]>
Commit | Line | Data |
---|---|---|
2013f9b4 SC |
1 | /* Instruction printing code for the AMD 29000 |
2 | Copyright (C) 1990 Free Software Foundation, Inc. | |
3 | Contributed by Cygnus Support. Written by Jim Kingdon. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 1, or (at your option) | |
10 | any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | #include <stdio.h> | |
22 | ||
23 | #ifdef GDB | |
24 | # include "defs.h" | |
25 | # include "target.h" | |
26 | # include "am29k-opcode.h" | |
27 | #else | |
28 | # include "sysdep.h" | |
29 | # include "bfd.h" | |
30 | # include "a29k-opcode.h" | |
31 | # define am29k_opcodes a29k_opcodes | |
32 | # define am29k_opcode a29k_opcode | |
33 | # define NUM_OPCODES num_opcodes | |
34 | # define fprintf_filtered fprintf | |
35 | #endif | |
36 | ||
37 | ||
38 | /* Print a symbolic representation of a general-purpose | |
39 | register number NUM on STREAM. | |
40 | NUM is a number as found in the instruction, not as found in | |
41 | debugging symbols; it must be in the range 0-255. */ | |
42 | static void | |
43 | print_general (num, stream) | |
44 | int num; | |
45 | FILE *stream; | |
46 | { | |
47 | if (num < 128) | |
48 | fprintf_filtered (stream, "gr%d", num); | |
49 | else | |
50 | fprintf_filtered (stream, "lr%d", num - 128); | |
51 | } | |
52 | ||
53 | /* Like print_general but a special-purpose register. | |
54 | ||
55 | The mnemonics used by the AMD assembler are not quite the same | |
56 | as the ones in the User's Manual. We use the ones that the | |
57 | assembler uses. */ | |
58 | static void | |
59 | print_special (num, stream) | |
60 | int num; | |
61 | FILE *stream; | |
62 | { | |
63 | /* Register names of registers 0-SPEC0_NUM-1. */ | |
64 | static char *spec0_names[] = { | |
65 | "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", | |
66 | "pc0", "pc1", "pc2", "mmu", "lru" | |
67 | }; | |
68 | #define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0])) | |
69 | ||
70 | /* Register names of registers 128-128+SPEC128_NUM-1. */ | |
71 | static char *spec128_names[] = { | |
72 | "ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr" | |
73 | }; | |
74 | #define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0])) | |
75 | ||
76 | /* Register names of registers 160-160+SPEC160_NUM-1. */ | |
77 | static char *spec160_names[] = { | |
78 | "fpe", "inte", "fps", "sr163", "exop" | |
79 | }; | |
80 | #define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0])) | |
81 | ||
82 | if (num < SPEC0_NUM) | |
83 | fprintf_filtered (stream, spec0_names[num]); | |
84 | else if (num >= 128 && num < 128 + SPEC128_NUM) | |
85 | fprintf_filtered (stream, spec128_names[num-128]); | |
86 | else if (num >= 160 && num < 160 + SPEC160_NUM) | |
87 | fprintf_filtered (stream, spec160_names[num-160]); | |
88 | else | |
89 | fprintf_filtered (stream, "sr%d", num); | |
90 | } | |
91 | ||
92 | /* Is an instruction with OPCODE a delayed branch? */ | |
93 | static int | |
94 | is_delayed_branch (opcode) | |
95 | int opcode; | |
96 | { | |
97 | return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1 | |
98 | || opcode == 0xa4 || opcode == 0xa5 | |
99 | || opcode == 0xb4 || opcode == 0xb5 | |
100 | || opcode == 0xc4 || opcode == 0xc0 | |
101 | || opcode == 0xac || opcode == 0xad | |
102 | || opcode == 0xcc); | |
103 | } | |
104 | ||
105 | /* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}. | |
106 | Note that the amd can be set up as either | |
107 | big or little-endian (the tm file says which) and we can't assume | |
108 | the host machine is the same. */ | |
109 | static void | |
110 | find_bytes (insn, insn0, insn8, insn16, insn24) | |
111 | char *insn; | |
112 | unsigned char *insn0; | |
113 | unsigned char *insn8; | |
114 | unsigned char *insn16; | |
115 | unsigned char *insn24; | |
116 | { | |
117 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
118 | *insn24 = insn[0]; | |
119 | *insn16 = insn[1]; | |
120 | *insn8 = insn[2]; | |
121 | *insn0 = insn[3]; | |
122 | #else /* Little-endian. */ | |
123 | *insn24 = insn[3]; | |
124 | *insn16 = insn[2]; | |
125 | *insn8 = insn[1]; | |
126 | *insn0 = insn[0]; | |
127 | #endif /* Little-endian. */ | |
128 | } | |
129 | ||
130 | /* Print one instruction from MEMADDR on STREAM. | |
131 | Return the size of the instruction (always 4 on am29k). */ | |
132 | #ifdef GDB | |
133 | print_insn (memaddr, stream) | |
134 | CORE_ADDR memaddr; | |
135 | FILE *stream; | |
136 | #else | |
137 | int | |
138 | print_insn_a29k (memaddr, buffer, stream) | |
139 | bfd_vma memaddr; | |
140 | uint8e_type *buffer; | |
141 | FILE *stream; | |
142 | #endif | |
143 | { | |
144 | /* The raw instruction. */ | |
145 | char insn[4]; | |
146 | ||
147 | /* The four bytes of the instruction. */ | |
148 | unsigned char insn24, insn16, insn8, insn0; | |
149 | ||
821f042d | 150 | CONST struct am29k_opcode *opcode; |
2013f9b4 SC |
151 | |
152 | #ifdef GDB | |
153 | read_memory (memaddr, &insn[0], 4); | |
154 | #else | |
155 | insn[0] = ((char*)buffer)[0]; | |
156 | insn[1] = ((char*)buffer)[1]; | |
157 | insn[2] = ((char*)buffer)[2]; | |
158 | insn[3] = ((char*)buffer)[3]; | |
159 | #endif | |
160 | ||
161 | find_bytes (insn, &insn0, &insn8, &insn16, &insn24); | |
162 | ||
163 | /* Handle the nop (aseq 0x40,gr1,gr1) specially */ | |
164 | if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) { | |
165 | fprintf_filtered (stream,"nop"); | |
166 | return 4; | |
167 | } | |
168 | ||
169 | ||
170 | /* The opcode is always in insn24. */ | |
171 | for (opcode = &am29k_opcodes[0]; | |
172 | opcode < &am29k_opcodes[NUM_OPCODES]; | |
173 | ++opcode) | |
174 | { | |
175 | #ifdef GDB | |
176 | if (insn24 == opcode->opcode) | |
177 | #else | |
178 | if (insn24 == (opcode->opcode >> 24)) | |
179 | #endif | |
180 | { | |
181 | char *s; | |
182 | ||
183 | fprintf_filtered (stream, "%s ", opcode->name); | |
184 | for (s = opcode->args; *s != '\0'; ++s) | |
185 | { | |
186 | switch (*s) | |
187 | { | |
188 | case 'a': | |
189 | print_general (insn8, stream); | |
190 | break; | |
191 | ||
192 | case 'b': | |
193 | print_general (insn0, stream); | |
194 | break; | |
195 | ||
196 | case 'c': | |
197 | print_general (insn16, stream); | |
198 | break; | |
199 | ||
200 | case 'i': | |
201 | fprintf_filtered (stream, "%d", insn0); | |
202 | break; | |
203 | ||
204 | case 'x': | |
205 | fprintf_filtered (stream, "%d", (insn16 << 8) + insn0); | |
206 | break; | |
207 | ||
208 | case 'h': | |
209 | fprintf_filtered (stream, "0x%x", | |
210 | (insn16 << 24) + (insn0 << 16)); | |
211 | break; | |
212 | ||
213 | case 'X': | |
214 | fprintf_filtered (stream, "%d", | |
215 | ((insn16 << 8) + insn0) | 0xffff0000); | |
216 | break; | |
217 | ||
218 | case 'P': | |
219 | /* This output looks just like absolute addressing, but | |
220 | maybe that's OK (it's what the GDB 68k and EBMON | |
221 | 29k disassemblers do). */ | |
222 | /* All the shifting is to sign-extend it. p*/ | |
223 | print_address | |
224 | (memaddr + | |
225 | (((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14), | |
226 | stream); | |
227 | break; | |
228 | ||
229 | case 'A': | |
230 | print_address ((insn16 << 10) + (insn0 << 2), stream); | |
231 | break; | |
232 | ||
233 | case 'e': | |
234 | fprintf_filtered (stream, "%d", insn16 >> 7); | |
235 | break; | |
236 | ||
237 | case 'n': | |
238 | fprintf_filtered (stream, "0x%x", insn16 & 0x7f); | |
239 | break; | |
240 | ||
241 | case 'v': | |
242 | fprintf_filtered (stream, "%x", insn16); | |
243 | break; | |
244 | ||
245 | case 's': | |
246 | print_special (insn8, stream); | |
247 | break; | |
248 | ||
249 | case 'u': | |
250 | fprintf_filtered (stream, "%d", insn0 >> 7); | |
251 | break; | |
252 | ||
253 | case 'r': | |
254 | fprintf_filtered (stream, "%d", (insn0 >> 4) & 7); | |
255 | break; | |
256 | ||
257 | case 'd': | |
258 | fprintf_filtered (stream, "%d", (insn0 >> 2) & 3); | |
259 | break; | |
260 | ||
261 | case 'f': | |
262 | fprintf_filtered (stream, "%d", insn0 & 3); | |
263 | break; | |
264 | ||
265 | case 'F': | |
266 | fprintf_filtered (stream, "%d", (insn0 >> 18) & 15); | |
267 | break; | |
268 | ||
269 | case 'C': | |
270 | fprintf_filtered (stream, "%d", (insn0 >> 16) & 3); | |
271 | break; | |
272 | ||
273 | default: | |
274 | fprintf_filtered (stream, "%c", *s); | |
275 | } | |
276 | } | |
277 | ||
278 | /* Now we look for a const,consth pair of instructions, | |
279 | in which case we try to print the symbolic address. */ | |
280 | if (insn24 == 2) /* consth */ | |
281 | { | |
282 | int errcode; | |
283 | char prev_insn[4]; | |
284 | unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24; | |
285 | ||
286 | #ifdef GDB | |
287 | errcode = target_read_memory (memaddr - 4, | |
288 | &prev_insn[0], | |
289 | 4); | |
290 | #else | |
291 | prev_insn[0] = ((char*)buffer)[0-4]; | |
292 | prev_insn[1] = ((char*)buffer)[1-4]; | |
293 | prev_insn[2] = ((char*)buffer)[2-4]; | |
294 | prev_insn[3] = ((char*)buffer)[3-4]; | |
295 | errcode = 0; | |
296 | #endif | |
297 | if (errcode == 0) | |
298 | { | |
299 | /* If it is a delayed branch, we need to look at the | |
300 | instruction before the delayed brach to handle | |
301 | things like | |
302 | ||
303 | const _foo | |
304 | call _printf | |
305 | consth _foo | |
306 | */ | |
307 | find_bytes (prev_insn, &prev_insn0, &prev_insn8, | |
308 | &prev_insn16, &prev_insn24); | |
309 | if (is_delayed_branch (prev_insn24)) | |
310 | { | |
311 | #ifdef GDB | |
312 | errcode = target_read_memory | |
313 | (memaddr - 8, &prev_insn[0], 4); | |
314 | #else | |
315 | prev_insn[0] = ((char*)buffer)[0-8]; | |
316 | prev_insn[1] = ((char*)buffer)[1-8]; | |
317 | prev_insn[2] = ((char*)buffer)[2-8]; | |
318 | prev_insn[3] = ((char*)buffer)[3-8]; | |
319 | errcode = 0; | |
320 | #endif | |
321 | find_bytes (prev_insn, &prev_insn0, &prev_insn8, | |
322 | &prev_insn16, &prev_insn24); | |
323 | } | |
324 | } | |
325 | ||
326 | /* If there was a problem reading memory, then assume | |
327 | the previous instruction was not const. */ | |
328 | if (errcode == 0) | |
329 | { | |
330 | /* Is it const to the same register? */ | |
331 | if (prev_insn24 == 3 | |
332 | && prev_insn8 == insn8) | |
333 | { | |
334 | fprintf_filtered (stream, "\t; "); | |
335 | print_address (((insn16 << 24) + (insn0 << 16) | |
336 | + (prev_insn16 << 8) + (prev_insn0)), | |
337 | stream); | |
338 | } | |
339 | } | |
340 | } | |
341 | ||
342 | return 4; | |
343 | } | |
344 | } | |
345 | fprintf_filtered (stream, ".word %8x", | |
346 | (insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0); | |
347 | return 4; | |
348 | } |