]>
Commit | Line | Data |
---|---|---|
dd3b648e RP |
1 | /* Target-machine dependent code for the Intel 960 |
2 | Copyright (C) 1991 Free Software Foundation, Inc. | |
3 | Contributed by Intel Corporation. | |
4 | examine_prologue and other parts contributed by Wind River Systems. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
99a7de40 JG |
10 | the Free Software Foundation; either version 2 of the License, or |
11 | (at your option) any later version. | |
dd3b648e RP |
12 | |
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
19 | along with this program; if not, write to the Free Software |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
21 | |
22 | /* Miscellaneous i80960-dependent routines. | |
23 | Most are called from macros defined in "tm-i960.h". */ | |
24 | ||
dd3b648e | 25 | #include "defs.h" |
d747e0af | 26 | #include <signal.h> |
dd3b648e RP |
27 | #include "symtab.h" |
28 | #include "value.h" | |
29 | #include "frame.h" | |
dd3b648e RP |
30 | #include "ieee-float.h" |
31 | ||
32 | /* Structure of i960 extended floating point format. */ | |
33 | ||
9fa28378 | 34 | const struct ext_format ext_format_i960 = { |
dd3b648e | 35 | /* tot sbyte smask expbyte manbyte */ |
9fa28378 | 36 | 12, 9, 0x80, 9,8, 4,0, /* i960 */ |
dd3b648e RP |
37 | }; |
38 | ||
39 | /* gdb960 is always running on a non-960 host. Check its characteristics. | |
40 | This routine must be called as part of gdb initialization. */ | |
41 | ||
42 | static void | |
43 | check_host() | |
44 | { | |
45 | int i; | |
46 | ||
47 | static struct typestruct { | |
48 | int hostsize; /* Size of type on host */ | |
49 | int i960size; /* Size of type on i960 */ | |
50 | char *typename; /* Name of type, for error msg */ | |
51 | } types[] = { | |
52 | { sizeof(short), 2, "short" }, | |
53 | { sizeof(int), 4, "int" }, | |
54 | { sizeof(long), 4, "long" }, | |
55 | { sizeof(float), 4, "float" }, | |
56 | { sizeof(double), 8, "double" }, | |
57 | { sizeof(char *), 4, "pointer" }, | |
58 | }; | |
59 | #define TYPELEN (sizeof(types) / sizeof(struct typestruct)) | |
60 | ||
61 | /* Make sure that host type sizes are same as i960 | |
62 | */ | |
63 | for ( i = 0; i < TYPELEN; i++ ){ | |
64 | if ( types[i].hostsize != types[i].i960size ){ | |
65 | printf("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n", | |
66 | types[i].typename, types[i].i960size ); | |
67 | } | |
68 | ||
69 | } | |
70 | } | |
71 | \f | |
72 | /* Examine an i960 function prologue, recording the addresses at which | |
73 | registers are saved explicitly by the prologue code, and returning | |
74 | the address of the first instruction after the prologue (but not | |
75 | after the instruction at address LIMIT, as explained below). | |
76 | ||
77 | LIMIT places an upper bound on addresses of the instructions to be | |
78 | examined. If the prologue code scan reaches LIMIT, the scan is | |
79 | aborted and LIMIT is returned. This is used, when examining the | |
80 | prologue for the current frame, to keep examine_prologue () from | |
81 | claiming that a given register has been saved when in fact the | |
82 | instruction that saves it has not yet been executed. LIMIT is used | |
83 | at other times to stop the scan when we hit code after the true | |
84 | function prologue (e.g. for the first source line) which might | |
85 | otherwise be mistaken for function prologue. | |
86 | ||
87 | The format of the function prologue matched by this routine is | |
88 | derived from examination of the source to gcc960 1.21, particularly | |
89 | the routine i960_function_prologue (). A "regular expression" for | |
90 | the function prologue is given below: | |
91 | ||
92 | (lda LRn, g14 | |
93 | mov g14, g[0-7] | |
94 | (mov 0, g14) | (lda 0, g14))? | |
95 | ||
96 | (mov[qtl]? g[0-15], r[4-15])* | |
97 | ((addo [1-31], sp, sp) | (lda n(sp), sp))? | |
98 | (st[qtl]? g[0-15], n(fp))* | |
99 | ||
100 | (cmpobne 0, g14, LFn | |
101 | mov sp, g14 | |
102 | lda 0x30(sp), sp | |
103 | LFn: stq g0, (g14) | |
104 | stq g4, 0x10(g14) | |
105 | stq g8, 0x20(g14))? | |
106 | ||
107 | (st g14, n(fp))? | |
108 | (mov g13,r[4-15])? | |
109 | */ | |
110 | ||
111 | /* Macros for extracting fields from i960 instructions. */ | |
112 | ||
113 | #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos)) | |
114 | #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width)) | |
115 | ||
116 | #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5) | |
117 | #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5) | |
118 | #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5) | |
119 | #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5) | |
120 | #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12) | |
121 | ||
122 | /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or | |
123 | is not the address of a valid instruction, the address of the next | |
124 | instruction beyond ADDR otherwise. *PWORD1 receives the first word | |
125 | of the instruction, and (for two-word instructions), *PWORD2 receives | |
126 | the second. */ | |
127 | ||
128 | #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \ | |
129 | (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0) | |
130 | ||
131 | static CORE_ADDR | |
132 | examine_prologue (ip, limit, frame_addr, fsr) | |
133 | register CORE_ADDR ip; | |
134 | register CORE_ADDR limit; | |
135 | FRAME_ADDR frame_addr; | |
136 | struct frame_saved_regs *fsr; | |
137 | { | |
138 | register CORE_ADDR next_ip; | |
139 | register int src, dst; | |
140 | register unsigned int *pcode; | |
141 | unsigned int insn1, insn2; | |
142 | int size; | |
143 | int within_leaf_prologue; | |
144 | CORE_ADDR save_addr; | |
145 | static unsigned int varargs_prologue_code [] = | |
146 | { | |
147 | 0x3507a00c, /* cmpobne 0x0, g14, LFn */ | |
148 | 0x5cf01601, /* mov sp, g14 */ | |
149 | 0x8c086030, /* lda 0x30(sp), sp */ | |
150 | 0xb2879000, /* LFn: stq g0, (g14) */ | |
151 | 0xb2a7a010, /* stq g4, 0x10(g14) */ | |
152 | 0xb2c7a020 /* stq g8, 0x20(g14) */ | |
153 | }; | |
154 | ||
155 | /* Accept a leaf procedure prologue code fragment if present. | |
156 | Note that ip might point to either the leaf or non-leaf | |
157 | entry point; we look for the non-leaf entry point first: */ | |
158 | ||
159 | within_leaf_prologue = 0; | |
160 | if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2)) | |
161 | && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */ | |
162 | || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */ | |
163 | { | |
164 | within_leaf_prologue = 1; | |
165 | next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2); | |
166 | } | |
167 | ||
168 | /* Now look for the prologue code at a leaf entry point: */ | |
169 | ||
170 | if (next_ip | |
171 | && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */ | |
172 | && REG_SRCDST (insn1) <= G0_REGNUM + 7) | |
173 | { | |
174 | within_leaf_prologue = 1; | |
175 | if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2)) | |
176 | && (insn1 == 0x8cf00000 /* lda 0, g14 */ | |
177 | || insn1 == 0x5cf01e00)) /* mov 0, g14 */ | |
178 | { | |
179 | ip = next_ip; | |
180 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
181 | within_leaf_prologue = 0; | |
182 | } | |
183 | } | |
184 | ||
185 | /* If something that looks like the beginning of a leaf prologue | |
186 | has been seen, but the remainder of the prologue is missing, bail. | |
187 | We don't know what we've got. */ | |
188 | ||
189 | if (within_leaf_prologue) | |
190 | return (ip); | |
191 | ||
192 | /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4. | |
193 | This may cause us to mistake the moving of a register | |
194 | parameter to a local register for the saving of a callee-saved | |
195 | register, but that can't be helped, since with the | |
196 | "-fcall-saved" flag, any register can be made callee-saved. */ | |
197 | ||
198 | while (next_ip | |
199 | && (insn1 & 0xfc802fb0) == 0x5c000610 | |
200 | && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4)) | |
201 | { | |
202 | src = REG_SRC1 (insn1); | |
203 | size = EXTRACT_FIELD (insn1, 24, 2) + 1; | |
204 | save_addr = frame_addr + ((dst - R0_REGNUM) * 4); | |
205 | while (size--) | |
206 | { | |
207 | fsr->regs[src++] = save_addr; | |
208 | save_addr += 4; | |
209 | } | |
210 | ip = next_ip; | |
211 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
212 | } | |
213 | ||
214 | /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */ | |
215 | ||
216 | if (next_ip && | |
217 | ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */ | |
218 | || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */ | |
219 | || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */ | |
220 | { | |
221 | ip = next_ip; | |
222 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
223 | } | |
224 | ||
225 | /* Accept zero or more instances of "st[qtl]? gx, n(fp)". | |
226 | This may cause us to mistake the copying of a register | |
227 | parameter to the frame for the saving of a callee-saved | |
228 | register, but that can't be helped, since with the | |
229 | "-fcall-saved" flag, any register can be made callee-saved. | |
230 | We can, however, refuse to accept a save of register g14, | |
231 | since that is matched explicitly below. */ | |
232 | ||
233 | while (next_ip && | |
234 | ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */ | |
235 | || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */ | |
236 | || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */ | |
237 | || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */ | |
238 | && ((src = MEM_SRCDST (insn1)) != G14_REGNUM)) | |
239 | { | |
240 | save_addr = frame_addr + ((insn1 & BITMASK (12, 1)) | |
241 | ? insn2 : MEMA_OFFSET (insn1)); | |
242 | size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3) | |
243 | : ((insn1 & BITMASK (27, 1)) ? 2 : 1); | |
244 | while (size--) | |
245 | { | |
246 | fsr->regs[src++] = save_addr; | |
247 | save_addr += 4; | |
248 | } | |
249 | ip = next_ip; | |
250 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
251 | } | |
252 | ||
253 | /* Accept the varargs prologue code if present. */ | |
254 | ||
255 | size = sizeof (varargs_prologue_code) / sizeof (int); | |
256 | pcode = varargs_prologue_code; | |
257 | while (size-- && next_ip && *pcode++ == insn1) | |
258 | { | |
259 | ip = next_ip; | |
260 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
261 | } | |
262 | ||
263 | /* Accept an optional "st g14, n(fp)". */ | |
264 | ||
265 | if (next_ip && | |
266 | ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */ | |
267 | || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */ | |
268 | { | |
269 | fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1)) | |
270 | ? insn2 : MEMA_OFFSET (insn1)); | |
271 | ip = next_ip; | |
272 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
273 | } | |
274 | ||
275 | /* Accept zero or one instance of "mov g13, ry", where y >= 4. | |
276 | This is saving the address where a struct should be returned. */ | |
277 | ||
278 | if (next_ip | |
279 | && (insn1 & 0xff802fbf) == 0x5c00061d | |
280 | && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4)) | |
281 | { | |
282 | save_addr = frame_addr + ((dst - R0_REGNUM) * 4); | |
283 | fsr->regs[G0_REGNUM+13] = save_addr; | |
284 | ip = next_ip; | |
285 | #if 0 /* We'll need this once there is a subsequent instruction examined. */ | |
286 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
287 | #endif | |
288 | } | |
289 | ||
290 | return (ip); | |
291 | } | |
292 | ||
293 | /* Given an ip value corresponding to the start of a function, | |
294 | return the ip of the first instruction after the function | |
295 | prologue. */ | |
296 | ||
297 | CORE_ADDR | |
298 | skip_prologue (ip) | |
299 | CORE_ADDR (ip); | |
300 | { | |
301 | struct frame_saved_regs saved_regs_dummy; | |
302 | struct symtab_and_line sal; | |
303 | CORE_ADDR limit; | |
304 | ||
305 | sal = find_pc_line (ip, 0); | |
306 | limit = (sal.end) ? sal.end : 0xffffffff; | |
307 | ||
308 | return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy)); | |
309 | } | |
310 | ||
311 | /* Put here the code to store, into a struct frame_saved_regs, | |
312 | the addresses of the saved registers of frame described by FRAME_INFO. | |
313 | This includes special registers such as pc and fp saved in special | |
314 | ways in the stack frame. sp is even more special: | |
315 | the address we return for it IS the sp for the next frame. | |
316 | ||
317 | We cache the result of doing this in the frame_cache_obstack, since | |
318 | it is fairly expensive. */ | |
319 | ||
320 | void | |
321 | frame_find_saved_regs (fi, fsr) | |
322 | struct frame_info *fi; | |
323 | struct frame_saved_regs *fsr; | |
324 | { | |
325 | register CORE_ADDR next_addr; | |
326 | register CORE_ADDR *saved_regs; | |
327 | register int regnum; | |
328 | register struct frame_saved_regs *cache_fsr; | |
329 | extern struct obstack frame_cache_obstack; | |
330 | CORE_ADDR ip; | |
331 | struct symtab_and_line sal; | |
332 | CORE_ADDR limit; | |
333 | ||
334 | if (!fi->fsr) | |
335 | { | |
336 | cache_fsr = (struct frame_saved_regs *) | |
337 | obstack_alloc (&frame_cache_obstack, | |
338 | sizeof (struct frame_saved_regs)); | |
4ed97c9a | 339 | memset (cache_fsr, '\0', sizeof (struct frame_saved_regs)); |
dd3b648e RP |
340 | fi->fsr = cache_fsr; |
341 | ||
342 | /* Find the start and end of the function prologue. If the PC | |
343 | is in the function prologue, we only consider the part that | |
344 | has executed already. */ | |
345 | ||
346 | ip = get_pc_function_start (fi->pc); | |
347 | sal = find_pc_line (ip, 0); | |
348 | limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc; | |
349 | ||
350 | examine_prologue (ip, limit, fi->frame, cache_fsr); | |
351 | ||
352 | /* Record the addresses at which the local registers are saved. | |
353 | Strictly speaking, we should only do this for non-leaf procedures, | |
354 | but no one will ever look at these values if it is a leaf procedure, | |
355 | since local registers are always caller-saved. */ | |
356 | ||
357 | next_addr = (CORE_ADDR) fi->frame; | |
358 | saved_regs = cache_fsr->regs; | |
359 | for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++) | |
360 | { | |
361 | *saved_regs++ = next_addr; | |
362 | next_addr += 4; | |
363 | } | |
364 | ||
365 | cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM]; | |
366 | } | |
367 | ||
368 | *fsr = *fi->fsr; | |
369 | ||
370 | /* Fetch the value of the sp from memory every time, since it | |
371 | is conceivable that it has changed since the cache was flushed. | |
372 | This unfortunately undoes much of the savings from caching the | |
373 | saved register values. I suggest adding an argument to | |
374 | get_frame_saved_regs () specifying the register number we're | |
375 | interested in (or -1 for all registers). This would be passed | |
376 | through to FRAME_FIND_SAVED_REGS (), permitting more efficient | |
377 | computation of saved register addresses (e.g., on the i960, | |
378 | we don't have to examine the prologue to find local registers). | |
379 | -- [email protected] | |
380 | FIXME, we don't need to refetch this, since the cache is cleared | |
381 | every time the child process is restarted. If GDB itself | |
382 | modifies SP, it has to clear the cache by hand (does it?). -gnu */ | |
383 | ||
384 | fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4); | |
385 | } | |
386 | ||
387 | /* Return the address of the argument block for the frame | |
388 | described by FI. Returns 0 if the address is unknown. */ | |
389 | ||
390 | CORE_ADDR | |
391 | frame_args_address (fi, must_be_correct) | |
392 | struct frame_info *fi; | |
393 | { | |
394 | register FRAME frame; | |
395 | struct frame_saved_regs fsr; | |
396 | CORE_ADDR ap; | |
397 | ||
398 | /* If g14 was saved in the frame by the function prologue code, return | |
399 | the saved value. If the frame is current and we are being sloppy, | |
400 | return the value of g14. Otherwise, return zero. */ | |
401 | ||
402 | frame = FRAME_INFO_ID (fi); | |
403 | get_frame_saved_regs (fi, &fsr); | |
404 | if (fsr.regs[G14_REGNUM]) | |
405 | ap = read_memory_integer (fsr.regs[G14_REGNUM],4); | |
406 | else { | |
407 | if (must_be_correct) | |
408 | return 0; /* Don't cache this result */ | |
409 | if (get_next_frame (frame)) | |
410 | ap = 0; | |
411 | else | |
412 | ap = read_register (G14_REGNUM); | |
7b8ca0a0 KR |
413 | if (ap == 0) |
414 | ap = fi->frame; | |
dd3b648e RP |
415 | } |
416 | fi->arg_pointer = ap; /* Cache it for next time */ | |
417 | return ap; | |
418 | } | |
419 | ||
420 | /* Return the address of the return struct for the frame | |
421 | described by FI. Returns 0 if the address is unknown. */ | |
422 | ||
423 | CORE_ADDR | |
424 | frame_struct_result_address (fi) | |
425 | struct frame_info *fi; | |
426 | { | |
427 | register FRAME frame; | |
428 | struct frame_saved_regs fsr; | |
429 | CORE_ADDR ap; | |
430 | ||
431 | /* If the frame is non-current, check to see if g14 was saved in the | |
432 | frame by the function prologue code; return the saved value if so, | |
433 | zero otherwise. If the frame is current, return the value of g14. | |
434 | ||
435 | FIXME, shouldn't this use the saved value as long as we are past | |
436 | the function prologue, and only use the current value if we have | |
437 | no saved value and are at TOS? -- [email protected] */ | |
438 | ||
439 | frame = FRAME_INFO_ID (fi); | |
440 | if (get_next_frame (frame)) { | |
441 | get_frame_saved_regs (fi, &fsr); | |
442 | if (fsr.regs[G13_REGNUM]) | |
443 | ap = read_memory_integer (fsr.regs[G13_REGNUM],4); | |
444 | else | |
445 | ap = 0; | |
446 | } else { | |
447 | ap = read_register (G13_REGNUM); | |
448 | } | |
449 | return ap; | |
450 | } | |
451 | ||
452 | /* Return address to which the currently executing leafproc will return, | |
453 | or 0 if ip is not in a leafproc (or if we can't tell if it is). | |
454 | ||
455 | Do this by finding the starting address of the routine in which ip lies. | |
456 | If the instruction there is "mov g14, gx" (where x is in [0,7]), this | |
457 | is a leafproc and the return address is in register gx. Well, this is | |
458 | true unless the return address points at a RET instruction in the current | |
459 | procedure, which indicates that we have a 'dual entry' routine that | |
460 | has been entered through the CALL entry point. */ | |
461 | ||
462 | CORE_ADDR | |
463 | leafproc_return (ip) | |
464 | CORE_ADDR ip; /* ip from currently executing function */ | |
465 | { | |
1ab3bf1b | 466 | register struct minimal_symbol *msymbol; |
dd3b648e RP |
467 | char *p; |
468 | int dst; | |
469 | unsigned int insn1, insn2; | |
470 | CORE_ADDR return_addr; | |
dd3b648e | 471 | |
1ab3bf1b | 472 | if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL) |
dd3b648e | 473 | { |
c398de0c | 474 | if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf")) |
dd3b648e | 475 | { |
81028ab0 | 476 | if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2) |
dd3b648e RP |
477 | && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */ |
478 | && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7) | |
479 | { | |
480 | /* Get the return address. If the "mov g14, gx" | |
481 | instruction hasn't been executed yet, read | |
482 | the return address from g14; otherwise, read it | |
483 | from the register into which g14 was moved. */ | |
484 | ||
81028ab0 FF |
485 | return_addr = |
486 | read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol)) | |
dd3b648e RP |
487 | ? G14_REGNUM : dst); |
488 | ||
489 | /* We know we are in a leaf procedure, but we don't know | |
490 | whether the caller actually did a "bal" to the ".lf" | |
491 | entry point, or a normal "call" to the non-leaf entry | |
492 | point one instruction before. In the latter case, the | |
493 | return address will be the address of a "ret" | |
494 | instruction within the procedure itself. We test for | |
495 | this below. */ | |
496 | ||
497 | if (!next_insn (return_addr, &insn1, &insn2) | |
498 | || (insn1 & 0xff000000) != 0xa000000 /* ret */ | |
1ab3bf1b | 499 | || lookup_minimal_symbol_by_pc (return_addr) != msymbol) |
dd3b648e RP |
500 | return (return_addr); |
501 | } | |
502 | } | |
503 | } | |
504 | ||
505 | return (0); | |
506 | } | |
507 | ||
508 | /* Immediately after a function call, return the saved pc. | |
509 | Can't go through the frames for this because on some machines | |
510 | the new frame is not set up until the new function executes | |
511 | some instructions. | |
512 | On the i960, the frame *is* set up immediately after the call, | |
513 | unless the function is a leaf procedure. */ | |
514 | ||
515 | CORE_ADDR | |
516 | saved_pc_after_call (frame) | |
517 | FRAME frame; | |
518 | { | |
519 | CORE_ADDR saved_pc; | |
520 | CORE_ADDR get_frame_pc (); | |
521 | ||
522 | saved_pc = leafproc_return (get_frame_pc (frame)); | |
523 | if (!saved_pc) | |
524 | saved_pc = FRAME_SAVED_PC (frame); | |
525 | ||
526 | return (saved_pc); | |
527 | } | |
528 | ||
529 | /* Discard from the stack the innermost frame, | |
530 | restoring all saved registers. */ | |
531 | ||
532 | pop_frame () | |
533 | { | |
534 | register struct frame_info *current_fi, *prev_fi; | |
535 | register int i; | |
536 | CORE_ADDR save_addr; | |
537 | CORE_ADDR leaf_return_addr; | |
538 | struct frame_saved_regs fsr; | |
539 | char local_regs_buf[16 * 4]; | |
540 | ||
541 | current_fi = get_frame_info (get_current_frame ()); | |
542 | ||
543 | /* First, undo what the hardware does when we return. | |
544 | If this is a non-leaf procedure, restore local registers from | |
545 | the save area in the calling frame. Otherwise, load the return | |
546 | address obtained from leafproc_return () into the rip. */ | |
547 | ||
548 | leaf_return_addr = leafproc_return (current_fi->pc); | |
549 | if (!leaf_return_addr) | |
550 | { | |
551 | /* Non-leaf procedure. Restore local registers, incl IP. */ | |
552 | prev_fi = get_frame_info (get_prev_frame (FRAME_INFO_ID (current_fi))); | |
553 | read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf)); | |
554 | write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf, | |
555 | sizeof (local_regs_buf)); | |
556 | ||
557 | /* Restore frame pointer. */ | |
558 | write_register (FP_REGNUM, prev_fi->frame); | |
559 | } | |
560 | else | |
561 | { | |
562 | /* Leaf procedure. Just restore the return address into the IP. */ | |
563 | write_register (RIP_REGNUM, leaf_return_addr); | |
564 | } | |
565 | ||
566 | /* Now restore any global regs that the current function had saved. */ | |
567 | get_frame_saved_regs (current_fi, &fsr); | |
568 | for (i = G0_REGNUM; i < G14_REGNUM; i++) | |
569 | { | |
570 | if (save_addr = fsr.regs[i]) | |
571 | write_register (i, read_memory_integer (save_addr, 4)); | |
572 | } | |
573 | ||
574 | /* Flush the frame cache, create a frame for the new innermost frame, | |
575 | and make it the current frame. */ | |
576 | ||
577 | flush_cached_frames (); | |
578 | set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ())); | |
579 | } | |
580 | ||
581 | /* Print out text describing a "signal number" with which the i80960 halted. | |
582 | ||
583 | See the file "fault.c" in the nindy monitor source code for a list | |
584 | of stop codes. */ | |
585 | ||
586 | void | |
587 | print_fault( siggnal ) | |
588 | int siggnal; /* Signal number, as returned by target_wait() */ | |
589 | { | |
590 | static char unknown[] = "Unknown fault or trace"; | |
591 | static char *sigmsgs[] = { | |
592 | /* FAULTS */ | |
593 | "parallel fault", /* 0x00 */ | |
594 | unknown, /* 0x01 */ | |
595 | "operation fault", /* 0x02 */ | |
596 | "arithmetic fault", /* 0x03 */ | |
597 | "floating point fault", /* 0x04 */ | |
598 | "constraint fault", /* 0x05 */ | |
599 | "virtual memory fault", /* 0x06 */ | |
600 | "protection fault", /* 0x07 */ | |
601 | "machine fault", /* 0x08 */ | |
602 | "structural fault", /* 0x09 */ | |
603 | "type fault", /* 0x0a */ | |
604 | "reserved (0xb) fault", /* 0x0b */ | |
605 | "process fault", /* 0x0c */ | |
606 | "descriptor fault", /* 0x0d */ | |
607 | "event fault", /* 0x0e */ | |
608 | "reserved (0xf) fault", /* 0x0f */ | |
609 | ||
610 | /* TRACES */ | |
611 | "single-step trace", /* 0x10 */ | |
612 | "branch trace", /* 0x11 */ | |
613 | "call trace", /* 0x12 */ | |
614 | "return trace", /* 0x13 */ | |
615 | "pre-return trace", /* 0x14 */ | |
616 | "supervisor call trace",/* 0x15 */ | |
617 | "breakpoint trace", /* 0x16 */ | |
618 | }; | |
619 | # define NUMMSGS ((int)( sizeof(sigmsgs) / sizeof(sigmsgs[0]) )) | |
620 | ||
621 | if (siggnal < NSIG) { | |
622 | printf ("\nProgram received signal %d, %s\n", | |
4ace50a5 | 623 | siggnal, safe_strsignal (siggnal)); |
dd3b648e RP |
624 | } else { |
625 | /* The various target_wait()s bias the 80960 "signal number" | |
626 | by adding NSIG to it, so it won't get confused with any | |
627 | of the Unix signals elsewhere in GDB. We need to | |
628 | "unbias" it before using it. */ | |
629 | siggnal -= NSIG; | |
630 | ||
631 | printf("Program stopped for reason #%d: %s.\n", siggnal, | |
632 | (siggnal < NUMMSGS && siggnal >= 0)? | |
633 | sigmsgs[siggnal] : unknown ); | |
634 | } | |
635 | } | |
636 | ||
637 | /* Initialization stub */ | |
638 | ||
639 | _initialize_i960_tdep () | |
640 | { | |
641 | check_host (); | |
642 | } |