]>
Commit | Line | Data |
---|---|---|
dd3b648e RP |
1 | /* Definitions to make GDB target for an ARM under RISCiX (4.3bsd). |
2 | Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
19 | |
20 | #define TARGET_BYTE_ORDER LITTLE_ENDIAN | |
21 | ||
22 | /* IEEE format floating point */ | |
23 | ||
24 | #define IEEE_FLOAT | |
25 | ||
26 | /* I provide my own xfer_core_file to cope with shared libraries */ | |
27 | ||
28 | #define XFER_CORE_FILE | |
29 | ||
30 | /* Define this if the C compiler puts an underscore at the front | |
31 | of external names before giving them to the linker. */ | |
32 | ||
33 | #define NAMES_HAVE_UNDERSCORE | |
34 | ||
35 | /* Debugger information will be in DBX format. */ | |
36 | ||
37 | #define READ_DBX_FORMAT | |
38 | ||
39 | /* Offset from address of function to start of its code. | |
40 | Zero on most machines. */ | |
41 | ||
42 | #define FUNCTION_START_OFFSET 0 | |
43 | ||
44 | /* Advance PC across any function entry prologue instructions | |
45 | to reach some "real" code. */ | |
46 | ||
47 | #define SKIP_PROLOGUE(pc) pc = skip_prologue(pc) | |
48 | ||
49 | /* Immediately after a function call, return the saved pc. | |
50 | Can't always go through the frames for this because on some machines | |
51 | the new frame is not set up until the new function executes | |
52 | some instructions. */ | |
53 | ||
54 | #define SAVED_PC_AFTER_CALL(frame) (read_register (LR_REGNUM) & 0x03fffffc) | |
55 | ||
56 | /* I don't know the real values for these. */ | |
57 | #define TARGET_UPAGES UPAGES | |
58 | #define TARGET_NBPG NBPG | |
59 | ||
60 | /* Address of end of stack space. */ | |
61 | ||
62 | #define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG)) | |
63 | ||
64 | /* Stack grows downward. */ | |
65 | ||
66 | #define INNER_THAN < | |
67 | ||
68 | /* Sequence of bytes for breakpoint instruction. */ | |
69 | ||
70 | #define BREAKPOINT {0x00,0x00,0x18,0xef} /* BKPT_SWI from <sys/ptrace.h> */ | |
71 | ||
72 | /* Amount PC must be decremented by after a breakpoint. | |
73 | This is often the number of bytes in BREAKPOINT | |
74 | but not always. */ | |
75 | ||
76 | #define DECR_PC_AFTER_BREAK 0 | |
77 | ||
78 | /* Nonzero if instruction at PC is a return instruction. */ | |
79 | ||
80 | #define ABOUT_TO_RETURN(pc) \ | |
81 | ((read_memory_integer(pc, 4) & 0x0fffffff == 0x01b0f00e) || \ | |
82 | (read_memory_integer(pc, 4) & 0x0ffff800 == 0x09eba800)) | |
83 | ||
84 | /* Return 1 if P points to an invalid floating point value. | |
85 | LEN is the length in bytes. */ | |
86 | ||
87 | #define INVALID_FLOAT(p, len) 0 | |
88 | ||
89 | /* code to execute to print interesting information about the | |
90 | * floating point processor (if any) | |
91 | * No need to define if there is nothing to do. | |
92 | */ | |
93 | #define FLOAT_INFO { arm_float_info (); } | |
94 | ||
95 | /* Say how long (ordinary) registers are. */ | |
96 | ||
97 | #define REGISTER_TYPE long | |
98 | ||
99 | /* Number of machine registers */ | |
100 | ||
101 | /* Note: I make a fake copy of the pc in register 25 (calling it ps) so | |
102 | that I can clear the status bits from pc (register 15) */ | |
103 | ||
104 | #define NUM_REGS 26 | |
105 | ||
106 | /* Initializer for an array of names of registers. | |
107 | There should be NUM_REGS strings in this initializer. */ | |
108 | ||
109 | #define REGISTER_NAMES \ | |
110 | { "a1", "a2", "a3", "a4", \ | |
111 | "v1", "v2", "v3", "v4", "v5", "v6", \ | |
112 | "sl", "fp", "ip", "sp", "lr", "pc", \ | |
113 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "fps", "ps" } | |
114 | ||
115 | /* Register numbers of various important registers. | |
116 | Note that some of these values are "real" register numbers, | |
117 | and correspond to the general registers of the machine, | |
118 | and some are "phony" register numbers which are too large | |
119 | to be actual register numbers as far as the user is concerned | |
120 | but do serve to get the desired values when passed to read_register. */ | |
121 | ||
122 | #define AP_REGNUM 11 | |
123 | #define FP_REGNUM 11 /* Contains address of executing stack frame */ | |
124 | #define SP_REGNUM 13 /* Contains address of top of stack */ | |
125 | #define LR_REGNUM 14 /* address to return to from a function call */ | |
126 | #define PC_REGNUM 15 /* Contains program counter */ | |
127 | #define F0_REGNUM 16 /* first floating point register */ | |
128 | #define FPS_REGNUM 24 /* floating point status register */ | |
129 | #define PS_REGNUM 25 /* Contains processor status */ | |
130 | ||
131 | ||
132 | /* Total amount of space needed to store our copies of the machine's | |
133 | register state, the array `registers'. */ | |
134 | #define REGISTER_BYTES (16*4 + 12*8 + 4 + 4) | |
135 | ||
136 | /* Index within `registers' of the first byte of the space for | |
137 | register N. */ | |
138 | ||
139 | #define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \ | |
140 | (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \ | |
141 | 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4)) | |
142 | ||
143 | /* Number of bytes of storage in the actual machine representation | |
144 | for register N. On the vax, all regs are 4 bytes. */ | |
145 | ||
146 | #define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12) | |
147 | ||
148 | /* Number of bytes of storage in the program's representation | |
149 | for register N. On the vax, all regs are 4 bytes. */ | |
150 | ||
151 | #define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8) | |
152 | ||
153 | /* Largest value REGISTER_RAW_SIZE can have. */ | |
154 | ||
155 | #define MAX_REGISTER_RAW_SIZE 12 | |
156 | ||
157 | /* Largest value REGISTER_VIRTUAL_SIZE can have. */ | |
158 | ||
159 | #define MAX_REGISTER_VIRTUAL_SIZE 8 | |
160 | ||
161 | /* Nonzero if register N requires conversion | |
162 | from raw format to virtual format. */ | |
163 | ||
164 | #define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8) | |
165 | ||
166 | /* Convert data from raw format for register REGNUM | |
167 | to virtual format for register REGNUM. */ | |
168 | ||
169 | #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ | |
170 | if (REGISTER_CONVERTIBLE(REGNUM)) \ | |
171 | convert_from_extended((FROM), (TO)); \ | |
172 | else \ | |
173 | bcopy ((FROM), (TO), 4); | |
174 | ||
175 | /* Convert data from virtual format for register REGNUM | |
176 | to raw format for register REGNUM. */ | |
177 | ||
178 | #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ | |
179 | if (REGISTER_CONVERTIBLE(REGNUM)) \ | |
180 | convert_to_extended((FROM), (TO)); \ | |
181 | else \ | |
182 | bcopy ((FROM), (TO), 4); | |
183 | ||
184 | /* Return the GDB type object for the "standard" data type | |
185 | of data in register N. */ | |
186 | ||
187 | #define REGISTER_VIRTUAL_TYPE(N) \ | |
188 | (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int) | |
189 | \f | |
190 | /* The system C compiler uses a similar structure return convention to gcc */ | |
191 | ||
192 | #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 4) | |
193 | ||
194 | /* Store the address of the place in which to copy the structure the | |
195 | subroutine will return. This is called from call_function. */ | |
196 | ||
197 | #define STORE_STRUCT_RETURN(ADDR, SP) \ | |
198 | { write_register (0, (ADDR)); } | |
199 | ||
200 | /* Extract from an array REGBUF containing the (raw) register state | |
201 | a function return value of type TYPE, and copy that, in virtual format, | |
202 | into VALBUF. */ | |
203 | ||
204 | #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ | |
205 | if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \ | |
206 | convert_from_extended(REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \ | |
207 | else \ | |
208 | bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) | |
209 | ||
210 | /* Write into appropriate registers a function return value | |
211 | of type TYPE, given in virtual format. */ | |
212 | ||
213 | #define STORE_RETURN_VALUE(TYPE,VALBUF) \ | |
214 | if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \ | |
215 | char _buf[MAX_REGISTER_RAW_SIZE]; \ | |
216 | convert_to_extended(VALBUF, _buf); \ | |
217 | write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \ | |
218 | } else \ | |
219 | write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE)) | |
220 | ||
221 | /* Extract from an array REGBUF containing the (raw) register state | |
222 | the address in which a function should return its structure value, | |
223 | as a CORE_ADDR (or an expression that can be used as one). */ | |
224 | ||
225 | #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) | |
226 | ||
227 | /* Specify that for the native compiler variables for a particular | |
228 | lexical context are listed after the beginning LBRAC instead of | |
229 | before in the executables list of symbols. */ | |
230 | #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p)) | |
231 | ||
232 | \f | |
233 | /* Describe the pointer in each stack frame to the previous stack frame | |
234 | (its caller). */ | |
235 | ||
236 | /* FRAME_CHAIN takes a frame's nominal address | |
237 | and produces the frame's chain-pointer. | |
238 | ||
239 | FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address | |
240 | and produces the nominal address of the caller frame. | |
241 | ||
242 | However, if FRAME_CHAIN_VALID returns zero, | |
243 | it means the given frame is the outermost one and has no caller. | |
244 | In that case, FRAME_CHAIN_COMBINE is not used. */ | |
245 | ||
246 | /* In the case of the ARM, the frame's nominal address is the FP value, | |
247 | and 12 bytes before comes the saved previous FP value as a 4-byte word. */ | |
248 | ||
249 | #define FRAME_CHAIN(thisframe) \ | |
250 | ((thisframe)->pc >= first_object_file_end ? \ | |
251 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
252 | 0) | |
253 | ||
254 | #define FRAME_CHAIN_VALID(chain, thisframe) \ | |
255 | (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end)) | |
256 | ||
257 | #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) | |
258 | ||
259 | /* Define other aspects of the stack frame. */ | |
260 | ||
261 | /* A macro that tells us whether the function invocation represented | |
262 | by FI does not have a frame on the stack associated with it. If it | |
263 | does not, FRAMELESS is set to 1, else 0. */ | |
264 | #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \ | |
265 | { \ | |
266 | CORE_ADDR func_start, after_prologue; \ | |
267 | func_start = (get_pc_function_start ((FI)->pc) + \ | |
268 | FUNCTION_START_OFFSET); \ | |
269 | after_prologue = func_start; \ | |
270 | SKIP_PROLOGUE (after_prologue); \ | |
271 | (FRAMELESS) = (after_prologue == func_start); \ | |
272 | } | |
273 | ||
274 | /* Saved Pc. */ | |
275 | ||
276 | #define FRAME_SAVED_PC(FRAME) \ | |
277 | (read_memory_integer ((FRAME)->frame - 4, 4) & 0x03fffffc) | |
278 | ||
279 | #define FRAME_ARGS_ADDRESS(fi) (fi->frame) | |
280 | ||
281 | #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame) | |
282 | ||
283 | /* Return number of args passed to a frame. | |
284 | Can return -1, meaning no way to tell. */ | |
285 | ||
286 | #define FRAME_NUM_ARGS(numargs, fi) (numargs = -1) | |
287 | ||
288 | /* Return number of bytes at start of arglist that are not really args. */ | |
289 | ||
290 | #define FRAME_ARGS_SKIP 0 | |
291 | ||
292 | /* Put here the code to store, into a struct frame_saved_regs, | |
293 | the addresses of the saved registers of frame described by FRAME_INFO. | |
294 | This includes special registers such as pc and fp saved in special | |
295 | ways in the stack frame. sp is even more special: | |
296 | the address we return for it IS the sp for the next frame. */ | |
297 | ||
298 | #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ | |
299 | { \ | |
300 | register int regnum; \ | |
301 | register int frame; \ | |
302 | register int next_addr; \ | |
303 | register int return_data_save; \ | |
304 | register int saved_register_mask; \ | |
305 | bzero (&frame_saved_regs, sizeof frame_saved_regs); \ | |
306 | frame = (frame_info)->frame; \ | |
307 | return_data_save = read_memory_integer(frame, 4) & 0x03fffffc - 12; \ | |
308 | saved_register_mask = \ | |
309 | read_memory_integer(return_data_save, 4); \ | |
310 | next_addr = frame - 12; \ | |
311 | for (regnum = 4; regnum < 10; regnum++) \ | |
312 | if (saved_register_mask & (1<<regnum)) { \ | |
313 | next_addr -= 4; \ | |
314 | (frame_saved_regs).regs[regnum] = next_addr; \ | |
315 | } \ | |
316 | if (read_memory_integer(return_data_save + 4, 4) == 0xed6d7103) { \ | |
317 | next_addr -= 12; \ | |
318 | (frame_saved_regs).regs[F0_REGNUM + 7] = next_addr; \ | |
319 | } \ | |
320 | if (read_memory_integer(return_data_save + 8, 4) == 0xed6d6103) { \ | |
321 | next_addr -= 12; \ | |
322 | (frame_saved_regs).regs[F0_REGNUM + 6] = next_addr; \ | |
323 | } \ | |
324 | if (read_memory_integer(return_data_save + 12, 4) == 0xed6d5103) { \ | |
325 | next_addr -= 12; \ | |
326 | (frame_saved_regs).regs[F0_REGNUM + 5] = next_addr; \ | |
327 | } \ | |
328 | if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103) { \ | |
329 | next_addr -= 12; \ | |
330 | (frame_saved_regs).regs[F0_REGNUM + 4] = next_addr; \ | |
331 | } \ | |
332 | (frame_saved_regs).regs[SP_REGNUM] = next_addr; \ | |
333 | (frame_saved_regs).regs[PC_REGNUM] = frame - 4; \ | |
334 | (frame_saved_regs).regs[PS_REGNUM] = frame - 4; \ | |
335 | (frame_saved_regs).regs[FP_REGNUM] = frame - 12; \ | |
336 | } | |
337 | \f | |
338 | /* Things needed for making the inferior call functions. */ | |
339 | ||
340 | /* Push an empty stack frame, to record the current PC, etc. */ | |
341 | ||
342 | #define PUSH_DUMMY_FRAME \ | |
343 | { \ | |
344 | register CORE_ADDR sp = read_register (SP_REGNUM); \ | |
345 | register int regnum; \ | |
346 | /* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */ \ | |
347 | sp = push_word(sp, 0xe92dbf0); /* dummy return_data_save ins */ \ | |
348 | /* push a pointer to the dummy instruction minus 12 */ \ | |
349 | sp = push_word(sp, read_register (SP_REGNUM) - 16); \ | |
350 | sp = push_word(sp, read_register (PS_REGNUM)); \ | |
351 | sp = push_word(sp, read_register (SP_REGNUM)); \ | |
352 | sp = push_word(sp, read_register (FP_REGNUM)); \ | |
353 | for (regnum = 9; regnum >= 4; regnum --) \ | |
354 | sp = push_word(sp, read_register (regnum)); \ | |
355 | write_register (FP_REGNUM, read_register (SP_REGNUM) - 8); \ | |
356 | write_register (SP_REGNUM, sp); } | |
357 | ||
358 | /* Discard from the stack the innermost frame, restoring all registers. */ | |
359 | ||
360 | #define POP_FRAME \ | |
361 | { \ | |
362 | register CORE_ADDR fp = read_register (FP_REGNUM); \ | |
363 | register unsigned long return_data_save = \ | |
364 | read_memory_integer ( (read_memory_integer (fp, 4) & \ | |
365 | 0x03fffffc) - 12, 4); \ | |
366 | register int regnum; \ | |
367 | write_register (PS_REGNUM, read_memory_integer (fp - 4, 4)); \ | |
368 | write_register (PC_REGNUM, read_register (PS_REGNUM) & 0x03fffffc); \ | |
369 | write_register (SP_REGNUM, read_memory_integer (fp - 8, 4)); \ | |
370 | write_register (FP_REGNUM, read_memory_integer (fp - 12, 4)); \ | |
371 | fp -= 12; \ | |
372 | for (regnum = 9; regnum >= 4; regnum--) \ | |
373 | if (return_data_save & (1<<regnum)) { \ | |
374 | fp -= 4; \ | |
375 | write_register (regnum, read_memory_integer(fp, 4)); \ | |
376 | } \ | |
377 | flush_cached_frames (); \ | |
378 | set_current_frame (create_new_frame (read_register (FP_REGNUM), \ | |
379 | read_pc ())); \ | |
380 | } | |
381 | ||
382 | /* This sequence of words is the instructions | |
383 | ||
384 | ldmia sp!,{a1-a4} | |
385 | mov lk,pc | |
386 | bl *+8 | |
387 | swi bkpt_swi | |
388 | ||
389 | Note this is 16 bytes. */ | |
390 | ||
391 | #define CALL_DUMMY {0xe8bd000f, 0xe1a0e00f, 0xeb000000, 0xef180000} | |
392 | ||
393 | #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */ | |
394 | ||
395 | /* Insert the specified number of args and function address | |
396 | into a call sequence of the above form stored at DUMMYNAME. */ | |
397 | ||
398 | #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ | |
399 | { \ | |
400 | register enum type_code code = TYPE_CODE (type); \ | |
401 | register nargs_in_registers, struct_return = 0; \ | |
402 | /* fix the load-arguments mask to move the first 4 or less arguments \ | |
403 | into a1-a4 but make sure the structure return address in a1 is \ | |
404 | not disturbed if the function is returning a structure */ \ | |
405 | if ((code == TYPE_CODE_STRUCT || \ | |
406 | code == TYPE_CODE_UNION || \ | |
407 | code == TYPE_CODE_ARRAY) && \ | |
408 | TYPE_LENGTH (type) > 4) { \ | |
409 | nargs_in_registers = min(nargs + 1, 4); \ | |
410 | struct_return = 1; \ | |
411 | } else \ | |
412 | nargs_in_registers = min(nargs, 4); \ | |
413 | *(char *) dummyname = (1 << nargs_in_registers) - 1 - struct_return; \ | |
414 | *(int *)((char *) dummyname + 8) = \ | |
415 | (((fun - (pc + 16)) / 4) & 0x00ffffff) | 0xeb000000; } |