]>
Commit | Line | Data |
---|---|---|
b352eebf | 1 | /* Support for HPPA 64-bit ELF |
e92d460e | 2 | Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. |
15bda425 JL |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
19 | ||
3ef20aaa | 20 | #include "alloca-conf.h" |
15bda425 JL |
21 | #include "bfd.h" |
22 | #include "sysdep.h" | |
23 | #include "libbfd.h" | |
24 | #include "elf-bfd.h" | |
25 | #include "elf/hppa.h" | |
26 | #include "libhppa.h" | |
27 | #include "elf64-hppa.h" | |
28 | #define ARCH_SIZE 64 | |
29 | ||
30 | #define PLT_ENTRY_SIZE 0x10 | |
31 | #define DLT_ENTRY_SIZE 0x8 | |
32 | #define OPD_ENTRY_SIZE 0x20 | |
fe8bc63d | 33 | |
15bda425 JL |
34 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" |
35 | ||
36 | /* The stub is supposed to load the target address and target's DP | |
37 | value out of the PLT, then do an external branch to the target | |
38 | address. | |
39 | ||
40 | LDD PLTOFF(%r27),%r1 | |
41 | BVE (%r1) | |
42 | LDD PLTOFF+8(%r27),%r27 | |
43 | ||
44 | Note that we must use the LDD with a 14 bit displacement, not the one | |
45 | with a 5 bit displacement. */ | |
46 | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | |
47 | 0x53, 0x7b, 0x00, 0x00 }; | |
48 | ||
49 | struct elf64_hppa_dyn_hash_entry | |
50 | { | |
51 | struct bfd_hash_entry root; | |
52 | ||
53 | /* Offsets for this symbol in various linker sections. */ | |
54 | bfd_vma dlt_offset; | |
55 | bfd_vma plt_offset; | |
56 | bfd_vma opd_offset; | |
57 | bfd_vma stub_offset; | |
58 | ||
edd21aca | 59 | /* The symbol table entry, if any, that this was derived from. */ |
15bda425 JL |
60 | struct elf_link_hash_entry *h; |
61 | ||
62 | /* The index of the (possibly local) symbol in the input bfd and its | |
63 | associated BFD. Needed so that we can have relocs against local | |
64 | symbols in shared libraries. */ | |
dc810e39 | 65 | long sym_indx; |
15bda425 JL |
66 | bfd *owner; |
67 | ||
68 | /* Dynamic symbols may need to have two different values. One for | |
69 | the dynamic symbol table, one for the normal symbol table. | |
70 | ||
71 | In such cases we store the symbol's real value and section | |
72 | index here so we can restore the real value before we write | |
73 | the normal symbol table. */ | |
74 | bfd_vma st_value; | |
75 | int st_shndx; | |
76 | ||
77 | /* Used to count non-got, non-plt relocations for delayed sizing | |
78 | of relocation sections. */ | |
79 | struct elf64_hppa_dyn_reloc_entry | |
80 | { | |
81 | /* Next relocation in the chain. */ | |
82 | struct elf64_hppa_dyn_reloc_entry *next; | |
83 | ||
84 | /* The type of the relocation. */ | |
85 | int type; | |
86 | ||
87 | /* The input section of the relocation. */ | |
88 | asection *sec; | |
89 | ||
90 | /* The index of the section symbol for the input section of | |
91 | the relocation. Only needed when building shared libraries. */ | |
92 | int sec_symndx; | |
93 | ||
94 | /* The offset within the input section of the relocation. */ | |
95 | bfd_vma offset; | |
96 | ||
97 | /* The addend for the relocation. */ | |
98 | bfd_vma addend; | |
99 | ||
100 | } *reloc_entries; | |
101 | ||
102 | /* Nonzero if this symbol needs an entry in one of the linker | |
103 | sections. */ | |
104 | unsigned want_dlt; | |
105 | unsigned want_plt; | |
106 | unsigned want_opd; | |
107 | unsigned want_stub; | |
108 | }; | |
109 | ||
110 | struct elf64_hppa_dyn_hash_table | |
111 | { | |
112 | struct bfd_hash_table root; | |
113 | }; | |
114 | ||
115 | struct elf64_hppa_link_hash_table | |
116 | { | |
117 | struct elf_link_hash_table root; | |
118 | ||
119 | /* Shortcuts to get to the various linker defined sections. */ | |
120 | asection *dlt_sec; | |
121 | asection *dlt_rel_sec; | |
122 | asection *plt_sec; | |
123 | asection *plt_rel_sec; | |
124 | asection *opd_sec; | |
125 | asection *opd_rel_sec; | |
126 | asection *other_rel_sec; | |
127 | ||
128 | /* Offset of __gp within .plt section. When the PLT gets large we want | |
129 | to slide __gp into the PLT section so that we can continue to use | |
130 | single DP relative instructions to load values out of the PLT. */ | |
131 | bfd_vma gp_offset; | |
132 | ||
133 | /* Note this is not strictly correct. We should create a stub section for | |
134 | each input section with calls. The stub section should be placed before | |
135 | the section with the call. */ | |
136 | asection *stub_sec; | |
137 | ||
138 | bfd_vma text_segment_base; | |
139 | bfd_vma data_segment_base; | |
140 | ||
141 | struct elf64_hppa_dyn_hash_table dyn_hash_table; | |
142 | ||
143 | /* We build tables to map from an input section back to its | |
144 | symbol index. This is the BFD for which we currently have | |
145 | a map. */ | |
146 | bfd *section_syms_bfd; | |
147 | ||
148 | /* Array of symbol numbers for each input section attached to the | |
149 | current BFD. */ | |
150 | int *section_syms; | |
151 | }; | |
152 | ||
153 | #define elf64_hppa_hash_table(p) \ | |
154 | ((struct elf64_hppa_link_hash_table *) ((p)->hash)) | |
155 | ||
156 | typedef struct bfd_hash_entry *(*new_hash_entry_func) | |
157 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
158 | ||
159 | static boolean elf64_hppa_dyn_hash_table_init | |
160 | PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd, | |
161 | new_hash_entry_func new)); | |
162 | static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry | |
163 | PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table, | |
164 | const char *string)); | |
165 | static struct bfd_link_hash_table *elf64_hppa_hash_table_create | |
166 | PARAMS ((bfd *abfd)); | |
167 | static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup | |
168 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string, | |
169 | boolean create, boolean copy)); | |
170 | static void elf64_hppa_dyn_hash_traverse | |
171 | PARAMS ((struct elf64_hppa_dyn_hash_table *table, | |
fe8bc63d | 172 | boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR), |
15bda425 JL |
173 | PTR info)); |
174 | ||
175 | static const char *get_dyn_name | |
0ba2a60e AM |
176 | PARAMS ((asection *, struct elf_link_hash_entry *, |
177 | const Elf_Internal_Rela *, char **, size_t *)); | |
15bda425 | 178 | |
15bda425 JL |
179 | /* This must follow the definitions of the various derived linker |
180 | hash tables and shared functions. */ | |
181 | #include "elf-hppa.h" | |
182 | ||
15bda425 JL |
183 | static boolean elf64_hppa_object_p |
184 | PARAMS ((bfd *)); | |
185 | ||
186 | static boolean elf64_hppa_section_from_shdr | |
947216bf | 187 | PARAMS ((bfd *, Elf_Internal_Shdr *, const char *)); |
15bda425 JL |
188 | |
189 | static void elf64_hppa_post_process_headers | |
190 | PARAMS ((bfd *, struct bfd_link_info *)); | |
191 | ||
192 | static boolean elf64_hppa_create_dynamic_sections | |
193 | PARAMS ((bfd *, struct bfd_link_info *)); | |
194 | ||
195 | static boolean elf64_hppa_adjust_dynamic_symbol | |
196 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
197 | ||
47b7c2db AM |
198 | static boolean elf64_hppa_mark_milli_and_exported_functions |
199 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
200 | ||
15bda425 JL |
201 | static boolean elf64_hppa_size_dynamic_sections |
202 | PARAMS ((bfd *, struct bfd_link_info *)); | |
203 | ||
99c79b2e AJ |
204 | static boolean elf64_hppa_link_output_symbol_hook |
205 | PARAMS ((bfd *abfd, struct bfd_link_info *, const char *, | |
206 | Elf_Internal_Sym *, asection *input_sec)); | |
207 | ||
15bda425 JL |
208 | static boolean elf64_hppa_finish_dynamic_symbol |
209 | PARAMS ((bfd *, struct bfd_link_info *, | |
210 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
fe8bc63d | 211 | |
99c79b2e AJ |
212 | static int elf64_hppa_additional_program_headers PARAMS ((bfd *)); |
213 | ||
214 | static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *)); | |
215 | ||
5ac81c74 JL |
216 | static enum elf_reloc_type_class elf64_hppa_reloc_type_class |
217 | PARAMS ((const Elf_Internal_Rela *)); | |
218 | ||
15bda425 JL |
219 | static boolean elf64_hppa_finish_dynamic_sections |
220 | PARAMS ((bfd *, struct bfd_link_info *)); | |
221 | ||
222 | static boolean elf64_hppa_check_relocs | |
223 | PARAMS ((bfd *, struct bfd_link_info *, | |
224 | asection *, const Elf_Internal_Rela *)); | |
225 | ||
226 | static boolean elf64_hppa_dynamic_symbol_p | |
227 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); | |
228 | ||
229 | static boolean elf64_hppa_mark_exported_functions | |
230 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
231 | ||
232 | static boolean elf64_hppa_finalize_opd | |
233 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
234 | ||
235 | static boolean elf64_hppa_finalize_dlt | |
236 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
237 | ||
238 | static boolean allocate_global_data_dlt | |
239 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
240 | ||
241 | static boolean allocate_global_data_plt | |
242 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
243 | ||
244 | static boolean allocate_global_data_stub | |
245 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
246 | ||
247 | static boolean allocate_global_data_opd | |
248 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
249 | ||
250 | static boolean get_reloc_section | |
251 | PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *)); | |
252 | ||
253 | static boolean count_dyn_reloc | |
254 | PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *, | |
255 | int, asection *, int, bfd_vma, bfd_vma)); | |
256 | ||
257 | static boolean allocate_dynrel_entries | |
258 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
259 | ||
260 | static boolean elf64_hppa_finalize_dynreloc | |
261 | PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
262 | ||
263 | static boolean get_opd | |
264 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); | |
265 | ||
266 | static boolean get_plt | |
267 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); | |
268 | ||
269 | static boolean get_dlt | |
270 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); | |
271 | ||
272 | static boolean get_stub | |
273 | PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *)); | |
274 | ||
3fab46d0 AM |
275 | static int elf64_hppa_elf_get_symbol_type |
276 | PARAMS ((Elf_Internal_Sym *, int)); | |
277 | ||
15bda425 JL |
278 | static boolean |
279 | elf64_hppa_dyn_hash_table_init (ht, abfd, new) | |
280 | struct elf64_hppa_dyn_hash_table *ht; | |
edd21aca | 281 | bfd *abfd ATTRIBUTE_UNUSED; |
15bda425 JL |
282 | new_hash_entry_func new; |
283 | { | |
fe8bc63d | 284 | memset (ht, 0, sizeof (*ht)); |
15bda425 JL |
285 | return bfd_hash_table_init (&ht->root, new); |
286 | } | |
287 | ||
288 | static struct bfd_hash_entry* | |
289 | elf64_hppa_new_dyn_hash_entry (entry, table, string) | |
290 | struct bfd_hash_entry *entry; | |
291 | struct bfd_hash_table *table; | |
292 | const char *string; | |
293 | { | |
294 | struct elf64_hppa_dyn_hash_entry *ret; | |
295 | ret = (struct elf64_hppa_dyn_hash_entry *) entry; | |
296 | ||
297 | /* Allocate the structure if it has not already been allocated by a | |
298 | subclass. */ | |
299 | if (!ret) | |
300 | ret = bfd_hash_allocate (table, sizeof (*ret)); | |
301 | ||
302 | if (!ret) | |
303 | return 0; | |
304 | ||
305 | /* Initialize our local data. All zeros, and definitely easier | |
306 | than setting 8 bit fields. */ | |
fe8bc63d | 307 | memset (ret, 0, sizeof (*ret)); |
15bda425 JL |
308 | |
309 | /* Call the allocation method of the superclass. */ | |
310 | ret = ((struct elf64_hppa_dyn_hash_entry *) | |
311 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
312 | ||
313 | return &ret->root; | |
314 | } | |
315 | ||
316 | /* Create the derived linker hash table. The PA64 ELF port uses this | |
317 | derived hash table to keep information specific to the PA ElF | |
318 | linker (without using static variables). */ | |
319 | ||
320 | static struct bfd_link_hash_table* | |
321 | elf64_hppa_hash_table_create (abfd) | |
322 | bfd *abfd; | |
323 | { | |
324 | struct elf64_hppa_link_hash_table *ret; | |
325 | ||
dc810e39 | 326 | ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret)); |
15bda425 JL |
327 | if (!ret) |
328 | return 0; | |
329 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | |
330 | _bfd_elf_link_hash_newfunc)) | |
331 | { | |
332 | bfd_release (abfd, ret); | |
333 | return 0; | |
334 | } | |
335 | ||
336 | if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd, | |
337 | elf64_hppa_new_dyn_hash_entry)) | |
338 | return 0; | |
339 | return &ret->root.root; | |
340 | } | |
341 | ||
342 | /* Look up an entry in a PA64 ELF linker hash table. */ | |
343 | ||
344 | static struct elf64_hppa_dyn_hash_entry * | |
345 | elf64_hppa_dyn_hash_lookup(table, string, create, copy) | |
346 | struct elf64_hppa_dyn_hash_table *table; | |
347 | const char *string; | |
348 | boolean create, copy; | |
349 | { | |
350 | return ((struct elf64_hppa_dyn_hash_entry *) | |
351 | bfd_hash_lookup (&table->root, string, create, copy)); | |
352 | } | |
353 | ||
354 | /* Traverse a PA64 ELF linker hash table. */ | |
355 | ||
356 | static void | |
357 | elf64_hppa_dyn_hash_traverse (table, func, info) | |
358 | struct elf64_hppa_dyn_hash_table *table; | |
359 | boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR)); | |
360 | PTR info; | |
361 | { | |
362 | (bfd_hash_traverse | |
363 | (&table->root, | |
364 | (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func, | |
365 | info)); | |
366 | } | |
367 | \f | |
368 | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | |
369 | ||
370 | Additionally we set the default architecture and machine. */ | |
371 | static boolean | |
372 | elf64_hppa_object_p (abfd) | |
373 | bfd *abfd; | |
374 | { | |
24a5e751 L |
375 | Elf_Internal_Ehdr * i_ehdrp; |
376 | unsigned int flags; | |
d9634ba1 | 377 | |
24a5e751 L |
378 | i_ehdrp = elf_elfheader (abfd); |
379 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | |
380 | { | |
381 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX) | |
382 | return false; | |
383 | } | |
384 | else | |
385 | { | |
386 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) | |
387 | return false; | |
388 | } | |
389 | ||
390 | flags = i_ehdrp->e_flags; | |
d9634ba1 AM |
391 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
392 | { | |
393 | case EFA_PARISC_1_0: | |
394 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
395 | case EFA_PARISC_1_1: | |
396 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
397 | case EFA_PARISC_2_0: | |
398 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
399 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | |
400 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
401 | } | |
402 | /* Don't be fussy. */ | |
403 | return true; | |
15bda425 JL |
404 | } |
405 | ||
406 | /* Given section type (hdr->sh_type), return a boolean indicating | |
407 | whether or not the section is an elf64-hppa specific section. */ | |
408 | static boolean | |
409 | elf64_hppa_section_from_shdr (abfd, hdr, name) | |
410 | bfd *abfd; | |
947216bf | 411 | Elf_Internal_Shdr *hdr; |
90937f86 | 412 | const char *name; |
15bda425 JL |
413 | { |
414 | asection *newsect; | |
415 | ||
416 | switch (hdr->sh_type) | |
417 | { | |
418 | case SHT_PARISC_EXT: | |
419 | if (strcmp (name, ".PARISC.archext") != 0) | |
420 | return false; | |
421 | break; | |
422 | case SHT_PARISC_UNWIND: | |
423 | if (strcmp (name, ".PARISC.unwind") != 0) | |
424 | return false; | |
425 | break; | |
426 | case SHT_PARISC_DOC: | |
427 | case SHT_PARISC_ANNOT: | |
428 | default: | |
429 | return false; | |
430 | } | |
431 | ||
432 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
433 | return false; | |
434 | newsect = hdr->bfd_section; | |
435 | ||
436 | return true; | |
437 | } | |
438 | ||
15bda425 | 439 | /* Construct a string for use in the elf64_hppa_dyn_hash_table. The |
fe8bc63d | 440 | name describes what was once potentially anonymous memory. We |
15bda425 JL |
441 | allocate memory as necessary, possibly reusing PBUF/PLEN. */ |
442 | ||
443 | static const char * | |
0ba2a60e AM |
444 | get_dyn_name (sec, h, rel, pbuf, plen) |
445 | asection *sec; | |
15bda425 JL |
446 | struct elf_link_hash_entry *h; |
447 | const Elf_Internal_Rela *rel; | |
448 | char **pbuf; | |
449 | size_t *plen; | |
450 | { | |
451 | size_t nlen, tlen; | |
452 | char *buf; | |
453 | size_t len; | |
454 | ||
455 | if (h && rel->r_addend == 0) | |
456 | return h->root.root.string; | |
457 | ||
458 | if (h) | |
459 | nlen = strlen (h->root.root.string); | |
460 | else | |
0ba2a60e AM |
461 | nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8; |
462 | tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1; | |
15bda425 JL |
463 | |
464 | len = *plen; | |
465 | buf = *pbuf; | |
466 | if (len < tlen) | |
467 | { | |
468 | if (buf) | |
469 | free (buf); | |
470 | *pbuf = buf = malloc (tlen); | |
471 | *plen = len = tlen; | |
472 | if (!buf) | |
473 | return NULL; | |
474 | } | |
475 | ||
476 | if (h) | |
477 | { | |
478 | memcpy (buf, h->root.root.string, nlen); | |
0ba2a60e | 479 | buf[nlen++] = '+'; |
15bda425 JL |
480 | sprintf_vma (buf + nlen, rel->r_addend); |
481 | } | |
482 | else | |
483 | { | |
0ba2a60e AM |
484 | nlen = sprintf (buf, "%x:%lx", |
485 | sec->id & 0xffffffff, | |
486 | (long) ELF64_R_SYM (rel->r_info)); | |
15bda425 JL |
487 | if (rel->r_addend) |
488 | { | |
489 | buf[nlen++] = '+'; | |
490 | sprintf_vma (buf + nlen, rel->r_addend); | |
491 | } | |
492 | } | |
493 | ||
494 | return buf; | |
495 | } | |
496 | ||
497 | /* SEC is a section containing relocs for an input BFD when linking; return | |
498 | a suitable section for holding relocs in the output BFD for a link. */ | |
499 | ||
500 | static boolean | |
501 | get_reloc_section (abfd, hppa_info, sec) | |
502 | bfd *abfd; | |
503 | struct elf64_hppa_link_hash_table *hppa_info; | |
504 | asection *sec; | |
505 | { | |
506 | const char *srel_name; | |
507 | asection *srel; | |
508 | bfd *dynobj; | |
509 | ||
510 | srel_name = (bfd_elf_string_from_elf_section | |
511 | (abfd, elf_elfheader(abfd)->e_shstrndx, | |
512 | elf_section_data(sec)->rel_hdr.sh_name)); | |
513 | if (srel_name == NULL) | |
514 | return false; | |
515 | ||
516 | BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0 | |
517 | && strcmp (bfd_get_section_name (abfd, sec), | |
518 | srel_name+5) == 0) | |
519 | || (strncmp (srel_name, ".rel", 4) == 0 | |
520 | && strcmp (bfd_get_section_name (abfd, sec), | |
521 | srel_name+4) == 0)); | |
522 | ||
523 | dynobj = hppa_info->root.dynobj; | |
524 | if (!dynobj) | |
525 | hppa_info->root.dynobj = dynobj = abfd; | |
526 | ||
527 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
528 | if (srel == NULL) | |
529 | { | |
530 | srel = bfd_make_section (dynobj, srel_name); | |
531 | if (srel == NULL | |
532 | || !bfd_set_section_flags (dynobj, srel, | |
533 | (SEC_ALLOC | |
534 | | SEC_LOAD | |
535 | | SEC_HAS_CONTENTS | |
536 | | SEC_IN_MEMORY | |
537 | | SEC_LINKER_CREATED | |
538 | | SEC_READONLY)) | |
539 | || !bfd_set_section_alignment (dynobj, srel, 3)) | |
540 | return false; | |
541 | } | |
542 | ||
543 | hppa_info->other_rel_sec = srel; | |
544 | return true; | |
545 | } | |
546 | ||
fe8bc63d | 547 | /* Add a new entry to the list of dynamic relocations against DYN_H. |
15bda425 JL |
548 | |
549 | We use this to keep a record of all the FPTR relocations against a | |
550 | particular symbol so that we can create FPTR relocations in the | |
551 | output file. */ | |
552 | ||
553 | static boolean | |
554 | count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend) | |
555 | bfd *abfd; | |
556 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
557 | int type; | |
558 | asection *sec; | |
559 | int sec_symndx; | |
560 | bfd_vma offset; | |
561 | bfd_vma addend; | |
562 | { | |
563 | struct elf64_hppa_dyn_reloc_entry *rent; | |
564 | ||
565 | rent = (struct elf64_hppa_dyn_reloc_entry *) | |
dc810e39 | 566 | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); |
15bda425 JL |
567 | if (!rent) |
568 | return false; | |
569 | ||
570 | rent->next = dyn_h->reloc_entries; | |
571 | rent->type = type; | |
572 | rent->sec = sec; | |
573 | rent->sec_symndx = sec_symndx; | |
574 | rent->offset = offset; | |
575 | rent->addend = addend; | |
576 | dyn_h->reloc_entries = rent; | |
577 | ||
578 | return true; | |
579 | } | |
580 | ||
581 | /* Scan the RELOCS and record the type of dynamic entries that each | |
582 | referenced symbol needs. */ | |
583 | ||
584 | static boolean | |
585 | elf64_hppa_check_relocs (abfd, info, sec, relocs) | |
586 | bfd *abfd; | |
587 | struct bfd_link_info *info; | |
588 | asection *sec; | |
589 | const Elf_Internal_Rela *relocs; | |
590 | { | |
591 | struct elf64_hppa_link_hash_table *hppa_info; | |
592 | const Elf_Internal_Rela *relend; | |
593 | Elf_Internal_Shdr *symtab_hdr; | |
594 | const Elf_Internal_Rela *rel; | |
595 | asection *dlt, *plt, *stubs; | |
596 | char *buf; | |
597 | size_t buf_len; | |
598 | int sec_symndx; | |
599 | ||
600 | if (info->relocateable) | |
601 | return true; | |
602 | ||
603 | /* If this is the first dynamic object found in the link, create | |
604 | the special sections required for dynamic linking. */ | |
605 | if (! elf_hash_table (info)->dynamic_sections_created) | |
606 | { | |
607 | if (! bfd_elf64_link_create_dynamic_sections (abfd, info)) | |
608 | return false; | |
609 | } | |
610 | ||
611 | hppa_info = elf64_hppa_hash_table (info); | |
612 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
613 | ||
614 | /* If necessary, build a new table holding section symbols indices | |
6cdc0ccc | 615 | for this BFD. */ |
fe8bc63d | 616 | |
15bda425 JL |
617 | if (info->shared && hppa_info->section_syms_bfd != abfd) |
618 | { | |
832d951b | 619 | unsigned long i; |
9ad5cbcf | 620 | unsigned int highest_shndx; |
6cdc0ccc AM |
621 | Elf_Internal_Sym *local_syms = NULL; |
622 | Elf_Internal_Sym *isym, *isymend; | |
dc810e39 | 623 | bfd_size_type amt; |
15bda425 JL |
624 | |
625 | /* We're done with the old cache of section index to section symbol | |
626 | index information. Free it. | |
627 | ||
628 | ?!? Note we leak the last section_syms array. Presumably we | |
629 | could free it in one of the later routines in this file. */ | |
630 | if (hppa_info->section_syms) | |
631 | free (hppa_info->section_syms); | |
632 | ||
6cdc0ccc AM |
633 | /* Read this BFD's local symbols. */ |
634 | if (symtab_hdr->sh_info != 0) | |
47b7c2db | 635 | { |
6cdc0ccc AM |
636 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
637 | if (local_syms == NULL) | |
638 | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
639 | symtab_hdr->sh_info, 0, | |
640 | NULL, NULL, NULL); | |
641 | if (local_syms == NULL) | |
642 | return false; | |
9ad5cbcf AM |
643 | } |
644 | ||
6cdc0ccc | 645 | /* Record the highest section index referenced by the local symbols. */ |
15bda425 | 646 | highest_shndx = 0; |
6cdc0ccc AM |
647 | isymend = local_syms + symtab_hdr->sh_info; |
648 | for (isym = local_syms; isym < isymend; isym++) | |
15bda425 | 649 | { |
15bda425 JL |
650 | if (isym->st_shndx > highest_shndx) |
651 | highest_shndx = isym->st_shndx; | |
652 | } | |
653 | ||
15bda425 JL |
654 | /* Allocate an array to hold the section index to section symbol index |
655 | mapping. Bump by one since we start counting at zero. */ | |
656 | highest_shndx++; | |
dc810e39 AM |
657 | amt = highest_shndx; |
658 | amt *= sizeof (int); | |
659 | hppa_info->section_syms = (int *) bfd_malloc (amt); | |
15bda425 JL |
660 | |
661 | /* Now walk the local symbols again. If we find a section symbol, | |
662 | record the index of the symbol into the section_syms array. */ | |
6cdc0ccc | 663 | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) |
15bda425 JL |
664 | { |
665 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
666 | hppa_info->section_syms[isym->st_shndx] = i; | |
667 | } | |
668 | ||
6cdc0ccc AM |
669 | /* We are finished with the local symbols. */ |
670 | if (local_syms != NULL | |
671 | && symtab_hdr->contents != (unsigned char *) local_syms) | |
672 | { | |
673 | if (! info->keep_memory) | |
674 | free (local_syms); | |
675 | else | |
676 | { | |
677 | /* Cache the symbols for elf_link_input_bfd. */ | |
678 | symtab_hdr->contents = (unsigned char *) local_syms; | |
679 | } | |
680 | } | |
15bda425 JL |
681 | |
682 | /* Record which BFD we built the section_syms mapping for. */ | |
683 | hppa_info->section_syms_bfd = abfd; | |
684 | } | |
685 | ||
686 | /* Record the symbol index for this input section. We may need it for | |
687 | relocations when building shared libraries. When not building shared | |
688 | libraries this value is never really used, but assign it to zero to | |
689 | prevent out of bounds memory accesses in other routines. */ | |
690 | if (info->shared) | |
691 | { | |
692 | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
693 | ||
694 | /* If we did not find a section symbol for this section, then | |
695 | something went terribly wrong above. */ | |
696 | if (sec_symndx == -1) | |
697 | return false; | |
698 | ||
699 | sec_symndx = hppa_info->section_syms[sec_symndx]; | |
700 | } | |
701 | else | |
702 | sec_symndx = 0; | |
fe8bc63d | 703 | |
15bda425 JL |
704 | dlt = plt = stubs = NULL; |
705 | buf = NULL; | |
706 | buf_len = 0; | |
707 | ||
708 | relend = relocs + sec->reloc_count; | |
709 | for (rel = relocs; rel < relend; ++rel) | |
710 | { | |
711 | enum { | |
712 | NEED_DLT = 1, | |
713 | NEED_PLT = 2, | |
714 | NEED_STUB = 4, | |
715 | NEED_OPD = 8, | |
716 | NEED_DYNREL = 16, | |
717 | }; | |
718 | ||
719 | struct elf_link_hash_entry *h = NULL; | |
720 | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); | |
721 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
722 | int need_entry; | |
723 | const char *addr_name; | |
724 | boolean maybe_dynamic; | |
725 | int dynrel_type = R_PARISC_NONE; | |
726 | static reloc_howto_type *howto; | |
727 | ||
728 | if (r_symndx >= symtab_hdr->sh_info) | |
729 | { | |
730 | /* We're dealing with a global symbol -- find its hash entry | |
731 | and mark it as being referenced. */ | |
732 | long indx = r_symndx - symtab_hdr->sh_info; | |
733 | h = elf_sym_hashes (abfd)[indx]; | |
734 | while (h->root.type == bfd_link_hash_indirect | |
735 | || h->root.type == bfd_link_hash_warning) | |
736 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
737 | ||
738 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
739 | } | |
740 | ||
741 | /* We can only get preliminary data on whether a symbol is | |
742 | locally or externally defined, as not all of the input files | |
743 | have yet been processed. Do something with what we know, as | |
744 | this may help reduce memory usage and processing time later. */ | |
745 | maybe_dynamic = false; | |
671bae9c NC |
746 | if (h && ((info->shared |
747 | && (!info->symbolic || info->allow_shlib_undefined) ) | |
15bda425 JL |
748 | || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) |
749 | || h->root.type == bfd_link_hash_defweak)) | |
750 | maybe_dynamic = true; | |
751 | ||
752 | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | |
753 | need_entry = 0; | |
754 | switch (howto->type) | |
755 | { | |
756 | /* These are simple indirect references to symbols through the | |
757 | DLT. We need to create a DLT entry for any symbols which | |
758 | appears in a DLTIND relocation. */ | |
759 | case R_PARISC_DLTIND21L: | |
760 | case R_PARISC_DLTIND14R: | |
761 | case R_PARISC_DLTIND14F: | |
762 | case R_PARISC_DLTIND14WR: | |
763 | case R_PARISC_DLTIND14DR: | |
764 | need_entry = NEED_DLT; | |
765 | break; | |
766 | ||
767 | /* ?!? These need a DLT entry. But I have no idea what to do with | |
768 | the "link time TP value. */ | |
769 | case R_PARISC_LTOFF_TP21L: | |
770 | case R_PARISC_LTOFF_TP14R: | |
771 | case R_PARISC_LTOFF_TP14F: | |
772 | case R_PARISC_LTOFF_TP64: | |
773 | case R_PARISC_LTOFF_TP14WR: | |
774 | case R_PARISC_LTOFF_TP14DR: | |
775 | case R_PARISC_LTOFF_TP16F: | |
776 | case R_PARISC_LTOFF_TP16WF: | |
777 | case R_PARISC_LTOFF_TP16DF: | |
778 | need_entry = NEED_DLT; | |
779 | break; | |
780 | ||
781 | /* These are function calls. Depending on their precise target we | |
782 | may need to make a stub for them. The stub uses the PLT, so we | |
783 | need to create PLT entries for these symbols too. */ | |
832d951b | 784 | case R_PARISC_PCREL12F: |
15bda425 JL |
785 | case R_PARISC_PCREL17F: |
786 | case R_PARISC_PCREL22F: | |
787 | case R_PARISC_PCREL32: | |
788 | case R_PARISC_PCREL64: | |
789 | case R_PARISC_PCREL21L: | |
790 | case R_PARISC_PCREL17R: | |
791 | case R_PARISC_PCREL17C: | |
792 | case R_PARISC_PCREL14R: | |
793 | case R_PARISC_PCREL14F: | |
794 | case R_PARISC_PCREL22C: | |
795 | case R_PARISC_PCREL14WR: | |
796 | case R_PARISC_PCREL14DR: | |
797 | case R_PARISC_PCREL16F: | |
798 | case R_PARISC_PCREL16WF: | |
799 | case R_PARISC_PCREL16DF: | |
800 | need_entry = (NEED_PLT | NEED_STUB); | |
801 | break; | |
802 | ||
803 | case R_PARISC_PLTOFF21L: | |
804 | case R_PARISC_PLTOFF14R: | |
805 | case R_PARISC_PLTOFF14F: | |
806 | case R_PARISC_PLTOFF14WR: | |
807 | case R_PARISC_PLTOFF14DR: | |
808 | case R_PARISC_PLTOFF16F: | |
809 | case R_PARISC_PLTOFF16WF: | |
810 | case R_PARISC_PLTOFF16DF: | |
811 | need_entry = (NEED_PLT); | |
812 | break; | |
813 | ||
814 | case R_PARISC_DIR64: | |
815 | if (info->shared || maybe_dynamic) | |
816 | need_entry = (NEED_DYNREL); | |
817 | dynrel_type = R_PARISC_DIR64; | |
818 | break; | |
819 | ||
820 | /* This is an indirect reference through the DLT to get the address | |
821 | of a OPD descriptor. Thus we need to make a DLT entry that points | |
822 | to an OPD entry. */ | |
823 | case R_PARISC_LTOFF_FPTR21L: | |
824 | case R_PARISC_LTOFF_FPTR14R: | |
825 | case R_PARISC_LTOFF_FPTR14WR: | |
826 | case R_PARISC_LTOFF_FPTR14DR: | |
827 | case R_PARISC_LTOFF_FPTR32: | |
828 | case R_PARISC_LTOFF_FPTR64: | |
829 | case R_PARISC_LTOFF_FPTR16F: | |
830 | case R_PARISC_LTOFF_FPTR16WF: | |
831 | case R_PARISC_LTOFF_FPTR16DF: | |
832 | if (info->shared || maybe_dynamic) | |
833 | need_entry = (NEED_DLT | NEED_OPD); | |
834 | else | |
835 | need_entry = (NEED_DLT | NEED_OPD); | |
836 | dynrel_type = R_PARISC_FPTR64; | |
837 | break; | |
838 | ||
839 | /* This is a simple OPD entry. */ | |
840 | case R_PARISC_FPTR64: | |
841 | if (info->shared || maybe_dynamic) | |
842 | need_entry = (NEED_OPD | NEED_DYNREL); | |
843 | else | |
844 | need_entry = (NEED_OPD); | |
845 | dynrel_type = R_PARISC_FPTR64; | |
846 | break; | |
847 | ||
848 | /* Add more cases as needed. */ | |
849 | } | |
850 | ||
851 | if (!need_entry) | |
852 | continue; | |
853 | ||
854 | /* Collect a canonical name for this address. */ | |
0ba2a60e | 855 | addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len); |
15bda425 JL |
856 | |
857 | /* Collect the canonical entry data for this address. */ | |
858 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
859 | addr_name, true, true); | |
860 | BFD_ASSERT (dyn_h); | |
861 | ||
862 | /* Stash away enough information to be able to find this symbol | |
863 | regardless of whether or not it is local or global. */ | |
864 | dyn_h->h = h; | |
865 | dyn_h->owner = abfd; | |
866 | dyn_h->sym_indx = r_symndx; | |
867 | ||
868 | /* ?!? We may need to do some error checking in here. */ | |
869 | /* Create what's needed. */ | |
870 | if (need_entry & NEED_DLT) | |
871 | { | |
872 | if (! hppa_info->dlt_sec | |
873 | && ! get_dlt (abfd, info, hppa_info)) | |
874 | goto err_out; | |
875 | dyn_h->want_dlt = 1; | |
876 | } | |
877 | ||
878 | if (need_entry & NEED_PLT) | |
879 | { | |
880 | if (! hppa_info->plt_sec | |
881 | && ! get_plt (abfd, info, hppa_info)) | |
882 | goto err_out; | |
883 | dyn_h->want_plt = 1; | |
884 | } | |
885 | ||
886 | if (need_entry & NEED_STUB) | |
887 | { | |
888 | if (! hppa_info->stub_sec | |
889 | && ! get_stub (abfd, info, hppa_info)) | |
890 | goto err_out; | |
891 | dyn_h->want_stub = 1; | |
892 | } | |
893 | ||
894 | if (need_entry & NEED_OPD) | |
895 | { | |
896 | if (! hppa_info->opd_sec | |
897 | && ! get_opd (abfd, info, hppa_info)) | |
898 | goto err_out; | |
899 | ||
900 | dyn_h->want_opd = 1; | |
901 | ||
902 | /* FPTRs are not allocated by the dynamic linker for PA64, though | |
903 | it is possible that will change in the future. */ | |
fe8bc63d | 904 | |
15bda425 JL |
905 | /* This could be a local function that had its address taken, in |
906 | which case H will be NULL. */ | |
907 | if (h) | |
908 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
909 | } | |
910 | ||
911 | /* Add a new dynamic relocation to the chain of dynamic | |
912 | relocations for this symbol. */ | |
913 | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | |
914 | { | |
915 | if (! hppa_info->other_rel_sec | |
916 | && ! get_reloc_section (abfd, hppa_info, sec)) | |
917 | goto err_out; | |
918 | ||
919 | if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec, | |
920 | sec_symndx, rel->r_offset, rel->r_addend)) | |
921 | goto err_out; | |
922 | ||
923 | /* If we are building a shared library and we just recorded | |
924 | a dynamic R_PARISC_FPTR64 relocation, then make sure the | |
925 | section symbol for this section ends up in the dynamic | |
926 | symbol table. */ | |
927 | if (info->shared && dynrel_type == R_PARISC_FPTR64 | |
928 | && ! (_bfd_elf64_link_record_local_dynamic_symbol | |
929 | (info, abfd, sec_symndx))) | |
930 | return false; | |
931 | } | |
932 | } | |
933 | ||
934 | if (buf) | |
935 | free (buf); | |
936 | return true; | |
937 | ||
938 | err_out: | |
939 | if (buf) | |
940 | free (buf); | |
941 | return false; | |
942 | } | |
943 | ||
944 | struct elf64_hppa_allocate_data | |
945 | { | |
946 | struct bfd_link_info *info; | |
947 | bfd_size_type ofs; | |
948 | }; | |
949 | ||
950 | /* Should we do dynamic things to this symbol? */ | |
951 | ||
952 | static boolean | |
953 | elf64_hppa_dynamic_symbol_p (h, info) | |
954 | struct elf_link_hash_entry *h; | |
955 | struct bfd_link_info *info; | |
956 | { | |
957 | if (h == NULL) | |
958 | return false; | |
959 | ||
960 | while (h->root.type == bfd_link_hash_indirect | |
961 | || h->root.type == bfd_link_hash_warning) | |
962 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
963 | ||
964 | if (h->dynindx == -1) | |
965 | return false; | |
966 | ||
967 | if (h->root.type == bfd_link_hash_undefweak | |
968 | || h->root.type == bfd_link_hash_defweak) | |
969 | return true; | |
970 | ||
971 | if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$') | |
972 | return false; | |
973 | ||
671bae9c | 974 | if ((info->shared && (!info->symbolic || info->allow_shlib_undefined)) |
15bda425 JL |
975 | || ((h->elf_link_hash_flags |
976 | & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)) | |
977 | == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))) | |
978 | return true; | |
979 | ||
980 | return false; | |
981 | } | |
982 | ||
983 | /* Mark all funtions exported by this file so that we can later allocate | |
984 | entries in .opd for them. */ | |
985 | ||
986 | static boolean | |
987 | elf64_hppa_mark_exported_functions (h, data) | |
988 | struct elf_link_hash_entry *h; | |
989 | PTR data; | |
990 | { | |
991 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
992 | struct elf64_hppa_link_hash_table *hppa_info; | |
993 | ||
994 | hppa_info = elf64_hppa_hash_table (info); | |
995 | ||
e92d460e AM |
996 | if (h->root.type == bfd_link_hash_warning) |
997 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
998 | ||
15bda425 JL |
999 | if (h |
1000 | && (h->root.type == bfd_link_hash_defined | |
1001 | || h->root.type == bfd_link_hash_defweak) | |
1002 | && h->root.u.def.section->output_section != NULL | |
1003 | && h->type == STT_FUNC) | |
1004 | { | |
1005 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1006 | ||
1007 | /* Add this symbol to the PA64 linker hash table. */ | |
1008 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
1009 | h->root.root.string, true, true); | |
1010 | BFD_ASSERT (dyn_h); | |
1011 | dyn_h->h = h; | |
1012 | ||
1013 | if (! hppa_info->opd_sec | |
1014 | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | |
1015 | return false; | |
1016 | ||
1017 | dyn_h->want_opd = 1; | |
832d951b AM |
1018 | /* Put a flag here for output_symbol_hook. */ |
1019 | dyn_h->st_shndx = -1; | |
15bda425 JL |
1020 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; |
1021 | } | |
1022 | ||
1023 | return true; | |
1024 | } | |
1025 | ||
1026 | /* Allocate space for a DLT entry. */ | |
1027 | ||
1028 | static boolean | |
1029 | allocate_global_data_dlt (dyn_h, data) | |
1030 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1031 | PTR data; | |
1032 | { | |
1033 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1034 | ||
1035 | if (dyn_h->want_dlt) | |
1036 | { | |
1037 | struct elf_link_hash_entry *h = dyn_h->h; | |
1038 | ||
1039 | if (x->info->shared) | |
1040 | { | |
1041 | /* Possibly add the symbol to the local dynamic symbol | |
1042 | table since we might need to create a dynamic relocation | |
1043 | against it. */ | |
1044 | if (! h | |
47b7c2db | 1045 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)) |
15bda425 JL |
1046 | { |
1047 | bfd *owner; | |
1048 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1049 | ||
dc810e39 AM |
1050 | if (! (_bfd_elf64_link_record_local_dynamic_symbol |
1051 | (x->info, owner, dyn_h->sym_indx))) | |
15bda425 JL |
1052 | return false; |
1053 | } | |
1054 | } | |
1055 | ||
1056 | dyn_h->dlt_offset = x->ofs; | |
1057 | x->ofs += DLT_ENTRY_SIZE; | |
1058 | } | |
1059 | return true; | |
1060 | } | |
1061 | ||
1062 | /* Allocate space for a DLT.PLT entry. */ | |
1063 | ||
1064 | static boolean | |
1065 | allocate_global_data_plt (dyn_h, data) | |
1066 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1067 | PTR data; | |
1068 | { | |
1069 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1070 | ||
1071 | if (dyn_h->want_plt | |
1072 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1073 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1074 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1075 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1076 | { | |
1077 | dyn_h->plt_offset = x->ofs; | |
1078 | x->ofs += PLT_ENTRY_SIZE; | |
1079 | if (dyn_h->plt_offset < 0x2000) | |
1080 | elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset; | |
1081 | } | |
1082 | else | |
1083 | dyn_h->want_plt = 0; | |
1084 | ||
1085 | return true; | |
1086 | } | |
1087 | ||
1088 | /* Allocate space for a STUB entry. */ | |
1089 | ||
1090 | static boolean | |
1091 | allocate_global_data_stub (dyn_h, data) | |
1092 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1093 | PTR data; | |
1094 | { | |
1095 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1096 | ||
1097 | if (dyn_h->want_stub | |
1098 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info) | |
1099 | && !((dyn_h->h->root.type == bfd_link_hash_defined | |
1100 | || dyn_h->h->root.type == bfd_link_hash_defweak) | |
1101 | && dyn_h->h->root.u.def.section->output_section != NULL)) | |
1102 | { | |
1103 | dyn_h->stub_offset = x->ofs; | |
1104 | x->ofs += sizeof (plt_stub); | |
1105 | } | |
1106 | else | |
1107 | dyn_h->want_stub = 0; | |
1108 | return true; | |
1109 | } | |
1110 | ||
1111 | /* Allocate space for a FPTR entry. */ | |
1112 | ||
1113 | static boolean | |
1114 | allocate_global_data_opd (dyn_h, data) | |
1115 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1116 | PTR data; | |
1117 | { | |
1118 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1119 | ||
1120 | if (dyn_h->want_opd) | |
1121 | { | |
1122 | struct elf_link_hash_entry *h = dyn_h->h; | |
fe8bc63d | 1123 | |
15bda425 JL |
1124 | if (h) |
1125 | while (h->root.type == bfd_link_hash_indirect | |
1126 | || h->root.type == bfd_link_hash_warning) | |
1127 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1128 | ||
1129 | /* We never need an opd entry for a symbol which is not | |
1130 | defined by this output file. */ | |
3db4b612 JL |
1131 | if (h && (h->root.type == bfd_link_hash_undefined |
1132 | || h->root.u.def.section->output_section == NULL)) | |
15bda425 JL |
1133 | dyn_h->want_opd = 0; |
1134 | ||
1135 | /* If we are creating a shared library, took the address of a local | |
1136 | function or might export this function from this object file, then | |
1137 | we have to create an opd descriptor. */ | |
1138 | else if (x->info->shared | |
1139 | || h == NULL | |
47b7c2db | 1140 | || (h->dynindx == -1 && h->type != STT_PARISC_MILLI) |
3db4b612 JL |
1141 | || (h->root.type == bfd_link_hash_defined |
1142 | || h->root.type == bfd_link_hash_defweak)) | |
15bda425 JL |
1143 | { |
1144 | /* If we are creating a shared library, then we will have to | |
1145 | create a runtime relocation for the symbol to properly | |
1146 | initialize the .opd entry. Make sure the symbol gets | |
1147 | added to the dynamic symbol table. */ | |
1148 | if (x->info->shared | |
1149 | && (h == NULL || (h->dynindx == -1))) | |
1150 | { | |
1151 | bfd *owner; | |
1152 | owner = (h ? h->root.u.def.section->owner : dyn_h->owner); | |
1153 | ||
1154 | if (!_bfd_elf64_link_record_local_dynamic_symbol | |
1155 | (x->info, owner, dyn_h->sym_indx)) | |
1156 | return false; | |
1157 | } | |
1158 | ||
1159 | /* This may not be necessary or desirable anymore now that | |
1160 | we have some support for dealing with section symbols | |
1161 | in dynamic relocs. But name munging does make the result | |
1162 | much easier to debug. ie, the EPLT reloc will reference | |
1163 | a symbol like .foobar, instead of .text + offset. */ | |
1164 | if (x->info->shared && h) | |
1165 | { | |
1166 | char *new_name; | |
1167 | struct elf_link_hash_entry *nh; | |
1168 | ||
1169 | new_name = alloca (strlen (h->root.root.string) + 2); | |
1170 | new_name[0] = '.'; | |
1171 | strcpy (new_name + 1, h->root.root.string); | |
1172 | ||
1173 | nh = elf_link_hash_lookup (elf_hash_table (x->info), | |
1174 | new_name, true, true, true); | |
1175 | ||
1176 | nh->root.type = h->root.type; | |
1177 | nh->root.u.def.value = h->root.u.def.value; | |
1178 | nh->root.u.def.section = h->root.u.def.section; | |
1179 | ||
1180 | if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh)) | |
1181 | return false; | |
1182 | ||
1183 | } | |
1184 | dyn_h->opd_offset = x->ofs; | |
1185 | x->ofs += OPD_ENTRY_SIZE; | |
1186 | } | |
1187 | ||
1188 | /* Otherwise we do not need an opd entry. */ | |
1189 | else | |
1190 | dyn_h->want_opd = 0; | |
1191 | } | |
1192 | return true; | |
1193 | } | |
1194 | ||
1195 | /* HP requires the EI_OSABI field to be filled in. The assignment to | |
1196 | EI_ABIVERSION may not be strictly necessary. */ | |
1197 | ||
1198 | static void | |
1199 | elf64_hppa_post_process_headers (abfd, link_info) | |
1200 | bfd * abfd; | |
1201 | struct bfd_link_info * link_info ATTRIBUTE_UNUSED; | |
1202 | { | |
1203 | Elf_Internal_Ehdr * i_ehdrp; | |
1204 | ||
1205 | i_ehdrp = elf_elfheader (abfd); | |
1206 | ||
d952f17a AM |
1207 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) |
1208 | { | |
1209 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; | |
1210 | } | |
1211 | else | |
1212 | { | |
1213 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; | |
1214 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
1215 | } | |
15bda425 JL |
1216 | } |
1217 | ||
1218 | /* Create function descriptor section (.opd). This section is called .opd | |
1219 | because it contains "official prodecure descriptors". The "official" | |
1220 | refers to the fact that these descriptors are used when taking the address | |
1221 | of a procedure, thus ensuring a unique address for each procedure. */ | |
1222 | ||
1223 | static boolean | |
1224 | get_opd (abfd, info, hppa_info) | |
1225 | bfd *abfd; | |
edd21aca | 1226 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1227 | struct elf64_hppa_link_hash_table *hppa_info; |
1228 | { | |
1229 | asection *opd; | |
1230 | bfd *dynobj; | |
1231 | ||
1232 | opd = hppa_info->opd_sec; | |
1233 | if (!opd) | |
1234 | { | |
1235 | dynobj = hppa_info->root.dynobj; | |
1236 | if (!dynobj) | |
1237 | hppa_info->root.dynobj = dynobj = abfd; | |
1238 | ||
1239 | opd = bfd_make_section (dynobj, ".opd"); | |
1240 | if (!opd | |
1241 | || !bfd_set_section_flags (dynobj, opd, | |
1242 | (SEC_ALLOC | |
1243 | | SEC_LOAD | |
1244 | | SEC_HAS_CONTENTS | |
1245 | | SEC_IN_MEMORY | |
1246 | | SEC_LINKER_CREATED)) | |
1247 | || !bfd_set_section_alignment (abfd, opd, 3)) | |
1248 | { | |
1249 | BFD_ASSERT (0); | |
1250 | return false; | |
1251 | } | |
1252 | ||
1253 | hppa_info->opd_sec = opd; | |
1254 | } | |
1255 | ||
1256 | return true; | |
1257 | } | |
1258 | ||
1259 | /* Create the PLT section. */ | |
1260 | ||
1261 | static boolean | |
1262 | get_plt (abfd, info, hppa_info) | |
1263 | bfd *abfd; | |
edd21aca | 1264 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1265 | struct elf64_hppa_link_hash_table *hppa_info; |
1266 | { | |
1267 | asection *plt; | |
1268 | bfd *dynobj; | |
1269 | ||
1270 | plt = hppa_info->plt_sec; | |
1271 | if (!plt) | |
1272 | { | |
1273 | dynobj = hppa_info->root.dynobj; | |
1274 | if (!dynobj) | |
1275 | hppa_info->root.dynobj = dynobj = abfd; | |
1276 | ||
1277 | plt = bfd_make_section (dynobj, ".plt"); | |
1278 | if (!plt | |
1279 | || !bfd_set_section_flags (dynobj, plt, | |
1280 | (SEC_ALLOC | |
1281 | | SEC_LOAD | |
1282 | | SEC_HAS_CONTENTS | |
1283 | | SEC_IN_MEMORY | |
1284 | | SEC_LINKER_CREATED)) | |
1285 | || !bfd_set_section_alignment (abfd, plt, 3)) | |
1286 | { | |
1287 | BFD_ASSERT (0); | |
1288 | return false; | |
1289 | } | |
1290 | ||
1291 | hppa_info->plt_sec = plt; | |
1292 | } | |
1293 | ||
1294 | return true; | |
1295 | } | |
1296 | ||
1297 | /* Create the DLT section. */ | |
1298 | ||
1299 | static boolean | |
1300 | get_dlt (abfd, info, hppa_info) | |
1301 | bfd *abfd; | |
edd21aca | 1302 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1303 | struct elf64_hppa_link_hash_table *hppa_info; |
1304 | { | |
1305 | asection *dlt; | |
1306 | bfd *dynobj; | |
1307 | ||
1308 | dlt = hppa_info->dlt_sec; | |
1309 | if (!dlt) | |
1310 | { | |
1311 | dynobj = hppa_info->root.dynobj; | |
1312 | if (!dynobj) | |
1313 | hppa_info->root.dynobj = dynobj = abfd; | |
1314 | ||
1315 | dlt = bfd_make_section (dynobj, ".dlt"); | |
1316 | if (!dlt | |
1317 | || !bfd_set_section_flags (dynobj, dlt, | |
1318 | (SEC_ALLOC | |
1319 | | SEC_LOAD | |
1320 | | SEC_HAS_CONTENTS | |
1321 | | SEC_IN_MEMORY | |
1322 | | SEC_LINKER_CREATED)) | |
1323 | || !bfd_set_section_alignment (abfd, dlt, 3)) | |
1324 | { | |
1325 | BFD_ASSERT (0); | |
1326 | return false; | |
1327 | } | |
1328 | ||
1329 | hppa_info->dlt_sec = dlt; | |
1330 | } | |
1331 | ||
1332 | return true; | |
1333 | } | |
1334 | ||
1335 | /* Create the stubs section. */ | |
1336 | ||
1337 | static boolean | |
1338 | get_stub (abfd, info, hppa_info) | |
1339 | bfd *abfd; | |
edd21aca | 1340 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1341 | struct elf64_hppa_link_hash_table *hppa_info; |
1342 | { | |
1343 | asection *stub; | |
1344 | bfd *dynobj; | |
1345 | ||
1346 | stub = hppa_info->stub_sec; | |
1347 | if (!stub) | |
1348 | { | |
1349 | dynobj = hppa_info->root.dynobj; | |
1350 | if (!dynobj) | |
1351 | hppa_info->root.dynobj = dynobj = abfd; | |
1352 | ||
1353 | stub = bfd_make_section (dynobj, ".stub"); | |
1354 | if (!stub | |
1355 | || !bfd_set_section_flags (dynobj, stub, | |
1356 | (SEC_ALLOC | |
1357 | | SEC_LOAD | |
1358 | | SEC_HAS_CONTENTS | |
1359 | | SEC_IN_MEMORY | |
1360 | | SEC_READONLY | |
1361 | | SEC_LINKER_CREATED)) | |
1362 | || !bfd_set_section_alignment (abfd, stub, 3)) | |
1363 | { | |
1364 | BFD_ASSERT (0); | |
1365 | return false; | |
1366 | } | |
1367 | ||
1368 | hppa_info->stub_sec = stub; | |
1369 | } | |
1370 | ||
1371 | return true; | |
1372 | } | |
1373 | ||
1374 | /* Create sections necessary for dynamic linking. This is only a rough | |
1375 | cut and will likely change as we learn more about the somewhat | |
1376 | unusual dynamic linking scheme HP uses. | |
1377 | ||
1378 | .stub: | |
1379 | Contains code to implement cross-space calls. The first time one | |
1380 | of the stubs is used it will call into the dynamic linker, later | |
1381 | calls will go straight to the target. | |
1382 | ||
1383 | The only stub we support right now looks like | |
1384 | ||
1385 | ldd OFFSET(%dp),%r1 | |
1386 | bve %r0(%r1) | |
1387 | ldd OFFSET+8(%dp),%dp | |
1388 | ||
1389 | Other stubs may be needed in the future. We may want the remove | |
1390 | the break/nop instruction. It is only used right now to keep the | |
1391 | offset of a .plt entry and a .stub entry in sync. | |
1392 | ||
1393 | .dlt: | |
1394 | This is what most people call the .got. HP used a different name. | |
1395 | Losers. | |
1396 | ||
1397 | .rela.dlt: | |
1398 | Relocations for the DLT. | |
1399 | ||
1400 | .plt: | |
1401 | Function pointers as address,gp pairs. | |
1402 | ||
1403 | .rela.plt: | |
1404 | Should contain dynamic IPLT (and EPLT?) relocations. | |
1405 | ||
1406 | .opd: | |
fe8bc63d | 1407 | FPTRS |
15bda425 JL |
1408 | |
1409 | .rela.opd: | |
1410 | EPLT relocations for symbols exported from shared libraries. */ | |
1411 | ||
1412 | static boolean | |
1413 | elf64_hppa_create_dynamic_sections (abfd, info) | |
1414 | bfd *abfd; | |
1415 | struct bfd_link_info *info; | |
1416 | { | |
1417 | asection *s; | |
1418 | ||
1419 | if (! get_stub (abfd, info, elf64_hppa_hash_table (info))) | |
1420 | return false; | |
1421 | ||
1422 | if (! get_dlt (abfd, info, elf64_hppa_hash_table (info))) | |
1423 | return false; | |
1424 | ||
1425 | if (! get_plt (abfd, info, elf64_hppa_hash_table (info))) | |
1426 | return false; | |
1427 | ||
1428 | if (! get_opd (abfd, info, elf64_hppa_hash_table (info))) | |
1429 | return false; | |
1430 | ||
1431 | s = bfd_make_section(abfd, ".rela.dlt"); | |
1432 | if (s == NULL | |
1433 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1434 | | SEC_HAS_CONTENTS | |
1435 | | SEC_IN_MEMORY | |
1436 | | SEC_READONLY | |
1437 | | SEC_LINKER_CREATED)) | |
1438 | || !bfd_set_section_alignment (abfd, s, 3)) | |
1439 | return false; | |
1440 | elf64_hppa_hash_table (info)->dlt_rel_sec = s; | |
1441 | ||
1442 | s = bfd_make_section(abfd, ".rela.plt"); | |
1443 | if (s == NULL | |
1444 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1445 | | SEC_HAS_CONTENTS | |
1446 | | SEC_IN_MEMORY | |
1447 | | SEC_READONLY | |
1448 | | SEC_LINKER_CREATED)) | |
1449 | || !bfd_set_section_alignment (abfd, s, 3)) | |
1450 | return false; | |
1451 | elf64_hppa_hash_table (info)->plt_rel_sec = s; | |
1452 | ||
1453 | s = bfd_make_section(abfd, ".rela.data"); | |
1454 | if (s == NULL | |
1455 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1456 | | SEC_HAS_CONTENTS | |
1457 | | SEC_IN_MEMORY | |
1458 | | SEC_READONLY | |
1459 | | SEC_LINKER_CREATED)) | |
1460 | || !bfd_set_section_alignment (abfd, s, 3)) | |
1461 | return false; | |
1462 | elf64_hppa_hash_table (info)->other_rel_sec = s; | |
1463 | ||
1464 | s = bfd_make_section(abfd, ".rela.opd"); | |
1465 | if (s == NULL | |
1466 | || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | |
1467 | | SEC_HAS_CONTENTS | |
1468 | | SEC_IN_MEMORY | |
1469 | | SEC_READONLY | |
1470 | | SEC_LINKER_CREATED)) | |
1471 | || !bfd_set_section_alignment (abfd, s, 3)) | |
1472 | return false; | |
1473 | elf64_hppa_hash_table (info)->opd_rel_sec = s; | |
1474 | ||
1475 | return true; | |
1476 | } | |
1477 | ||
1478 | /* Allocate dynamic relocations for those symbols that turned out | |
1479 | to be dynamic. */ | |
1480 | ||
1481 | static boolean | |
1482 | allocate_dynrel_entries (dyn_h, data) | |
1483 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1484 | PTR data; | |
1485 | { | |
1486 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | |
1487 | struct elf64_hppa_link_hash_table *hppa_info; | |
1488 | struct elf64_hppa_dyn_reloc_entry *rent; | |
1489 | boolean dynamic_symbol, shared; | |
1490 | ||
1491 | hppa_info = elf64_hppa_hash_table (x->info); | |
1492 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info); | |
1493 | shared = x->info->shared; | |
1494 | ||
1495 | /* We may need to allocate relocations for a non-dynamic symbol | |
1496 | when creating a shared library. */ | |
1497 | if (!dynamic_symbol && !shared) | |
1498 | return true; | |
1499 | ||
1500 | /* Take care of the normal data relocations. */ | |
1501 | ||
1502 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
1503 | { | |
d663e1cd JL |
1504 | /* Allocate one iff we are building a shared library, the relocation |
1505 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
1506 | if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
1507 | continue; | |
1508 | ||
15bda425 JL |
1509 | hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela); |
1510 | ||
1511 | /* Make sure this symbol gets into the dynamic symbol table if it is | |
1512 | not already recorded. ?!? This should not be in the loop since | |
1513 | the symbol need only be added once. */ | |
47b7c2db AM |
1514 | if (dyn_h->h == 0 |
1515 | || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI)) | |
15bda425 JL |
1516 | if (!_bfd_elf64_link_record_local_dynamic_symbol |
1517 | (x->info, rent->sec->owner, dyn_h->sym_indx)) | |
1518 | return false; | |
1519 | } | |
1520 | ||
1521 | /* Take care of the GOT and PLT relocations. */ | |
1522 | ||
1523 | if ((dynamic_symbol || shared) && dyn_h->want_dlt) | |
1524 | hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela); | |
1525 | ||
1526 | /* If we are building a shared library, then every symbol that has an | |
1527 | opd entry will need an EPLT relocation to relocate the symbol's address | |
1528 | and __gp value based on the runtime load address. */ | |
1529 | if (shared && dyn_h->want_opd) | |
1530 | hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela); | |
1531 | ||
1532 | if (dyn_h->want_plt && dynamic_symbol) | |
1533 | { | |
1534 | bfd_size_type t = 0; | |
1535 | ||
1536 | /* Dynamic symbols get one IPLT relocation. Local symbols in | |
1537 | shared libraries get two REL relocations. Local symbols in | |
1538 | main applications get nothing. */ | |
1539 | if (dynamic_symbol) | |
1540 | t = sizeof (Elf64_External_Rela); | |
1541 | else if (shared) | |
1542 | t = 2 * sizeof (Elf64_External_Rela); | |
1543 | ||
1544 | hppa_info->plt_rel_sec->_raw_size += t; | |
1545 | } | |
1546 | ||
1547 | return true; | |
1548 | } | |
1549 | ||
1550 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1551 | regular object. */ | |
1552 | ||
1553 | static boolean | |
1554 | elf64_hppa_adjust_dynamic_symbol (info, h) | |
edd21aca | 1555 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
15bda425 JL |
1556 | struct elf_link_hash_entry *h; |
1557 | { | |
1558 | /* ??? Undefined symbols with PLT entries should be re-defined | |
1559 | to be the PLT entry. */ | |
1560 | ||
1561 | /* If this is a weak symbol, and there is a real definition, the | |
1562 | processor independent code will have arranged for us to see the | |
1563 | real definition first, and we can just use the same value. */ | |
1564 | if (h->weakdef != NULL) | |
1565 | { | |
1566 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
1567 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
1568 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
1569 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
1570 | return true; | |
1571 | } | |
1572 | ||
1573 | /* If this is a reference to a symbol defined by a dynamic object which | |
1574 | is not a function, we might allocate the symbol in our .dynbss section | |
1575 | and allocate a COPY dynamic relocation. | |
1576 | ||
1577 | But PA64 code is canonically PIC, so as a rule we can avoid this sort | |
1578 | of hackery. */ | |
1579 | ||
1580 | return true; | |
1581 | } | |
1582 | ||
47b7c2db AM |
1583 | /* This function is called via elf_link_hash_traverse to mark millicode |
1584 | symbols with a dynindx of -1 and to remove the string table reference | |
1585 | from the dynamic symbol table. If the symbol is not a millicode symbol, | |
1586 | elf64_hppa_mark_exported_functions is called. */ | |
1587 | ||
1588 | static boolean | |
1589 | elf64_hppa_mark_milli_and_exported_functions (h, data) | |
1590 | struct elf_link_hash_entry *h; | |
1591 | PTR data; | |
1592 | { | |
1593 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
1594 | struct elf_link_hash_entry *elf = h; | |
1595 | ||
1596 | if (elf->root.type == bfd_link_hash_warning) | |
1597 | elf = (struct elf_link_hash_entry *) elf->root.u.i.link; | |
1598 | ||
1599 | if (elf->type == STT_PARISC_MILLI) | |
1600 | { | |
1601 | if (elf->dynindx != -1) | |
1602 | { | |
1603 | elf->dynindx = -1; | |
1604 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
1605 | elf->dynstr_index); | |
1606 | } | |
1607 | return true; | |
1608 | } | |
1609 | ||
1610 | return elf64_hppa_mark_exported_functions (h, data); | |
1611 | } | |
1612 | ||
15bda425 JL |
1613 | /* Set the final sizes of the dynamic sections and allocate memory for |
1614 | the contents of our special sections. */ | |
1615 | ||
1616 | static boolean | |
1617 | elf64_hppa_size_dynamic_sections (output_bfd, info) | |
1618 | bfd *output_bfd; | |
1619 | struct bfd_link_info *info; | |
1620 | { | |
1621 | bfd *dynobj; | |
1622 | asection *s; | |
1623 | boolean plt; | |
1624 | boolean relocs; | |
1625 | boolean reltext; | |
15bda425 JL |
1626 | struct elf64_hppa_allocate_data data; |
1627 | struct elf64_hppa_link_hash_table *hppa_info; | |
1628 | ||
1629 | hppa_info = elf64_hppa_hash_table (info); | |
1630 | ||
1631 | dynobj = elf_hash_table (info)->dynobj; | |
1632 | BFD_ASSERT (dynobj != NULL); | |
1633 | ||
47b7c2db AM |
1634 | /* Mark each function this program exports so that we will allocate |
1635 | space in the .opd section for each function's FPTR. If we are | |
1636 | creating dynamic sections, change the dynamic index of millicode | |
1637 | symbols to -1 and remove them from the string table for .dynstr. | |
1638 | ||
1639 | We have to traverse the main linker hash table since we have to | |
1640 | find functions which may not have been mentioned in any relocs. */ | |
1641 | elf_link_hash_traverse (elf_hash_table (info), | |
1642 | (elf_hash_table (info)->dynamic_sections_created | |
1643 | ? elf64_hppa_mark_milli_and_exported_functions | |
1644 | : elf64_hppa_mark_exported_functions), | |
1645 | info); | |
1646 | ||
15bda425 JL |
1647 | if (elf_hash_table (info)->dynamic_sections_created) |
1648 | { | |
1649 | /* Set the contents of the .interp section to the interpreter. */ | |
1650 | if (! info->shared) | |
1651 | { | |
1652 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1653 | BFD_ASSERT (s != NULL); | |
1654 | s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; | |
1655 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
1656 | } | |
1657 | } | |
1658 | else | |
1659 | { | |
1660 | /* We may have created entries in the .rela.got section. | |
1661 | However, if we are not creating the dynamic sections, we will | |
1662 | not actually use these entries. Reset the size of .rela.dlt, | |
1663 | which will cause it to get stripped from the output file | |
1664 | below. */ | |
1665 | s = bfd_get_section_by_name (dynobj, ".rela.dlt"); | |
1666 | if (s != NULL) | |
1667 | s->_raw_size = 0; | |
1668 | } | |
1669 | ||
1670 | /* Allocate the GOT entries. */ | |
1671 | ||
1672 | data.info = info; | |
1673 | if (elf64_hppa_hash_table (info)->dlt_sec) | |
1674 | { | |
1675 | data.ofs = 0x0; | |
1676 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1677 | allocate_global_data_dlt, &data); | |
1678 | hppa_info->dlt_sec->_raw_size = data.ofs; | |
1679 | ||
1680 | data.ofs = 0x0; | |
1681 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1682 | allocate_global_data_plt, &data); | |
1683 | hppa_info->plt_sec->_raw_size = data.ofs; | |
1684 | ||
1685 | data.ofs = 0x0; | |
1686 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1687 | allocate_global_data_stub, &data); | |
1688 | hppa_info->stub_sec->_raw_size = data.ofs; | |
1689 | } | |
1690 | ||
15bda425 JL |
1691 | /* Allocate space for entries in the .opd section. */ |
1692 | if (elf64_hppa_hash_table (info)->opd_sec) | |
1693 | { | |
1694 | data.ofs = 0; | |
1695 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1696 | allocate_global_data_opd, &data); | |
1697 | hppa_info->opd_sec->_raw_size = data.ofs; | |
1698 | } | |
1699 | ||
1700 | /* Now allocate space for dynamic relocations, if necessary. */ | |
1701 | if (hppa_info->root.dynamic_sections_created) | |
1702 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
1703 | allocate_dynrel_entries, &data); | |
1704 | ||
1705 | /* The sizes of all the sections are set. Allocate memory for them. */ | |
1706 | plt = false; | |
1707 | relocs = false; | |
1708 | reltext = false; | |
1709 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1710 | { | |
1711 | const char *name; | |
1712 | boolean strip; | |
1713 | ||
1714 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1715 | continue; | |
1716 | ||
1717 | /* It's OK to base decisions on the section name, because none | |
1718 | of the dynobj section names depend upon the input files. */ | |
1719 | name = bfd_get_section_name (dynobj, s); | |
1720 | ||
1721 | strip = 0; | |
1722 | ||
1723 | if (strcmp (name, ".plt") == 0) | |
1724 | { | |
d663e1cd | 1725 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1726 | if (s->_raw_size == 0) |
1727 | { | |
15bda425 JL |
1728 | strip = true; |
1729 | } | |
1730 | else | |
1731 | { | |
1732 | /* Remember whether there is a PLT. */ | |
1733 | plt = true; | |
1734 | } | |
1735 | } | |
1736 | else if (strcmp (name, ".dlt") == 0) | |
1737 | { | |
d663e1cd | 1738 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1739 | if (s->_raw_size == 0) |
1740 | { | |
15bda425 JL |
1741 | strip = true; |
1742 | } | |
1743 | } | |
1744 | else if (strcmp (name, ".opd") == 0) | |
1745 | { | |
d663e1cd | 1746 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 JL |
1747 | if (s->_raw_size == 0) |
1748 | { | |
15bda425 JL |
1749 | strip = true; |
1750 | } | |
1751 | } | |
d663e1cd | 1752 | else if (strncmp (name, ".rela", 5) == 0) |
15bda425 | 1753 | { |
d663e1cd JL |
1754 | /* If we don't need this section, strip it from the output file. |
1755 | This is mostly to handle .rela.bss and .rela.plt. We must | |
1756 | create both sections in create_dynamic_sections, because they | |
1757 | must be created before the linker maps input sections to output | |
1758 | sections. The linker does that before adjust_dynamic_symbol | |
1759 | is called, and it is that function which decides whether | |
1760 | anything needs to go into these sections. */ | |
15bda425 JL |
1761 | if (s->_raw_size == 0) |
1762 | { | |
1763 | /* If we don't need this section, strip it from the | |
1764 | output file. This is mostly to handle .rela.bss and | |
1765 | .rela.plt. We must create both sections in | |
1766 | create_dynamic_sections, because they must be created | |
1767 | before the linker maps input sections to output | |
1768 | sections. The linker does that before | |
1769 | adjust_dynamic_symbol is called, and it is that | |
1770 | function which decides whether anything needs to go | |
1771 | into these sections. */ | |
1772 | strip = true; | |
1773 | } | |
1774 | else | |
1775 | { | |
1776 | asection *target; | |
1777 | ||
1778 | /* Remember whether there are any reloc sections other | |
1779 | than .rela.plt. */ | |
1780 | if (strcmp (name, ".rela.plt") != 0) | |
1781 | { | |
1782 | const char *outname; | |
1783 | ||
1784 | relocs = true; | |
1785 | ||
1786 | /* If this relocation section applies to a read only | |
1787 | section, then we probably need a DT_TEXTREL | |
1788 | entry. The entries in the .rela.plt section | |
1789 | really apply to the .got section, which we | |
1790 | created ourselves and so know is not readonly. */ | |
1791 | outname = bfd_get_section_name (output_bfd, | |
1792 | s->output_section); | |
1793 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
1794 | if (target != NULL | |
1795 | && (target->flags & SEC_READONLY) != 0 | |
1796 | && (target->flags & SEC_ALLOC) != 0) | |
1797 | reltext = true; | |
1798 | } | |
1799 | ||
1800 | /* We use the reloc_count field as a counter if we need | |
1801 | to copy relocs into the output file. */ | |
1802 | s->reloc_count = 0; | |
1803 | } | |
1804 | } | |
1805 | else if (strncmp (name, ".dlt", 4) != 0 | |
1806 | && strcmp (name, ".stub") != 0 | |
1807 | && strcmp (name, ".got") != 0) | |
1808 | { | |
1809 | /* It's not one of our sections, so don't allocate space. */ | |
1810 | continue; | |
1811 | } | |
1812 | ||
1813 | if (strip) | |
1814 | { | |
1815 | _bfd_strip_section_from_output (info, s); | |
1816 | continue; | |
1817 | } | |
1818 | ||
1819 | /* Allocate memory for the section contents if it has not | |
832d951b AM |
1820 | been allocated already. We use bfd_zalloc here in case |
1821 | unused entries are not reclaimed before the section's | |
1822 | contents are written out. This should not happen, but this | |
1823 | way if it does, we get a R_PARISC_NONE reloc instead of | |
1824 | garbage. */ | |
15bda425 JL |
1825 | if (s->contents == NULL) |
1826 | { | |
7a9af8c4 | 1827 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); |
15bda425 JL |
1828 | if (s->contents == NULL && s->_raw_size != 0) |
1829 | return false; | |
1830 | } | |
1831 | } | |
1832 | ||
1833 | if (elf_hash_table (info)->dynamic_sections_created) | |
1834 | { | |
1835 | /* Always create a DT_PLTGOT. It actually has nothing to do with | |
1836 | the PLT, it is how we communicate the __gp value of a load | |
1837 | module to the dynamic linker. */ | |
dc810e39 AM |
1838 | #define add_dynamic_entry(TAG, VAL) \ |
1839 | bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) | |
1840 | ||
1841 | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) | |
1842 | || !add_dynamic_entry (DT_PLTGOT, 0)) | |
15bda425 JL |
1843 | return false; |
1844 | ||
1845 | /* Add some entries to the .dynamic section. We fill in the | |
1846 | values later, in elf64_hppa_finish_dynamic_sections, but we | |
1847 | must add the entries now so that we get the correct size for | |
1848 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1849 | dynamic linker and used by the debugger. */ | |
1850 | if (! info->shared) | |
1851 | { | |
dc810e39 AM |
1852 | if (!add_dynamic_entry (DT_DEBUG, 0) |
1853 | || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) | |
1854 | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | |
15bda425 JL |
1855 | return false; |
1856 | } | |
1857 | ||
f2482cb2 NC |
1858 | /* Force DT_FLAGS to always be set. |
1859 | Required by HPUX 11.00 patch PHSS_26559. */ | |
1860 | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | |
1861 | return false; | |
1862 | ||
15bda425 JL |
1863 | if (plt) |
1864 | { | |
dc810e39 AM |
1865 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
1866 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1867 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
15bda425 JL |
1868 | return false; |
1869 | } | |
1870 | ||
1871 | if (relocs) | |
1872 | { | |
dc810e39 AM |
1873 | if (!add_dynamic_entry (DT_RELA, 0) |
1874 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1875 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) | |
15bda425 JL |
1876 | return false; |
1877 | } | |
1878 | ||
1879 | if (reltext) | |
1880 | { | |
dc810e39 | 1881 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
15bda425 | 1882 | return false; |
d6cf2879 | 1883 | info->flags |= DF_TEXTREL; |
15bda425 JL |
1884 | } |
1885 | } | |
dc810e39 | 1886 | #undef add_dynamic_entry |
15bda425 JL |
1887 | |
1888 | return true; | |
1889 | } | |
1890 | ||
1891 | /* Called after we have output the symbol into the dynamic symbol | |
1892 | table, but before we output the symbol into the normal symbol | |
1893 | table. | |
1894 | ||
1895 | For some symbols we had to change their address when outputting | |
1896 | the dynamic symbol table. We undo that change here so that | |
1897 | the symbols have their expected value in the normal symbol | |
1898 | table. Ick. */ | |
1899 | ||
1900 | static boolean | |
1901 | elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec) | |
edd21aca | 1902 | bfd *abfd ATTRIBUTE_UNUSED; |
15bda425 JL |
1903 | struct bfd_link_info *info; |
1904 | const char *name; | |
1905 | Elf_Internal_Sym *sym; | |
edd21aca | 1906 | asection *input_sec ATTRIBUTE_UNUSED; |
15bda425 JL |
1907 | { |
1908 | struct elf64_hppa_link_hash_table *hppa_info; | |
1909 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1910 | ||
1911 | /* We may be called with the file symbol or section symbols. | |
1912 | They never need munging, so it is safe to ignore them. */ | |
1913 | if (!name) | |
1914 | return true; | |
1915 | ||
1916 | /* Get the PA dyn_symbol (if any) associated with NAME. */ | |
1917 | hppa_info = elf64_hppa_hash_table (info); | |
1918 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
1919 | name, false, false); | |
1920 | ||
832d951b AM |
1921 | /* Function symbols for which we created .opd entries *may* have been |
1922 | munged by finish_dynamic_symbol and have to be un-munged here. | |
1923 | ||
1924 | Note that finish_dynamic_symbol sometimes turns dynamic symbols | |
1925 | into non-dynamic ones, so we initialize st_shndx to -1 in | |
1926 | mark_exported_functions and check to see if it was overwritten | |
1927 | here instead of just checking dyn_h->h->dynindx. */ | |
1928 | if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1) | |
15bda425 JL |
1929 | { |
1930 | /* Restore the saved value and section index. */ | |
1931 | sym->st_value = dyn_h->st_value; | |
fe8bc63d | 1932 | sym->st_shndx = dyn_h->st_shndx; |
15bda425 JL |
1933 | } |
1934 | ||
1935 | return true; | |
1936 | } | |
1937 | ||
1938 | /* Finish up dynamic symbol handling. We set the contents of various | |
1939 | dynamic sections here. */ | |
1940 | ||
1941 | static boolean | |
1942 | elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) | |
1943 | bfd *output_bfd; | |
1944 | struct bfd_link_info *info; | |
1945 | struct elf_link_hash_entry *h; | |
1946 | Elf_Internal_Sym *sym; | |
1947 | { | |
1948 | asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; | |
1949 | struct elf64_hppa_link_hash_table *hppa_info; | |
1950 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
1951 | ||
1952 | hppa_info = elf64_hppa_hash_table (info); | |
1953 | dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table, | |
1954 | h->root.root.string, false, false); | |
1955 | ||
1956 | stub = hppa_info->stub_sec; | |
1957 | splt = hppa_info->plt_sec; | |
1958 | sdlt = hppa_info->dlt_sec; | |
1959 | sopd = hppa_info->opd_sec; | |
1960 | spltrel = hppa_info->plt_rel_sec; | |
1961 | sdltrel = hppa_info->dlt_rel_sec; | |
1962 | ||
15bda425 JL |
1963 | /* Incredible. It is actually necessary to NOT use the symbol's real |
1964 | value when building the dynamic symbol table for a shared library. | |
1965 | At least for symbols that refer to functions. | |
1966 | ||
1967 | We will store a new value and section index into the symbol long | |
1968 | enough to output it into the dynamic symbol table, then we restore | |
1969 | the original values (in elf64_hppa_link_output_symbol_hook). */ | |
1970 | if (dyn_h && dyn_h->want_opd) | |
1971 | { | |
d663e1cd JL |
1972 | BFD_ASSERT (sopd != NULL) |
1973 | ||
15bda425 JL |
1974 | /* Save away the original value and section index so that we |
1975 | can restore them later. */ | |
1976 | dyn_h->st_value = sym->st_value; | |
1977 | dyn_h->st_shndx = sym->st_shndx; | |
1978 | ||
1979 | /* For the dynamic symbol table entry, we want the value to be | |
1980 | address of this symbol's entry within the .opd section. */ | |
1981 | sym->st_value = (dyn_h->opd_offset | |
1982 | + sopd->output_offset | |
1983 | + sopd->output_section->vma); | |
1984 | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
1985 | sopd->output_section); | |
1986 | } | |
1987 | ||
1988 | /* Initialize a .plt entry if requested. */ | |
1989 | if (dyn_h && dyn_h->want_plt | |
1990 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
1991 | { | |
1992 | bfd_vma value; | |
1993 | Elf_Internal_Rela rel; | |
947216bf | 1994 | bfd_byte *loc; |
15bda425 | 1995 | |
d663e1cd JL |
1996 | BFD_ASSERT (splt != NULL && spltrel != NULL) |
1997 | ||
15bda425 JL |
1998 | /* We do not actually care about the value in the PLT entry |
1999 | if we are creating a shared library and the symbol is | |
2000 | still undefined, we create a dynamic relocation to fill | |
2001 | in the correct value. */ | |
2002 | if (info->shared && h->root.type == bfd_link_hash_undefined) | |
2003 | value = 0; | |
2004 | else | |
2005 | value = (h->root.u.def.value + h->root.u.def.section->vma); | |
2006 | ||
fe8bc63d | 2007 | /* Fill in the entry in the procedure linkage table. |
15bda425 JL |
2008 | |
2009 | The format of a plt entry is | |
fe8bc63d | 2010 | <funcaddr> <__gp>. |
15bda425 JL |
2011 | |
2012 | plt_offset is the offset within the PLT section at which to | |
fe8bc63d | 2013 | install the PLT entry. |
15bda425 JL |
2014 | |
2015 | We are modifying the in-memory PLT contents here, so we do not add | |
2016 | in the output_offset of the PLT section. */ | |
2017 | ||
2018 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset); | |
2019 | value = _bfd_get_gp_value (splt->output_section->owner); | |
2020 | bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8); | |
2021 | ||
2022 | /* Create a dynamic IPLT relocation for this entry. | |
2023 | ||
2024 | We are creating a relocation in the output file's PLT section, | |
2025 | which is included within the DLT secton. So we do need to include | |
2026 | the PLT's output_offset in the computation of the relocation's | |
2027 | address. */ | |
2028 | rel.r_offset = (dyn_h->plt_offset + splt->output_offset | |
2029 | + splt->output_section->vma); | |
2030 | rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT); | |
2031 | rel.r_addend = 0; | |
2032 | ||
947216bf AM |
2033 | loc = spltrel->contents; |
2034 | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2035 | bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); | |
15bda425 JL |
2036 | } |
2037 | ||
2038 | /* Initialize an external call stub entry if requested. */ | |
2039 | if (dyn_h && dyn_h->want_stub | |
2040 | && elf64_hppa_dynamic_symbol_p (dyn_h->h, info)) | |
2041 | { | |
2042 | bfd_vma value; | |
2043 | int insn; | |
b352eebf | 2044 | unsigned int max_offset; |
15bda425 | 2045 | |
d663e1cd JL |
2046 | BFD_ASSERT (stub != NULL) |
2047 | ||
15bda425 JL |
2048 | /* Install the generic stub template. |
2049 | ||
2050 | We are modifying the contents of the stub section, so we do not | |
2051 | need to include the stub section's output_offset here. */ | |
2052 | memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub)); | |
2053 | ||
2054 | /* Fix up the first ldd instruction. | |
2055 | ||
2056 | We are modifying the contents of the STUB section in memory, | |
fe8bc63d | 2057 | so we do not need to include its output offset in this computation. |
15bda425 JL |
2058 | |
2059 | Note the plt_offset value is the value of the PLT entry relative to | |
2060 | the start of the PLT section. These instructions will reference | |
2061 | data relative to the value of __gp, which may not necessarily have | |
2062 | the same address as the start of the PLT section. | |
2063 | ||
2064 | gp_offset contains the offset of __gp within the PLT section. */ | |
2065 | value = dyn_h->plt_offset - hppa_info->gp_offset; | |
fe8bc63d | 2066 | |
15bda425 | 2067 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset); |
b352eebf AM |
2068 | if (output_bfd->arch_info->mach >= 25) |
2069 | { | |
2070 | /* Wide mode allows 16 bit offsets. */ | |
2071 | max_offset = 32768; | |
2072 | insn &= ~ 0xfff1; | |
dc810e39 | 2073 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2074 | } |
2075 | else | |
2076 | { | |
2077 | max_offset = 8192; | |
2078 | insn &= ~ 0x3ff1; | |
dc810e39 | 2079 | insn |= re_assemble_14 ((int) value); |
b352eebf AM |
2080 | } |
2081 | ||
2082 | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | |
2083 | { | |
2084 | (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), | |
2085 | dyn_h->root.string, | |
2086 | (long) value); | |
2087 | return false; | |
2088 | } | |
2089 | ||
dc810e39 | 2090 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2091 | stub->contents + dyn_h->stub_offset); |
2092 | ||
2093 | /* Fix up the second ldd instruction. */ | |
b352eebf | 2094 | value += 8; |
15bda425 | 2095 | insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8); |
b352eebf AM |
2096 | if (output_bfd->arch_info->mach >= 25) |
2097 | { | |
2098 | insn &= ~ 0xfff1; | |
dc810e39 | 2099 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2100 | } |
2101 | else | |
2102 | { | |
2103 | insn &= ~ 0x3ff1; | |
dc810e39 | 2104 | insn |= re_assemble_14 ((int) value); |
b352eebf | 2105 | } |
dc810e39 | 2106 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
15bda425 JL |
2107 | stub->contents + dyn_h->stub_offset + 8); |
2108 | } | |
2109 | ||
15bda425 JL |
2110 | return true; |
2111 | } | |
2112 | ||
2113 | /* The .opd section contains FPTRs for each function this file | |
2114 | exports. Initialize the FPTR entries. */ | |
2115 | ||
2116 | static boolean | |
2117 | elf64_hppa_finalize_opd (dyn_h, data) | |
2118 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2119 | PTR data; | |
2120 | { | |
2121 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2122 | struct elf64_hppa_link_hash_table *hppa_info; | |
3db4b612 | 2123 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2124 | asection *sopd; |
2125 | asection *sopdrel; | |
2126 | ||
2127 | hppa_info = elf64_hppa_hash_table (info); | |
2128 | sopd = hppa_info->opd_sec; | |
2129 | sopdrel = hppa_info->opd_rel_sec; | |
2130 | ||
3db4b612 | 2131 | if (h && dyn_h->want_opd) |
15bda425 JL |
2132 | { |
2133 | bfd_vma value; | |
2134 | ||
fe8bc63d | 2135 | /* The first two words of an .opd entry are zero. |
15bda425 JL |
2136 | |
2137 | We are modifying the contents of the OPD section in memory, so we | |
2138 | do not need to include its output offset in this computation. */ | |
2139 | memset (sopd->contents + dyn_h->opd_offset, 0, 16); | |
2140 | ||
2141 | value = (h->root.u.def.value | |
2142 | + h->root.u.def.section->output_section->vma | |
2143 | + h->root.u.def.section->output_offset); | |
2144 | ||
2145 | /* The next word is the address of the function. */ | |
2146 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16); | |
2147 | ||
2148 | /* The last word is our local __gp value. */ | |
2149 | value = _bfd_get_gp_value (sopd->output_section->owner); | |
2150 | bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24); | |
2151 | } | |
2152 | ||
2153 | /* If we are generating a shared library, we must generate EPLT relocations | |
2154 | for each entry in the .opd, even for static functions (they may have | |
2155 | had their address taken). */ | |
2156 | if (info->shared && dyn_h && dyn_h->want_opd) | |
2157 | { | |
947216bf AM |
2158 | Elf_Internal_Rela rel; |
2159 | bfd_byte *loc; | |
15bda425 JL |
2160 | int dynindx; |
2161 | ||
2162 | /* We may need to do a relocation against a local symbol, in | |
2163 | which case we have to look up it's dynamic symbol index off | |
2164 | the local symbol hash table. */ | |
2165 | if (h && h->dynindx != -1) | |
2166 | dynindx = h->dynindx; | |
2167 | else | |
2168 | dynindx | |
2169 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2170 | dyn_h->sym_indx); | |
2171 | ||
2172 | /* The offset of this relocation is the absolute address of the | |
2173 | .opd entry for this symbol. */ | |
2174 | rel.r_offset = (dyn_h->opd_offset + sopd->output_offset | |
2175 | + sopd->output_section->vma); | |
2176 | ||
2177 | /* If H is non-null, then we have an external symbol. | |
2178 | ||
2179 | It is imperative that we use a different dynamic symbol for the | |
2180 | EPLT relocation if the symbol has global scope. | |
2181 | ||
2182 | In the dynamic symbol table, the function symbol will have a value | |
2183 | which is address of the function's .opd entry. | |
2184 | ||
2185 | Thus, we can not use that dynamic symbol for the EPLT relocation | |
2186 | (if we did, the data in the .opd would reference itself rather | |
2187 | than the actual address of the function). Instead we have to use | |
2188 | a new dynamic symbol which has the same value as the original global | |
fe8bc63d | 2189 | function symbol. |
15bda425 JL |
2190 | |
2191 | We prefix the original symbol with a "." and use the new symbol in | |
2192 | the EPLT relocation. This new symbol has already been recorded in | |
2193 | the symbol table, we just have to look it up and use it. | |
2194 | ||
2195 | We do not have such problems with static functions because we do | |
2196 | not make their addresses in the dynamic symbol table point to | |
2197 | the .opd entry. Ultimately this should be safe since a static | |
2198 | function can not be directly referenced outside of its shared | |
2199 | library. | |
2200 | ||
2201 | We do have to play similar games for FPTR relocations in shared | |
2202 | libraries, including those for static symbols. See the FPTR | |
2203 | handling in elf64_hppa_finalize_dynreloc. */ | |
2204 | if (h) | |
2205 | { | |
2206 | char *new_name; | |
2207 | struct elf_link_hash_entry *nh; | |
2208 | ||
2209 | new_name = alloca (strlen (h->root.root.string) + 2); | |
2210 | new_name[0] = '.'; | |
2211 | strcpy (new_name + 1, h->root.root.string); | |
2212 | ||
2213 | nh = elf_link_hash_lookup (elf_hash_table (info), | |
2214 | new_name, false, false, false); | |
2215 | ||
2216 | /* All we really want from the new symbol is its dynamic | |
2217 | symbol index. */ | |
2218 | dynindx = nh->dynindx; | |
2219 | } | |
2220 | ||
2221 | rel.r_addend = 0; | |
2222 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | |
2223 | ||
947216bf AM |
2224 | loc = sopdrel->contents; |
2225 | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2226 | bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); | |
15bda425 JL |
2227 | } |
2228 | return true; | |
2229 | } | |
2230 | ||
2231 | /* The .dlt section contains addresses for items referenced through the | |
2232 | dlt. Note that we can have a DLTIND relocation for a local symbol, thus | |
2233 | we can not depend on finish_dynamic_symbol to initialize the .dlt. */ | |
2234 | ||
2235 | static boolean | |
2236 | elf64_hppa_finalize_dlt (dyn_h, data) | |
2237 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2238 | PTR data; | |
2239 | { | |
2240 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2241 | struct elf64_hppa_link_hash_table *hppa_info; | |
2242 | asection *sdlt, *sdltrel; | |
3db4b612 | 2243 | struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL; |
15bda425 JL |
2244 | |
2245 | hppa_info = elf64_hppa_hash_table (info); | |
2246 | ||
2247 | sdlt = hppa_info->dlt_sec; | |
2248 | sdltrel = hppa_info->dlt_rel_sec; | |
2249 | ||
2250 | /* H/DYN_H may refer to a local variable and we know it's | |
2251 | address, so there is no need to create a relocation. Just install | |
2252 | the proper value into the DLT, note this shortcut can not be | |
2253 | skipped when building a shared library. */ | |
3db4b612 | 2254 | if (! info->shared && h && dyn_h->want_dlt) |
15bda425 JL |
2255 | { |
2256 | bfd_vma value; | |
2257 | ||
2258 | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | |
fe8bc63d | 2259 | to point to the FPTR entry in the .opd section. |
15bda425 JL |
2260 | |
2261 | We include the OPD's output offset in this computation as | |
2262 | we are referring to an absolute address in the resulting | |
2263 | object file. */ | |
2264 | if (dyn_h->want_opd) | |
2265 | { | |
2266 | value = (dyn_h->opd_offset | |
2267 | + hppa_info->opd_sec->output_offset | |
2268 | + hppa_info->opd_sec->output_section->vma); | |
2269 | } | |
3db4b612 | 2270 | else if (h->root.u.def.section) |
15bda425 | 2271 | { |
3db4b612 | 2272 | value = h->root.u.def.value + h->root.u.def.section->output_offset; |
15bda425 JL |
2273 | if (h->root.u.def.section->output_section) |
2274 | value += h->root.u.def.section->output_section->vma; | |
2275 | else | |
2276 | value += h->root.u.def.section->vma; | |
2277 | } | |
3db4b612 JL |
2278 | else |
2279 | /* We have an undefined function reference. */ | |
2280 | value = 0; | |
15bda425 JL |
2281 | |
2282 | /* We do not need to include the output offset of the DLT section | |
2283 | here because we are modifying the in-memory contents. */ | |
2284 | bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset); | |
2285 | } | |
2286 | ||
2287 | /* Create a relocation for the DLT entry assocated with this symbol. | |
2288 | When building a shared library the symbol does not have to be dynamic. */ | |
2289 | if (dyn_h->want_dlt | |
2290 | && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared)) | |
2291 | { | |
947216bf AM |
2292 | Elf_Internal_Rela rel; |
2293 | bfd_byte *loc; | |
15bda425 JL |
2294 | int dynindx; |
2295 | ||
2296 | /* We may need to do a relocation against a local symbol, in | |
2297 | which case we have to look up it's dynamic symbol index off | |
2298 | the local symbol hash table. */ | |
2299 | if (h && h->dynindx != -1) | |
2300 | dynindx = h->dynindx; | |
2301 | else | |
2302 | dynindx | |
2303 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2304 | dyn_h->sym_indx); | |
2305 | ||
15bda425 JL |
2306 | /* Create a dynamic relocation for this entry. Do include the output |
2307 | offset of the DLT entry since we need an absolute address in the | |
2308 | resulting object file. */ | |
2309 | rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset | |
2310 | + sdlt->output_section->vma); | |
2311 | if (h && h->type == STT_FUNC) | |
2312 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); | |
2313 | else | |
2314 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | |
2315 | rel.r_addend = 0; | |
2316 | ||
947216bf AM |
2317 | loc = sdltrel->contents; |
2318 | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2319 | bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); | |
15bda425 JL |
2320 | } |
2321 | return true; | |
2322 | } | |
2323 | ||
2324 | /* Finalize the dynamic relocations. Specifically the FPTR relocations | |
2325 | for dynamic functions used to initialize static data. */ | |
2326 | ||
2327 | static boolean | |
2328 | elf64_hppa_finalize_dynreloc (dyn_h, data) | |
2329 | struct elf64_hppa_dyn_hash_entry *dyn_h; | |
2330 | PTR data; | |
2331 | { | |
2332 | struct bfd_link_info *info = (struct bfd_link_info *)data; | |
2333 | struct elf64_hppa_link_hash_table *hppa_info; | |
2334 | struct elf_link_hash_entry *h; | |
2335 | int dynamic_symbol; | |
2336 | ||
2337 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info); | |
2338 | ||
2339 | if (!dynamic_symbol && !info->shared) | |
2340 | return true; | |
2341 | ||
2342 | if (dyn_h->reloc_entries) | |
2343 | { | |
2344 | struct elf64_hppa_dyn_reloc_entry *rent; | |
2345 | int dynindx; | |
2346 | ||
2347 | hppa_info = elf64_hppa_hash_table (info); | |
2348 | h = dyn_h->h; | |
2349 | ||
2350 | /* We may need to do a relocation against a local symbol, in | |
2351 | which case we have to look up it's dynamic symbol index off | |
2352 | the local symbol hash table. */ | |
2353 | if (h && h->dynindx != -1) | |
2354 | dynindx = h->dynindx; | |
2355 | else | |
2356 | dynindx | |
2357 | = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner, | |
2358 | dyn_h->sym_indx); | |
2359 | ||
2360 | for (rent = dyn_h->reloc_entries; rent; rent = rent->next) | |
2361 | { | |
947216bf AM |
2362 | Elf_Internal_Rela rel; |
2363 | bfd_byte *loc; | |
15bda425 | 2364 | |
d663e1cd JL |
2365 | /* Allocate one iff we are building a shared library, the relocation |
2366 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
2367 | if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) | |
2368 | continue; | |
15bda425 | 2369 | |
fe8bc63d | 2370 | /* Create a dynamic relocation for this entry. |
15bda425 JL |
2371 | |
2372 | We need the output offset for the reloc's section because | |
2373 | we are creating an absolute address in the resulting object | |
2374 | file. */ | |
2375 | rel.r_offset = (rent->offset + rent->sec->output_offset | |
2376 | + rent->sec->output_section->vma); | |
2377 | ||
2378 | /* An FPTR64 relocation implies that we took the address of | |
2379 | a function and that the function has an entry in the .opd | |
2380 | section. We want the FPTR64 relocation to reference the | |
2381 | entry in .opd. | |
2382 | ||
2383 | We could munge the symbol value in the dynamic symbol table | |
2384 | (in fact we already do for functions with global scope) to point | |
2385 | to the .opd entry. Then we could use that dynamic symbol in | |
2386 | this relocation. | |
2387 | ||
2388 | Or we could do something sensible, not munge the symbol's | |
2389 | address and instead just use a different symbol to reference | |
2390 | the .opd entry. At least that seems sensible until you | |
2391 | realize there's no local dynamic symbols we can use for that | |
2392 | purpose. Thus the hair in the check_relocs routine. | |
fe8bc63d | 2393 | |
15bda425 JL |
2394 | We use a section symbol recorded by check_relocs as the |
2395 | base symbol for the relocation. The addend is the difference | |
2396 | between the section symbol and the address of the .opd entry. */ | |
3db4b612 | 2397 | if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd) |
15bda425 JL |
2398 | { |
2399 | bfd_vma value, value2; | |
15bda425 JL |
2400 | |
2401 | /* First compute the address of the opd entry for this symbol. */ | |
2402 | value = (dyn_h->opd_offset | |
2403 | + hppa_info->opd_sec->output_section->vma | |
2404 | + hppa_info->opd_sec->output_offset); | |
2405 | ||
2406 | /* Compute the value of the start of the section with | |
2407 | the relocation. */ | |
2408 | value2 = (rent->sec->output_section->vma | |
2409 | + rent->sec->output_offset); | |
2410 | ||
2411 | /* Compute the difference between the start of the section | |
2412 | with the relocation and the opd entry. */ | |
2413 | value -= value2; | |
fe8bc63d | 2414 | |
15bda425 JL |
2415 | /* The result becomes the addend of the relocation. */ |
2416 | rel.r_addend = value; | |
2417 | ||
2418 | /* The section symbol becomes the symbol for the dynamic | |
2419 | relocation. */ | |
2420 | dynindx | |
2421 | = _bfd_elf_link_lookup_local_dynindx (info, | |
2422 | rent->sec->owner, | |
2423 | rent->sec_symndx); | |
2424 | } | |
2425 | else | |
2426 | rel.r_addend = rent->addend; | |
2427 | ||
2428 | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | |
2429 | ||
947216bf AM |
2430 | loc = hppa_info->other_rel_sec->contents; |
2431 | loc += (hppa_info->other_rel_sec->reloc_count++ | |
2432 | * sizeof (Elf64_External_Rela)); | |
15bda425 | 2433 | bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, |
947216bf | 2434 | &rel, loc); |
15bda425 JL |
2435 | } |
2436 | } | |
2437 | ||
2438 | return true; | |
2439 | } | |
2440 | ||
5ac81c74 JL |
2441 | /* Used to decide how to sort relocs in an optimal manner for the |
2442 | dynamic linker, before writing them out. */ | |
2443 | ||
2444 | static enum elf_reloc_type_class | |
2445 | elf64_hppa_reloc_type_class (rela) | |
2446 | const Elf_Internal_Rela *rela; | |
2447 | { | |
2448 | if (ELF64_R_SYM (rela->r_info) == 0) | |
2449 | return reloc_class_relative; | |
2450 | ||
2451 | switch ((int) ELF64_R_TYPE (rela->r_info)) | |
2452 | { | |
2453 | case R_PARISC_IPLT: | |
2454 | return reloc_class_plt; | |
2455 | case R_PARISC_COPY: | |
2456 | return reloc_class_copy; | |
2457 | default: | |
2458 | return reloc_class_normal; | |
2459 | } | |
2460 | } | |
2461 | ||
15bda425 JL |
2462 | /* Finish up the dynamic sections. */ |
2463 | ||
2464 | static boolean | |
2465 | elf64_hppa_finish_dynamic_sections (output_bfd, info) | |
2466 | bfd *output_bfd; | |
2467 | struct bfd_link_info *info; | |
2468 | { | |
2469 | bfd *dynobj; | |
2470 | asection *sdyn; | |
2471 | struct elf64_hppa_link_hash_table *hppa_info; | |
2472 | ||
2473 | hppa_info = elf64_hppa_hash_table (info); | |
2474 | ||
2475 | /* Finalize the contents of the .opd section. */ | |
2476 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2477 | elf64_hppa_finalize_opd, | |
2478 | info); | |
2479 | ||
2480 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2481 | elf64_hppa_finalize_dynreloc, | |
2482 | info); | |
2483 | ||
2484 | /* Finalize the contents of the .dlt section. */ | |
2485 | dynobj = elf_hash_table (info)->dynobj; | |
2486 | /* Finalize the contents of the .dlt section. */ | |
2487 | elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table, | |
2488 | elf64_hppa_finalize_dlt, | |
2489 | info); | |
2490 | ||
15bda425 JL |
2491 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2492 | ||
2493 | if (elf_hash_table (info)->dynamic_sections_created) | |
2494 | { | |
2495 | Elf64_External_Dyn *dyncon, *dynconend; | |
15bda425 JL |
2496 | |
2497 | BFD_ASSERT (sdyn != NULL); | |
2498 | ||
2499 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
2500 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
2501 | for (; dyncon < dynconend; dyncon++) | |
2502 | { | |
2503 | Elf_Internal_Dyn dyn; | |
2504 | asection *s; | |
2505 | ||
2506 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2507 | ||
2508 | switch (dyn.d_tag) | |
2509 | { | |
2510 | default: | |
2511 | break; | |
2512 | ||
2513 | case DT_HP_LOAD_MAP: | |
2514 | /* Compute the absolute address of 16byte scratchpad area | |
2515 | for the dynamic linker. | |
2516 | ||
2517 | By convention the linker script will allocate the scratchpad | |
2518 | area at the start of the .data section. So all we have to | |
2519 | to is find the start of the .data section. */ | |
2520 | s = bfd_get_section_by_name (output_bfd, ".data"); | |
2521 | dyn.d_un.d_ptr = s->vma; | |
2522 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2523 | break; | |
2524 | ||
2525 | case DT_PLTGOT: | |
2526 | /* HP's use PLTGOT to set the GOT register. */ | |
2527 | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | |
2528 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2529 | break; | |
2530 | ||
2531 | case DT_JMPREL: | |
2532 | s = hppa_info->plt_rel_sec; | |
2533 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2534 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2535 | break; | |
2536 | ||
2537 | case DT_PLTRELSZ: | |
2538 | s = hppa_info->plt_rel_sec; | |
2539 | dyn.d_un.d_val = s->_raw_size; | |
2540 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2541 | break; | |
2542 | ||
2543 | case DT_RELA: | |
2544 | s = hppa_info->other_rel_sec; | |
5ac81c74 | 2545 | if (! s || ! s->_raw_size) |
15bda425 | 2546 | s = hppa_info->dlt_rel_sec; |
5ac81c74 JL |
2547 | if (! s || ! s->_raw_size) |
2548 | s = hppa_info->opd_rel_sec; | |
15bda425 JL |
2549 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2550 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2551 | break; | |
2552 | ||
2553 | case DT_RELASZ: | |
2554 | s = hppa_info->other_rel_sec; | |
2555 | dyn.d_un.d_val = s->_raw_size; | |
2556 | s = hppa_info->dlt_rel_sec; | |
2557 | dyn.d_un.d_val += s->_raw_size; | |
2558 | s = hppa_info->opd_rel_sec; | |
2559 | dyn.d_un.d_val += s->_raw_size; | |
2560 | /* There is some question about whether or not the size of | |
2561 | the PLT relocs should be included here. HP's tools do | |
2562 | it, so we'll emulate them. */ | |
2563 | s = hppa_info->plt_rel_sec; | |
2564 | dyn.d_un.d_val += s->_raw_size; | |
2565 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2566 | break; | |
2567 | ||
2568 | } | |
2569 | } | |
2570 | } | |
2571 | ||
2572 | return true; | |
2573 | } | |
2574 | ||
15bda425 JL |
2575 | /* Return the number of additional phdrs we will need. |
2576 | ||
2577 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2578 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2579 | |
2580 | This routine indicates that the backend needs one additional program | |
2581 | header for that case. | |
2582 | ||
2583 | Note we do not have access to the link info structure here, so we have | |
2584 | to guess whether or not we are building a shared library based on the | |
2585 | existence of a .interp section. */ | |
2586 | ||
2587 | static int | |
2588 | elf64_hppa_additional_program_headers (abfd) | |
2589 | bfd *abfd; | |
2590 | { | |
2591 | asection *s; | |
2592 | ||
2593 | /* If we are creating a shared library, then we have to create a | |
2594 | PT_PHDR segment. HP's dynamic linker chokes without it. */ | |
2595 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2596 | if (! s) | |
2597 | return 1; | |
2598 | return 0; | |
2599 | } | |
2600 | ||
2601 | /* Allocate and initialize any program headers required by this | |
2602 | specific backend. | |
2603 | ||
2604 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2605 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2606 | |
2607 | This allocates the PT_PHDR and initializes it in a manner suitable | |
fe8bc63d | 2608 | for the HP linker. |
15bda425 JL |
2609 | |
2610 | Note we do not have access to the link info structure here, so we have | |
2611 | to guess whether or not we are building a shared library based on the | |
2612 | existence of a .interp section. */ | |
2613 | ||
2614 | static boolean | |
2615 | elf64_hppa_modify_segment_map (abfd) | |
2616 | bfd *abfd; | |
2617 | { | |
edd21aca | 2618 | struct elf_segment_map *m; |
15bda425 JL |
2619 | asection *s; |
2620 | ||
2621 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2622 | if (! s) | |
2623 | { | |
2624 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2625 | if (m->p_type == PT_PHDR) | |
2626 | break; | |
2627 | if (m == NULL) | |
2628 | { | |
dc810e39 AM |
2629 | m = ((struct elf_segment_map *) |
2630 | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | |
15bda425 JL |
2631 | if (m == NULL) |
2632 | return false; | |
2633 | ||
2634 | m->p_type = PT_PHDR; | |
2635 | m->p_flags = PF_R | PF_X; | |
2636 | m->p_flags_valid = 1; | |
2637 | m->p_paddr_valid = 1; | |
2638 | m->includes_phdrs = 1; | |
2639 | ||
2640 | m->next = elf_tdata (abfd)->segment_map; | |
2641 | elf_tdata (abfd)->segment_map = m; | |
2642 | } | |
2643 | } | |
2644 | ||
2645 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2646 | if (m->p_type == PT_LOAD) | |
2647 | { | |
0ba2a60e | 2648 | unsigned int i; |
15bda425 JL |
2649 | |
2650 | for (i = 0; i < m->count; i++) | |
2651 | { | |
2652 | /* The code "hint" is not really a hint. It is a requirement | |
2653 | for certain versions of the HP dynamic linker. Worse yet, | |
2654 | it must be set even if the shared library does not have | |
2655 | any code in its "text" segment (thus the check for .hash | |
2656 | to catch this situation). */ | |
2657 | if (m->sections[i]->flags & SEC_CODE | |
2658 | || (strcmp (m->sections[i]->name, ".hash") == 0)) | |
2659 | m->p_flags |= (PF_X | PF_HP_CODE); | |
2660 | } | |
2661 | } | |
2662 | ||
2663 | return true; | |
2664 | } | |
2665 | ||
3fab46d0 AM |
2666 | /* Called when writing out an object file to decide the type of a |
2667 | symbol. */ | |
2668 | static int | |
2669 | elf64_hppa_elf_get_symbol_type (elf_sym, type) | |
2670 | Elf_Internal_Sym *elf_sym; | |
2671 | int type; | |
2672 | { | |
2673 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
2674 | return STT_PARISC_MILLI; | |
2675 | else | |
2676 | return type; | |
2677 | } | |
2678 | ||
15bda425 JL |
2679 | /* The hash bucket size is the standard one, namely 4. */ |
2680 | ||
2681 | const struct elf_size_info hppa64_elf_size_info = | |
2682 | { | |
2683 | sizeof (Elf64_External_Ehdr), | |
2684 | sizeof (Elf64_External_Phdr), | |
2685 | sizeof (Elf64_External_Shdr), | |
2686 | sizeof (Elf64_External_Rel), | |
2687 | sizeof (Elf64_External_Rela), | |
2688 | sizeof (Elf64_External_Sym), | |
2689 | sizeof (Elf64_External_Dyn), | |
2690 | sizeof (Elf_External_Note), | |
2691 | 4, | |
2692 | 1, | |
2693 | 64, 8, | |
2694 | ELFCLASS64, EV_CURRENT, | |
2695 | bfd_elf64_write_out_phdrs, | |
2696 | bfd_elf64_write_shdrs_and_ehdr, | |
2697 | bfd_elf64_write_relocs, | |
73ff0d56 | 2698 | bfd_elf64_swap_symbol_in, |
15bda425 JL |
2699 | bfd_elf64_swap_symbol_out, |
2700 | bfd_elf64_slurp_reloc_table, | |
2701 | bfd_elf64_slurp_symbol_table, | |
2702 | bfd_elf64_swap_dyn_in, | |
2703 | bfd_elf64_swap_dyn_out, | |
947216bf AM |
2704 | bfd_elf64_swap_reloc_in, |
2705 | bfd_elf64_swap_reloc_out, | |
2706 | bfd_elf64_swap_reloca_in, | |
2707 | bfd_elf64_swap_reloca_out | |
15bda425 JL |
2708 | }; |
2709 | ||
2710 | #define TARGET_BIG_SYM bfd_elf64_hppa_vec | |
2711 | #define TARGET_BIG_NAME "elf64-hppa" | |
2712 | #define ELF_ARCH bfd_arch_hppa | |
2713 | #define ELF_MACHINE_CODE EM_PARISC | |
2714 | /* This is not strictly correct. The maximum page size for PA2.0 is | |
2715 | 64M. But everything still uses 4k. */ | |
2716 | #define ELF_MAXPAGESIZE 0x1000 | |
2717 | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | |
2718 | #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name | |
2719 | #define elf_info_to_howto elf_hppa_info_to_howto | |
2720 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
2721 | ||
2722 | #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr | |
2723 | #define elf_backend_object_p elf64_hppa_object_p | |
2724 | #define elf_backend_final_write_processing \ | |
2725 | elf_hppa_final_write_processing | |
99c79b2e | 2726 | #define elf_backend_fake_sections elf_hppa_fake_sections |
15bda425 JL |
2727 | #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook |
2728 | ||
f0fe0e16 | 2729 | #define elf_backend_relocate_section elf_hppa_relocate_section |
15bda425 JL |
2730 | |
2731 | #define bfd_elf64_bfd_final_link elf_hppa_final_link | |
2732 | ||
2733 | #define elf_backend_create_dynamic_sections \ | |
2734 | elf64_hppa_create_dynamic_sections | |
2735 | #define elf_backend_post_process_headers elf64_hppa_post_process_headers | |
2736 | ||
2737 | #define elf_backend_adjust_dynamic_symbol \ | |
2738 | elf64_hppa_adjust_dynamic_symbol | |
2739 | ||
2740 | #define elf_backend_size_dynamic_sections \ | |
2741 | elf64_hppa_size_dynamic_sections | |
2742 | ||
2743 | #define elf_backend_finish_dynamic_symbol \ | |
2744 | elf64_hppa_finish_dynamic_symbol | |
2745 | #define elf_backend_finish_dynamic_sections \ | |
2746 | elf64_hppa_finish_dynamic_sections | |
2747 | ||
2748 | /* Stuff for the BFD linker: */ | |
2749 | #define bfd_elf64_bfd_link_hash_table_create \ | |
2750 | elf64_hppa_hash_table_create | |
2751 | ||
2752 | #define elf_backend_check_relocs \ | |
2753 | elf64_hppa_check_relocs | |
2754 | ||
2755 | #define elf_backend_size_info \ | |
2756 | hppa64_elf_size_info | |
2757 | ||
2758 | #define elf_backend_additional_program_headers \ | |
2759 | elf64_hppa_additional_program_headers | |
2760 | ||
2761 | #define elf_backend_modify_segment_map \ | |
2762 | elf64_hppa_modify_segment_map | |
2763 | ||
2764 | #define elf_backend_link_output_symbol_hook \ | |
2765 | elf64_hppa_link_output_symbol_hook | |
2766 | ||
15bda425 JL |
2767 | #define elf_backend_want_got_plt 0 |
2768 | #define elf_backend_plt_readonly 0 | |
2769 | #define elf_backend_want_plt_sym 0 | |
2770 | #define elf_backend_got_header_size 0 | |
2771 | #define elf_backend_plt_header_size 0 | |
2772 | #define elf_backend_type_change_ok true | |
3fab46d0 | 2773 | #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type |
5ac81c74 | 2774 | #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class |
f0fe0e16 | 2775 | #define elf_backend_rela_normal 1 |
15bda425 JL |
2776 | |
2777 | #include "elf64-target.h" | |
d952f17a AM |
2778 | |
2779 | #undef TARGET_BIG_SYM | |
2780 | #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec | |
2781 | #undef TARGET_BIG_NAME | |
2782 | #define TARGET_BIG_NAME "elf64-hppa-linux" | |
2783 | ||
2784 | #define INCLUDED_TARGET_FILE 1 | |
2785 | #include "elf64-target.h" |