]>
Commit | Line | Data |
---|---|---|
b34f6357 | 1 | /* frv simulator support code |
618f726f | 2 | Copyright (C) 1998-2016 Free Software Foundation, Inc. |
b34f6357 DB |
3 | Contributed by Red Hat. |
4 | ||
5 | This file is part of the GNU simulators. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
4744ac1b JB |
9 | the Free Software Foundation; either version 3 of the License, or |
10 | (at your option) any later version. | |
b34f6357 DB |
11 | |
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
4744ac1b JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
b34f6357 DB |
19 | |
20 | #define WANT_CPU | |
21 | #define WANT_CPU_FRVBF | |
22 | ||
23 | #include "sim-main.h" | |
24 | #include "cgen-mem.h" | |
25 | #include "cgen-ops.h" | |
26 | #include "cgen-engine.h" | |
27 | #include "cgen-par.h" | |
28 | #include "bfd.h" | |
d74c4203 | 29 | #include "gdb/sim-frv.h" |
b34f6357 DB |
30 | #include <math.h> |
31 | ||
32 | /* Maintain a flag in order to know when to write the address of the next | |
33 | VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL | |
34 | insns. */ | |
35 | int frvbf_write_next_vliw_addr_to_LR; | |
36 | ||
37 | /* The contents of BUF are in target byte order. */ | |
38 | int | |
39 | frvbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) | |
40 | { | |
d74c4203 KB |
41 | if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM) |
42 | { | |
43 | int hi_available, lo_available; | |
44 | int grn = rn - SIM_FRV_GR0_REGNUM; | |
45 | ||
46 | frv_gr_registers_available (current_cpu, &hi_available, &lo_available); | |
47 | ||
48 | if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available)) | |
49 | return 0; | |
50 | else | |
51 | SETTSI (buf, GET_H_GR (grn)); | |
52 | } | |
53 | else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM) | |
54 | { | |
55 | int hi_available, lo_available; | |
56 | int frn = rn - SIM_FRV_FR0_REGNUM; | |
57 | ||
58 | frv_fr_registers_available (current_cpu, &hi_available, &lo_available); | |
59 | ||
60 | if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available)) | |
61 | return 0; | |
62 | else | |
63 | SETTSI (buf, GET_H_FR (frn)); | |
64 | } | |
65 | else if (rn == SIM_FRV_PC_REGNUM) | |
b34f6357 | 66 | SETTSI (buf, GET_H_PC ()); |
d74c4203 | 67 | else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM) |
9a29f3ca DB |
68 | { |
69 | /* Make sure the register is implemented. */ | |
70 | FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | |
d74c4203 | 71 | int spr = rn - SIM_FRV_SPR0_REGNUM; |
9a29f3ca DB |
72 | if (! control->spr[spr].implemented) |
73 | return 0; | |
74 | SETTSI (buf, GET_H_SPR (spr)); | |
75 | } | |
b34f6357 | 76 | else |
9a29f3ca DB |
77 | { |
78 | SETTSI (buf, 0xdeadbeef); | |
79 | return 0; | |
80 | } | |
b34f6357 | 81 | |
9a29f3ca | 82 | return len; |
b34f6357 DB |
83 | } |
84 | ||
85 | /* The contents of BUF are in target byte order. */ | |
86 | ||
87 | int | |
88 | frvbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) | |
89 | { | |
d74c4203 KB |
90 | if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM) |
91 | { | |
92 | int hi_available, lo_available; | |
93 | int grn = rn - SIM_FRV_GR0_REGNUM; | |
94 | ||
95 | frv_gr_registers_available (current_cpu, &hi_available, &lo_available); | |
96 | ||
97 | if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available)) | |
98 | return 0; | |
99 | else | |
100 | SET_H_GR (grn, GETTSI (buf)); | |
101 | } | |
102 | else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM) | |
103 | { | |
104 | int hi_available, lo_available; | |
105 | int frn = rn - SIM_FRV_FR0_REGNUM; | |
106 | ||
107 | frv_fr_registers_available (current_cpu, &hi_available, &lo_available); | |
108 | ||
109 | if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available)) | |
110 | return 0; | |
111 | else | |
112 | SET_H_FR (frn, GETTSI (buf)); | |
113 | } | |
114 | else if (rn == SIM_FRV_PC_REGNUM) | |
b34f6357 | 115 | SET_H_PC (GETTSI (buf)); |
d74c4203 | 116 | else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM) |
9a29f3ca DB |
117 | { |
118 | /* Make sure the register is implemented. */ | |
119 | FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | |
d74c4203 | 120 | int spr = rn - SIM_FRV_SPR0_REGNUM; |
9a29f3ca DB |
121 | if (! control->spr[spr].implemented) |
122 | return 0; | |
123 | SET_H_SPR (spr, GETTSI (buf)); | |
124 | } | |
125 | else | |
126 | return 0; | |
b34f6357 | 127 | |
9a29f3ca | 128 | return len; |
b34f6357 DB |
129 | } |
130 | \f | |
131 | /* Cover fns to access the general registers. */ | |
132 | USI | |
133 | frvbf_h_gr_get_handler (SIM_CPU *current_cpu, UINT gr) | |
134 | { | |
135 | frv_check_gr_access (current_cpu, gr); | |
136 | return CPU (h_gr[gr]); | |
137 | } | |
138 | ||
139 | void | |
140 | frvbf_h_gr_set_handler (SIM_CPU *current_cpu, UINT gr, USI newval) | |
141 | { | |
142 | frv_check_gr_access (current_cpu, gr); | |
143 | ||
144 | if (gr == 0) | |
145 | return; /* Storing into gr0 has no effect. */ | |
146 | ||
147 | CPU (h_gr[gr]) = newval; | |
148 | } | |
149 | \f | |
150 | /* Cover fns to access the floating point registers. */ | |
151 | SF | |
152 | frvbf_h_fr_get_handler (SIM_CPU *current_cpu, UINT fr) | |
153 | { | |
154 | frv_check_fr_access (current_cpu, fr); | |
155 | return CPU (h_fr[fr]); | |
156 | } | |
157 | ||
158 | void | |
159 | frvbf_h_fr_set_handler (SIM_CPU *current_cpu, UINT fr, SF newval) | |
160 | { | |
161 | frv_check_fr_access (current_cpu, fr); | |
162 | CPU (h_fr[fr]) = newval; | |
163 | } | |
164 | \f | |
165 | /* Cover fns to access the general registers as double words. */ | |
166 | static UINT | |
167 | check_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask) | |
168 | { | |
169 | if (reg & align_mask) | |
170 | { | |
171 | SIM_DESC sd = CPU_STATE (current_cpu); | |
172 | switch (STATE_ARCHITECTURE (sd)->mach) | |
173 | { | |
676a64f4 RS |
174 | /* Note: there is a discrepancy between V2.2 of the FR400 |
175 | instruction manual and the various FR4xx LSI specs. | |
176 | The former claims that unaligned registers cause a | |
177 | register_exception while the latter say it's an | |
178 | illegal_instruction. The LSI specs appear to be | |
179 | correct; in fact, the FR4xx series is not documented | |
180 | as having a register_exception. */ | |
b34f6357 | 181 | case bfd_mach_fr400: |
676a64f4 | 182 | case bfd_mach_fr450: |
e930b1f5 | 183 | case bfd_mach_fr550: |
b34f6357 DB |
184 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
185 | break; | |
186 | case bfd_mach_frvtomcat: | |
187 | case bfd_mach_fr500: | |
188 | case bfd_mach_frv: | |
189 | frv_queue_register_exception_interrupt (current_cpu, | |
190 | FRV_REC_UNALIGNED); | |
191 | break; | |
192 | default: | |
193 | break; | |
194 | } | |
195 | ||
196 | reg &= ~align_mask; | |
197 | } | |
198 | ||
199 | return reg; | |
200 | } | |
201 | ||
202 | static UINT | |
203 | check_fr_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask) | |
204 | { | |
205 | if (reg & align_mask) | |
206 | { | |
207 | SIM_DESC sd = CPU_STATE (current_cpu); | |
208 | switch (STATE_ARCHITECTURE (sd)->mach) | |
209 | { | |
676a64f4 | 210 | /* See comment in check_register_alignment(). */ |
b34f6357 | 211 | case bfd_mach_fr400: |
676a64f4 | 212 | case bfd_mach_fr450: |
e930b1f5 | 213 | case bfd_mach_fr550: |
b34f6357 DB |
214 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); |
215 | break; | |
216 | case bfd_mach_frvtomcat: | |
217 | case bfd_mach_fr500: | |
218 | case bfd_mach_frv: | |
219 | { | |
220 | struct frv_fp_exception_info fp_info = { | |
221 | FSR_NO_EXCEPTION, FTT_INVALID_FR | |
222 | }; | |
223 | frv_queue_fp_exception_interrupt (current_cpu, & fp_info); | |
224 | } | |
225 | break; | |
226 | default: | |
227 | break; | |
228 | } | |
229 | ||
230 | reg &= ~align_mask; | |
231 | } | |
232 | ||
233 | return reg; | |
234 | } | |
235 | ||
236 | static UINT | |
237 | check_memory_alignment (SIM_CPU *current_cpu, SI address, int align_mask) | |
238 | { | |
239 | if (address & align_mask) | |
240 | { | |
241 | SIM_DESC sd = CPU_STATE (current_cpu); | |
242 | switch (STATE_ARCHITECTURE (sd)->mach) | |
243 | { | |
676a64f4 | 244 | /* See comment in check_register_alignment(). */ |
b34f6357 | 245 | case bfd_mach_fr400: |
676a64f4 | 246 | case bfd_mach_fr450: |
b34f6357 DB |
247 | frv_queue_data_access_error_interrupt (current_cpu, address); |
248 | break; | |
249 | case bfd_mach_frvtomcat: | |
250 | case bfd_mach_fr500: | |
251 | case bfd_mach_frv: | |
252 | frv_queue_mem_address_not_aligned_interrupt (current_cpu, address); | |
253 | break; | |
254 | default: | |
255 | break; | |
256 | } | |
257 | ||
258 | address &= ~align_mask; | |
259 | } | |
260 | ||
261 | return address; | |
262 | } | |
263 | ||
264 | DI | |
265 | frvbf_h_gr_double_get_handler (SIM_CPU *current_cpu, UINT gr) | |
266 | { | |
267 | DI value; | |
268 | ||
269 | if (gr == 0) | |
270 | return 0; /* gr0 is always 0. */ | |
271 | ||
272 | /* Check the register alignment. */ | |
273 | gr = check_register_alignment (current_cpu, gr, 1); | |
274 | ||
275 | value = GET_H_GR (gr); | |
276 | value <<= 32; | |
277 | value |= (USI) GET_H_GR (gr + 1); | |
278 | return value; | |
279 | } | |
280 | ||
281 | void | |
282 | frvbf_h_gr_double_set_handler (SIM_CPU *current_cpu, UINT gr, DI newval) | |
283 | { | |
284 | if (gr == 0) | |
285 | return; /* Storing into gr0 has no effect. */ | |
286 | ||
287 | /* Check the register alignment. */ | |
288 | gr = check_register_alignment (current_cpu, gr, 1); | |
289 | ||
290 | SET_H_GR (gr , (newval >> 32) & 0xffffffff); | |
291 | SET_H_GR (gr + 1, (newval ) & 0xffffffff); | |
292 | } | |
293 | \f | |
294 | /* Cover fns to access the floating point register as double words. */ | |
295 | DF | |
296 | frvbf_h_fr_double_get_handler (SIM_CPU *current_cpu, UINT fr) | |
297 | { | |
298 | union { | |
299 | SF as_sf[2]; | |
300 | DF as_df; | |
301 | } value; | |
302 | ||
303 | /* Check the register alignment. */ | |
304 | fr = check_fr_register_alignment (current_cpu, fr, 1); | |
305 | ||
0cb8d851 | 306 | if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) |
b34f6357 DB |
307 | { |
308 | value.as_sf[1] = GET_H_FR (fr); | |
309 | value.as_sf[0] = GET_H_FR (fr + 1); | |
310 | } | |
311 | else | |
312 | { | |
313 | value.as_sf[0] = GET_H_FR (fr); | |
314 | value.as_sf[1] = GET_H_FR (fr + 1); | |
315 | } | |
316 | ||
317 | return value.as_df; | |
318 | } | |
319 | ||
320 | void | |
321 | frvbf_h_fr_double_set_handler (SIM_CPU *current_cpu, UINT fr, DF newval) | |
322 | { | |
323 | union { | |
324 | SF as_sf[2]; | |
325 | DF as_df; | |
326 | } value; | |
327 | ||
328 | /* Check the register alignment. */ | |
329 | fr = check_fr_register_alignment (current_cpu, fr, 1); | |
330 | ||
331 | value.as_df = newval; | |
0cb8d851 | 332 | if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) |
b34f6357 DB |
333 | { |
334 | SET_H_FR (fr , value.as_sf[1]); | |
335 | SET_H_FR (fr + 1, value.as_sf[0]); | |
336 | } | |
337 | else | |
338 | { | |
339 | SET_H_FR (fr , value.as_sf[0]); | |
340 | SET_H_FR (fr + 1, value.as_sf[1]); | |
341 | } | |
342 | } | |
343 | \f | |
344 | /* Cover fns to access the floating point register as integer words. */ | |
345 | USI | |
346 | frvbf_h_fr_int_get_handler (SIM_CPU *current_cpu, UINT fr) | |
347 | { | |
348 | union { | |
349 | SF as_sf; | |
350 | USI as_usi; | |
351 | } value; | |
352 | ||
353 | value.as_sf = GET_H_FR (fr); | |
354 | return value.as_usi; | |
355 | } | |
356 | ||
357 | void | |
358 | frvbf_h_fr_int_set_handler (SIM_CPU *current_cpu, UINT fr, USI newval) | |
359 | { | |
360 | union { | |
361 | SF as_sf; | |
362 | USI as_usi; | |
363 | } value; | |
364 | ||
365 | value.as_usi = newval; | |
366 | SET_H_FR (fr, value.as_sf); | |
367 | } | |
368 | \f | |
369 | /* Cover fns to access the coprocessor registers as double words. */ | |
370 | DI | |
371 | frvbf_h_cpr_double_get_handler (SIM_CPU *current_cpu, UINT cpr) | |
372 | { | |
373 | DI value; | |
374 | ||
375 | /* Check the register alignment. */ | |
376 | cpr = check_register_alignment (current_cpu, cpr, 1); | |
377 | ||
378 | value = GET_H_CPR (cpr); | |
379 | value <<= 32; | |
380 | value |= (USI) GET_H_CPR (cpr + 1); | |
381 | return value; | |
382 | } | |
383 | ||
384 | void | |
385 | frvbf_h_cpr_double_set_handler (SIM_CPU *current_cpu, UINT cpr, DI newval) | |
386 | { | |
387 | /* Check the register alignment. */ | |
388 | cpr = check_register_alignment (current_cpu, cpr, 1); | |
389 | ||
390 | SET_H_CPR (cpr , (newval >> 32) & 0xffffffff); | |
391 | SET_H_CPR (cpr + 1, (newval ) & 0xffffffff); | |
392 | } | |
393 | \f | |
394 | /* Cover fns to write registers as quad words. */ | |
395 | void | |
396 | frvbf_h_gr_quad_set_handler (SIM_CPU *current_cpu, UINT gr, SI *newval) | |
397 | { | |
398 | if (gr == 0) | |
399 | return; /* Storing into gr0 has no effect. */ | |
400 | ||
401 | /* Check the register alignment. */ | |
402 | gr = check_register_alignment (current_cpu, gr, 3); | |
403 | ||
404 | SET_H_GR (gr , newval[0]); | |
405 | SET_H_GR (gr + 1, newval[1]); | |
406 | SET_H_GR (gr + 2, newval[2]); | |
407 | SET_H_GR (gr + 3, newval[3]); | |
408 | } | |
409 | ||
410 | void | |
411 | frvbf_h_fr_quad_set_handler (SIM_CPU *current_cpu, UINT fr, SI *newval) | |
412 | { | |
413 | /* Check the register alignment. */ | |
414 | fr = check_fr_register_alignment (current_cpu, fr, 3); | |
415 | ||
416 | SET_H_FR (fr , newval[0]); | |
417 | SET_H_FR (fr + 1, newval[1]); | |
418 | SET_H_FR (fr + 2, newval[2]); | |
419 | SET_H_FR (fr + 3, newval[3]); | |
420 | } | |
421 | ||
422 | void | |
423 | frvbf_h_cpr_quad_set_handler (SIM_CPU *current_cpu, UINT cpr, SI *newval) | |
424 | { | |
425 | /* Check the register alignment. */ | |
426 | cpr = check_register_alignment (current_cpu, cpr, 3); | |
427 | ||
428 | SET_H_CPR (cpr , newval[0]); | |
429 | SET_H_CPR (cpr + 1, newval[1]); | |
430 | SET_H_CPR (cpr + 2, newval[2]); | |
431 | SET_H_CPR (cpr + 3, newval[3]); | |
432 | } | |
433 | \f | |
434 | /* Cover fns to access the special purpose registers. */ | |
435 | USI | |
436 | frvbf_h_spr_get_handler (SIM_CPU *current_cpu, UINT spr) | |
437 | { | |
438 | /* Check access restrictions. */ | |
439 | frv_check_spr_read_access (current_cpu, spr); | |
440 | ||
441 | switch (spr) | |
442 | { | |
443 | case H_SPR_PSR: | |
444 | return spr_psr_get_handler (current_cpu); | |
445 | case H_SPR_TBR: | |
446 | return spr_tbr_get_handler (current_cpu); | |
447 | case H_SPR_BPSR: | |
448 | return spr_bpsr_get_handler (current_cpu); | |
449 | case H_SPR_CCR: | |
450 | return spr_ccr_get_handler (current_cpu); | |
451 | case H_SPR_CCCR: | |
452 | return spr_cccr_get_handler (current_cpu); | |
453 | case H_SPR_SR0: | |
454 | case H_SPR_SR1: | |
455 | case H_SPR_SR2: | |
456 | case H_SPR_SR3: | |
457 | return spr_sr_get_handler (current_cpu, spr); | |
458 | break; | |
459 | default: | |
460 | return CPU (h_spr[spr]); | |
461 | } | |
462 | return 0; | |
463 | } | |
464 | ||
465 | void | |
466 | frvbf_h_spr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval) | |
467 | { | |
468 | FRV_REGISTER_CONTROL *control; | |
469 | USI mask; | |
470 | USI oldval; | |
471 | ||
472 | /* Check access restrictions. */ | |
473 | frv_check_spr_write_access (current_cpu, spr); | |
474 | ||
475 | /* Only set those fields which are writeable. */ | |
476 | control = CPU_REGISTER_CONTROL (current_cpu); | |
477 | mask = control->spr[spr].read_only_mask; | |
478 | oldval = GET_H_SPR (spr); | |
479 | ||
480 | newval = (newval & ~mask) | (oldval & mask); | |
481 | ||
482 | /* Some registers are represented by individual components which are | |
483 | referenced more often than the register itself. */ | |
484 | switch (spr) | |
485 | { | |
486 | case H_SPR_PSR: | |
487 | spr_psr_set_handler (current_cpu, newval); | |
488 | break; | |
489 | case H_SPR_TBR: | |
490 | spr_tbr_set_handler (current_cpu, newval); | |
491 | break; | |
492 | case H_SPR_BPSR: | |
493 | spr_bpsr_set_handler (current_cpu, newval); | |
494 | break; | |
495 | case H_SPR_CCR: | |
496 | spr_ccr_set_handler (current_cpu, newval); | |
497 | break; | |
498 | case H_SPR_CCCR: | |
499 | spr_cccr_set_handler (current_cpu, newval); | |
500 | break; | |
501 | case H_SPR_SR0: | |
502 | case H_SPR_SR1: | |
503 | case H_SPR_SR2: | |
504 | case H_SPR_SR3: | |
505 | spr_sr_set_handler (current_cpu, spr, newval); | |
506 | break; | |
e930b1f5 DB |
507 | case H_SPR_IHSR8: |
508 | frv_cache_reconfigure (current_cpu, CPU_INSN_CACHE (current_cpu)); | |
509 | break; | |
b34f6357 DB |
510 | default: |
511 | CPU (h_spr[spr]) = newval; | |
512 | break; | |
513 | } | |
514 | } | |
515 | \f | |
516 | /* Cover fns to access the gr_hi and gr_lo registers. */ | |
517 | UHI | |
518 | frvbf_h_gr_hi_get_handler (SIM_CPU *current_cpu, UINT gr) | |
519 | { | |
520 | return (GET_H_GR(gr) >> 16) & 0xffff; | |
521 | } | |
522 | ||
523 | void | |
524 | frvbf_h_gr_hi_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval) | |
525 | { | |
526 | USI value = (GET_H_GR (gr) & 0xffff) | (newval << 16); | |
527 | SET_H_GR (gr, value); | |
528 | } | |
529 | ||
530 | UHI | |
531 | frvbf_h_gr_lo_get_handler (SIM_CPU *current_cpu, UINT gr) | |
532 | { | |
533 | return GET_H_GR(gr) & 0xffff; | |
534 | } | |
535 | ||
536 | void | |
537 | frvbf_h_gr_lo_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval) | |
538 | { | |
539 | USI value = (GET_H_GR (gr) & 0xffff0000) | (newval & 0xffff); | |
540 | SET_H_GR (gr, value); | |
541 | } | |
542 | \f | |
543 | /* Cover fns to access the tbr bits. */ | |
544 | USI | |
545 | spr_tbr_get_handler (SIM_CPU *current_cpu) | |
546 | { | |
547 | int tbr = ((GET_H_TBR_TBA () & 0xfffff) << 12) | | |
548 | ((GET_H_TBR_TT () & 0xff) << 4); | |
549 | ||
550 | return tbr; | |
551 | } | |
552 | ||
553 | void | |
554 | spr_tbr_set_handler (SIM_CPU *current_cpu, USI newval) | |
555 | { | |
556 | int tbr = newval; | |
557 | ||
558 | SET_H_TBR_TBA ((tbr >> 12) & 0xfffff) ; | |
559 | SET_H_TBR_TT ((tbr >> 4) & 0xff) ; | |
560 | } | |
561 | \f | |
562 | /* Cover fns to access the bpsr bits. */ | |
563 | USI | |
564 | spr_bpsr_get_handler (SIM_CPU *current_cpu) | |
565 | { | |
566 | int bpsr = ((GET_H_BPSR_BS () & 0x1) << 12) | | |
567 | ((GET_H_BPSR_BET () & 0x1) ); | |
568 | ||
569 | return bpsr; | |
570 | } | |
571 | ||
572 | void | |
573 | spr_bpsr_set_handler (SIM_CPU *current_cpu, USI newval) | |
574 | { | |
575 | int bpsr = newval; | |
576 | ||
577 | SET_H_BPSR_BS ((bpsr >> 12) & 1); | |
578 | SET_H_BPSR_BET ((bpsr ) & 1); | |
579 | } | |
580 | \f | |
581 | /* Cover fns to access the psr bits. */ | |
582 | USI | |
583 | spr_psr_get_handler (SIM_CPU *current_cpu) | |
584 | { | |
585 | int psr = ((GET_H_PSR_IMPLE () & 0xf) << 28) | | |
586 | ((GET_H_PSR_VER () & 0xf) << 24) | | |
587 | ((GET_H_PSR_ICE () & 0x1) << 16) | | |
588 | ((GET_H_PSR_NEM () & 0x1) << 14) | | |
589 | ((GET_H_PSR_CM () & 0x1) << 13) | | |
590 | ((GET_H_PSR_BE () & 0x1) << 12) | | |
591 | ((GET_H_PSR_ESR () & 0x1) << 11) | | |
592 | ((GET_H_PSR_EF () & 0x1) << 8) | | |
593 | ((GET_H_PSR_EM () & 0x1) << 7) | | |
594 | ((GET_H_PSR_PIL () & 0xf) << 3) | | |
595 | ((GET_H_PSR_S () & 0x1) << 2) | | |
596 | ((GET_H_PSR_PS () & 0x1) << 1) | | |
597 | ((GET_H_PSR_ET () & 0x1) ); | |
598 | ||
599 | return psr; | |
600 | } | |
601 | ||
602 | void | |
603 | spr_psr_set_handler (SIM_CPU *current_cpu, USI newval) | |
604 | { | |
605 | /* The handler for PSR.S references the value of PSR.ESR, so set PSR.S | |
606 | first. */ | |
607 | SET_H_PSR_S ((newval >> 2) & 1); | |
608 | ||
609 | SET_H_PSR_IMPLE ((newval >> 28) & 0xf); | |
610 | SET_H_PSR_VER ((newval >> 24) & 0xf); | |
611 | SET_H_PSR_ICE ((newval >> 16) & 1); | |
612 | SET_H_PSR_NEM ((newval >> 14) & 1); | |
613 | SET_H_PSR_CM ((newval >> 13) & 1); | |
614 | SET_H_PSR_BE ((newval >> 12) & 1); | |
615 | SET_H_PSR_ESR ((newval >> 11) & 1); | |
616 | SET_H_PSR_EF ((newval >> 8) & 1); | |
617 | SET_H_PSR_EM ((newval >> 7) & 1); | |
618 | SET_H_PSR_PIL ((newval >> 3) & 0xf); | |
619 | SET_H_PSR_PS ((newval >> 1) & 1); | |
620 | SET_H_PSR_ET ((newval ) & 1); | |
621 | } | |
622 | ||
623 | void | |
624 | frvbf_h_psr_s_set_handler (SIM_CPU *current_cpu, BI newval) | |
625 | { | |
626 | /* If switching from user to supervisor mode, or vice-versa, then switch | |
627 | the supervisor/user context. */ | |
628 | int psr_s = GET_H_PSR_S (); | |
629 | if (psr_s != (newval & 1)) | |
630 | { | |
631 | frvbf_switch_supervisor_user_context (current_cpu); | |
632 | CPU (h_psr_s) = newval & 1; | |
633 | } | |
634 | } | |
635 | \f | |
636 | /* Cover fns to access the ccr bits. */ | |
637 | USI | |
638 | spr_ccr_get_handler (SIM_CPU *current_cpu) | |
639 | { | |
640 | int ccr = ((GET_H_ICCR (H_ICCR_ICC3) & 0xf) << 28) | | |
641 | ((GET_H_ICCR (H_ICCR_ICC2) & 0xf) << 24) | | |
642 | ((GET_H_ICCR (H_ICCR_ICC1) & 0xf) << 20) | | |
643 | ((GET_H_ICCR (H_ICCR_ICC0) & 0xf) << 16) | | |
644 | ((GET_H_FCCR (H_FCCR_FCC3) & 0xf) << 12) | | |
645 | ((GET_H_FCCR (H_FCCR_FCC2) & 0xf) << 8) | | |
646 | ((GET_H_FCCR (H_FCCR_FCC1) & 0xf) << 4) | | |
647 | ((GET_H_FCCR (H_FCCR_FCC0) & 0xf) ); | |
648 | ||
649 | return ccr; | |
650 | } | |
651 | ||
652 | void | |
653 | spr_ccr_set_handler (SIM_CPU *current_cpu, USI newval) | |
654 | { | |
655 | int ccr = newval; | |
656 | ||
657 | SET_H_ICCR (H_ICCR_ICC3, (newval >> 28) & 0xf); | |
658 | SET_H_ICCR (H_ICCR_ICC2, (newval >> 24) & 0xf); | |
659 | SET_H_ICCR (H_ICCR_ICC1, (newval >> 20) & 0xf); | |
660 | SET_H_ICCR (H_ICCR_ICC0, (newval >> 16) & 0xf); | |
661 | SET_H_FCCR (H_FCCR_FCC3, (newval >> 12) & 0xf); | |
662 | SET_H_FCCR (H_FCCR_FCC2, (newval >> 8) & 0xf); | |
663 | SET_H_FCCR (H_FCCR_FCC1, (newval >> 4) & 0xf); | |
664 | SET_H_FCCR (H_FCCR_FCC0, (newval ) & 0xf); | |
665 | } | |
666 | \f | |
667 | QI | |
668 | frvbf_set_icc_for_shift_right ( | |
669 | SIM_CPU *current_cpu, SI value, SI shift, QI icc | |
670 | ) | |
671 | { | |
672 | /* Set the C flag of the given icc to the logical OR of the bits shifted | |
673 | out. */ | |
674 | int mask = (1 << shift) - 1; | |
675 | if ((value & mask) != 0) | |
676 | return icc | 0x1; | |
677 | ||
678 | return icc & 0xe; | |
679 | } | |
680 | ||
681 | QI | |
682 | frvbf_set_icc_for_shift_left ( | |
683 | SIM_CPU *current_cpu, SI value, SI shift, QI icc | |
684 | ) | |
685 | { | |
686 | /* Set the V flag of the given icc to the logical OR of the bits shifted | |
687 | out. */ | |
688 | int mask = ((1 << shift) - 1) << (32 - shift); | |
689 | if ((value & mask) != 0) | |
690 | return icc | 0x2; | |
691 | ||
692 | return icc & 0xd; | |
693 | } | |
694 | \f | |
695 | /* Cover fns to access the cccr bits. */ | |
696 | USI | |
697 | spr_cccr_get_handler (SIM_CPU *current_cpu) | |
698 | { | |
699 | int cccr = ((GET_H_CCCR (H_CCCR_CC7) & 0x3) << 14) | | |
700 | ((GET_H_CCCR (H_CCCR_CC6) & 0x3) << 12) | | |
701 | ((GET_H_CCCR (H_CCCR_CC5) & 0x3) << 10) | | |
702 | ((GET_H_CCCR (H_CCCR_CC4) & 0x3) << 8) | | |
703 | ((GET_H_CCCR (H_CCCR_CC3) & 0x3) << 6) | | |
704 | ((GET_H_CCCR (H_CCCR_CC2) & 0x3) << 4) | | |
705 | ((GET_H_CCCR (H_CCCR_CC1) & 0x3) << 2) | | |
706 | ((GET_H_CCCR (H_CCCR_CC0) & 0x3) ); | |
707 | ||
708 | return cccr; | |
709 | } | |
710 | ||
711 | void | |
712 | spr_cccr_set_handler (SIM_CPU *current_cpu, USI newval) | |
713 | { | |
714 | int cccr = newval; | |
715 | ||
716 | SET_H_CCCR (H_CCCR_CC7, (newval >> 14) & 0x3); | |
717 | SET_H_CCCR (H_CCCR_CC6, (newval >> 12) & 0x3); | |
718 | SET_H_CCCR (H_CCCR_CC5, (newval >> 10) & 0x3); | |
719 | SET_H_CCCR (H_CCCR_CC4, (newval >> 8) & 0x3); | |
720 | SET_H_CCCR (H_CCCR_CC3, (newval >> 6) & 0x3); | |
721 | SET_H_CCCR (H_CCCR_CC2, (newval >> 4) & 0x3); | |
722 | SET_H_CCCR (H_CCCR_CC1, (newval >> 2) & 0x3); | |
723 | SET_H_CCCR (H_CCCR_CC0, (newval ) & 0x3); | |
724 | } | |
725 | \f | |
726 | /* Cover fns to access the sr bits. */ | |
727 | USI | |
728 | spr_sr_get_handler (SIM_CPU *current_cpu, UINT spr) | |
729 | { | |
730 | /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7, | |
731 | otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */ | |
732 | int psr_esr = GET_H_PSR_ESR (); | |
733 | if (! psr_esr) | |
734 | return GET_H_GR (4 + (spr - H_SPR_SR0)); | |
735 | ||
736 | return CPU (h_spr[spr]); | |
737 | } | |
738 | ||
739 | void | |
740 | spr_sr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval) | |
741 | { | |
742 | /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7, | |
743 | otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */ | |
744 | int psr_esr = GET_H_PSR_ESR (); | |
745 | if (! psr_esr) | |
746 | SET_H_GR (4 + (spr - H_SPR_SR0), newval); | |
747 | else | |
748 | CPU (h_spr[spr]) = newval; | |
749 | } | |
750 | \f | |
751 | /* Switch SR0-SR4 with GR4-GR7 if PSR.ESR is set. */ | |
752 | void | |
753 | frvbf_switch_supervisor_user_context (SIM_CPU *current_cpu) | |
754 | { | |
755 | if (GET_H_PSR_ESR ()) | |
756 | { | |
757 | /* We need to be in supervisor mode to swap the registers. Access the | |
758 | PSR.S directly in order to avoid recursive context switches. */ | |
759 | int i; | |
760 | int save_psr_s = CPU (h_psr_s); | |
761 | CPU (h_psr_s) = 1; | |
762 | for (i = 0; i < 4; ++i) | |
763 | { | |
764 | int gr = i + 4; | |
765 | int spr = i + H_SPR_SR0; | |
766 | SI tmp = GET_H_SPR (spr); | |
767 | SET_H_SPR (spr, GET_H_GR (gr)); | |
768 | SET_H_GR (gr, tmp); | |
769 | } | |
770 | CPU (h_psr_s) = save_psr_s; | |
771 | } | |
772 | } | |
773 | \f | |
774 | /* Handle load/store of quad registers. */ | |
775 | void | |
776 | frvbf_load_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) | |
777 | { | |
778 | int i; | |
779 | SI value[4]; | |
780 | ||
781 | /* Check memory alignment */ | |
782 | address = check_memory_alignment (current_cpu, address, 0xf); | |
783 | ||
784 | /* If we need to count cycles, then the cache operation will be | |
785 | initiated from the model profiling functions. | |
786 | See frvbf_model_.... */ | |
787 | if (model_insn) | |
788 | { | |
789 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
790 | CPU_LOAD_LENGTH (current_cpu) = 16; | |
791 | } | |
792 | else | |
793 | { | |
794 | for (i = 0; i < 4; ++i) | |
795 | { | |
796 | value[i] = frvbf_read_mem_SI (current_cpu, pc, address); | |
797 | address += 4; | |
798 | } | |
799 | sim_queue_fn_xi_write (current_cpu, frvbf_h_gr_quad_set_handler, targ_ix, | |
800 | value); | |
801 | } | |
802 | } | |
803 | ||
804 | void | |
805 | frvbf_store_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) | |
806 | { | |
807 | int i; | |
808 | SI value[4]; | |
809 | USI hsr0; | |
810 | ||
811 | /* Check register and memory alignment. */ | |
812 | src_ix = check_register_alignment (current_cpu, src_ix, 3); | |
813 | address = check_memory_alignment (current_cpu, address, 0xf); | |
814 | ||
815 | for (i = 0; i < 4; ++i) | |
816 | { | |
817 | /* GR0 is always 0. */ | |
818 | if (src_ix == 0) | |
819 | value[i] = 0; | |
820 | else | |
821 | value[i] = GET_H_GR (src_ix + i); | |
822 | } | |
823 | hsr0 = GET_HSR0 (); | |
824 | if (GET_HSR0_DCE (hsr0)) | |
825 | sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); | |
826 | else | |
827 | sim_queue_mem_xi_write (current_cpu, address, value); | |
828 | } | |
829 | ||
830 | void | |
831 | frvbf_load_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) | |
832 | { | |
833 | int i; | |
834 | SI value[4]; | |
835 | ||
836 | /* Check memory alignment */ | |
837 | address = check_memory_alignment (current_cpu, address, 0xf); | |
838 | ||
839 | /* If we need to count cycles, then the cache operation will be | |
840 | initiated from the model profiling functions. | |
841 | See frvbf_model_.... */ | |
842 | if (model_insn) | |
843 | { | |
844 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
845 | CPU_LOAD_LENGTH (current_cpu) = 16; | |
846 | } | |
847 | else | |
848 | { | |
849 | for (i = 0; i < 4; ++i) | |
850 | { | |
851 | value[i] = frvbf_read_mem_SI (current_cpu, pc, address); | |
852 | address += 4; | |
853 | } | |
854 | sim_queue_fn_xi_write (current_cpu, frvbf_h_fr_quad_set_handler, targ_ix, | |
855 | value); | |
856 | } | |
857 | } | |
858 | ||
859 | void | |
860 | frvbf_store_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) | |
861 | { | |
862 | int i; | |
863 | SI value[4]; | |
864 | USI hsr0; | |
865 | ||
866 | /* Check register and memory alignment. */ | |
867 | src_ix = check_fr_register_alignment (current_cpu, src_ix, 3); | |
868 | address = check_memory_alignment (current_cpu, address, 0xf); | |
869 | ||
870 | for (i = 0; i < 4; ++i) | |
871 | value[i] = GET_H_FR (src_ix + i); | |
872 | ||
873 | hsr0 = GET_HSR0 (); | |
874 | if (GET_HSR0_DCE (hsr0)) | |
875 | sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); | |
876 | else | |
877 | sim_queue_mem_xi_write (current_cpu, address, value); | |
878 | } | |
879 | ||
880 | void | |
881 | frvbf_load_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) | |
882 | { | |
883 | int i; | |
884 | SI value[4]; | |
885 | ||
886 | /* Check memory alignment */ | |
887 | address = check_memory_alignment (current_cpu, address, 0xf); | |
888 | ||
889 | /* If we need to count cycles, then the cache operation will be | |
890 | initiated from the model profiling functions. | |
891 | See frvbf_model_.... */ | |
892 | if (model_insn) | |
893 | { | |
894 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
895 | CPU_LOAD_LENGTH (current_cpu) = 16; | |
896 | } | |
897 | else | |
898 | { | |
899 | for (i = 0; i < 4; ++i) | |
900 | { | |
901 | value[i] = frvbf_read_mem_SI (current_cpu, pc, address); | |
902 | address += 4; | |
903 | } | |
904 | sim_queue_fn_xi_write (current_cpu, frvbf_h_cpr_quad_set_handler, targ_ix, | |
905 | value); | |
906 | } | |
907 | } | |
908 | ||
909 | void | |
910 | frvbf_store_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) | |
911 | { | |
912 | int i; | |
913 | SI value[4]; | |
914 | USI hsr0; | |
915 | ||
916 | /* Check register and memory alignment. */ | |
917 | src_ix = check_register_alignment (current_cpu, src_ix, 3); | |
918 | address = check_memory_alignment (current_cpu, address, 0xf); | |
919 | ||
920 | for (i = 0; i < 4; ++i) | |
921 | value[i] = GET_H_CPR (src_ix + i); | |
922 | ||
923 | hsr0 = GET_HSR0 (); | |
924 | if (GET_HSR0_DCE (hsr0)) | |
925 | sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); | |
926 | else | |
927 | sim_queue_mem_xi_write (current_cpu, address, value); | |
928 | } | |
929 | \f | |
930 | void | |
931 | frvbf_signed_integer_divide ( | |
932 | SIM_CPU *current_cpu, SI arg1, SI arg2, int target_index, int non_excepting | |
933 | ) | |
934 | { | |
935 | enum frv_dtt dtt = FRV_DTT_NO_EXCEPTION; | |
936 | if (arg1 == 0x80000000 && arg2 == -1) | |
937 | { | |
938 | /* 0x80000000/(-1) must result in 0x7fffffff when ISR.EDE is set | |
939 | otherwise it may result in 0x7fffffff (sparc compatibility) or | |
940 | 0x80000000 (C language compatibility). */ | |
941 | USI isr; | |
942 | dtt = FRV_DTT_OVERFLOW; | |
943 | ||
944 | isr = GET_ISR (); | |
945 | if (GET_ISR_EDE (isr)) | |
946 | sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, | |
947 | 0x7fffffff); | |
948 | else | |
949 | sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, | |
950 | 0x80000000); | |
951 | frvbf_force_update (current_cpu); /* Force update of target register. */ | |
952 | } | |
953 | else if (arg2 == 0) | |
954 | dtt = FRV_DTT_DIVISION_BY_ZERO; | |
955 | else | |
956 | sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, | |
957 | arg1 / arg2); | |
958 | ||
959 | /* Check for exceptions. */ | |
960 | if (dtt != FRV_DTT_NO_EXCEPTION) | |
961 | dtt = frvbf_division_exception (current_cpu, dtt, target_index, | |
962 | non_excepting); | |
963 | if (non_excepting && dtt == FRV_DTT_NO_EXCEPTION) | |
964 | { | |
965 | /* Non excepting instruction. Clear the NE flag for the target | |
966 | register. */ | |
967 | SI NE_flags[2]; | |
968 | GET_NE_FLAGS (NE_flags, H_SPR_GNER0); | |
969 | CLEAR_NE_FLAG (NE_flags, target_index); | |
970 | SET_NE_FLAGS (H_SPR_GNER0, NE_flags); | |
971 | } | |
972 | } | |
973 | ||
974 | void | |
975 | frvbf_unsigned_integer_divide ( | |
976 | SIM_CPU *current_cpu, USI arg1, USI arg2, int target_index, int non_excepting | |
977 | ) | |
978 | { | |
979 | if (arg2 == 0) | |
980 | frvbf_division_exception (current_cpu, FRV_DTT_DIVISION_BY_ZERO, | |
981 | target_index, non_excepting); | |
982 | else | |
983 | { | |
984 | sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, | |
985 | arg1 / arg2); | |
986 | if (non_excepting) | |
987 | { | |
988 | /* Non excepting instruction. Clear the NE flag for the target | |
989 | register. */ | |
990 | SI NE_flags[2]; | |
991 | GET_NE_FLAGS (NE_flags, H_SPR_GNER0); | |
992 | CLEAR_NE_FLAG (NE_flags, target_index); | |
993 | SET_NE_FLAGS (H_SPR_GNER0, NE_flags); | |
994 | } | |
995 | } | |
996 | } | |
997 | \f | |
998 | /* Clear accumulators. */ | |
999 | void | |
1000 | frvbf_clear_accumulators (SIM_CPU *current_cpu, SI acc_ix, int A) | |
1001 | { | |
1002 | SIM_DESC sd = CPU_STATE (current_cpu); | |
676a64f4 RS |
1003 | int acc_mask = |
1004 | (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr500) ? 7 : | |
1005 | (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) ? 7 : | |
1006 | (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) ? 11 : | |
1007 | (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) ? 3 : | |
b34f6357 | 1008 | 63; |
e930b1f5 | 1009 | FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); |
b34f6357 | 1010 | |
e930b1f5 DB |
1011 | ps->mclracc_acc = acc_ix; |
1012 | ps->mclracc_A = A; | |
b34f6357 DB |
1013 | if (A == 0 || acc_ix != 0) /* Clear 1 accumuator? */ |
1014 | { | |
1015 | /* This instruction is a nop if the referenced accumulator is not | |
1016 | implemented. */ | |
676a64f4 | 1017 | if ((acc_ix & acc_mask) == acc_ix) |
b34f6357 DB |
1018 | sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, acc_ix, 0); |
1019 | } | |
1020 | else | |
1021 | { | |
1022 | /* Clear all implemented accumulators. */ | |
1023 | int i; | |
676a64f4 RS |
1024 | for (i = 0; i <= acc_mask; ++i) |
1025 | if ((i & acc_mask) == i) | |
1026 | sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, i, 0); | |
b34f6357 DB |
1027 | } |
1028 | } | |
1029 | \f | |
1030 | /* Functions to aid insn semantics. */ | |
1031 | ||
1032 | /* Compute the result of the SCAN and SCANI insns after the shift and xor. */ | |
1033 | SI | |
1034 | frvbf_scan_result (SIM_CPU *current_cpu, SI value) | |
1035 | { | |
1036 | SI i; | |
1037 | SI mask; | |
1038 | ||
1039 | if (value == 0) | |
1040 | return 63; | |
1041 | ||
1042 | /* Find the position of the first non-zero bit. | |
1043 | The loop will terminate since there is guaranteed to be at least one | |
1044 | non-zero bit. */ | |
1045 | mask = 1 << (sizeof (mask) * 8 - 1); | |
1046 | for (i = 0; (value & mask) == 0; ++i) | |
1047 | value <<= 1; | |
1048 | ||
1049 | return i; | |
1050 | } | |
1051 | ||
1052 | /* Compute the result of the cut insns. */ | |
1053 | SI | |
1054 | frvbf_cut (SIM_CPU *current_cpu, SI reg1, SI reg2, SI cut_point) | |
1055 | { | |
1056 | SI result; | |
beb7a883 | 1057 | cut_point &= 0x3f; |
b34f6357 DB |
1058 | if (cut_point < 32) |
1059 | { | |
1060 | result = reg1 << cut_point; | |
1061 | result |= (reg2 >> (32 - cut_point)) & ((1 << cut_point) - 1); | |
1062 | } | |
1063 | else | |
1064 | result = reg2 << (cut_point - 32); | |
1065 | ||
1066 | return result; | |
1067 | } | |
1068 | ||
1069 | /* Compute the result of the cut insns. */ | |
1070 | SI | |
1071 | frvbf_media_cut (SIM_CPU *current_cpu, DI acc, SI cut_point) | |
1072 | { | |
1073 | /* The cut point is the lower 6 bits (signed) of what we are passed. */ | |
1074 | cut_point = cut_point << 26 >> 26; | |
1075 | ||
1076 | /* The cut_point is relative to bit 40 of 64 bits. */ | |
1077 | if (cut_point >= 0) | |
1078 | return (acc << (cut_point + 24)) >> 32; | |
1079 | ||
1080 | /* Extend the sign bit (bit 40) for negative cuts. */ | |
1081 | if (cut_point == -32) | |
1082 | return (acc << 24) >> 63; /* Special case for full shiftout. */ | |
1083 | ||
1084 | return (acc << 24) >> (32 + -cut_point); | |
1085 | } | |
1086 | ||
1087 | /* Compute the result of the cut insns. */ | |
1088 | SI | |
1089 | frvbf_media_cut_ss (SIM_CPU *current_cpu, DI acc, SI cut_point) | |
1090 | { | |
1091 | /* The cut point is the lower 6 bits (signed) of what we are passed. */ | |
1092 | cut_point = cut_point << 26 >> 26; | |
1093 | ||
1094 | if (cut_point >= 0) | |
1095 | { | |
1096 | /* The cut_point is relative to bit 40 of 64 bits. */ | |
1097 | DI shifted = acc << (cut_point + 24); | |
1098 | DI unshifted = shifted >> (cut_point + 24); | |
1099 | ||
1100 | /* The result will be saturated if significant bits are shifted out. */ | |
1101 | if (unshifted != acc) | |
1102 | { | |
1103 | if (acc < 0) | |
1104 | return 0x80000000; | |
1105 | return 0x7fffffff; | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | /* The result will not be saturated, so use the code for the normal cut. */ | |
1110 | return frvbf_media_cut (current_cpu, acc, cut_point); | |
1111 | } | |
1112 | ||
e930b1f5 DB |
1113 | /* Compute the result of int accumulator cut (SCUTSS). */ |
1114 | SI | |
1115 | frvbf_iacc_cut (SIM_CPU *current_cpu, DI acc, SI cut_point) | |
1116 | { | |
8b73069f RS |
1117 | DI lower, upper; |
1118 | ||
1119 | /* The cut point is the lower 7 bits (signed) of what we are passed. */ | |
e930b1f5 DB |
1120 | cut_point = cut_point << 25 >> 25; |
1121 | ||
8b73069f RS |
1122 | /* Conceptually, the operation is on a 128-bit sign-extension of ACC. |
1123 | The top bit of the return value corresponds to bit (63 - CUT_POINT) | |
1124 | of this 128-bit value. | |
e930b1f5 | 1125 | |
8b73069f RS |
1126 | Since we can't deal with 128-bit values very easily, convert the |
1127 | operation into an equivalent 64-bit one. */ | |
e930b1f5 | 1128 | if (cut_point < 0) |
8b73069f RS |
1129 | { |
1130 | /* Avoid an undefined shift operation. */ | |
1131 | if (cut_point == -64) | |
1132 | acc >>= 63; | |
1133 | else | |
1134 | acc >>= -cut_point; | |
1135 | cut_point = 0; | |
1136 | } | |
e930b1f5 | 1137 | |
8b73069f RS |
1138 | /* Get the shifted but unsaturated result. Set LOWER to the lowest |
1139 | 32 bits of the result and UPPER to the result >> 31. */ | |
1140 | if (cut_point < 32) | |
1141 | { | |
1142 | /* The cut loses the (32 - CUT_POINT) least significant bits. | |
1143 | Round the result up if the most significant of these lost bits | |
1144 | is 1. */ | |
1145 | lower = acc >> (32 - cut_point); | |
1146 | if (lower < 0x7fffffff) | |
1147 | if (acc & LSBIT64 (32 - cut_point - 1)) | |
1148 | lower++; | |
1149 | upper = lower >> 31; | |
1150 | } | |
1151 | else | |
1152 | { | |
1153 | lower = acc << (cut_point - 32); | |
1154 | upper = acc >> (63 - cut_point); | |
1155 | } | |
e930b1f5 | 1156 | |
8b73069f RS |
1157 | /* Saturate the result. */ |
1158 | if (upper < -1) | |
1159 | return ~0x7fffffff; | |
1160 | else if (upper > 0) | |
1161 | return 0x7fffffff; | |
1162 | else | |
1163 | return lower; | |
e930b1f5 DB |
1164 | } |
1165 | ||
1166 | /* Compute the result of shift-left-arithmetic-with-saturation (SLASS). */ | |
1167 | SI | |
1168 | frvbf_shift_left_arith_saturate (SIM_CPU *current_cpu, SI arg1, SI arg2) | |
1169 | { | |
1170 | int neg_arg1; | |
1171 | ||
1172 | /* FIXME: what to do with negative shift amt? */ | |
1173 | if (arg2 <= 0) | |
1174 | return arg1; | |
1175 | ||
1176 | if (arg1 == 0) | |
1177 | return 0; | |
1178 | ||
1179 | /* Signed shift by 31 or greater saturates by definition. */ | |
1180 | if (arg2 >= 31) | |
1181 | if (arg1 > 0) | |
1182 | return (SI) 0x7fffffff; | |
1183 | else | |
1184 | return (SI) 0x80000000; | |
1185 | ||
1186 | /* OK, arg2 is between 1 and 31. */ | |
1187 | neg_arg1 = (arg1 < 0); | |
1188 | do { | |
1189 | arg1 <<= 1; | |
1190 | /* Check for sign bit change (saturation). */ | |
1191 | if (neg_arg1 && (arg1 >= 0)) | |
1192 | return (SI) 0x80000000; | |
1193 | else if (!neg_arg1 && (arg1 < 0)) | |
1194 | return (SI) 0x7fffffff; | |
1195 | } while (--arg2 > 0); | |
1196 | ||
1197 | return arg1; | |
1198 | } | |
1199 | ||
b34f6357 DB |
1200 | /* Simulate the media custom insns. */ |
1201 | void | |
1202 | frvbf_media_cop (SIM_CPU *current_cpu, int cop_num) | |
1203 | { | |
1204 | /* The semantics of the insn are a nop, since it is implementation defined. | |
1205 | We do need to check whether it's implemented and set up for MTRAP | |
1206 | if it's not. */ | |
1207 | USI msr0 = GET_MSR (0); | |
1208 | if (GET_MSR_EMCI (msr0) == 0) | |
1209 | { | |
1210 | /* no interrupt queued at this time. */ | |
1211 | frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP, 0); | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | /* Simulate the media average (MAVEH) insn. */ | |
1216 | static HI | |
1217 | do_media_average (SIM_CPU *current_cpu, HI arg1, HI arg2) | |
1218 | { | |
1219 | SIM_DESC sd = CPU_STATE (current_cpu); | |
1220 | SI sum = (arg1 + arg2); | |
1221 | HI result = sum >> 1; | |
f9e18f5a | 1222 | int rounding_value; |
b34f6357 | 1223 | |
676a64f4 RS |
1224 | /* On fr4xx and fr550, check the rounding mode. On other machines |
1225 | rounding is always toward negative infinity and the result is | |
1226 | already correctly rounded. */ | |
f9e18f5a | 1227 | switch (STATE_ARCHITECTURE (sd)->mach) |
b34f6357 | 1228 | { |
f9e18f5a DB |
1229 | /* Need to check rounding mode. */ |
1230 | case bfd_mach_fr400: | |
676a64f4 | 1231 | case bfd_mach_fr450: |
e930b1f5 | 1232 | case bfd_mach_fr550: |
b34f6357 DB |
1233 | /* Check whether rounding will be required. Rounding will be required |
1234 | if the sum is an odd number. */ | |
f9e18f5a | 1235 | rounding_value = sum & 1; |
b34f6357 DB |
1236 | if (rounding_value) |
1237 | { | |
1238 | USI msr0 = GET_MSR (0); | |
1239 | /* Check MSR0.SRDAV to determine which bits control the rounding. */ | |
1240 | if (GET_MSR_SRDAV (msr0)) | |
1241 | { | |
1242 | /* MSR0.RD controls rounding. */ | |
1243 | switch (GET_MSR_RD (msr0)) | |
1244 | { | |
1245 | case 0: | |
1246 | /* Round to nearest. */ | |
1247 | if (result >= 0) | |
1248 | ++result; | |
1249 | break; | |
1250 | case 1: | |
1251 | /* Round toward 0. */ | |
1252 | if (result < 0) | |
1253 | ++result; | |
1254 | break; | |
1255 | case 2: | |
1256 | /* Round toward positive infinity. */ | |
1257 | ++result; | |
1258 | break; | |
1259 | case 3: | |
1260 | /* Round toward negative infinity. The result is already | |
1261 | correctly rounded. */ | |
1262 | break; | |
1263 | default: | |
1264 | abort (); | |
1265 | break; | |
1266 | } | |
1267 | } | |
1268 | else | |
1269 | { | |
1270 | /* MSR0.RDAV controls rounding. If set, round toward positive | |
1271 | infinity. Otherwise the result is already rounded correctly | |
1272 | toward negative infinity. */ | |
1273 | if (GET_MSR_RDAV (msr0)) | |
1274 | ++result; | |
1275 | } | |
1276 | } | |
f9e18f5a DB |
1277 | break; |
1278 | default: | |
1279 | break; | |
b34f6357 DB |
1280 | } |
1281 | ||
1282 | return result; | |
1283 | } | |
1284 | ||
1285 | SI | |
1286 | frvbf_media_average (SIM_CPU *current_cpu, SI reg1, SI reg2) | |
1287 | { | |
1288 | SI result; | |
1289 | result = do_media_average (current_cpu, reg1 & 0xffff, reg2 & 0xffff); | |
1290 | result &= 0xffff; | |
1291 | result |= do_media_average (current_cpu, (reg1 >> 16) & 0xffff, | |
1292 | (reg2 >> 16) & 0xffff) << 16; | |
1293 | return result; | |
1294 | } | |
1295 | ||
1296 | /* Maintain a flag in order to know when to write the address of the next | |
1297 | VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL. */ | |
1298 | void | |
1299 | frvbf_set_write_next_vliw_addr_to_LR (SIM_CPU *current_cpu, int value) | |
1300 | { | |
1301 | frvbf_write_next_vliw_addr_to_LR = value; | |
1302 | } | |
1303 | ||
1304 | void | |
1305 | frvbf_set_ne_index (SIM_CPU *current_cpu, int index) | |
1306 | { | |
1307 | USI NE_flags[2]; | |
1308 | ||
1309 | /* Save the target register so interrupt processing can set its NE flag | |
1310 | in the event of an exception. */ | |
1311 | frv_interrupt_state.ne_index = index; | |
1312 | ||
1313 | /* Clear the NE flag of the target register. It will be reset if necessary | |
1314 | in the event of an exception. */ | |
1315 | GET_NE_FLAGS (NE_flags, H_SPR_FNER0); | |
1316 | CLEAR_NE_FLAG (NE_flags, index); | |
1317 | SET_NE_FLAGS (H_SPR_FNER0, NE_flags); | |
1318 | } | |
1319 | ||
1320 | void | |
1321 | frvbf_force_update (SIM_CPU *current_cpu) | |
1322 | { | |
1323 | CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu); | |
1324 | int ix = CGEN_WRITE_QUEUE_INDEX (q); | |
1325 | if (ix > 0) | |
1326 | { | |
1327 | CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, ix - 1); | |
1328 | item->flags |= FRV_WRITE_QUEUE_FORCE_WRITE; | |
1329 | } | |
1330 | } | |
1331 | \f | |
1332 | /* Condition code logic. */ | |
1333 | enum cr_ops { | |
1334 | andcr, orcr, xorcr, nandcr, norcr, andncr, orncr, nandncr, norncr, | |
1335 | num_cr_ops | |
1336 | }; | |
1337 | ||
1338 | enum cr_result {cr_undefined, cr_undefined1, cr_false, cr_true}; | |
1339 | ||
1340 | static enum cr_result | |
1341 | cr_logic[num_cr_ops][4][4] = { | |
1342 | /* andcr */ | |
1343 | { | |
1344 | /* undefined undefined false true */ | |
1345 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1346 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1347 | /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1348 | /* true */ {cr_undefined, cr_undefined, cr_false, cr_true } | |
1349 | }, | |
1350 | /* orcr */ | |
1351 | { | |
1352 | /* undefined undefined false true */ | |
1353 | /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1354 | /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1355 | /* false */ {cr_false, cr_false, cr_false, cr_true }, | |
1356 | /* true */ {cr_true, cr_true, cr_true, cr_true } | |
1357 | }, | |
1358 | /* xorcr */ | |
1359 | { | |
1360 | /* undefined undefined false true */ | |
1361 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1362 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1363 | /* false */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1364 | /* true */ {cr_true, cr_true, cr_true, cr_false } | |
1365 | }, | |
1366 | /* nandcr */ | |
1367 | { | |
1368 | /* undefined undefined false true */ | |
1369 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1370 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1371 | /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1372 | /* true */ {cr_undefined, cr_undefined, cr_true, cr_false } | |
1373 | }, | |
1374 | /* norcr */ | |
1375 | { | |
1376 | /* undefined undefined false true */ | |
1377 | /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, | |
1378 | /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, | |
1379 | /* false */ {cr_true, cr_true, cr_true, cr_false }, | |
1380 | /* true */ {cr_false, cr_false, cr_false, cr_false } | |
1381 | }, | |
1382 | /* andncr */ | |
1383 | { | |
1384 | /* undefined undefined false true */ | |
1385 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1386 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1387 | /* false */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1388 | /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined} | |
1389 | }, | |
1390 | /* orncr */ | |
1391 | { | |
1392 | /* undefined undefined false true */ | |
1393 | /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1394 | /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, | |
1395 | /* false */ {cr_true, cr_true, cr_true, cr_true }, | |
1396 | /* true */ {cr_false, cr_false, cr_false, cr_true } | |
1397 | }, | |
1398 | /* nandncr */ | |
1399 | { | |
1400 | /* undefined undefined false true */ | |
1401 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1402 | /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, | |
1403 | /* false */ {cr_undefined, cr_undefined, cr_true, cr_false }, | |
1404 | /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined} | |
1405 | }, | |
1406 | /* norncr */ | |
1407 | { | |
1408 | /* undefined undefined false true */ | |
1409 | /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, | |
1410 | /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, | |
1411 | /* false */ {cr_false, cr_false, cr_false, cr_false }, | |
1412 | /* true */ {cr_true, cr_true, cr_true, cr_false } | |
1413 | } | |
1414 | }; | |
1415 | ||
1416 | UQI | |
1417 | frvbf_cr_logic (SIM_CPU *current_cpu, SI operation, UQI arg1, UQI arg2) | |
1418 | { | |
1419 | return cr_logic[operation][arg1][arg2]; | |
1420 | } | |
1421 | \f | |
1422 | /* Cache Manipulation. */ | |
1423 | void | |
1424 | frvbf_insn_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock) | |
1425 | { | |
1426 | /* If we need to count cycles, then the cache operation will be | |
1427 | initiated from the model profiling functions. | |
1428 | See frvbf_model_.... */ | |
1429 | int hsr0 = GET_HSR0 (); | |
1430 | if (GET_HSR0_ICE (hsr0)) | |
1431 | { | |
1432 | if (model_insn) | |
1433 | { | |
1434 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1435 | CPU_LOAD_LENGTH (current_cpu) = length; | |
1436 | CPU_LOAD_LOCK (current_cpu) = lock; | |
1437 | } | |
1438 | else | |
1439 | { | |
1440 | FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); | |
1441 | frv_cache_preload (cache, address, length, lock); | |
1442 | } | |
1443 | } | |
1444 | } | |
1445 | ||
1446 | void | |
1447 | frvbf_data_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock) | |
1448 | { | |
1449 | /* If we need to count cycles, then the cache operation will be | |
1450 | initiated from the model profiling functions. | |
1451 | See frvbf_model_.... */ | |
1452 | int hsr0 = GET_HSR0 (); | |
1453 | if (GET_HSR0_DCE (hsr0)) | |
1454 | { | |
1455 | if (model_insn) | |
1456 | { | |
1457 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1458 | CPU_LOAD_LENGTH (current_cpu) = length; | |
1459 | CPU_LOAD_LOCK (current_cpu) = lock; | |
1460 | } | |
1461 | else | |
1462 | { | |
1463 | FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | |
1464 | frv_cache_preload (cache, address, length, lock); | |
1465 | } | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | void | |
1470 | frvbf_insn_cache_unlock (SIM_CPU *current_cpu, SI address) | |
1471 | { | |
1472 | /* If we need to count cycles, then the cache operation will be | |
1473 | initiated from the model profiling functions. | |
1474 | See frvbf_model_.... */ | |
1475 | int hsr0 = GET_HSR0 (); | |
1476 | if (GET_HSR0_ICE (hsr0)) | |
1477 | { | |
1478 | if (model_insn) | |
1479 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1480 | else | |
1481 | { | |
1482 | FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); | |
1483 | frv_cache_unlock (cache, address); | |
1484 | } | |
1485 | } | |
1486 | } | |
1487 | ||
1488 | void | |
1489 | frvbf_data_cache_unlock (SIM_CPU *current_cpu, SI address) | |
1490 | { | |
1491 | /* If we need to count cycles, then the cache operation will be | |
1492 | initiated from the model profiling functions. | |
1493 | See frvbf_model_.... */ | |
1494 | int hsr0 = GET_HSR0 (); | |
1495 | if (GET_HSR0_DCE (hsr0)) | |
1496 | { | |
1497 | if (model_insn) | |
1498 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1499 | else | |
1500 | { | |
1501 | FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | |
1502 | frv_cache_unlock (cache, address); | |
1503 | } | |
1504 | } | |
1505 | } | |
1506 | ||
1507 | void | |
1508 | frvbf_insn_cache_invalidate (SIM_CPU *current_cpu, SI address, int all) | |
1509 | { | |
1510 | /* Make sure the insn was specified properly. -1 will be passed for ALL | |
1511 | for a icei with A=0. */ | |
1512 | if (all == -1) | |
1513 | { | |
1514 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
1515 | return; | |
1516 | } | |
1517 | ||
1518 | /* If we need to count cycles, then the cache operation will be | |
1519 | initiated from the model profiling functions. | |
1520 | See frvbf_model_.... */ | |
1521 | if (model_insn) | |
1522 | { | |
1523 | /* Record the all-entries flag for use in profiling. */ | |
1524 | FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); | |
1525 | ps->all_cache_entries = all; | |
1526 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1527 | } | |
1528 | else | |
1529 | { | |
1530 | FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); | |
1531 | if (all) | |
1532 | frv_cache_invalidate_all (cache, 0/* flush? */); | |
1533 | else | |
1534 | frv_cache_invalidate (cache, address, 0/* flush? */); | |
1535 | } | |
1536 | } | |
1537 | ||
1538 | void | |
1539 | frvbf_data_cache_invalidate (SIM_CPU *current_cpu, SI address, int all) | |
1540 | { | |
1541 | /* Make sure the insn was specified properly. -1 will be passed for ALL | |
1542 | for a dcei with A=0. */ | |
1543 | if (all == -1) | |
1544 | { | |
1545 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
1546 | return; | |
1547 | } | |
1548 | ||
1549 | /* If we need to count cycles, then the cache operation will be | |
1550 | initiated from the model profiling functions. | |
1551 | See frvbf_model_.... */ | |
1552 | if (model_insn) | |
1553 | { | |
1554 | /* Record the all-entries flag for use in profiling. */ | |
1555 | FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); | |
1556 | ps->all_cache_entries = all; | |
1557 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1558 | } | |
1559 | else | |
1560 | { | |
1561 | FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | |
1562 | if (all) | |
1563 | frv_cache_invalidate_all (cache, 0/* flush? */); | |
1564 | else | |
1565 | frv_cache_invalidate (cache, address, 0/* flush? */); | |
1566 | } | |
1567 | } | |
1568 | ||
1569 | void | |
1570 | frvbf_data_cache_flush (SIM_CPU *current_cpu, SI address, int all) | |
1571 | { | |
1572 | /* Make sure the insn was specified properly. -1 will be passed for ALL | |
1573 | for a dcef with A=0. */ | |
1574 | if (all == -1) | |
1575 | { | |
1576 | frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | |
1577 | return; | |
1578 | } | |
1579 | ||
1580 | /* If we need to count cycles, then the cache operation will be | |
1581 | initiated from the model profiling functions. | |
1582 | See frvbf_model_.... */ | |
1583 | if (model_insn) | |
1584 | { | |
1585 | /* Record the all-entries flag for use in profiling. */ | |
1586 | FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); | |
1587 | ps->all_cache_entries = all; | |
1588 | CPU_LOAD_ADDRESS (current_cpu) = address; | |
1589 | } | |
1590 | else | |
1591 | { | |
1592 | FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | |
1593 | if (all) | |
1594 | frv_cache_invalidate_all (cache, 1/* flush? */); | |
1595 | else | |
1596 | frv_cache_invalidate (cache, address, 1/* flush? */); | |
1597 | } | |
1598 | } |