]>
Commit | Line | Data |
---|---|---|
456f8b9d | 1 | /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger. |
9ab9195f | 2 | Copyright 2002, 2003, 2004 Free Software Foundation, Inc. |
456f8b9d DB |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
8baa6f92 | 22 | #include "gdb_string.h" |
456f8b9d | 23 | #include "inferior.h" |
456f8b9d DB |
24 | #include "gdbcore.h" |
25 | #include "arch-utils.h" | |
26 | #include "regcache.h" | |
8baa6f92 | 27 | #include "frame.h" |
1cb761c7 KB |
28 | #include "frame-unwind.h" |
29 | #include "frame-base.h" | |
8baa6f92 | 30 | #include "trad-frame.h" |
dcc6aaff | 31 | #include "dis-asm.h" |
526eef89 KB |
32 | #include "gdb_assert.h" |
33 | #include "sim-regno.h" | |
34 | #include "gdb/sim-frv.h" | |
35 | #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */ | |
634aa483 | 36 | #include "symtab.h" |
456f8b9d DB |
37 | |
38 | extern void _initialize_frv_tdep (void); | |
39 | ||
40 | static gdbarch_init_ftype frv_gdbarch_init; | |
41 | ||
42 | static gdbarch_register_name_ftype frv_register_name; | |
456f8b9d | 43 | static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc; |
46a16dba | 44 | static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address; |
456f8b9d | 45 | static gdbarch_skip_prologue_ftype frv_skip_prologue; |
456f8b9d | 46 | |
526eef89 KB |
47 | /* Register numbers. The order in which these appear define the |
48 | remote protocol, so take care in changing them. */ | |
456f8b9d | 49 | enum { |
456f8b9d DB |
50 | /* Register numbers 0 -- 63 are always reserved for general-purpose |
51 | registers. The chip at hand may have less. */ | |
52 | first_gpr_regnum = 0, | |
53 | sp_regnum = 1, | |
54 | fp_regnum = 2, | |
55 | struct_return_regnum = 3, | |
56 | last_gpr_regnum = 63, | |
57 | ||
58 | /* Register numbers 64 -- 127 are always reserved for floating-point | |
59 | registers. The chip at hand may have less. */ | |
60 | first_fpr_regnum = 64, | |
61 | last_fpr_regnum = 127, | |
62 | ||
526eef89 | 63 | /* The PC register. */ |
456f8b9d | 64 | pc_regnum = 128, |
526eef89 KB |
65 | |
66 | /* Register numbers 129 on up are always reserved for special-purpose | |
67 | registers. */ | |
68 | first_spr_regnum = 129, | |
456f8b9d DB |
69 | psr_regnum = 129, |
70 | ccr_regnum = 130, | |
71 | cccr_regnum = 131, | |
72 | tbr_regnum = 135, | |
73 | brr_regnum = 136, | |
74 | dbar0_regnum = 137, | |
75 | dbar1_regnum = 138, | |
76 | dbar2_regnum = 139, | |
77 | dbar3_regnum = 140, | |
78 | lr_regnum = 145, | |
79 | lcr_regnum = 146, | |
526eef89 KB |
80 | iacc0h_regnum = 147, |
81 | iacc0l_regnum = 148, | |
82 | last_spr_regnum = 148, | |
83 | ||
84 | /* The total number of registers we know exist. */ | |
6a748db6 KB |
85 | frv_num_regs = last_spr_regnum + 1, |
86 | ||
87 | /* Pseudo registers */ | |
88 | first_pseudo_regnum = frv_num_regs, | |
89 | ||
90 | /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */ | |
91 | iacc0_regnum = first_pseudo_regnum + 0, | |
92 | ||
93 | last_pseudo_regnum = iacc0_regnum, | |
65ed7f0a | 94 | frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1, |
456f8b9d DB |
95 | }; |
96 | ||
97 | static LONGEST frv_call_dummy_words[] = | |
98 | {0}; | |
99 | ||
100 | ||
1cb761c7 | 101 | struct frv_unwind_cache /* was struct frame_extra_info */ |
456f8b9d | 102 | { |
1cb761c7 KB |
103 | /* The previous frame's inner-most stack address. Used as this |
104 | frame ID's stack_addr. */ | |
105 | CORE_ADDR prev_sp; | |
456f8b9d | 106 | |
1cb761c7 KB |
107 | /* The frame's base, optionally used by the high-level debug info. */ |
108 | CORE_ADDR base; | |
8baa6f92 KB |
109 | |
110 | /* Table indicating the location of each and every register. */ | |
111 | struct trad_frame_saved_reg *saved_regs; | |
456f8b9d DB |
112 | }; |
113 | ||
114 | ||
115 | /* A structure describing a particular variant of the FRV. | |
116 | We allocate and initialize one of these structures when we create | |
117 | the gdbarch object for a variant. | |
118 | ||
119 | At the moment, all the FR variants we support differ only in which | |
120 | registers are present; the portable code of GDB knows that | |
121 | registers whose names are the empty string don't exist, so the | |
122 | `register_names' array captures all the per-variant information we | |
123 | need. | |
124 | ||
125 | in the future, if we need to have per-variant maps for raw size, | |
126 | virtual type, etc., we should replace register_names with an array | |
127 | of structures, each of which gives all the necessary info for one | |
128 | register. Don't stick parallel arrays in here --- that's so | |
129 | Fortran. */ | |
130 | struct gdbarch_tdep | |
131 | { | |
132 | /* How many general-purpose registers does this variant have? */ | |
133 | int num_gprs; | |
134 | ||
135 | /* How many floating-point registers does this variant have? */ | |
136 | int num_fprs; | |
137 | ||
138 | /* How many hardware watchpoints can it support? */ | |
139 | int num_hw_watchpoints; | |
140 | ||
141 | /* How many hardware breakpoints can it support? */ | |
142 | int num_hw_breakpoints; | |
143 | ||
144 | /* Register names. */ | |
145 | char **register_names; | |
146 | }; | |
147 | ||
148 | #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch)) | |
149 | ||
150 | ||
151 | /* Allocate a new variant structure, and set up default values for all | |
152 | the fields. */ | |
153 | static struct gdbarch_tdep * | |
5ae5f592 | 154 | new_variant (void) |
456f8b9d DB |
155 | { |
156 | struct gdbarch_tdep *var; | |
157 | int r; | |
158 | char buf[20]; | |
159 | ||
160 | var = xmalloc (sizeof (*var)); | |
161 | memset (var, 0, sizeof (*var)); | |
162 | ||
163 | var->num_gprs = 64; | |
164 | var->num_fprs = 64; | |
165 | var->num_hw_watchpoints = 0; | |
166 | var->num_hw_breakpoints = 0; | |
167 | ||
168 | /* By default, don't supply any general-purpose or floating-point | |
169 | register names. */ | |
6a748db6 KB |
170 | var->register_names |
171 | = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs) | |
172 | * sizeof (char *)); | |
173 | for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++) | |
456f8b9d DB |
174 | var->register_names[r] = ""; |
175 | ||
526eef89 | 176 | /* Do, however, supply default names for the known special-purpose |
456f8b9d | 177 | registers. */ |
456f8b9d DB |
178 | |
179 | var->register_names[pc_regnum] = "pc"; | |
180 | var->register_names[lr_regnum] = "lr"; | |
181 | var->register_names[lcr_regnum] = "lcr"; | |
182 | ||
183 | var->register_names[psr_regnum] = "psr"; | |
184 | var->register_names[ccr_regnum] = "ccr"; | |
185 | var->register_names[cccr_regnum] = "cccr"; | |
186 | var->register_names[tbr_regnum] = "tbr"; | |
187 | ||
188 | /* Debug registers. */ | |
189 | var->register_names[brr_regnum] = "brr"; | |
190 | var->register_names[dbar0_regnum] = "dbar0"; | |
191 | var->register_names[dbar1_regnum] = "dbar1"; | |
192 | var->register_names[dbar2_regnum] = "dbar2"; | |
193 | var->register_names[dbar3_regnum] = "dbar3"; | |
194 | ||
526eef89 KB |
195 | /* iacc0 (Only found on MB93405.) */ |
196 | var->register_names[iacc0h_regnum] = "iacc0h"; | |
197 | var->register_names[iacc0l_regnum] = "iacc0l"; | |
6a748db6 | 198 | var->register_names[iacc0_regnum] = "iacc0"; |
526eef89 | 199 | |
456f8b9d DB |
200 | return var; |
201 | } | |
202 | ||
203 | ||
204 | /* Indicate that the variant VAR has NUM_GPRS general-purpose | |
205 | registers, and fill in the names array appropriately. */ | |
206 | static void | |
207 | set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs) | |
208 | { | |
209 | int r; | |
210 | ||
211 | var->num_gprs = num_gprs; | |
212 | ||
213 | for (r = 0; r < num_gprs; ++r) | |
214 | { | |
215 | char buf[20]; | |
216 | ||
217 | sprintf (buf, "gr%d", r); | |
218 | var->register_names[first_gpr_regnum + r] = xstrdup (buf); | |
219 | } | |
220 | } | |
221 | ||
222 | ||
223 | /* Indicate that the variant VAR has NUM_FPRS floating-point | |
224 | registers, and fill in the names array appropriately. */ | |
225 | static void | |
226 | set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs) | |
227 | { | |
228 | int r; | |
229 | ||
230 | var->num_fprs = num_fprs; | |
231 | ||
232 | for (r = 0; r < num_fprs; ++r) | |
233 | { | |
234 | char buf[20]; | |
235 | ||
236 | sprintf (buf, "fr%d", r); | |
237 | var->register_names[first_fpr_regnum + r] = xstrdup (buf); | |
238 | } | |
239 | } | |
240 | ||
241 | ||
242 | static const char * | |
243 | frv_register_name (int reg) | |
244 | { | |
245 | if (reg < 0) | |
246 | return "?toosmall?"; | |
6a748db6 | 247 | if (reg >= frv_num_regs + frv_num_pseudo_regs) |
456f8b9d DB |
248 | return "?toolarge?"; |
249 | ||
250 | return CURRENT_VARIANT->register_names[reg]; | |
251 | } | |
252 | ||
526eef89 | 253 | |
456f8b9d | 254 | static struct type * |
7f398216 | 255 | frv_register_type (struct gdbarch *gdbarch, int reg) |
456f8b9d | 256 | { |
526eef89 | 257 | if (reg >= first_fpr_regnum && reg <= last_fpr_regnum) |
456f8b9d | 258 | return builtin_type_float; |
6a748db6 KB |
259 | else if (reg == iacc0_regnum) |
260 | return builtin_type_int64; | |
456f8b9d | 261 | else |
526eef89 | 262 | return builtin_type_int32; |
456f8b9d DB |
263 | } |
264 | ||
6a748db6 KB |
265 | static void |
266 | frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
267 | int reg, void *buffer) | |
268 | { | |
269 | if (reg == iacc0_regnum) | |
270 | { | |
271 | regcache_raw_read (regcache, iacc0h_regnum, buffer); | |
272 | regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
273 | } | |
274 | } | |
275 | ||
276 | static void | |
277 | frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
278 | int reg, const void *buffer) | |
279 | { | |
280 | if (reg == iacc0_regnum) | |
281 | { | |
282 | regcache_raw_write (regcache, iacc0h_regnum, buffer); | |
283 | regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
284 | } | |
285 | } | |
286 | ||
526eef89 KB |
287 | static int |
288 | frv_register_sim_regno (int reg) | |
289 | { | |
290 | static const int spr_map[] = | |
291 | { | |
292 | H_SPR_PSR, /* psr_regnum */ | |
293 | H_SPR_CCR, /* ccr_regnum */ | |
294 | H_SPR_CCCR, /* cccr_regnum */ | |
295 | -1, /* 132 */ | |
296 | -1, /* 133 */ | |
297 | -1, /* 134 */ | |
298 | H_SPR_TBR, /* tbr_regnum */ | |
299 | H_SPR_BRR, /* brr_regnum */ | |
300 | H_SPR_DBAR0, /* dbar0_regnum */ | |
301 | H_SPR_DBAR1, /* dbar1_regnum */ | |
302 | H_SPR_DBAR2, /* dbar2_regnum */ | |
303 | H_SPR_DBAR3, /* dbar3_regnum */ | |
304 | -1, /* 141 */ | |
305 | -1, /* 142 */ | |
306 | -1, /* 143 */ | |
307 | -1, /* 144 */ | |
308 | H_SPR_LR, /* lr_regnum */ | |
309 | H_SPR_LCR, /* lcr_regnum */ | |
310 | H_SPR_IACC0H, /* iacc0h_regnum */ | |
311 | H_SPR_IACC0L /* iacc0l_regnum */ | |
312 | }; | |
313 | ||
314 | gdb_assert (reg >= 0 && reg < NUM_REGS); | |
315 | ||
316 | if (first_gpr_regnum <= reg && reg <= last_gpr_regnum) | |
317 | return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM; | |
318 | else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum) | |
319 | return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM; | |
320 | else if (pc_regnum == reg) | |
321 | return SIM_FRV_PC_REGNUM; | |
322 | else if (reg >= first_spr_regnum | |
323 | && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0])) | |
324 | { | |
325 | int spr_reg_offset = spr_map[reg - first_spr_regnum]; | |
326 | ||
327 | if (spr_reg_offset < 0) | |
328 | return SIM_REGNO_DOES_NOT_EXIST; | |
329 | else | |
330 | return SIM_FRV_SPR0_REGNUM + spr_reg_offset; | |
331 | } | |
332 | ||
333 | internal_error (__FILE__, __LINE__, "Bad register number %d", reg); | |
334 | } | |
335 | ||
456f8b9d DB |
336 | static const unsigned char * |
337 | frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp) | |
338 | { | |
339 | static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01}; | |
340 | *lenp = sizeof (breakpoint); | |
341 | return breakpoint; | |
342 | } | |
343 | ||
46a16dba KB |
344 | /* Define the maximum number of instructions which may be packed into a |
345 | bundle (VLIW instruction). */ | |
346 | static const int max_instrs_per_bundle = 8; | |
347 | ||
348 | /* Define the size (in bytes) of an FR-V instruction. */ | |
349 | static const int frv_instr_size = 4; | |
350 | ||
351 | /* Adjust a breakpoint's address to account for the FR-V architecture's | |
352 | constraint that a break instruction must not appear as any but the | |
353 | first instruction in the bundle. */ | |
354 | static CORE_ADDR | |
355 | frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | |
356 | { | |
357 | int count = max_instrs_per_bundle; | |
358 | CORE_ADDR addr = bpaddr - frv_instr_size; | |
359 | CORE_ADDR func_start = get_pc_function_start (bpaddr); | |
360 | ||
361 | /* Find the end of the previous packing sequence. This will be indicated | |
362 | by either attempting to access some inaccessible memory or by finding | |
363 | an instruction word whose packing bit is set to one. */ | |
364 | while (count-- > 0 && addr >= func_start) | |
365 | { | |
366 | char instr[frv_instr_size]; | |
367 | int status; | |
368 | ||
369 | status = read_memory_nobpt (addr, instr, sizeof instr); | |
370 | ||
371 | if (status != 0) | |
372 | break; | |
373 | ||
374 | /* This is a big endian architecture, so byte zero will have most | |
375 | significant byte. The most significant bit of this byte is the | |
376 | packing bit. */ | |
377 | if (instr[0] & 0x80) | |
378 | break; | |
379 | ||
380 | addr -= frv_instr_size; | |
381 | } | |
382 | ||
383 | if (count > 0) | |
384 | bpaddr = addr + frv_instr_size; | |
385 | ||
386 | return bpaddr; | |
387 | } | |
388 | ||
456f8b9d DB |
389 | |
390 | /* Return true if REG is a caller-saves ("scratch") register, | |
391 | false otherwise. */ | |
392 | static int | |
393 | is_caller_saves_reg (int reg) | |
394 | { | |
395 | return ((4 <= reg && reg <= 7) | |
396 | || (14 <= reg && reg <= 15) | |
397 | || (32 <= reg && reg <= 47)); | |
398 | } | |
399 | ||
400 | ||
401 | /* Return true if REG is a callee-saves register, false otherwise. */ | |
402 | static int | |
403 | is_callee_saves_reg (int reg) | |
404 | { | |
405 | return ((16 <= reg && reg <= 31) | |
406 | || (48 <= reg && reg <= 63)); | |
407 | } | |
408 | ||
409 | ||
410 | /* Return true if REG is an argument register, false otherwise. */ | |
411 | static int | |
412 | is_argument_reg (int reg) | |
413 | { | |
414 | return (8 <= reg && reg <= 13); | |
415 | } | |
416 | ||
456f8b9d DB |
417 | /* Scan an FR-V prologue, starting at PC, until frame->PC. |
418 | If FRAME is non-zero, fill in its saved_regs with appropriate addresses. | |
419 | We assume FRAME's saved_regs array has already been allocated and cleared. | |
420 | Return the first PC value after the prologue. | |
421 | ||
422 | Note that, for unoptimized code, we almost don't need this function | |
423 | at all; all arguments and locals live on the stack, so we just need | |
424 | the FP to find everything. The catch: structures passed by value | |
425 | have their addresses living in registers; they're never spilled to | |
426 | the stack. So if you ever want to be able to get to these | |
427 | arguments in any frame but the top, you'll need to do this serious | |
428 | prologue analysis. */ | |
429 | static CORE_ADDR | |
1cb761c7 KB |
430 | frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame, |
431 | struct frv_unwind_cache *info) | |
456f8b9d DB |
432 | { |
433 | /* When writing out instruction bitpatterns, we use the following | |
434 | letters to label instruction fields: | |
435 | P - The parallel bit. We don't use this. | |
436 | J - The register number of GRj in the instruction description. | |
437 | K - The register number of GRk in the instruction description. | |
438 | I - The register number of GRi. | |
439 | S - a signed imediate offset. | |
440 | U - an unsigned immediate offset. | |
441 | ||
442 | The dots below the numbers indicate where hex digit boundaries | |
443 | fall, to make it easier to check the numbers. */ | |
444 | ||
445 | /* Non-zero iff we've seen the instruction that initializes the | |
446 | frame pointer for this function's frame. */ | |
447 | int fp_set = 0; | |
448 | ||
449 | /* If fp_set is non_zero, then this is the distance from | |
450 | the stack pointer to frame pointer: fp = sp + fp_offset. */ | |
451 | int fp_offset = 0; | |
452 | ||
453 | /* Total size of frame prior to any alloca operations. */ | |
454 | int framesize = 0; | |
455 | ||
1cb761c7 KB |
456 | /* Flag indicating if lr has been saved on the stack. */ |
457 | int lr_saved_on_stack = 0; | |
458 | ||
456f8b9d DB |
459 | /* The number of the general-purpose register we saved the return |
460 | address ("link register") in, or -1 if we haven't moved it yet. */ | |
461 | int lr_save_reg = -1; | |
462 | ||
1cb761c7 KB |
463 | /* Offset (from sp) at which lr has been saved on the stack. */ |
464 | ||
465 | int lr_sp_offset = 0; | |
456f8b9d DB |
466 | |
467 | /* If gr_saved[i] is non-zero, then we've noticed that general | |
468 | register i has been saved at gr_sp_offset[i] from the stack | |
469 | pointer. */ | |
470 | char gr_saved[64]; | |
471 | int gr_sp_offset[64]; | |
472 | ||
d40fcd7b KB |
473 | /* The address of the most recently scanned prologue instruction. */ |
474 | CORE_ADDR last_prologue_pc; | |
475 | ||
476 | /* The address of the next instruction. */ | |
477 | CORE_ADDR next_pc; | |
478 | ||
479 | /* The upper bound to of the pc values to scan. */ | |
480 | CORE_ADDR lim_pc; | |
481 | ||
456f8b9d DB |
482 | memset (gr_saved, 0, sizeof (gr_saved)); |
483 | ||
d40fcd7b KB |
484 | last_prologue_pc = pc; |
485 | ||
486 | /* Try to compute an upper limit (on how far to scan) based on the | |
487 | line number info. */ | |
488 | lim_pc = skip_prologue_using_sal (pc); | |
489 | /* If there's no line number info, lim_pc will be 0. In that case, | |
490 | set the limit to be 100 instructions away from pc. Hopefully, this | |
491 | will be far enough away to account for the entire prologue. Don't | |
492 | worry about overshooting the end of the function. The scan loop | |
493 | below contains some checks to avoid scanning unreasonably far. */ | |
494 | if (lim_pc == 0) | |
495 | lim_pc = pc + 400; | |
496 | ||
497 | /* If we have a frame, we don't want to scan past the frame's pc. This | |
498 | will catch those cases where the pc is in the prologue. */ | |
499 | if (next_frame) | |
500 | { | |
501 | CORE_ADDR frame_pc = frame_pc_unwind (next_frame); | |
502 | if (frame_pc < lim_pc) | |
503 | lim_pc = frame_pc; | |
504 | } | |
505 | ||
506 | /* Scan the prologue. */ | |
507 | while (pc < lim_pc) | |
456f8b9d DB |
508 | { |
509 | LONGEST op = read_memory_integer (pc, 4); | |
d40fcd7b | 510 | next_pc = pc + 4; |
456f8b9d DB |
511 | |
512 | /* The tests in this chain of ifs should be in order of | |
513 | decreasing selectivity, so that more particular patterns get | |
514 | to fire before less particular patterns. */ | |
515 | ||
d40fcd7b KB |
516 | /* Some sort of control transfer instruction: stop scanning prologue. |
517 | Integer Conditional Branch: | |
518 | X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX | |
519 | Floating-point / media Conditional Branch: | |
520 | X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX | |
521 | LCR Conditional Branch to LR | |
522 | X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX | |
523 | Integer conditional Branches to LR | |
524 | X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX | |
525 | X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX | |
526 | Floating-point/Media Branches to LR | |
527 | X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX | |
528 | X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX | |
529 | Jump and Link | |
530 | X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX | |
531 | X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX | |
532 | Call | |
533 | X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX | |
534 | Return from Trap | |
535 | X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX | |
536 | Integer Conditional Trap | |
537 | X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX | |
538 | X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX | |
539 | Floating-point /media Conditional Trap | |
540 | X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX | |
541 | X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX | |
542 | Break | |
543 | X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX | |
544 | Media Trap | |
545 | X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */ | |
546 | if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */ | |
547 | || (op & 0x01f80000) == 0x00300000 /* Jump and Link */ | |
548 | || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */ | |
549 | || (op & 0x01f80000) == 0x00700000) /* Trap immediate */ | |
550 | { | |
551 | /* Stop scanning; not in prologue any longer. */ | |
552 | break; | |
553 | } | |
554 | ||
555 | /* Loading something from memory into fp probably means that | |
556 | we're in the epilogue. Stop scanning the prologue. | |
557 | ld @(GRi, GRk), fp | |
558 | X 000010 0000010 XXXXXX 000100 XXXXXX | |
559 | ldi @(GRi, d12), fp | |
560 | X 000010 0110010 XXXXXX XXXXXXXXXXXX */ | |
561 | else if ((op & 0x7ffc0fc0) == 0x04080100 | |
562 | || (op & 0x7ffc0000) == 0x04c80000) | |
563 | { | |
564 | break; | |
565 | } | |
566 | ||
456f8b9d DB |
567 | /* Setting the FP from the SP: |
568 | ori sp, 0, fp | |
569 | P 000010 0100010 000001 000000000000 = 0x04881000 | |
570 | 0 111111 1111111 111111 111111111111 = 0x7fffffff | |
571 | . . . . . . . . | |
572 | We treat this as part of the prologue. */ | |
d40fcd7b | 573 | else if ((op & 0x7fffffff) == 0x04881000) |
456f8b9d DB |
574 | { |
575 | fp_set = 1; | |
576 | fp_offset = 0; | |
d40fcd7b | 577 | last_prologue_pc = next_pc; |
456f8b9d DB |
578 | } |
579 | ||
580 | /* Move the link register to the scratch register grJ, before saving: | |
581 | movsg lr, grJ | |
582 | P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0 | |
583 | 0 111111 1111111 111111 111111 000000 = 0x7fffffc0 | |
584 | . . . . . . . . | |
585 | We treat this as part of the prologue. */ | |
586 | else if ((op & 0x7fffffc0) == 0x080d01c0) | |
587 | { | |
588 | int gr_j = op & 0x3f; | |
589 | ||
590 | /* If we're moving it to a scratch register, that's fine. */ | |
591 | if (is_caller_saves_reg (gr_j)) | |
d40fcd7b KB |
592 | { |
593 | lr_save_reg = gr_j; | |
594 | last_prologue_pc = next_pc; | |
595 | } | |
456f8b9d DB |
596 | } |
597 | ||
598 | /* To save multiple callee-saves registers on the stack, at | |
599 | offset zero: | |
600 | ||
601 | std grK,@(sp,gr0) | |
602 | P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0 | |
603 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
604 | ||
605 | stq grK,@(sp,gr0) | |
606 | P KKKKKK 0000011 000001 000100 000000 = 0x000c1100 | |
607 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
608 | . . . . . . . . | |
609 | We treat this as part of the prologue, and record the register's | |
610 | saved address in the frame structure. */ | |
611 | else if ((op & 0x01ffffff) == 0x000c10c0 | |
612 | || (op & 0x01ffffff) == 0x000c1100) | |
613 | { | |
614 | int gr_k = ((op >> 25) & 0x3f); | |
615 | int ope = ((op >> 6) & 0x3f); | |
616 | int count; | |
617 | int i; | |
618 | ||
619 | /* Is it an std or an stq? */ | |
620 | if (ope == 0x03) | |
621 | count = 2; | |
622 | else | |
623 | count = 4; | |
624 | ||
625 | /* Is it really a callee-saves register? */ | |
626 | if (is_callee_saves_reg (gr_k)) | |
627 | { | |
628 | for (i = 0; i < count; i++) | |
629 | { | |
630 | gr_saved[gr_k + i] = 1; | |
631 | gr_sp_offset[gr_k + i] = 4 * i; | |
632 | } | |
d40fcd7b | 633 | last_prologue_pc = next_pc; |
456f8b9d | 634 | } |
456f8b9d DB |
635 | } |
636 | ||
637 | /* Adjusting the stack pointer. (The stack pointer is GR1.) | |
638 | addi sp, S, sp | |
639 | P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000 | |
640 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
641 | . . . . . . . . | |
642 | We treat this as part of the prologue. */ | |
643 | else if ((op & 0x7ffff000) == 0x02401000) | |
644 | { | |
d40fcd7b KB |
645 | if (framesize == 0) |
646 | { | |
647 | /* Sign-extend the twelve-bit field. | |
648 | (Isn't there a better way to do this?) */ | |
649 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
456f8b9d | 650 | |
d40fcd7b KB |
651 | framesize -= s; |
652 | last_prologue_pc = pc; | |
653 | } | |
654 | else | |
655 | { | |
656 | /* If the prologue is being adjusted again, we've | |
657 | likely gone too far; i.e. we're probably in the | |
658 | epilogue. */ | |
659 | break; | |
660 | } | |
456f8b9d DB |
661 | } |
662 | ||
663 | /* Setting the FP to a constant distance from the SP: | |
664 | addi sp, S, fp | |
665 | P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000 | |
666 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
667 | . . . . . . . . | |
668 | We treat this as part of the prologue. */ | |
669 | else if ((op & 0x7ffff000) == 0x04401000) | |
670 | { | |
671 | /* Sign-extend the twelve-bit field. | |
672 | (Isn't there a better way to do this?) */ | |
673 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
674 | fp_set = 1; | |
675 | fp_offset = s; | |
d40fcd7b | 676 | last_prologue_pc = pc; |
456f8b9d DB |
677 | } |
678 | ||
679 | /* To spill an argument register to a scratch register: | |
680 | ori GRi, 0, GRk | |
681 | P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000 | |
682 | 0 000000 1111111 000000 111111111111 = 0x01fc0fff | |
683 | . . . . . . . . | |
684 | For the time being, we treat this as a prologue instruction, | |
685 | assuming that GRi is an argument register. This one's kind | |
686 | of suspicious, because it seems like it could be part of a | |
687 | legitimate body instruction. But we only come here when the | |
688 | source info wasn't helpful, so we have to do the best we can. | |
689 | Hopefully once GCC and GDB agree on how to emit line number | |
690 | info for prologues, then this code will never come into play. */ | |
691 | else if ((op & 0x01fc0fff) == 0x00880000) | |
692 | { | |
693 | int gr_i = ((op >> 12) & 0x3f); | |
694 | ||
d40fcd7b KB |
695 | /* Make sure that the source is an arg register; if it is, we'll |
696 | treat it as a prologue instruction. */ | |
697 | if (is_argument_reg (gr_i)) | |
698 | last_prologue_pc = next_pc; | |
456f8b9d DB |
699 | } |
700 | ||
701 | /* To spill 16-bit values to the stack: | |
702 | sthi GRk, @(fp, s) | |
703 | P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000 | |
704 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
705 | . . . . . . . . | |
706 | And for 8-bit values, we use STB instructions. | |
707 | stbi GRk, @(fp, s) | |
708 | P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000 | |
709 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
710 | . . . . . . . . | |
711 | We check that GRk is really an argument register, and treat | |
712 | all such as part of the prologue. */ | |
713 | else if ( (op & 0x01fff000) == 0x01442000 | |
714 | || (op & 0x01fff000) == 0x01402000) | |
715 | { | |
716 | int gr_k = ((op >> 25) & 0x3f); | |
717 | ||
d40fcd7b KB |
718 | /* Make sure that GRk is really an argument register; treat |
719 | it as a prologue instruction if so. */ | |
720 | if (is_argument_reg (gr_k)) | |
721 | last_prologue_pc = next_pc; | |
456f8b9d DB |
722 | } |
723 | ||
724 | /* To save multiple callee-saves register on the stack, at a | |
725 | non-zero offset: | |
726 | ||
727 | stdi GRk, @(sp, s) | |
728 | P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000 | |
729 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
730 | . . . . . . . . | |
731 | stqi GRk, @(sp, s) | |
732 | P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000 | |
733 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
734 | . . . . . . . . | |
735 | We treat this as part of the prologue, and record the register's | |
736 | saved address in the frame structure. */ | |
737 | else if ((op & 0x01fff000) == 0x014c1000 | |
738 | || (op & 0x01fff000) == 0x01501000) | |
739 | { | |
740 | int gr_k = ((op >> 25) & 0x3f); | |
741 | int count; | |
742 | int i; | |
743 | ||
744 | /* Is it a stdi or a stqi? */ | |
745 | if ((op & 0x01fff000) == 0x014c1000) | |
746 | count = 2; | |
747 | else | |
748 | count = 4; | |
749 | ||
750 | /* Is it really a callee-saves register? */ | |
751 | if (is_callee_saves_reg (gr_k)) | |
752 | { | |
753 | /* Sign-extend the twelve-bit field. | |
754 | (Isn't there a better way to do this?) */ | |
755 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
756 | ||
757 | for (i = 0; i < count; i++) | |
758 | { | |
759 | gr_saved[gr_k + i] = 1; | |
760 | gr_sp_offset[gr_k + i] = s + (4 * i); | |
761 | } | |
d40fcd7b | 762 | last_prologue_pc = next_pc; |
456f8b9d | 763 | } |
456f8b9d DB |
764 | } |
765 | ||
766 | /* Storing any kind of integer register at any constant offset | |
767 | from any other register. | |
768 | ||
769 | st GRk, @(GRi, gr0) | |
770 | P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080 | |
771 | 0 000000 1111111 000000 111111 111111 = 0x01fc0fff | |
772 | . . . . . . . . | |
773 | sti GRk, @(GRi, d12) | |
774 | P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000 | |
775 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
776 | . . . . . . . . | |
777 | These could be almost anything, but a lot of prologue | |
778 | instructions fall into this pattern, so let's decode the | |
779 | instruction once, and then work at a higher level. */ | |
780 | else if (((op & 0x01fc0fff) == 0x000c0080) | |
781 | || ((op & 0x01fc0000) == 0x01480000)) | |
782 | { | |
783 | int gr_k = ((op >> 25) & 0x3f); | |
784 | int gr_i = ((op >> 12) & 0x3f); | |
785 | int offset; | |
786 | ||
787 | /* Are we storing with gr0 as an offset, or using an | |
788 | immediate value? */ | |
789 | if ((op & 0x01fc0fff) == 0x000c0080) | |
790 | offset = 0; | |
791 | else | |
792 | offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
793 | ||
794 | /* If the address isn't relative to the SP or FP, it's not a | |
795 | prologue instruction. */ | |
796 | if (gr_i != sp_regnum && gr_i != fp_regnum) | |
d40fcd7b KB |
797 | { |
798 | /* Do nothing; not a prologue instruction. */ | |
799 | } | |
456f8b9d DB |
800 | |
801 | /* Saving the old FP in the new frame (relative to the SP). */ | |
d40fcd7b | 802 | else if (gr_k == fp_regnum && gr_i == sp_regnum) |
1cb761c7 KB |
803 | { |
804 | gr_saved[fp_regnum] = 1; | |
805 | gr_sp_offset[fp_regnum] = offset; | |
d40fcd7b | 806 | last_prologue_pc = next_pc; |
1cb761c7 | 807 | } |
456f8b9d DB |
808 | |
809 | /* Saving callee-saves register(s) on the stack, relative to | |
810 | the SP. */ | |
811 | else if (gr_i == sp_regnum | |
812 | && is_callee_saves_reg (gr_k)) | |
813 | { | |
814 | gr_saved[gr_k] = 1; | |
1cb761c7 KB |
815 | if (gr_i == sp_regnum) |
816 | gr_sp_offset[gr_k] = offset; | |
817 | else | |
818 | gr_sp_offset[gr_k] = offset + fp_offset; | |
d40fcd7b | 819 | last_prologue_pc = next_pc; |
456f8b9d DB |
820 | } |
821 | ||
822 | /* Saving the scratch register holding the return address. */ | |
823 | else if (lr_save_reg != -1 | |
824 | && gr_k == lr_save_reg) | |
1cb761c7 KB |
825 | { |
826 | lr_saved_on_stack = 1; | |
827 | if (gr_i == sp_regnum) | |
828 | lr_sp_offset = offset; | |
829 | else | |
830 | lr_sp_offset = offset + fp_offset; | |
d40fcd7b | 831 | last_prologue_pc = next_pc; |
1cb761c7 | 832 | } |
456f8b9d DB |
833 | |
834 | /* Spilling int-sized arguments to the stack. */ | |
835 | else if (is_argument_reg (gr_k)) | |
d40fcd7b | 836 | last_prologue_pc = next_pc; |
456f8b9d | 837 | } |
d40fcd7b | 838 | pc = next_pc; |
456f8b9d DB |
839 | } |
840 | ||
1cb761c7 | 841 | if (next_frame && info) |
456f8b9d | 842 | { |
1cb761c7 KB |
843 | int i; |
844 | ULONGEST this_base; | |
456f8b9d DB |
845 | |
846 | /* If we know the relationship between the stack and frame | |
847 | pointers, record the addresses of the registers we noticed. | |
848 | Note that we have to do this as a separate step at the end, | |
849 | because instructions may save relative to the SP, but we need | |
850 | their addresses relative to the FP. */ | |
851 | if (fp_set) | |
1cb761c7 KB |
852 | frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base); |
853 | else | |
854 | frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base); | |
456f8b9d | 855 | |
1cb761c7 KB |
856 | for (i = 0; i < 64; i++) |
857 | if (gr_saved[i]) | |
858 | info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i]; | |
456f8b9d | 859 | |
1cb761c7 KB |
860 | info->prev_sp = this_base - fp_offset + framesize; |
861 | info->base = this_base; | |
862 | ||
863 | /* If LR was saved on the stack, record its location. */ | |
864 | if (lr_saved_on_stack) | |
865 | info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset; | |
866 | ||
867 | /* The call instruction moves the caller's PC in the callee's LR. | |
868 | Since this is an unwind, do the reverse. Copy the location of LR | |
869 | into PC (the address / regnum) so that a request for PC will be | |
870 | converted into a request for the LR. */ | |
871 | info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum]; | |
872 | ||
873 | /* Save the previous frame's computed SP value. */ | |
874 | trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp); | |
456f8b9d DB |
875 | } |
876 | ||
d40fcd7b | 877 | return last_prologue_pc; |
456f8b9d DB |
878 | } |
879 | ||
880 | ||
881 | static CORE_ADDR | |
882 | frv_skip_prologue (CORE_ADDR pc) | |
883 | { | |
884 | CORE_ADDR func_addr, func_end, new_pc; | |
885 | ||
886 | new_pc = pc; | |
887 | ||
888 | /* If the line table has entry for a line *within* the function | |
889 | (i.e., not in the prologue, and not past the end), then that's | |
890 | our location. */ | |
891 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
892 | { | |
893 | struct symtab_and_line sal; | |
894 | ||
895 | sal = find_pc_line (func_addr, 0); | |
896 | ||
897 | if (sal.line != 0 && sal.end < func_end) | |
898 | { | |
899 | new_pc = sal.end; | |
900 | } | |
901 | } | |
902 | ||
903 | /* The FR-V prologue is at least five instructions long (twenty bytes). | |
904 | If we didn't find a real source location past that, then | |
905 | do a full analysis of the prologue. */ | |
906 | if (new_pc < pc + 20) | |
1cb761c7 | 907 | new_pc = frv_analyze_prologue (pc, 0, 0); |
456f8b9d DB |
908 | |
909 | return new_pc; | |
910 | } | |
911 | ||
1cb761c7 KB |
912 | |
913 | static struct frv_unwind_cache * | |
914 | frv_frame_unwind_cache (struct frame_info *next_frame, | |
915 | void **this_prologue_cache) | |
456f8b9d | 916 | { |
1cb761c7 KB |
917 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
918 | CORE_ADDR pc; | |
919 | ULONGEST prev_sp; | |
920 | ULONGEST this_base; | |
921 | struct frv_unwind_cache *info; | |
8baa6f92 | 922 | |
1cb761c7 KB |
923 | if ((*this_prologue_cache)) |
924 | return (*this_prologue_cache); | |
456f8b9d | 925 | |
1cb761c7 KB |
926 | info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache); |
927 | (*this_prologue_cache) = info; | |
928 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
456f8b9d | 929 | |
1cb761c7 KB |
930 | /* Prologue analysis does the rest... */ |
931 | frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info); | |
456f8b9d | 932 | |
1cb761c7 | 933 | return info; |
456f8b9d DB |
934 | } |
935 | ||
456f8b9d | 936 | static void |
cd31fb03 KB |
937 | frv_extract_return_value (struct type *type, struct regcache *regcache, |
938 | void *valbuf) | |
456f8b9d | 939 | { |
cd31fb03 KB |
940 | int len = TYPE_LENGTH (type); |
941 | ||
942 | if (len <= 4) | |
943 | { | |
944 | ULONGEST gpr8_val; | |
945 | regcache_cooked_read_unsigned (regcache, 8, &gpr8_val); | |
946 | store_unsigned_integer (valbuf, len, gpr8_val); | |
947 | } | |
948 | else if (len == 8) | |
949 | { | |
950 | ULONGEST regval; | |
951 | regcache_cooked_read_unsigned (regcache, 8, ®val); | |
952 | store_unsigned_integer (valbuf, 4, regval); | |
953 | regcache_cooked_read_unsigned (regcache, 9, ®val); | |
954 | store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval); | |
955 | } | |
956 | else | |
957 | internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len); | |
456f8b9d DB |
958 | } |
959 | ||
960 | static CORE_ADDR | |
cd31fb03 | 961 | frv_extract_struct_value_address (struct regcache *regcache) |
456f8b9d | 962 | { |
cd31fb03 KB |
963 | ULONGEST addr; |
964 | regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr); | |
965 | return addr; | |
456f8b9d DB |
966 | } |
967 | ||
968 | static void | |
969 | frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
970 | { | |
971 | write_register (struct_return_regnum, addr); | |
972 | } | |
973 | ||
974 | static int | |
975 | frv_frameless_function_invocation (struct frame_info *frame) | |
976 | { | |
19772a2c | 977 | return legacy_frameless_look_for_prologue (frame); |
456f8b9d DB |
978 | } |
979 | ||
1cb761c7 KB |
980 | static CORE_ADDR |
981 | frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
456f8b9d | 982 | { |
1cb761c7 | 983 | /* Require dword alignment. */ |
5b03f266 | 984 | return align_down (sp, 8); |
456f8b9d DB |
985 | } |
986 | ||
456f8b9d | 987 | static CORE_ADDR |
1cb761c7 KB |
988 | frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
989 | struct regcache *regcache, CORE_ADDR bp_addr, | |
990 | int nargs, struct value **args, CORE_ADDR sp, | |
991 | int struct_return, CORE_ADDR struct_addr) | |
456f8b9d DB |
992 | { |
993 | int argreg; | |
994 | int argnum; | |
995 | char *val; | |
996 | char valbuf[4]; | |
997 | struct value *arg; | |
998 | struct type *arg_type; | |
999 | int len; | |
1000 | enum type_code typecode; | |
1001 | CORE_ADDR regval; | |
1002 | int stack_space; | |
1003 | int stack_offset; | |
1004 | ||
1005 | #if 0 | |
1006 | printf("Push %d args at sp = %x, struct_return=%d (%x)\n", | |
1007 | nargs, (int) sp, struct_return, struct_addr); | |
1008 | #endif | |
1009 | ||
1010 | stack_space = 0; | |
1011 | for (argnum = 0; argnum < nargs; ++argnum) | |
5b03f266 | 1012 | stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4); |
456f8b9d DB |
1013 | |
1014 | stack_space -= (6 * 4); | |
1015 | if (stack_space > 0) | |
1016 | sp -= stack_space; | |
1017 | ||
1018 | /* Make sure stack is dword aligned. */ | |
5b03f266 | 1019 | sp = align_down (sp, 8); |
456f8b9d DB |
1020 | |
1021 | stack_offset = 0; | |
1022 | ||
1023 | argreg = 8; | |
1024 | ||
1025 | if (struct_return) | |
1cb761c7 KB |
1026 | regcache_cooked_write_unsigned (regcache, struct_return_regnum, |
1027 | struct_addr); | |
456f8b9d DB |
1028 | |
1029 | for (argnum = 0; argnum < nargs; ++argnum) | |
1030 | { | |
1031 | arg = args[argnum]; | |
1032 | arg_type = check_typedef (VALUE_TYPE (arg)); | |
1033 | len = TYPE_LENGTH (arg_type); | |
1034 | typecode = TYPE_CODE (arg_type); | |
1035 | ||
1036 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
1037 | { | |
fbd9dcd3 | 1038 | store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg)); |
456f8b9d DB |
1039 | typecode = TYPE_CODE_PTR; |
1040 | len = 4; | |
1041 | val = valbuf; | |
1042 | } | |
1043 | else | |
1044 | { | |
1045 | val = (char *) VALUE_CONTENTS (arg); | |
1046 | } | |
1047 | ||
1048 | while (len > 0) | |
1049 | { | |
1050 | int partial_len = (len < 4 ? len : 4); | |
1051 | ||
1052 | if (argreg < 14) | |
1053 | { | |
7c0b4a20 | 1054 | regval = extract_unsigned_integer (val, partial_len); |
456f8b9d DB |
1055 | #if 0 |
1056 | printf(" Argnum %d data %x -> reg %d\n", | |
1057 | argnum, (int) regval, argreg); | |
1058 | #endif | |
1cb761c7 | 1059 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
456f8b9d DB |
1060 | ++argreg; |
1061 | } | |
1062 | else | |
1063 | { | |
1064 | #if 0 | |
1065 | printf(" Argnum %d data %x -> offset %d (%x)\n", | |
1066 | argnum, *((int *)val), stack_offset, (int) (sp + stack_offset)); | |
1067 | #endif | |
1068 | write_memory (sp + stack_offset, val, partial_len); | |
5b03f266 | 1069 | stack_offset += align_up (partial_len, 4); |
456f8b9d DB |
1070 | } |
1071 | len -= partial_len; | |
1072 | val += partial_len; | |
1073 | } | |
1074 | } | |
456f8b9d | 1075 | |
1cb761c7 KB |
1076 | /* Set the return address. For the frv, the return breakpoint is |
1077 | always at BP_ADDR. */ | |
1078 | regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr); | |
1079 | ||
1080 | /* Finally, update the SP register. */ | |
1081 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); | |
1082 | ||
456f8b9d DB |
1083 | return sp; |
1084 | } | |
1085 | ||
1086 | static void | |
cd31fb03 KB |
1087 | frv_store_return_value (struct type *type, struct regcache *regcache, |
1088 | const void *valbuf) | |
456f8b9d | 1089 | { |
cd31fb03 KB |
1090 | int len = TYPE_LENGTH (type); |
1091 | ||
1092 | if (len <= 4) | |
1093 | { | |
1094 | bfd_byte val[4]; | |
1095 | memset (val, 0, sizeof (val)); | |
1096 | memcpy (val + (4 - len), valbuf, len); | |
1097 | regcache_cooked_write (regcache, 8, val); | |
1098 | } | |
1099 | else if (len == 8) | |
1100 | { | |
1101 | regcache_cooked_write (regcache, 8, valbuf); | |
1102 | regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4); | |
1103 | } | |
456f8b9d DB |
1104 | else |
1105 | internal_error (__FILE__, __LINE__, | |
cd31fb03 | 1106 | "Don't know how to return a %d-byte value.", len); |
456f8b9d DB |
1107 | } |
1108 | ||
456f8b9d | 1109 | |
456f8b9d DB |
1110 | /* Hardware watchpoint / breakpoint support for the FR500 |
1111 | and FR400. */ | |
1112 | ||
1113 | int | |
1114 | frv_check_watch_resources (int type, int cnt, int ot) | |
1115 | { | |
1116 | struct gdbarch_tdep *var = CURRENT_VARIANT; | |
1117 | ||
1118 | /* Watchpoints not supported on simulator. */ | |
1119 | if (strcmp (target_shortname, "sim") == 0) | |
1120 | return 0; | |
1121 | ||
1122 | if (type == bp_hardware_breakpoint) | |
1123 | { | |
1124 | if (var->num_hw_breakpoints == 0) | |
1125 | return 0; | |
1126 | else if (cnt <= var->num_hw_breakpoints) | |
1127 | return 1; | |
1128 | } | |
1129 | else | |
1130 | { | |
1131 | if (var->num_hw_watchpoints == 0) | |
1132 | return 0; | |
1133 | else if (ot) | |
1134 | return -1; | |
1135 | else if (cnt <= var->num_hw_watchpoints) | |
1136 | return 1; | |
1137 | } | |
1138 | return -1; | |
1139 | } | |
1140 | ||
1141 | ||
1142 | CORE_ADDR | |
5ae5f592 | 1143 | frv_stopped_data_address (void) |
456f8b9d DB |
1144 | { |
1145 | CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3; | |
1146 | ||
1147 | brr = read_register (brr_regnum); | |
1148 | dbar0 = read_register (dbar0_regnum); | |
1149 | dbar1 = read_register (dbar1_regnum); | |
1150 | dbar2 = read_register (dbar2_regnum); | |
1151 | dbar3 = read_register (dbar3_regnum); | |
1152 | ||
1153 | if (brr & (1<<11)) | |
1154 | return dbar0; | |
1155 | else if (brr & (1<<10)) | |
1156 | return dbar1; | |
1157 | else if (brr & (1<<9)) | |
1158 | return dbar2; | |
1159 | else if (brr & (1<<8)) | |
1160 | return dbar3; | |
1161 | else | |
1162 | return 0; | |
1163 | } | |
1164 | ||
1cb761c7 KB |
1165 | static CORE_ADDR |
1166 | frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1167 | { | |
1168 | return frame_unwind_register_unsigned (next_frame, pc_regnum); | |
1169 | } | |
1170 | ||
1171 | /* Given a GDB frame, determine the address of the calling function's | |
1172 | frame. This will be used to create a new GDB frame struct. */ | |
1173 | ||
1174 | static void | |
1175 | frv_frame_this_id (struct frame_info *next_frame, | |
1176 | void **this_prologue_cache, struct frame_id *this_id) | |
1177 | { | |
1178 | struct frv_unwind_cache *info | |
1179 | = frv_frame_unwind_cache (next_frame, this_prologue_cache); | |
1180 | CORE_ADDR base; | |
1181 | CORE_ADDR func; | |
1182 | struct minimal_symbol *msym_stack; | |
1183 | struct frame_id id; | |
1184 | ||
1185 | /* The FUNC is easy. */ | |
1186 | func = frame_func_unwind (next_frame); | |
1187 | ||
1cb761c7 KB |
1188 | /* Check if the stack is empty. */ |
1189 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
1190 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
1191 | return; | |
1192 | ||
1193 | /* Hopefully the prologue analysis either correctly determined the | |
1194 | frame's base (which is the SP from the previous frame), or set | |
1195 | that base to "NULL". */ | |
1196 | base = info->prev_sp; | |
1197 | if (base == 0) | |
1198 | return; | |
1199 | ||
1200 | id = frame_id_build (base, func); | |
1201 | ||
1202 | /* Check that we're not going round in circles with the same frame | |
1203 | ID (but avoid applying the test to sentinel frames which do go | |
1204 | round in circles). Can't use frame_id_eq() as that doesn't yet | |
1205 | compare the frame's PC value. */ | |
1206 | if (frame_relative_level (next_frame) >= 0 | |
1207 | && get_frame_type (next_frame) != DUMMY_FRAME | |
1208 | && frame_id_eq (get_frame_id (next_frame), id)) | |
1209 | return; | |
1210 | ||
1211 | (*this_id) = id; | |
1212 | } | |
1213 | ||
1214 | static void | |
1215 | frv_frame_prev_register (struct frame_info *next_frame, | |
1216 | void **this_prologue_cache, | |
1217 | int regnum, int *optimizedp, | |
1218 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1219 | int *realnump, void *bufferp) | |
1220 | { | |
1221 | struct frv_unwind_cache *info | |
1222 | = frv_frame_unwind_cache (next_frame, this_prologue_cache); | |
1223 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
1224 | optimizedp, lvalp, addrp, realnump, bufferp); | |
1225 | } | |
1226 | ||
1227 | static const struct frame_unwind frv_frame_unwind = { | |
1228 | NORMAL_FRAME, | |
1229 | frv_frame_this_id, | |
1230 | frv_frame_prev_register | |
1231 | }; | |
1232 | ||
1233 | static const struct frame_unwind * | |
1234 | frv_frame_sniffer (struct frame_info *next_frame) | |
1235 | { | |
1236 | return &frv_frame_unwind; | |
1237 | } | |
1238 | ||
1239 | static CORE_ADDR | |
1240 | frv_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
1241 | { | |
1242 | struct frv_unwind_cache *info | |
1243 | = frv_frame_unwind_cache (next_frame, this_cache); | |
1244 | return info->base; | |
1245 | } | |
1246 | ||
1247 | static const struct frame_base frv_frame_base = { | |
1248 | &frv_frame_unwind, | |
1249 | frv_frame_base_address, | |
1250 | frv_frame_base_address, | |
1251 | frv_frame_base_address | |
1252 | }; | |
1253 | ||
1254 | static CORE_ADDR | |
1255 | frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1256 | { | |
1257 | return frame_unwind_register_unsigned (next_frame, sp_regnum); | |
1258 | } | |
1259 | ||
1260 | ||
1261 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
1262 | dummy frame. The frame ID's base needs to match the TOS value | |
1263 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1264 | breakpoint. */ | |
1265 | ||
1266 | static struct frame_id | |
1267 | frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1268 | { | |
1269 | return frame_id_build (frv_unwind_sp (gdbarch, next_frame), | |
1270 | frame_pc_unwind (next_frame)); | |
1271 | } | |
1272 | ||
1273 | ||
456f8b9d DB |
1274 | static struct gdbarch * |
1275 | frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1276 | { | |
1277 | struct gdbarch *gdbarch; | |
1278 | struct gdbarch_tdep *var; | |
1279 | ||
1280 | /* Check to see if we've already built an appropriate architecture | |
1281 | object for this executable. */ | |
1282 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1283 | if (arches) | |
1284 | return arches->gdbarch; | |
1285 | ||
1286 | /* Select the right tdep structure for this variant. */ | |
1287 | var = new_variant (); | |
1288 | switch (info.bfd_arch_info->mach) | |
1289 | { | |
1290 | case bfd_mach_frv: | |
1291 | case bfd_mach_frvsimple: | |
1292 | case bfd_mach_fr500: | |
1293 | case bfd_mach_frvtomcat: | |
251a3ae3 | 1294 | case bfd_mach_fr550: |
456f8b9d DB |
1295 | set_variant_num_gprs (var, 64); |
1296 | set_variant_num_fprs (var, 64); | |
1297 | break; | |
1298 | ||
1299 | case bfd_mach_fr400: | |
1300 | set_variant_num_gprs (var, 32); | |
1301 | set_variant_num_fprs (var, 32); | |
1302 | break; | |
1303 | ||
1304 | default: | |
1305 | /* Never heard of this variant. */ | |
1306 | return 0; | |
1307 | } | |
1308 | ||
1309 | gdbarch = gdbarch_alloc (&info, var); | |
1310 | ||
1311 | set_gdbarch_short_bit (gdbarch, 16); | |
1312 | set_gdbarch_int_bit (gdbarch, 32); | |
1313 | set_gdbarch_long_bit (gdbarch, 32); | |
1314 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1315 | set_gdbarch_float_bit (gdbarch, 32); | |
1316 | set_gdbarch_double_bit (gdbarch, 64); | |
1317 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1318 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1319 | ||
1320 | set_gdbarch_num_regs (gdbarch, frv_num_regs); | |
6a748db6 KB |
1321 | set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs); |
1322 | ||
456f8b9d | 1323 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
0ba6dca9 | 1324 | set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum); |
456f8b9d DB |
1325 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); |
1326 | ||
1327 | set_gdbarch_register_name (gdbarch, frv_register_name); | |
7f398216 | 1328 | set_gdbarch_register_type (gdbarch, frv_register_type); |
526eef89 | 1329 | set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno); |
456f8b9d | 1330 | |
6a748db6 KB |
1331 | set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read); |
1332 | set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write); | |
1333 | ||
456f8b9d DB |
1334 | set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue); |
1335 | set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc); | |
46a16dba | 1336 | set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address); |
456f8b9d | 1337 | |
19772a2c | 1338 | set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation); |
456f8b9d | 1339 | |
1fd35568 | 1340 | set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention); |
cd31fb03 | 1341 | set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value); |
456f8b9d | 1342 | |
4183d812 | 1343 | set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return); |
cd31fb03 | 1344 | set_gdbarch_store_return_value (gdbarch, frv_store_return_value); |
74055713 | 1345 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address); |
456f8b9d | 1346 | |
1cb761c7 KB |
1347 | /* Frame stuff. */ |
1348 | set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc); | |
1349 | set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp); | |
1350 | set_gdbarch_frame_align (gdbarch, frv_frame_align); | |
1351 | frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer); | |
1352 | frame_base_set_default (gdbarch, &frv_frame_base); | |
456f8b9d | 1353 | |
1cb761c7 KB |
1354 | /* Settings for calling functions in the inferior. */ |
1355 | set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call); | |
1356 | set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id); | |
456f8b9d DB |
1357 | |
1358 | /* Settings that should be unnecessary. */ | |
1359 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1360 | ||
456f8b9d | 1361 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
456f8b9d | 1362 | |
456f8b9d | 1363 | set_gdbarch_remote_translate_xfer_address |
aed7f26a | 1364 | (gdbarch, generic_remote_translate_xfer_address); |
456f8b9d DB |
1365 | |
1366 | /* Hardware watchpoint / breakpoint support. */ | |
1367 | switch (info.bfd_arch_info->mach) | |
1368 | { | |
1369 | case bfd_mach_frv: | |
1370 | case bfd_mach_frvsimple: | |
1371 | case bfd_mach_fr500: | |
1372 | case bfd_mach_frvtomcat: | |
1373 | /* fr500-style hardware debugging support. */ | |
1374 | var->num_hw_watchpoints = 4; | |
1375 | var->num_hw_breakpoints = 4; | |
1376 | break; | |
1377 | ||
1378 | case bfd_mach_fr400: | |
1379 | /* fr400-style hardware debugging support. */ | |
1380 | var->num_hw_watchpoints = 2; | |
1381 | var->num_hw_breakpoints = 4; | |
1382 | break; | |
1383 | ||
1384 | default: | |
1385 | /* Otherwise, assume we don't have hardware debugging support. */ | |
1386 | var->num_hw_watchpoints = 0; | |
1387 | var->num_hw_breakpoints = 0; | |
1388 | break; | |
1389 | } | |
1390 | ||
36482093 AC |
1391 | set_gdbarch_print_insn (gdbarch, print_insn_frv); |
1392 | ||
456f8b9d DB |
1393 | return gdbarch; |
1394 | } | |
1395 | ||
1396 | void | |
1397 | _initialize_frv_tdep (void) | |
1398 | { | |
1399 | register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init); | |
456f8b9d | 1400 | } |