->r_addend)) | |
1971 | { | |
1972 | /* We can use tp as the base register. */ | |
1973 | bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); | |
1974 | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | |
1975 | insn |= X_TP << OP_SH_RS1; | |
1976 | bfd_put_32 (input_bfd, insn, contents + rel->r_offset); | |
1977 | } | |
45f76423 AW |
1978 | else |
1979 | r = bfd_reloc_overflow; | |
e23eba97 NC |
1980 | break; |
1981 | ||
1982 | case R_RISCV_GPREL_I: | |
1983 | case R_RISCV_GPREL_S: | |
1984 | { | |
1985 | bfd_vma gp = riscv_global_pointer_value (info); | |
1986 | bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); | |
1987 | if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) | |
1988 | { | |
1989 | /* We can use x0 or gp as the base register. */ | |
1990 | bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); | |
1991 | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | |
1992 | if (!x0_base) | |
1993 | { | |
1994 | rel->r_addend -= gp; | |
1995 | insn |= X_GP << OP_SH_RS1; | |
1996 | } | |
1997 | bfd_put_32 (input_bfd, insn, contents + rel->r_offset); | |
1998 | } | |
1999 | else | |
2000 | r = bfd_reloc_overflow; | |
2001 | break; | |
2002 | } | |
2003 | ||
2004 | case R_RISCV_PCREL_HI20: | |
2005 | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | |
2006 | relocation + rel->r_addend)) | |
2007 | r = bfd_reloc_overflow; | |
2008 | break; | |
2009 | ||
2010 | case R_RISCV_PCREL_LO12_I: | |
2011 | case R_RISCV_PCREL_LO12_S: | |
2012 | if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info, | |
2013 | howto, rel, relocation, name, | |
2014 | contents)) | |
2015 | continue; | |
2016 | r = bfd_reloc_overflow; | |
2017 | break; | |
2018 | ||
2019 | case R_RISCV_TLS_DTPREL32: | |
2020 | case R_RISCV_TLS_DTPREL64: | |
2021 | relocation = dtpoff (info, relocation); | |
2022 | break; | |
2023 | ||
2024 | case R_RISCV_32: | |
2025 | case R_RISCV_64: | |
2026 | if ((input_section->flags & SEC_ALLOC) == 0) | |
2027 | break; | |
2028 | ||
2029 | if ((bfd_link_pic (info) | |
2030 | && (h == NULL | |
2031 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2032 | || h->root.type != bfd_link_hash_undefweak) | |
2033 | && (! howto->pc_relative | |
2034 | || !SYMBOL_CALLS_LOCAL (info, h))) | |
2035 | || (!bfd_link_pic (info) | |
2036 | && h != NULL | |
2037 | && h->dynindx != -1 | |
2038 | && !h->non_got_ref | |
2039 | && ((h->def_dynamic | |
2040 | && !h->def_regular) | |
2041 | || h->root.type == bfd_link_hash_undefweak | |
2042 | || h->root.type == bfd_link_hash_undefined))) | |
2043 | { | |
2044 | Elf_Internal_Rela outrel; | |
2045 | bfd_boolean skip_static_relocation, skip_dynamic_relocation; | |
2046 | ||
2047 | /* When generating a shared object, these relocations | |
2048 | are copied into the output file to be resolved at run | |
2049 | time. */ | |
2050 | ||
2051 | outrel.r_offset = | |
2052 | _bfd_elf_section_offset (output_bfd, info, input_section, | |
2053 | rel->r_offset); | |
2054 | skip_static_relocation = outrel.r_offset != (bfd_vma) -2; | |
2055 | skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; | |
2056 | outrel.r_offset += sec_addr (input_section); | |
2057 | ||
2058 | if (skip_dynamic_relocation) | |
2059 | memset (&outrel, 0, sizeof outrel); | |
2060 | else if (h != NULL && h->dynindx != -1 | |
2061 | && !(bfd_link_pic (info) | |
2062 | && SYMBOLIC_BIND (info, h) | |
2063 | && h->def_regular)) | |
2064 | { | |
2065 | outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); | |
2066 | outrel.r_addend = rel->r_addend; | |
2067 | } | |
2068 | else | |
2069 | { | |
2070 | outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
2071 | outrel.r_addend = relocation + rel->r_addend; | |
2072 | } | |
2073 | ||
2074 | riscv_elf_append_rela (output_bfd, sreloc, &outrel); | |
2075 | if (skip_static_relocation) | |
2076 | continue; | |
2077 | } | |
2078 | break; | |
2079 | ||
2080 | case R_RISCV_TLS_GOT_HI20: | |
2081 | is_ie = TRUE; | |
2082 | /* Fall through. */ | |
2083 | ||
2084 | case R_RISCV_TLS_GD_HI20: | |
2085 | if (h != NULL) | |
2086 | { | |
2087 | off = h->got.offset; | |
2088 | h->got.offset |= 1; | |
2089 | } | |
2090 | else | |
2091 | { | |
2092 | off = local_got_offsets[r_symndx]; | |
2093 | local_got_offsets[r_symndx] |= 1; | |
2094 | } | |
2095 | ||
2096 | tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); | |
2097 | BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); | |
2098 | /* If this symbol is referenced by both GD and IE TLS, the IE | |
2099 | reference's GOT slot follows the GD reference's slots. */ | |
2100 | ie_off = 0; | |
2101 | if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) | |
2102 | ie_off = 2 * GOT_ENTRY_SIZE; | |
2103 | ||
2104 | if ((off & 1) != 0) | |
2105 | off &= ~1; | |
2106 | else | |
2107 | { | |
2108 | Elf_Internal_Rela outrel; | |
2109 | int indx = 0; | |
2110 | bfd_boolean need_relocs = FALSE; | |
2111 | ||
2112 | if (htab->elf.srelgot == NULL) | |
2113 | abort (); | |
2114 | ||
2115 | if (h != NULL) | |
2116 | { | |
2117 | bfd_boolean dyn, pic; | |
2118 | dyn = htab->elf.dynamic_sections_created; | |
2119 | pic = bfd_link_pic (info); | |
2120 | ||
2121 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | |
2122 | && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2123 | indx = h->dynindx; | |
2124 | } | |
2125 | ||
2126 | /* The GOT entries have not been initialized yet. Do it | |
2127 | now, and emit any relocations. */ | |
2128 | if ((bfd_link_pic (info) || indx != 0) | |
2129 | && (h == NULL | |
2130 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2131 | || h->root.type != bfd_link_hash_undefweak)) | |
2132 | need_relocs = TRUE; | |
2133 | ||
2134 | if (tls_type & GOT_TLS_GD) | |
2135 | { | |
2136 | if (need_relocs) | |
2137 | { | |
2138 | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | |
2139 | outrel.r_addend = 0; | |
2140 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); | |
2141 | bfd_put_NN (output_bfd, 0, | |
2142 | htab->elf.sgot->contents + off); | |
2143 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2144 | if (indx == 0) | |
2145 | { | |
2146 | BFD_ASSERT (! unresolved_reloc); | |
2147 | bfd_put_NN (output_bfd, | |
2148 | dtpoff (info, relocation), | |
2149 | (htab->elf.sgot->contents + off + | |
2150 | RISCV_ELF_WORD_BYTES)); | |
2151 | } | |
2152 | else | |
2153 | { | |
2154 | bfd_put_NN (output_bfd, 0, | |
2155 | (htab->elf.sgot->contents + off + | |
2156 | RISCV_ELF_WORD_BYTES)); | |
2157 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); | |
2158 | outrel.r_offset += RISCV_ELF_WORD_BYTES; | |
2159 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2160 | } | |
2161 | } | |
2162 | else | |
2163 | { | |
2164 | /* If we are not emitting relocations for a | |
2165 | general dynamic reference, then we must be in a | |
2166 | static link or an executable link with the | |
2167 | symbol binding locally. Mark it as belonging | |
2168 | to module 1, the executable. */ | |
2169 | bfd_put_NN (output_bfd, 1, | |
2170 | htab->elf.sgot->contents + off); | |
2171 | bfd_put_NN (output_bfd, | |
2172 | dtpoff (info, relocation), | |
2173 | (htab->elf.sgot->contents + off + | |
2174 | RISCV_ELF_WORD_BYTES)); | |
2175 | } | |
2176 | } | |
2177 | ||
2178 | if (tls_type & GOT_TLS_IE) | |
2179 | { | |
2180 | if (need_relocs) | |
2181 | { | |
2182 | bfd_put_NN (output_bfd, 0, | |
2183 | htab->elf.sgot->contents + off + ie_off); | |
2184 | outrel.r_offset = sec_addr (htab->elf.sgot) | |
2185 | + off + ie_off; | |
2186 | outrel.r_addend = 0; | |
2187 | if (indx == 0) | |
2188 | outrel.r_addend = tpoff (info, relocation); | |
2189 | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); | |
2190 | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | |
2191 | } | |
2192 | else | |
2193 | { | |
2194 | bfd_put_NN (output_bfd, tpoff (info, relocation), | |
2195 | htab->elf.sgot->contents + off + ie_off); | |
2196 | } | |
2197 | } | |
2198 | } | |
2199 | ||
2200 | BFD_ASSERT (off < (bfd_vma) -2); | |
2201 | relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); | |
2202 | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, relocation)) | |
2203 | r = bfd_reloc_overflow; | |
2204 | unresolved_reloc = FALSE; | |
2205 | break; | |
2206 | ||
2207 | default: | |
2208 | r = bfd_reloc_notsupported; | |
2209 | } | |
2210 | ||
2211 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2212 | because such sections are not SEC_ALLOC and thus ld.so will | |
2213 | not process them. */ | |
2214 | if (unresolved_reloc | |
2215 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
2216 | && h->def_dynamic) | |
2217 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
2218 | rel->r_offset) != (bfd_vma) -1) | |
2219 | { | |
2220 | (*_bfd_error_handler) | |
2221 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
2222 | input_bfd, | |
2223 | input_section, | |
2224 | (long) rel->r_offset, | |
2225 | howto->name, | |
2226 | h->root.root.string); | |
2227 | continue; | |
2228 | } | |
2229 | ||
2230 | if (r == bfd_reloc_ok) | |
2231 | r = perform_relocation (howto, rel, relocation, input_section, | |
2232 | input_bfd, contents); | |
2233 | ||
2234 | switch (r) | |
2235 | { | |
2236 | case bfd_reloc_ok: | |
2237 | continue; | |
2238 | ||
2239 | case bfd_reloc_overflow: | |
2240 | info->callbacks->reloc_overflow | |
2241 | (info, (h ? &h->root : NULL), name, howto->name, | |
2242 | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); | |
2243 | break; | |
2244 | ||
2245 | case bfd_reloc_undefined: | |
2246 | info->callbacks->undefined_symbol | |
2247 | (info, name, input_bfd, input_section, rel->r_offset, | |
2248 | TRUE); | |
2249 | break; | |
2250 | ||
2251 | case bfd_reloc_outofrange: | |
2252 | msg = _("internal error: out of range error"); | |
2253 | break; | |
2254 | ||
2255 | case bfd_reloc_notsupported: | |
2256 | msg = _("internal error: unsupported relocation error"); | |
2257 | break; | |
2258 | ||
2259 | case bfd_reloc_dangerous: | |
2260 | msg = _("internal error: dangerous relocation"); | |
2261 | break; | |
2262 | ||
2263 | default: | |
2264 | msg = _("internal error: unknown error"); | |
2265 | break; | |
2266 | } | |
2267 | ||
2268 | if (msg) | |
2269 | info->callbacks->warning | |
2270 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
2271 | goto out; | |
2272 | } | |
2273 | ||
2274 | ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); | |
2275 | out: | |
2276 | riscv_free_pcrel_relocs (&pcrel_relocs); | |
2277 | return ret; | |
2278 | } | |
2279 | ||
2280 | /* Finish up dynamic symbol handling. We set the contents of various | |
2281 | dynamic sections here. */ | |
2282 | ||
2283 | static bfd_boolean | |
2284 | riscv_elf_finish_dynamic_symbol (bfd *output_bfd, | |
2285 | struct bfd_link_info *info, | |
2286 | struct elf_link_hash_entry *h, | |
2287 | Elf_Internal_Sym *sym) | |
2288 | { | |
2289 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
2290 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
2291 | ||
2292 | if (h->plt.offset != (bfd_vma) -1) | |
2293 | { | |
2294 | /* We've decided to create a PLT entry for this symbol. */ | |
2295 | bfd_byte *loc; | |
2296 | bfd_vma i, header_address, plt_idx, got_address; | |
2297 | uint32_t plt_entry[PLT_ENTRY_INSNS]; | |
2298 | Elf_Internal_Rela rela; | |
2299 | ||
2300 | BFD_ASSERT (h->dynindx != -1); | |
2301 | ||
2302 | /* Calculate the address of the PLT header. */ | |
2303 | header_address = sec_addr (htab->elf.splt); | |
2304 | ||
2305 | /* Calculate the index of the entry. */ | |
2306 | plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; | |
2307 | ||
2308 | /* Calculate the address of the .got.plt entry. */ | |
2309 | got_address = riscv_elf_got_plt_val (plt_idx, info); | |
2310 | ||
2311 | /* Find out where the .plt entry should go. */ | |
2312 | loc = htab->elf.splt->contents + h->plt.offset; | |
2313 | ||
2314 | /* Fill in the PLT entry itself. */ | |
2315 | riscv_make_plt_entry (got_address, header_address + h->plt.offset, | |
2316 | plt_entry); | |
2317 | for (i = 0; i < PLT_ENTRY_INSNS; i++) | |
2318 | bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i); | |
2319 | ||
2320 | /* Fill in the initial value of the .got.plt entry. */ | |
2321 | loc = htab->elf.sgotplt->contents | |
2322 | + (got_address - sec_addr (htab->elf.sgotplt)); | |
2323 | bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc); | |
2324 | ||
2325 | /* Fill in the entry in the .rela.plt section. */ | |
2326 | rela.r_offset = got_address; | |
2327 | rela.r_addend = 0; | |
2328 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); | |
2329 | ||
2330 | loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela); | |
2331 | bed->s->swap_reloca_out (output_bfd, &rela, loc); | |
2332 | ||
2333 | if (!h->def_regular) | |
2334 | { | |
2335 | /* Mark the symbol as undefined, rather than as defined in | |
2336 | the .plt section. Leave the value alone. */ | |
2337 | sym->st_shndx = SHN_UNDEF; | |
2338 | /* If the symbol is weak, we do need to clear the value. | |
2339 | Otherwise, the PLT entry would provide a definition for | |
2340 | the symbol even if the symbol wasn't defined anywhere, | |
2341 | and so the symbol would never be NULL. */ | |
2342 | if (!h->ref_regular_nonweak) | |
2343 | sym->st_value = 0; | |
2344 | } | |
2345 | } | |
2346 | ||
2347 | if (h->got.offset != (bfd_vma) -1 | |
1d65abb5 | 2348 | && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))) |
e23eba97 NC |
2349 | { |
2350 | asection *sgot; | |
2351 | asection *srela; | |
2352 | Elf_Internal_Rela rela; | |
2353 | ||
2354 | /* This symbol has an entry in the GOT. Set it up. */ | |
2355 | ||
2356 | sgot = htab->elf.sgot; | |
2357 | srela = htab->elf.srelgot; | |
2358 | BFD_ASSERT (sgot != NULL && srela != NULL); | |
2359 | ||
2360 | rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); | |
2361 | ||
2362 | /* If this is a -Bsymbolic link, and the symbol is defined | |
2363 | locally, we just want to emit a RELATIVE reloc. Likewise if | |
2364 | the symbol was forced to be local because of a version file. | |
2365 | The entry in the global offset table will already have been | |
2366 | initialized in the relocate_section function. */ | |
2367 | if (bfd_link_pic (info) | |
2368 | && (info->symbolic || h->dynindx == -1) | |
2369 | && h->def_regular) | |
2370 | { | |
2371 | asection *sec = h->root.u.def.section; | |
2372 | rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | |
2373 | rela.r_addend = (h->root.u.def.value | |
2374 | + sec->output_section->vma | |
2375 | + sec->output_offset); | |
2376 | } | |
2377 | else | |
2378 | { | |
2379 | BFD_ASSERT (h->dynindx != -1); | |
2380 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); | |
2381 | rela.r_addend = 0; | |
2382 | } | |
2383 | ||
2384 | bfd_put_NN (output_bfd, 0, | |
2385 | sgot->contents + (h->got.offset & ~(bfd_vma) 1)); | |
2386 | riscv_elf_append_rela (output_bfd, srela, &rela); | |
2387 | } | |
2388 | ||
2389 | if (h->needs_copy) | |
2390 | { | |
2391 | Elf_Internal_Rela rela; | |
2392 | ||
2393 | /* This symbols needs a copy reloc. Set it up. */ | |
2394 | BFD_ASSERT (h->dynindx != -1); | |
2395 | ||
2396 | rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; | |
2397 | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); | |
2398 | rela.r_addend = 0; | |
9d19e4fd | 2399 | riscv_elf_append_rela (output_bfd, htab->elf.srelbss, &rela); |
e23eba97 NC |
2400 | } |
2401 | ||
2402 | /* Mark some specially defined symbols as absolute. */ | |
2403 | if (h == htab->elf.hdynamic | |
2404 | || (h == htab->elf.hgot || h == htab->elf.hplt)) | |
2405 | sym->st_shndx = SHN_ABS; | |
2406 | ||
2407 | return TRUE; | |
2408 | } | |
2409 | ||
2410 | /* Finish up the dynamic sections. */ | |
2411 | ||
2412 | static bfd_boolean | |
2413 | riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, | |
2414 | bfd *dynobj, asection *sdyn) | |
2415 | { | |
2416 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
2417 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
2418 | size_t dynsize = bed->s->sizeof_dyn; | |
2419 | bfd_byte *dyncon, *dynconend; | |
2420 | ||
2421 | dynconend = sdyn->contents + sdyn->size; | |
2422 | for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) | |
2423 | { | |
2424 | Elf_Internal_Dyn dyn; | |
2425 | asection *s; | |
2426 | ||
2427 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
2428 | ||
2429 | switch (dyn.d_tag) | |
2430 | { | |
2431 | case DT_PLTGOT: | |
2432 | s = htab->elf.sgotplt; | |
2433 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2434 | break; | |
2435 | case DT_JMPREL: | |
2436 | s = htab->elf.srelplt; | |
2437 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2438 | break; | |
2439 | case DT_PLTRELSZ: | |
2440 | s = htab->elf.srelplt; | |
2441 | dyn.d_un.d_val = s->size; | |
2442 | break; | |
2443 | default: | |
2444 | continue; | |
2445 | } | |
2446 | ||
2447 | bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); | |
2448 | } | |
2449 | return TRUE; | |
2450 | } | |
2451 | ||
2452 | static bfd_boolean | |
2453 | riscv_elf_finish_dynamic_sections (bfd *output_bfd, | |
2454 | struct bfd_link_info *info) | |
2455 | { | |
2456 | bfd *dynobj; | |
2457 | asection *sdyn; | |
2458 | struct riscv_elf_link_hash_table *htab; | |
2459 | ||
2460 | htab = riscv_elf_hash_table (info); | |
2461 | BFD_ASSERT (htab != NULL); | |
2462 | dynobj = htab->elf.dynobj; | |
2463 | ||
2464 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | |
2465 | ||
2466 | if (elf_hash_table (info)->dynamic_sections_created) | |
2467 | { | |
2468 | asection *splt; | |
2469 | bfd_boolean ret; | |
2470 | ||
2471 | splt = htab->elf.splt; | |
2472 | BFD_ASSERT (splt != NULL && sdyn != NULL); | |
2473 | ||
2474 | ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); | |
2475 | ||
2476 | if (ret != TRUE) | |
2477 | return ret; | |
2478 | ||
2479 | /* Fill in the head and tail entries in the procedure linkage table. */ | |
2480 | if (splt->size > 0) | |
2481 | { | |
2482 | int i; | |
2483 | uint32_t plt_header[PLT_HEADER_INSNS]; | |
2484 | riscv_make_plt_header (sec_addr (htab->elf.sgotplt), | |
2485 | sec_addr (splt), plt_header); | |
2486 | ||
2487 | for (i = 0; i < PLT_HEADER_INSNS; i++) | |
2488 | bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i); | |
2489 | } | |
2490 | ||
2491 | elf_section_data (splt->output_section)->this_hdr.sh_entsize | |
2492 | = PLT_ENTRY_SIZE; | |
2493 | } | |
2494 | ||
2495 | if (htab->elf.sgotplt) | |
2496 | { | |
2497 | asection *output_section = htab->elf.sgotplt->output_section; | |
2498 | ||
2499 | if (bfd_is_abs_section (output_section)) | |
2500 | { | |
2501 | (*_bfd_error_handler) | |
2502 | (_("discarded output section: `%A'"), htab->elf.sgotplt); | |
2503 | return FALSE; | |
2504 | } | |
2505 | ||
2506 | if (htab->elf.sgotplt->size > 0) | |
2507 | { | |
2508 | /* Write the first two entries in .got.plt, needed for the dynamic | |
2509 | linker. */ | |
2510 | bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); | |
2511 | bfd_put_NN (output_bfd, (bfd_vma) 0, | |
2512 | htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); | |
2513 | } | |
2514 | ||
2515 | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | |
2516 | } | |
2517 | ||
2518 | if (htab->elf.sgot) | |
2519 | { | |
2520 | asection *output_section = htab->elf.sgot->output_section; | |
2521 | ||
2522 | if (htab->elf.sgot->size > 0) | |
2523 | { | |
2524 | /* Set the first entry in the global offset table to the address of | |
2525 | the dynamic section. */ | |
2526 | bfd_vma val = sdyn ? sec_addr (sdyn) : 0; | |
2527 | bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); | |
2528 | } | |
2529 | ||
2530 | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | |
2531 | } | |
2532 | ||
2533 | return TRUE; | |
2534 | } | |
2535 | ||
2536 | /* Return address for Ith PLT stub in section PLT, for relocation REL | |
2537 | or (bfd_vma) -1 if it should not be included. */ | |
2538 | ||
2539 | static bfd_vma | |
2540 | riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, | |
2541 | const arelent *rel ATTRIBUTE_UNUSED) | |
2542 | { | |
2543 | return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; | |
2544 | } | |
2545 | ||
2546 | static enum elf_reloc_type_class | |
2547 | riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2548 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
2549 | const Elf_Internal_Rela *rela) | |
2550 | { | |
2551 | switch (ELFNN_R_TYPE (rela->r_info)) | |
2552 | { | |
2553 | case R_RISCV_RELATIVE: | |
2554 | return reloc_class_relative; | |
2555 | case R_RISCV_JUMP_SLOT: | |
2556 | return reloc_class_plt; | |
2557 | case R_RISCV_COPY: | |
2558 | return reloc_class_copy; | |
2559 | default: | |
2560 | return reloc_class_normal; | |
2561 | } | |
2562 | } | |
2563 | ||
2564 | /* Merge backend specific data from an object file to the output | |
2565 | object file when linking. */ | |
2566 | ||
2567 | static bfd_boolean | |
2568 | _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) | |
2569 | { | |
2570 | bfd *obfd = info->output_bfd; | |
2571 | flagword new_flags = elf_elfheader (ibfd)->e_flags; | |
2572 | flagword old_flags = elf_elfheader (obfd)->e_flags; | |
2573 | ||
2574 | if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd)) | |
2575 | return TRUE; | |
2576 | ||
2577 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) | |
2578 | { | |
2579 | (*_bfd_error_handler) | |
96b0927d PD |
2580 | (_("%B: ABI is incompatible with that of the selected emulation:\n" |
2581 | " target emulation `%s' does not match `%s'"), | |
2582 | ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); | |
e23eba97 NC |
2583 | return FALSE; |
2584 | } | |
2585 | ||
2586 | if (!_bfd_elf_merge_object_attributes (ibfd, info)) | |
2587 | return FALSE; | |
2588 | ||
2589 | if (! elf_flags_init (obfd)) | |
2590 | { | |
2591 | elf_flags_init (obfd) = TRUE; | |
2592 | elf_elfheader (obfd)->e_flags = new_flags; | |
2593 | return TRUE; | |
2594 | } | |
2595 | ||
2922d21d AW |
2596 | /* Disallow linking different float ABIs. */ |
2597 | if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI) | |
e23eba97 NC |
2598 | { |
2599 | (*_bfd_error_handler) | |
2600 | (_("%B: can't link hard-float modules with soft-float modules"), ibfd); | |
2601 | goto fail; | |
2602 | } | |
2603 | ||
2604 | /* Allow linking RVC and non-RVC, and keep the RVC flag. */ | |
2605 | elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC; | |
2606 | ||
2607 | return TRUE; | |
2608 | ||
2609 | fail: | |
2610 | bfd_set_error (bfd_error_bad_value); | |
2611 | return FALSE; | |
2612 | } | |
2613 | ||
2614 | /* Delete some bytes from a section while relaxing. */ | |
2615 | ||
2616 | static bfd_boolean | |
2617 | riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count) | |
2618 | { | |
2619 | unsigned int i, symcount; | |
2620 | bfd_vma toaddr = sec->size; | |
2621 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); | |
2622 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
2623 | unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
2624 | struct bfd_elf_section_data *data = elf_section_data (sec); | |
2625 | bfd_byte *contents = data->this_hdr.contents; | |
2626 | ||
2627 | /* Actually delete the bytes. */ | |
2628 | sec->size -= count; | |
2629 | memmove (contents + addr, contents + addr + count, toaddr - addr - count); | |
2630 | ||
2631 | /* Adjust the location of all of the relocs. Note that we need not | |
2632 | adjust the addends, since all PC-relative references must be against | |
2633 | symbols, which we will adjust below. */ | |
2634 | for (i = 0; i < sec->reloc_count; i++) | |
2635 | if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) | |
2636 | data->relocs[i].r_offset -= count; | |
2637 | ||
2638 | /* Adjust the local symbols defined in this section. */ | |
2639 | for (i = 0; i < symtab_hdr->sh_info; i++) | |
2640 | { | |
2641 | Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; | |
2642 | if (sym->st_shndx == sec_shndx) | |
2643 | { | |
2644 | /* If the symbol is in the range of memory we just moved, we | |
2645 | have to adjust its value. */ | |
2646 | if (sym->st_value > addr && sym->st_value <= toaddr) | |
2647 | sym->st_value -= count; | |
2648 | ||
2649 | /* If the symbol *spans* the bytes we just deleted (i.e. its | |
2650 | *end* is in the moved bytes but its *start* isn't), then we | |
2651 | must adjust its size. */ | |
2652 | if (sym->st_value <= addr | |
2653 | && sym->st_value + sym->st_size > addr | |
2654 | && sym->st_value + sym->st_size <= toaddr) | |
2655 | sym->st_size -= count; | |
2656 | } | |
2657 | } | |
2658 | ||
2659 | /* Now adjust the global symbols defined in this section. */ | |
2660 | symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) | |
2661 | - symtab_hdr->sh_info); | |
2662 | ||
2663 | for (i = 0; i < symcount; i++) | |
2664 | { | |
2665 | struct elf_link_hash_entry *sym_hash = sym_hashes[i]; | |
2666 | ||
2667 | if ((sym_hash->root.type == bfd_link_hash_defined | |
2668 | || sym_hash->root.type == bfd_link_hash_defweak) | |
2669 | && sym_hash->root.u.def.section == sec) | |
2670 | { | |
2671 | /* As above, adjust the value if needed. */ | |
2672 | if (sym_hash->root.u.def.value > addr | |
2673 | && sym_hash->root.u.def.value <= toaddr) | |
2674 | sym_hash->root.u.def.value -= count; | |
2675 | ||
2676 | /* As above, adjust the size if needed. */ | |
2677 | if (sym_hash->root.u.def.value <= addr | |
2678 | && sym_hash->root.u.def.value + sym_hash->size > addr | |
2679 | && sym_hash->root.u.def.value + sym_hash->size <= toaddr) | |
2680 | sym_hash->size -= count; | |
2681 | } | |
2682 | } | |
2683 | ||
2684 | return TRUE; | |
2685 | } | |
2686 | ||
45f76423 AW |
2687 | typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *, |
2688 | struct bfd_link_info *, | |
2689 | Elf_Internal_Rela *, | |
2690 | bfd_vma, bfd_vma, bfd_vma, bfd_boolean *); | |
2691 | ||
e23eba97 NC |
2692 | /* Relax AUIPC + JALR into JAL. */ |
2693 | ||
2694 | static bfd_boolean | |
2695 | _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec, | |
2696 | struct bfd_link_info *link_info, | |
2697 | Elf_Internal_Rela *rel, | |
2698 | bfd_vma symval, | |
45f76423 AW |
2699 | bfd_vma max_alignment, |
2700 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
e23eba97 NC |
2701 | bfd_boolean *again) |
2702 | { | |
2703 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
2704 | bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset); | |
2705 | bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH; | |
2706 | bfd_vma auipc, jalr; | |
2707 | int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | |
2708 | ||
2709 | /* If the call crosses section boundaries, an alignment directive could | |
2710 | cause the PC-relative offset to later increase. */ | |
2711 | if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section) | |
2712 | foff += (foff < 0 ? -max_alignment : max_alignment); | |
2713 | ||
2714 | /* See if this function call can be shortened. */ | |
2715 | if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero)) | |
2716 | return TRUE; | |
2717 | ||
2718 | /* Shorten the function call. */ | |
2719 | BFD_ASSERT (rel->r_offset + 8 <= sec->size); | |
2720 | ||
2721 | auipc = bfd_get_32 (abfd, contents + rel->r_offset); | |
2722 | jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4); | |
2723 | rd = (jalr >> OP_SH_RD) & OP_MASK_RD; | |
2724 | rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32; | |
2725 | ||
2726 | if (rvc && (rd == 0 || rd == X_RA)) | |
2727 | { | |
2728 | /* Relax to C.J[AL] rd, addr. */ | |
2729 | r_type = R_RISCV_RVC_JUMP; | |
2730 | auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL; | |
2731 | len = 2; | |
2732 | } | |
2733 | else if (VALID_UJTYPE_IMM (foff)) | |
2734 | { | |
2735 | /* Relax to JAL rd, addr. */ | |
2736 | r_type = R_RISCV_JAL; | |
2737 | auipc = MATCH_JAL | (rd << OP_SH_RD); | |
2738 | } | |
2739 | else /* near_zero */ | |
2740 | { | |
2741 | /* Relax to JALR rd, x0, addr. */ | |
2742 | r_type = R_RISCV_LO12_I; | |
2743 | auipc = MATCH_JALR | (rd << OP_SH_RD); | |
2744 | } | |
2745 | ||
2746 | /* Replace the R_RISCV_CALL reloc. */ | |
2747 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type); | |
2748 | /* Replace the AUIPC. */ | |
2749 | bfd_put (8 * len, abfd, auipc, contents + rel->r_offset); | |
2750 | ||
2751 | /* Delete unnecessary JALR. */ | |
2752 | *again = TRUE; | |
2753 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len); | |
2754 | } | |
2755 | ||
2756 | /* Traverse all output sections and return the max alignment. */ | |
2757 | ||
1d61f794 | 2758 | static bfd_vma |
e23eba97 NC |
2759 | _bfd_riscv_get_max_alignment (asection *sec) |
2760 | { | |
2761 | unsigned int max_alignment_power = 0; | |
2762 | asection *o; | |
2763 | ||
2764 | for (o = sec->output_section->owner->sections; o != NULL; o = o->next) | |
2765 | { | |
2766 | if (o->alignment_power > max_alignment_power) | |
2767 | max_alignment_power = o->alignment_power; | |
2768 | } | |
2769 | ||
1d61f794 | 2770 | return (bfd_vma) 1 << max_alignment_power; |
e23eba97 NC |
2771 | } |
2772 | ||
2773 | /* Relax non-PIC global variable references. */ | |
2774 | ||
2775 | static bfd_boolean | |
2776 | _bfd_riscv_relax_lui (bfd *abfd, | |
2777 | asection *sec, | |
2778 | asection *sym_sec, | |
2779 | struct bfd_link_info *link_info, | |
2780 | Elf_Internal_Rela *rel, | |
2781 | bfd_vma symval, | |
45f76423 AW |
2782 | bfd_vma max_alignment, |
2783 | bfd_vma reserve_size, | |
e23eba97 NC |
2784 | bfd_boolean *again) |
2785 | { | |
2786 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
2787 | bfd_vma gp = riscv_global_pointer_value (link_info); | |
2788 | int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | |
2789 | ||
2790 | /* Mergeable symbols and code might later move out of range. */ | |
2791 | if (sym_sec->flags & (SEC_MERGE | SEC_CODE)) | |
2792 | return TRUE; | |
2793 | ||
2794 | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | |
2795 | ||
2796 | /* Is the reference in range of x0 or gp? | |
2797 | Valid gp range conservatively because of alignment issue. */ | |
2798 | if (VALID_ITYPE_IMM (symval) | |
45f76423 AW |
2799 | || (symval >= gp |
2800 | && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) | |
2801 | || (symval < gp | |
2802 | && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) | |
e23eba97 NC |
2803 | { |
2804 | unsigned sym = ELFNN_R_SYM (rel->r_info); | |
2805 | switch (ELFNN_R_TYPE (rel->r_info)) | |
2806 | { | |
2807 | case R_RISCV_LO12_I: | |
2808 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); | |
2809 | return TRUE; | |
2810 | ||
2811 | case R_RISCV_LO12_S: | |
2812 | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); | |
2813 | return TRUE; | |
2814 | ||
2815 | case R_RISCV_HI20: | |
2816 | /* We can delete the unnecessary LUI and reloc. */ | |
2817 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
2818 | *again = TRUE; | |
2819 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4); | |
2820 | ||
2821 | default: | |
2822 | abort (); | |
2823 | } | |
2824 | } | |
2825 | ||
2826 | /* Can we relax LUI to C.LUI? Alignment might move the section forward; | |
2827 | account for this assuming page alignment at worst. */ | |
2828 | if (use_rvc | |
2829 | && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20 | |
2830 | && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)) | |
2831 | && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE))) | |
2832 | { | |
2833 | /* Replace LUI with C.LUI if legal (i.e., rd != x2/sp). */ | |
2834 | bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset); | |
2835 | if (((lui >> OP_SH_RD) & OP_MASK_RD) == X_SP) | |
2836 | return TRUE; | |
2837 | ||
2838 | lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI; | |
2839 | bfd_put_32 (abfd, lui, contents + rel->r_offset); | |
2840 | ||
2841 | /* Replace the R_RISCV_HI20 reloc. */ | |
2842 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI); | |
2843 | ||
2844 | *again = TRUE; | |
2845 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2); | |
2846 | } | |
2847 | ||
2848 | return TRUE; | |
2849 | } | |
2850 | ||
2851 | /* Relax non-PIC TLS references. */ | |
2852 | ||
2853 | static bfd_boolean | |
2854 | _bfd_riscv_relax_tls_le (bfd *abfd, | |
2855 | asection *sec, | |
2856 | asection *sym_sec ATTRIBUTE_UNUSED, | |
2857 | struct bfd_link_info *link_info, | |
2858 | Elf_Internal_Rela *rel, | |
2859 | bfd_vma symval, | |
45f76423 AW |
2860 | bfd_vma max_alignment ATTRIBUTE_UNUSED, |
2861 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
e23eba97 NC |
2862 | bfd_boolean *again) |
2863 | { | |
2864 | /* See if this symbol is in range of tp. */ | |
2865 | if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0) | |
2866 | return TRUE; | |
2867 | ||
e23eba97 | 2868 | BFD_ASSERT (rel->r_offset + 4 <= sec->size); |
45f76423 AW |
2869 | switch (ELFNN_R_TYPE (rel->r_info)) |
2870 | { | |
2871 | case R_RISCV_TPREL_LO12_I: | |
2872 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I); | |
2873 | return TRUE; | |
e23eba97 | 2874 | |
45f76423 AW |
2875 | case R_RISCV_TPREL_LO12_S: |
2876 | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S); | |
2877 | return TRUE; | |
2878 | ||
2879 | case R_RISCV_TPREL_HI20: | |
2880 | case R_RISCV_TPREL_ADD: | |
2881 | /* We can delete the unnecessary instruction and reloc. */ | |
2882 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
2883 | *again = TRUE; | |
2884 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4); | |
2885 | ||
2886 | default: | |
2887 | abort (); | |
2888 | } | |
e23eba97 NC |
2889 | } |
2890 | ||
2891 | /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */ | |
2892 | ||
2893 | static bfd_boolean | |
2894 | _bfd_riscv_relax_align (bfd *abfd, asection *sec, | |
2895 | asection *sym_sec ATTRIBUTE_UNUSED, | |
2896 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | |
2897 | Elf_Internal_Rela *rel, | |
2898 | bfd_vma symval, | |
45f76423 AW |
2899 | bfd_vma max_alignment ATTRIBUTE_UNUSED, |
2900 | bfd_vma reserve_size ATTRIBUTE_UNUSED, | |
e23eba97 NC |
2901 | bfd_boolean *again ATTRIBUTE_UNUSED) |
2902 | { | |
2903 | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | |
2904 | bfd_vma alignment = 1, pos; | |
2905 | while (alignment <= rel->r_addend) | |
2906 | alignment *= 2; | |
2907 | ||
2908 | symval -= rel->r_addend; | |
2909 | bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; | |
2910 | bfd_vma nop_bytes = aligned_addr - symval; | |
2911 | ||
2912 | /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */ | |
2913 | sec->sec_flg0 = TRUE; | |
2914 | ||
2915 | /* Make sure there are enough NOPs to actually achieve the alignment. */ | |
2916 | if (rel->r_addend < nop_bytes) | |
2917 | return FALSE; | |
2918 | ||
2919 | /* Delete the reloc. */ | |
2920 | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | |
2921 | ||
2922 | /* If the number of NOPs is already correct, there's nothing to do. */ | |
2923 | if (nop_bytes == rel->r_addend) | |
2924 | return TRUE; | |
2925 | ||
2926 | /* Write as many RISC-V NOPs as we need. */ | |
2927 | for (pos = 0; pos < (nop_bytes & -4); pos += 4) | |
2928 | bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos); | |
2929 | ||
2930 | /* Write a final RVC NOP if need be. */ | |
2931 | if (nop_bytes % 4 != 0) | |
2932 | bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos); | |
2933 | ||
2934 | /* Delete the excess bytes. */ | |
2935 | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes, | |
2936 | rel->r_addend - nop_bytes); | |
2937 | } | |
2938 | ||
2939 | /* Relax a section. Pass 0 shortens code sequences unless disabled. | |
2940 | Pass 1, which cannot be disabled, handles code alignment directives. */ | |
2941 | ||
2942 | static bfd_boolean | |
2943 | _bfd_riscv_relax_section (bfd *abfd, asection *sec, | |
2944 | struct bfd_link_info *info, | |
2945 | bfd_boolean *again) | |
2946 | { | |
2947 | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); | |
2948 | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | |
2949 | struct bfd_elf_section_data *data = elf_section_data (sec); | |
2950 | Elf_Internal_Rela *relocs; | |
2951 | bfd_boolean ret = FALSE; | |
2952 | unsigned int i; | |
45f76423 | 2953 | bfd_vma max_alignment, reserve_size = 0; |
e23eba97 NC |
2954 | |
2955 | *again = FALSE; | |
2956 | ||
2957 | if (bfd_link_relocatable (info) | |
2958 | || sec->sec_flg0 | |
2959 | || (sec->flags & SEC_RELOC) == 0 | |
2960 | || sec->reloc_count == 0 | |
2961 | || (info->disable_target_specific_optimizations | |
2962 | && info->relax_pass == 0)) | |
2963 | return TRUE; | |
2964 | ||
2965 | /* Read this BFD's relocs if we haven't done so already. */ | |
2966 | if (data->relocs) | |
2967 | relocs = data->relocs; | |
2968 | else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | |
2969 | info->keep_memory))) | |
2970 | goto fail; | |
2971 | ||
2972 | max_alignment = _bfd_riscv_get_max_alignment (sec); | |
2973 | ||
2974 | /* Examine and consider relaxing each reloc. */ | |
2975 | for (i = 0; i < sec->reloc_count; i++) | |
2976 | { | |
2977 | asection *sym_sec; | |
2978 | Elf_Internal_Rela *rel = relocs + i; | |
45f76423 | 2979 | relax_func_t relax_func; |
e23eba97 NC |
2980 | int type = ELFNN_R_TYPE (rel->r_info); |
2981 | bfd_vma symval; | |
2982 | ||
2983 | if (info->relax_pass == 0) | |
2984 | { | |
2985 | if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT) | |
2986 | relax_func = _bfd_riscv_relax_call; | |
2987 | else if (type == R_RISCV_HI20 | |
2988 | || type == R_RISCV_LO12_I | |
2989 | || type == R_RISCV_LO12_S) | |
2990 | relax_func = _bfd_riscv_relax_lui; | |
45f76423 AW |
2991 | else if (type == R_RISCV_TPREL_HI20 |
2992 | || type == R_RISCV_TPREL_ADD | |
2993 | || type == R_RISCV_TPREL_LO12_I | |
2994 | || type == R_RISCV_TPREL_LO12_S) | |
e23eba97 | 2995 | relax_func = _bfd_riscv_relax_tls_le; |
45f76423 AW |
2996 | else |
2997 | continue; | |
2998 | ||
2999 | /* Only relax this reloc if it is paired with R_RISCV_RELAX. */ | |
3000 | if (i == sec->reloc_count - 1 | |
3001 | || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX | |
3002 | || rel->r_offset != (rel + 1)->r_offset) | |
3003 | continue; | |
3004 | ||
3005 | /* Skip over the R_RISCV_RELAX. */ | |
3006 | i++; | |
e23eba97 NC |
3007 | } |
3008 | else if (type == R_RISCV_ALIGN) | |
3009 | relax_func = _bfd_riscv_relax_align; | |
45f76423 | 3010 | else |
e23eba97 NC |
3011 | continue; |
3012 | ||
3013 | data->relocs = relocs; | |
3014 | ||
3015 | /* Read this BFD's contents if we haven't done so already. */ | |
3016 | if (!data->this_hdr.contents | |
3017 | && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) | |
3018 | goto fail; | |
3019 | ||
3020 | /* Read this BFD's symbols if we haven't done so already. */ | |
3021 | if (symtab_hdr->sh_info != 0 | |
3022 | && !symtab_hdr->contents | |
3023 | && !(symtab_hdr->contents = | |
3024 | (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
3025 | symtab_hdr->sh_info, | |
3026 | 0, NULL, NULL, NULL))) | |
3027 | goto fail; | |
3028 | ||
3029 | /* Get the value of the symbol referred to by the reloc. */ | |
3030 | if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info) | |
3031 | { | |
3032 | /* A local symbol. */ | |
3033 | Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents | |
3034 | + ELFNN_R_SYM (rel->r_info)); | |
45f76423 AW |
3035 | reserve_size = (isym->st_size - rel->r_addend) > isym->st_size |
3036 | ? 0 : isym->st_size - rel->r_addend; | |
e23eba97 NC |
3037 | |
3038 | if (isym->st_shndx == SHN_UNDEF) | |
3039 | sym_sec = sec, symval = sec_addr (sec) + rel->r_offset; | |
3040 | else | |
3041 | { | |
3042 | BFD_ASSERT (isym->st_shndx < elf_numsections (abfd)); | |
3043 | sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section; | |
3044 | if (sec_addr (sym_sec) == 0) | |
3045 | continue; | |
3046 | symval = sec_addr (sym_sec) + isym->st_value; | |
3047 | } | |
3048 | } | |
3049 | else | |
3050 | { | |
3051 | unsigned long indx; | |
3052 | struct elf_link_hash_entry *h; | |
3053 | ||
3054 | indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info; | |
3055 | h = elf_sym_hashes (abfd)[indx]; | |
3056 | ||
3057 | while (h->root.type == bfd_link_hash_indirect | |
3058 | || h->root.type == bfd_link_hash_warning) | |
3059 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3060 | ||
3061 | if (h->plt.offset != MINUS_ONE) | |
3062 | symval = sec_addr (htab->elf.splt) + h->plt.offset; | |
3063 | else if (h->root.u.def.section->output_section == NULL | |
3064 | || (h->root.type != bfd_link_hash_defined | |
3065 | && h->root.type != bfd_link_hash_defweak)) | |
3066 | continue; | |
3067 | else | |
3068 | symval = sec_addr (h->root.u.def.section) + h->root.u.def.value; | |
3069 | ||
45f76423 AW |
3070 | if (h->type != STT_FUNC) |
3071 | reserve_size = | |
3072 | (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend; | |
e23eba97 NC |
3073 | sym_sec = h->root.u.def.section; |
3074 | } | |
3075 | ||
3076 | symval += rel->r_addend; | |
3077 | ||
3078 | if (!relax_func (abfd, sec, sym_sec, info, rel, symval, | |
45f76423 | 3079 | max_alignment, reserve_size, again)) |
e23eba97 NC |
3080 | goto fail; |
3081 | } | |
3082 | ||
3083 | ret = TRUE; | |
3084 | ||
3085 | fail: | |
3086 | if (relocs != data->relocs) | |
3087 | free (relocs); | |
3088 | ||
3089 | return ret; | |
3090 | } | |
3091 | ||
3092 | #if ARCH_SIZE == 32 | |
3093 | # define PRSTATUS_SIZE 0 /* FIXME */ | |
3094 | # define PRSTATUS_OFFSET_PR_CURSIG 12 | |
3095 | # define PRSTATUS_OFFSET_PR_PID 24 | |
3096 | # define PRSTATUS_OFFSET_PR_REG 72 | |
3097 | # define ELF_GREGSET_T_SIZE 128 | |
3098 | # define PRPSINFO_SIZE 128 | |
3099 | # define PRPSINFO_OFFSET_PR_PID 16 | |
3100 | # define PRPSINFO_OFFSET_PR_FNAME 32 | |
3101 | # define PRPSINFO_OFFSET_PR_PSARGS 48 | |
3102 | #else | |
3103 | # define PRSTATUS_SIZE 376 | |
3104 | # define PRSTATUS_OFFSET_PR_CURSIG 12 | |
3105 | # define PRSTATUS_OFFSET_PR_PID 32 | |
3106 | # define PRSTATUS_OFFSET_PR_REG 112 | |
3107 | # define ELF_GREGSET_T_SIZE 256 | |
3108 | # define PRPSINFO_SIZE 136 | |
3109 | # define PRPSINFO_OFFSET_PR_PID 24 | |
3110 | # define PRPSINFO_OFFSET_PR_FNAME 40 | |
3111 | # define PRPSINFO_OFFSET_PR_PSARGS 56 | |
3112 | #endif | |
3113 | ||
3114 | /* Support for core dump NOTE sections. */ | |
3115 | ||
3116 | static bfd_boolean | |
3117 | riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | |
3118 | { | |
3119 | switch (note->descsz) | |
3120 | { | |
3121 | default: | |
3122 | return FALSE; | |
3123 | ||
3124 | case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */ | |
3125 | /* pr_cursig */ | |
3126 | elf_tdata (abfd)->core->signal | |
3127 | = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); | |
3128 | ||
3129 | /* pr_pid */ | |
3130 | elf_tdata (abfd)->core->lwpid | |
3131 | = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); | |
3132 | break; | |
3133 | } | |
3134 | ||
3135 | /* Make a ".reg/999" section. */ | |
3136 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, | |
3137 | note->descpos + PRSTATUS_OFFSET_PR_REG); | |
3138 | } | |
3139 | ||
3140 | static bfd_boolean | |
3141 | riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | |
3142 | { | |
3143 | switch (note->descsz) | |
3144 | { | |
3145 | default: | |
3146 | return FALSE; | |
3147 | ||
3148 | case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */ | |
3149 | /* pr_pid */ | |
3150 | elf_tdata (abfd)->core->pid | |
3151 | = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); | |
3152 | ||
3153 | /* pr_fname */ | |
3154 | elf_tdata (abfd)->core->program = _bfd_elfcore_strndup | |
3155 | (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16); | |
3156 | ||
3157 | /* pr_psargs */ | |
3158 | elf_tdata (abfd)->core->command = _bfd_elfcore_strndup | |
3159 | (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80); | |
3160 | break; | |
3161 | } | |
3162 | ||
3163 | /* Note that for some reason, a spurious space is tacked | |
3164 | onto the end of the args in some (at least one anyway) | |
3165 | implementations, so strip it off if it exists. */ | |
3166 | ||
3167 | { | |
3168 | char *command = elf_tdata (abfd)->core->command; | |
3169 | int n = strlen (command); | |
3170 | ||
3171 | if (0 < n && command[n - 1] == ' ') | |
3172 | command[n - 1] = '\0'; | |
3173 | } | |
3174 | ||
3175 | return TRUE; | |
3176 | } | |
3177 | ||
3178 | ||
3179 | #define TARGET_LITTLE_SYM riscv_elfNN_vec | |
3180 | #define TARGET_LITTLE_NAME "elfNN-littleriscv" | |
3181 | ||
3182 | #define elf_backend_reloc_type_class riscv_reloc_type_class | |
3183 | ||
3184 | #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup | |
3185 | #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create | |
3186 | #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup | |
3187 | #define bfd_elfNN_bfd_merge_private_bfd_data \ | |
3188 | _bfd_riscv_elf_merge_private_bfd_data | |
3189 | ||
3190 | #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol | |
3191 | #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections | |
3192 | #define elf_backend_check_relocs riscv_elf_check_relocs | |
3193 | #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol | |
3194 | #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections | |
3195 | #define elf_backend_relocate_section riscv_elf_relocate_section | |
3196 | #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol | |
3197 | #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections | |
3198 | #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook | |
3199 | #define elf_backend_gc_sweep_hook riscv_elf_gc_sweep_hook | |
3200 | #define elf_backend_plt_sym_val riscv_elf_plt_sym_val | |
3201 | #define elf_backend_grok_prstatus riscv_elf_grok_prstatus | |
3202 | #define elf_backend_grok_psinfo riscv_elf_grok_psinfo | |
3203 | #define elf_info_to_howto_rel NULL | |
3204 | #define elf_info_to_howto riscv_info_to_howto_rela | |
3205 | #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section | |
3206 | ||
3207 | #define elf_backend_init_index_section _bfd_elf_init_1_index_section | |
3208 | ||
3209 | #define elf_backend_can_gc_sections 1 | |
3210 | #define elf_backend_can_refcount 1 | |
3211 | #define elf_backend_want_got_plt 1 | |
3212 | #define elf_backend_plt_readonly 1 | |
3213 | #define elf_backend_plt_alignment 4 | |
3214 | #define elf_backend_want_plt_sym 1 | |
3215 | #define elf_backend_got_header_size (ARCH_SIZE / 8) | |
3216 | #define elf_backend_rela_normal 1 | |
3217 | #define elf_backend_default_execstack 0 | |
3218 | ||
3219 | #include "elfNN-target.h" |