]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Perform non-arithmetic operations on values, for GDB. |
67e9b3b3 PS |
2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994 |
3 | Free Software Foundation, Inc. | |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
06b6c733 | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
06b6c733 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
06b6c733 | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
06b6c733 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 20 | |
bd5635a1 | 21 | #include "defs.h" |
bd5635a1 | 22 | #include "symtab.h" |
01be6913 | 23 | #include "gdbtypes.h" |
bd5635a1 RP |
24 | #include "value.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcore.h" | |
28 | #include "target.h" | |
2e4964ad | 29 | #include "demangle.h" |
54023465 | 30 | #include "language.h" |
bd5635a1 RP |
31 | |
32 | #include <errno.h> | |
33 | ||
34 | /* Local functions. */ | |
01be6913 | 35 | |
b5728692 SG |
36 | static int |
37 | typecmp PARAMS ((int staticp, struct type *t1[], value t2[])); | |
38 | ||
01be6913 PB |
39 | static CORE_ADDR |
40 | find_function_addr PARAMS ((value, struct type **)); | |
41 | ||
42 | static CORE_ADDR | |
43 | value_push PARAMS ((CORE_ADDR, value)); | |
44 | ||
45 | static CORE_ADDR | |
46 | value_arg_push PARAMS ((CORE_ADDR, value)); | |
47 | ||
48 | static value | |
49 | search_struct_field PARAMS ((char *, value, int, struct type *, int)); | |
50 | ||
51 | static value | |
bac89d6c | 52 | search_struct_method PARAMS ((char *, value *, value *, int, int *, |
01be6913 PB |
53 | struct type *)); |
54 | ||
55 | static int | |
56 | check_field_in PARAMS ((struct type *, const char *)); | |
57 | ||
a163ddec MT |
58 | static CORE_ADDR |
59 | allocate_space_in_inferior PARAMS ((int)); | |
60 | ||
bd5635a1 | 61 | \f |
a163ddec MT |
62 | /* Allocate NBYTES of space in the inferior using the inferior's malloc |
63 | and return a value that is a pointer to the allocated space. */ | |
64 | ||
65 | static CORE_ADDR | |
66 | allocate_space_in_inferior (len) | |
67 | int len; | |
68 | { | |
69 | register value val; | |
70 | register struct symbol *sym; | |
71 | struct minimal_symbol *msymbol; | |
72 | struct type *type; | |
73 | value blocklen; | |
74 | LONGEST maddr; | |
75 | ||
76 | /* Find the address of malloc in the inferior. */ | |
77 | ||
78 | sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL); | |
79 | if (sym != NULL) | |
80 | { | |
81 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
82 | { | |
83 | error ("\"malloc\" exists in this program but is not a function."); | |
84 | } | |
479fdd26 | 85 | val = value_of_variable (sym, NULL); |
a163ddec MT |
86 | } |
87 | else | |
88 | { | |
89 | msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL); | |
90 | if (msymbol != NULL) | |
91 | { | |
92 | type = lookup_pointer_type (builtin_type_char); | |
93 | type = lookup_function_type (type); | |
94 | type = lookup_pointer_type (type); | |
95 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
96 | val = value_from_longest (type, maddr); | |
97 | } | |
98 | else | |
99 | { | |
100 | error ("evaluation of this expression requires the program to have a function \"malloc\"."); | |
101 | } | |
102 | } | |
103 | ||
104 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
105 | val = call_function_by_hand (val, 1, &blocklen); | |
106 | if (value_logical_not (val)) | |
107 | { | |
108 | error ("No memory available to program."); | |
109 | } | |
110 | return (value_as_long (val)); | |
111 | } | |
112 | ||
bd5635a1 RP |
113 | /* Cast value ARG2 to type TYPE and return as a value. |
114 | More general than a C cast: accepts any two types of the same length, | |
115 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
54023465 | 116 | /* In C++, casts may change pointer or object representations. */ |
bd5635a1 RP |
117 | |
118 | value | |
119 | value_cast (type, arg2) | |
120 | struct type *type; | |
121 | register value arg2; | |
122 | { | |
123 | register enum type_code code1; | |
124 | register enum type_code code2; | |
125 | register int scalar; | |
126 | ||
127 | /* Coerce arrays but not enums. Enums will work as-is | |
128 | and coercing them would cause an infinite recursion. */ | |
129 | if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM) | |
130 | COERCE_ARRAY (arg2); | |
131 | ||
132 | code1 = TYPE_CODE (type); | |
133 | code2 = TYPE_CODE (VALUE_TYPE (arg2)); | |
134 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
135 | || code2 == TYPE_CODE_ENUM); | |
136 | ||
54023465 JK |
137 | if ( code1 == TYPE_CODE_STRUCT |
138 | && code2 == TYPE_CODE_STRUCT | |
139 | && TYPE_NAME (type) != 0) | |
140 | { | |
141 | /* Look in the type of the source to see if it contains the | |
142 | type of the target as a superclass. If so, we'll need to | |
143 | offset the object in addition to changing its type. */ | |
144 | value v = search_struct_field (type_name_no_tag (type), | |
145 | arg2, 0, VALUE_TYPE (arg2), 1); | |
146 | if (v) | |
147 | { | |
148 | VALUE_TYPE (v) = type; | |
149 | return v; | |
150 | } | |
151 | } | |
bd5635a1 RP |
152 | if (code1 == TYPE_CODE_FLT && scalar) |
153 | return value_from_double (type, value_as_double (arg2)); | |
154 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM) | |
155 | && (scalar || code2 == TYPE_CODE_PTR)) | |
06b6c733 | 156 | return value_from_longest (type, value_as_long (arg2)); |
bd5635a1 RP |
157 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2))) |
158 | { | |
159 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
160 | { | |
161 | /* Look in the type of the source to see if it contains the | |
162 | type of the target as a superclass. If so, we'll need to | |
163 | offset the pointer rather than just change its type. */ | |
164 | struct type *t1 = TYPE_TARGET_TYPE (type); | |
165 | struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); | |
2a5ec41d | 166 | if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT |
bd5635a1 RP |
167 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
168 | && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */ | |
169 | { | |
170 | value v = search_struct_field (type_name_no_tag (t1), | |
d3bab255 | 171 | value_ind (arg2), 0, t2, 1); |
bd5635a1 RP |
172 | if (v) |
173 | { | |
174 | v = value_addr (v); | |
175 | VALUE_TYPE (v) = type; | |
176 | return v; | |
177 | } | |
178 | } | |
179 | /* No superclass found, just fall through to change ptr type. */ | |
180 | } | |
181 | VALUE_TYPE (arg2) = type; | |
182 | return arg2; | |
183 | } | |
184 | else if (VALUE_LVAL (arg2) == lval_memory) | |
185 | { | |
186 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2)); | |
187 | } | |
d11c44f1 JG |
188 | else if (code1 == TYPE_CODE_VOID) |
189 | { | |
190 | return value_zero (builtin_type_void, not_lval); | |
191 | } | |
bd5635a1 RP |
192 | else |
193 | { | |
194 | error ("Invalid cast."); | |
195 | return 0; | |
196 | } | |
197 | } | |
198 | ||
199 | /* Create a value of type TYPE that is zero, and return it. */ | |
200 | ||
201 | value | |
202 | value_zero (type, lv) | |
203 | struct type *type; | |
204 | enum lval_type lv; | |
205 | { | |
206 | register value val = allocate_value (type); | |
207 | ||
4ed3a9ea | 208 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type)); |
bd5635a1 RP |
209 | VALUE_LVAL (val) = lv; |
210 | ||
211 | return val; | |
212 | } | |
213 | ||
214 | /* Return a value with type TYPE located at ADDR. | |
215 | ||
216 | Call value_at only if the data needs to be fetched immediately; | |
217 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
218 | value_at_lazy instead. value_at_lazy simply records the address of | |
219 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
220 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
221 | the contents are actually required. */ | |
222 | ||
223 | value | |
224 | value_at (type, addr) | |
225 | struct type *type; | |
226 | CORE_ADDR addr; | |
227 | { | |
228 | register value val = allocate_value (type); | |
229 | ||
230 | read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type)); | |
231 | ||
232 | VALUE_LVAL (val) = lval_memory; | |
233 | VALUE_ADDRESS (val) = addr; | |
234 | ||
235 | return val; | |
236 | } | |
237 | ||
238 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
239 | ||
240 | value | |
241 | value_at_lazy (type, addr) | |
242 | struct type *type; | |
243 | CORE_ADDR addr; | |
244 | { | |
245 | register value val = allocate_value (type); | |
246 | ||
247 | VALUE_LVAL (val) = lval_memory; | |
248 | VALUE_ADDRESS (val) = addr; | |
249 | VALUE_LAZY (val) = 1; | |
250 | ||
251 | return val; | |
252 | } | |
253 | ||
254 | /* Called only from the VALUE_CONTENTS macro, if the current data for | |
255 | a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the | |
256 | data from the user's process, and clears the lazy flag to indicate | |
257 | that the data in the buffer is valid. | |
258 | ||
9cb602e1 JG |
259 | If the value is zero-length, we avoid calling read_memory, which would |
260 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
261 | ||
bd5635a1 RP |
262 | This function returns a value because it is used in the VALUE_CONTENTS |
263 | macro as part of an expression, where a void would not work. The | |
264 | value is ignored. */ | |
265 | ||
266 | int | |
267 | value_fetch_lazy (val) | |
268 | register value val; | |
269 | { | |
270 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
271 | ||
9cb602e1 JG |
272 | if (TYPE_LENGTH (VALUE_TYPE (val))) |
273 | read_memory (addr, VALUE_CONTENTS_RAW (val), | |
274 | TYPE_LENGTH (VALUE_TYPE (val))); | |
bd5635a1 RP |
275 | VALUE_LAZY (val) = 0; |
276 | return 0; | |
277 | } | |
278 | ||
279 | ||
280 | /* Store the contents of FROMVAL into the location of TOVAL. | |
281 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
282 | ||
283 | value | |
284 | value_assign (toval, fromval) | |
285 | register value toval, fromval; | |
286 | { | |
67e9b3b3 | 287 | register struct type *type; |
bd5635a1 RP |
288 | register value val; |
289 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
bd5635a1 RP |
290 | int use_buffer = 0; |
291 | ||
30974778 JK |
292 | if (!toval->modifiable) |
293 | error ("Left operand of assignment is not a modifiable lvalue."); | |
294 | ||
bd5635a1 | 295 | COERCE_ARRAY (fromval); |
8e9a3f3b | 296 | COERCE_REF (toval); |
bd5635a1 | 297 | |
67e9b3b3 | 298 | type = VALUE_TYPE (toval); |
bd5635a1 RP |
299 | if (VALUE_LVAL (toval) != lval_internalvar) |
300 | fromval = value_cast (type, fromval); | |
301 | ||
302 | /* If TOVAL is a special machine register requiring conversion | |
303 | of program values to a special raw format, | |
304 | convert FROMVAL's contents now, with result in `raw_buffer', | |
305 | and set USE_BUFFER to the number of bytes to write. */ | |
306 | ||
ad09cb2b | 307 | #ifdef REGISTER_CONVERTIBLE |
bd5635a1 RP |
308 | if (VALUE_REGNO (toval) >= 0 |
309 | && REGISTER_CONVERTIBLE (VALUE_REGNO (toval))) | |
310 | { | |
311 | int regno = VALUE_REGNO (toval); | |
ad09cb2b PS |
312 | if (REGISTER_CONVERTIBLE (regno)) |
313 | { | |
314 | REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno, | |
315 | VALUE_CONTENTS (fromval), raw_buffer); | |
316 | use_buffer = REGISTER_RAW_SIZE (regno); | |
317 | } | |
bd5635a1 | 318 | } |
ad09cb2b | 319 | #endif |
bd5635a1 RP |
320 | |
321 | switch (VALUE_LVAL (toval)) | |
322 | { | |
323 | case lval_internalvar: | |
324 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
325 | break; | |
326 | ||
327 | case lval_internalvar_component: | |
328 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
329 | VALUE_OFFSET (toval), | |
330 | VALUE_BITPOS (toval), | |
331 | VALUE_BITSIZE (toval), | |
332 | fromval); | |
333 | break; | |
334 | ||
335 | case lval_memory: | |
336 | if (VALUE_BITSIZE (toval)) | |
337 | { | |
4d52ec86 JK |
338 | char buffer[sizeof (LONGEST)]; |
339 | /* We assume that the argument to read_memory is in units of | |
340 | host chars. FIXME: Is that correct? */ | |
341 | int len = (VALUE_BITPOS (toval) | |
342 | + VALUE_BITSIZE (toval) | |
343 | + HOST_CHAR_BIT - 1) | |
344 | / HOST_CHAR_BIT; | |
ad09cb2b | 345 | |
4d52ec86 | 346 | if (len > sizeof (LONGEST)) |
ad09cb2b PS |
347 | error ("Can't handle bitfields which don't fit in a %d bit word.", |
348 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
4d52ec86 | 349 | |
bd5635a1 | 350 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
4d52ec86 JK |
351 | buffer, len); |
352 | modify_field (buffer, value_as_long (fromval), | |
bd5635a1 RP |
353 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
354 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
4d52ec86 | 355 | buffer, len); |
bd5635a1 RP |
356 | } |
357 | else if (use_buffer) | |
358 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
359 | raw_buffer, use_buffer); | |
360 | else | |
361 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
362 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
363 | break; | |
364 | ||
365 | case lval_register: | |
366 | if (VALUE_BITSIZE (toval)) | |
367 | { | |
ad09cb2b | 368 | char buffer[sizeof (LONGEST)]; |
4d52ec86 | 369 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
ad09cb2b PS |
370 | |
371 | if (len > sizeof (LONGEST)) | |
372 | error ("Can't handle bitfields in registers larger than %d bits.", | |
373 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
374 | ||
375 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
376 | > len * HOST_CHAR_BIT) | |
377 | /* Getting this right would involve being very careful about | |
378 | byte order. */ | |
379 | error ("\ | |
380 | Can't handle bitfield which doesn't fit in a single register."); | |
381 | ||
4d52ec86 JK |
382 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
383 | buffer, len); | |
384 | modify_field (buffer, value_as_long (fromval), | |
385 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
386 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
387 | buffer, len); | |
bd5635a1 RP |
388 | } |
389 | else if (use_buffer) | |
390 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
391 | raw_buffer, use_buffer); | |
392 | else | |
54023465 JK |
393 | { |
394 | /* Do any conversion necessary when storing this type to more | |
395 | than one register. */ | |
396 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
397 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
398 | REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer); | |
399 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
400 | raw_buffer, TYPE_LENGTH (type)); | |
401 | #else | |
402 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
403 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
404 | #endif | |
405 | } | |
79971d11 JK |
406 | /* Assigning to the stack pointer, frame pointer, and other |
407 | (architecture and calling convention specific) registers may | |
408 | cause the frame cache to be out of date. We just do this | |
409 | on all assignments to registers for simplicity; I doubt the slowdown | |
410 | matters. */ | |
411 | reinit_frame_cache (); | |
bd5635a1 RP |
412 | break; |
413 | ||
414 | case lval_reg_frame_relative: | |
415 | { | |
416 | /* value is stored in a series of registers in the frame | |
417 | specified by the structure. Copy that value out, modify | |
418 | it, and copy it back in. */ | |
419 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
420 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
421 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
422 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
423 | int amount_copied; | |
4d52ec86 JK |
424 | |
425 | /* Make the buffer large enough in all cases. */ | |
426 | char *buffer = (char *) alloca (amount_to_copy | |
427 | + sizeof (LONGEST) | |
428 | + MAX_REGISTER_RAW_SIZE); | |
429 | ||
bd5635a1 RP |
430 | int regno; |
431 | FRAME frame; | |
432 | ||
433 | /* Figure out which frame this is in currently. */ | |
434 | for (frame = get_current_frame (); | |
435 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
436 | frame = get_prev_frame (frame)) | |
437 | ; | |
438 | ||
439 | if (!frame) | |
440 | error ("Value being assigned to is no longer active."); | |
441 | ||
442 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
443 | ||
444 | /* Copy it out. */ | |
445 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
446 | amount_copied = 0); | |
447 | amount_copied < amount_to_copy; | |
448 | amount_copied += reg_size, regno++) | |
449 | { | |
450 | get_saved_register (buffer + amount_copied, | |
51b57ded | 451 | (int *)NULL, (CORE_ADDR *)NULL, |
bd5635a1 RP |
452 | frame, regno, (enum lval_type *)NULL); |
453 | } | |
454 | ||
455 | /* Modify what needs to be modified. */ | |
456 | if (VALUE_BITSIZE (toval)) | |
457 | modify_field (buffer + byte_offset, | |
479fdd26 | 458 | value_as_long (fromval), |
bd5635a1 RP |
459 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
460 | else if (use_buffer) | |
4ed3a9ea | 461 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); |
bd5635a1 | 462 | else |
4ed3a9ea FF |
463 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), |
464 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
465 | |
466 | /* Copy it back. */ | |
467 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
468 | amount_copied = 0); | |
469 | amount_copied < amount_to_copy; | |
470 | amount_copied += reg_size, regno++) | |
471 | { | |
472 | enum lval_type lval; | |
473 | CORE_ADDR addr; | |
474 | int optim; | |
475 | ||
476 | /* Just find out where to put it. */ | |
477 | get_saved_register ((char *)NULL, | |
478 | &optim, &addr, frame, regno, &lval); | |
479 | ||
480 | if (optim) | |
481 | error ("Attempt to assign to a value that was optimized out."); | |
482 | if (lval == lval_memory) | |
483 | write_memory (addr, buffer + amount_copied, reg_size); | |
484 | else if (lval == lval_register) | |
485 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
486 | else | |
487 | error ("Attempt to assign to an unmodifiable value."); | |
488 | } | |
489 | } | |
490 | break; | |
491 | ||
492 | ||
493 | default: | |
30974778 | 494 | error ("Left operand of assignment is not an lvalue."); |
bd5635a1 RP |
495 | } |
496 | ||
497 | /* Return a value just like TOVAL except with the contents of FROMVAL | |
498 | (except in the case of the type if TOVAL is an internalvar). */ | |
499 | ||
500 | if (VALUE_LVAL (toval) == lval_internalvar | |
501 | || VALUE_LVAL (toval) == lval_internalvar_component) | |
502 | { | |
503 | type = VALUE_TYPE (fromval); | |
504 | } | |
505 | ||
506 | val = allocate_value (type); | |
4ed3a9ea FF |
507 | memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val); |
508 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
509 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
510 | VALUE_TYPE (val) = type; |
511 | ||
512 | return val; | |
513 | } | |
514 | ||
515 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
516 | ||
517 | value | |
518 | value_repeat (arg1, count) | |
519 | value arg1; | |
520 | int count; | |
521 | { | |
522 | register value val; | |
523 | ||
524 | if (VALUE_LVAL (arg1) != lval_memory) | |
525 | error ("Only values in memory can be extended with '@'."); | |
526 | if (count < 1) | |
527 | error ("Invalid number %d of repetitions.", count); | |
528 | ||
529 | val = allocate_repeat_value (VALUE_TYPE (arg1), count); | |
530 | ||
531 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
532 | VALUE_CONTENTS_RAW (val), | |
533 | TYPE_LENGTH (VALUE_TYPE (val)) * count); | |
534 | VALUE_LVAL (val) = lval_memory; | |
535 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
536 | ||
537 | return val; | |
538 | } | |
539 | ||
540 | value | |
479fdd26 | 541 | value_of_variable (var, b) |
bd5635a1 | 542 | struct symbol *var; |
479fdd26 | 543 | struct block *b; |
bd5635a1 RP |
544 | { |
545 | value val; | |
479fdd26 | 546 | FRAME fr; |
bd5635a1 | 547 | |
479fdd26 JK |
548 | if (b == NULL) |
549 | /* Use selected frame. */ | |
550 | fr = NULL; | |
551 | else | |
552 | { | |
553 | fr = block_innermost_frame (b); | |
443abae1 | 554 | if (fr == NULL && symbol_read_needs_frame (var)) |
479fdd26 JK |
555 | { |
556 | if (BLOCK_FUNCTION (b) != NULL | |
557 | && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL) | |
558 | error ("No frame is currently executing in block %s.", | |
559 | SYMBOL_NAME (BLOCK_FUNCTION (b))); | |
560 | else | |
561 | error ("No frame is currently executing in specified block"); | |
562 | } | |
563 | } | |
564 | val = read_var_value (var, fr); | |
bd5635a1 | 565 | if (val == 0) |
2e4964ad | 566 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
567 | return val; |
568 | } | |
569 | ||
a163ddec MT |
570 | /* Given a value which is an array, return a value which is a pointer to its |
571 | first element, regardless of whether or not the array has a nonzero lower | |
572 | bound. | |
573 | ||
574 | FIXME: A previous comment here indicated that this routine should be | |
575 | substracting the array's lower bound. It's not clear to me that this | |
576 | is correct. Given an array subscripting operation, it would certainly | |
577 | work to do the adjustment here, essentially computing: | |
578 | ||
579 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
580 | ||
581 | However I believe a more appropriate and logical place to account for | |
582 | the lower bound is to do so in value_subscript, essentially computing: | |
583 | ||
584 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
585 | ||
586 | As further evidence consider what would happen with operations other | |
587 | than array subscripting, where the caller would get back a value that | |
588 | had an address somewhere before the actual first element of the array, | |
589 | and the information about the lower bound would be lost because of | |
590 | the coercion to pointer type. | |
591 | */ | |
bd5635a1 RP |
592 | |
593 | value | |
594 | value_coerce_array (arg1) | |
595 | value arg1; | |
596 | { | |
597 | register struct type *type; | |
bd5635a1 RP |
598 | |
599 | if (VALUE_LVAL (arg1) != lval_memory) | |
600 | error ("Attempt to take address of value not located in memory."); | |
601 | ||
602 | /* Get type of elements. */ | |
852b3831 PB |
603 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY |
604 | || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING) | |
bd5635a1 RP |
605 | type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1)); |
606 | else | |
607 | /* A phony array made by value_repeat. | |
608 | Its type is the type of the elements, not an array type. */ | |
609 | type = VALUE_TYPE (arg1); | |
610 | ||
06b6c733 | 611 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 612 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
613 | } |
614 | ||
615 | /* Given a value which is a function, return a value which is a pointer | |
616 | to it. */ | |
617 | ||
618 | value | |
619 | value_coerce_function (arg1) | |
620 | value arg1; | |
621 | { | |
bd5635a1 RP |
622 | |
623 | if (VALUE_LVAL (arg1) != lval_memory) | |
624 | error ("Attempt to take address of value not located in memory."); | |
625 | ||
06b6c733 | 626 | return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
bd5635a1 | 627 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
628 | } |
629 | ||
630 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
631 | ||
632 | value | |
633 | value_addr (arg1) | |
634 | value arg1; | |
635 | { | |
8e9a3f3b PB |
636 | struct type *type = VALUE_TYPE (arg1); |
637 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
638 | { | |
639 | /* Copy the value, but change the type from (T&) to (T*). | |
640 | We keep the same location information, which is efficient, | |
641 | and allows &(&X) to get the location containing the reference. */ | |
642 | value arg2 = value_copy (arg1); | |
643 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
644 | return arg2; | |
645 | } | |
bd5635a1 | 646 | if (VALUE_REPEATED (arg1) |
8e9a3f3b | 647 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) |
bd5635a1 | 648 | return value_coerce_array (arg1); |
8e9a3f3b | 649 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
bd5635a1 RP |
650 | return value_coerce_function (arg1); |
651 | ||
652 | if (VALUE_LVAL (arg1) != lval_memory) | |
653 | error ("Attempt to take address of value not located in memory."); | |
654 | ||
8e9a3f3b | 655 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 656 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
657 | } |
658 | ||
659 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
660 | ||
661 | value | |
662 | value_ind (arg1) | |
663 | value arg1; | |
664 | { | |
665 | COERCE_ARRAY (arg1); | |
666 | ||
667 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER) | |
668 | error ("not implemented: member types in value_ind"); | |
669 | ||
670 | /* Allow * on an integer so we can cast it to whatever we want. | |
671 | This returns an int, which seems like the most C-like thing | |
672 | to do. "long long" variables are rare enough that | |
673 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
674 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT) | |
675 | return value_at (builtin_type_int, | |
676 | (CORE_ADDR) value_as_long (arg1)); | |
677 | else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) | |
678 | return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)), | |
d11c44f1 | 679 | value_as_pointer (arg1)); |
bd5635a1 RP |
680 | error ("Attempt to take contents of a non-pointer value."); |
681 | return 0; /* For lint -- never reached */ | |
682 | } | |
683 | \f | |
684 | /* Pushing small parts of stack frames. */ | |
685 | ||
686 | /* Push one word (the size of object that a register holds). */ | |
687 | ||
688 | CORE_ADDR | |
34df79fc | 689 | push_word (sp, word) |
bd5635a1 | 690 | CORE_ADDR sp; |
67e9b3b3 | 691 | unsigned LONGEST word; |
bd5635a1 | 692 | { |
67e9b3b3 | 693 | register int len = REGISTER_SIZE; |
479fdd26 | 694 | char buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 695 | |
479fdd26 | 696 | store_unsigned_integer (buffer, len, word); |
bd5635a1 RP |
697 | #if 1 INNER_THAN 2 |
698 | sp -= len; | |
479fdd26 | 699 | write_memory (sp, buffer, len); |
bd5635a1 | 700 | #else /* stack grows upward */ |
479fdd26 | 701 | write_memory (sp, buffer, len); |
bd5635a1 RP |
702 | sp += len; |
703 | #endif /* stack grows upward */ | |
704 | ||
705 | return sp; | |
706 | } | |
707 | ||
708 | /* Push LEN bytes with data at BUFFER. */ | |
709 | ||
710 | CORE_ADDR | |
711 | push_bytes (sp, buffer, len) | |
712 | CORE_ADDR sp; | |
713 | char *buffer; | |
714 | int len; | |
715 | { | |
716 | #if 1 INNER_THAN 2 | |
717 | sp -= len; | |
718 | write_memory (sp, buffer, len); | |
719 | #else /* stack grows upward */ | |
720 | write_memory (sp, buffer, len); | |
721 | sp += len; | |
722 | #endif /* stack grows upward */ | |
723 | ||
724 | return sp; | |
725 | } | |
726 | ||
727 | /* Push onto the stack the specified value VALUE. */ | |
728 | ||
01be6913 | 729 | static CORE_ADDR |
bd5635a1 RP |
730 | value_push (sp, arg) |
731 | register CORE_ADDR sp; | |
732 | value arg; | |
733 | { | |
734 | register int len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
735 | ||
736 | #if 1 INNER_THAN 2 | |
737 | sp -= len; | |
738 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
739 | #else /* stack grows upward */ | |
740 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
741 | sp += len; | |
742 | #endif /* stack grows upward */ | |
743 | ||
744 | return sp; | |
745 | } | |
746 | ||
747 | /* Perform the standard coercions that are specified | |
748 | for arguments to be passed to C functions. */ | |
749 | ||
750 | value | |
751 | value_arg_coerce (arg) | |
752 | value arg; | |
753 | { | |
754 | register struct type *type; | |
755 | ||
479fdd26 JK |
756 | /* FIXME: We should coerce this according to the prototype (if we have |
757 | one). Right now we do a little bit of this in typecmp(), but that | |
758 | doesn't always get called. For example, if passing a ref to a function | |
759 | without a prototype, we probably should de-reference it. Currently | |
760 | we don't. */ | |
761 | ||
762 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM) | |
763 | arg = value_cast (builtin_type_unsigned_int, arg); | |
764 | ||
b5728692 SG |
765 | #if 1 /* FIXME: This is only a temporary patch. -fnf */ |
766 | if (VALUE_REPEATED (arg) | |
767 | || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY) | |
768 | arg = value_coerce_array (arg); | |
769 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC) | |
770 | arg = value_coerce_function (arg); | |
771 | #endif | |
bd5635a1 RP |
772 | |
773 | type = VALUE_TYPE (arg); | |
774 | ||
775 | if (TYPE_CODE (type) == TYPE_CODE_INT | |
2a5ec41d | 776 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
bd5635a1 RP |
777 | return value_cast (builtin_type_int, arg); |
778 | ||
2a5ec41d JG |
779 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
780 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
bd5635a1 RP |
781 | return value_cast (builtin_type_double, arg); |
782 | ||
783 | return arg; | |
784 | } | |
785 | ||
786 | /* Push the value ARG, first coercing it as an argument | |
787 | to a C function. */ | |
788 | ||
01be6913 | 789 | static CORE_ADDR |
bd5635a1 RP |
790 | value_arg_push (sp, arg) |
791 | register CORE_ADDR sp; | |
792 | value arg; | |
793 | { | |
794 | return value_push (sp, value_arg_coerce (arg)); | |
795 | } | |
796 | ||
797 | /* Determine a function's address and its return type from its value. | |
798 | Calls error() if the function is not valid for calling. */ | |
799 | ||
01be6913 | 800 | static CORE_ADDR |
bd5635a1 RP |
801 | find_function_addr (function, retval_type) |
802 | value function; | |
803 | struct type **retval_type; | |
804 | { | |
805 | register struct type *ftype = VALUE_TYPE (function); | |
806 | register enum type_code code = TYPE_CODE (ftype); | |
807 | struct type *value_type; | |
808 | CORE_ADDR funaddr; | |
809 | ||
810 | /* If it's a member function, just look at the function | |
811 | part of it. */ | |
812 | ||
813 | /* Determine address to call. */ | |
814 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
815 | { | |
816 | funaddr = VALUE_ADDRESS (function); | |
817 | value_type = TYPE_TARGET_TYPE (ftype); | |
818 | } | |
819 | else if (code == TYPE_CODE_PTR) | |
820 | { | |
d11c44f1 | 821 | funaddr = value_as_pointer (function); |
bd5635a1 RP |
822 | if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC |
823 | || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD) | |
824 | value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)); | |
825 | else | |
826 | value_type = builtin_type_int; | |
827 | } | |
828 | else if (code == TYPE_CODE_INT) | |
829 | { | |
830 | /* Handle the case of functions lacking debugging info. | |
831 | Their values are characters since their addresses are char */ | |
832 | if (TYPE_LENGTH (ftype) == 1) | |
d11c44f1 | 833 | funaddr = value_as_pointer (value_addr (function)); |
bd5635a1 RP |
834 | else |
835 | /* Handle integer used as address of a function. */ | |
d11c44f1 | 836 | funaddr = (CORE_ADDR) value_as_long (function); |
bd5635a1 RP |
837 | |
838 | value_type = builtin_type_int; | |
839 | } | |
840 | else | |
841 | error ("Invalid data type for function to be called."); | |
842 | ||
843 | *retval_type = value_type; | |
844 | return funaddr; | |
845 | } | |
846 | ||
847 | #if defined (CALL_DUMMY) | |
848 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
849 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
850 | frame which looks just like a real frame is so that if you call a | |
851 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
852 | will look right. Whether the backtrace needs to actually show the | |
853 | stack at the time the inferior function was called is debatable, but | |
854 | it certainly needs to not display garbage. So if you are contemplating | |
855 | making dummy frames be different from normal frames, consider that. */ | |
856 | ||
857 | /* Perform a function call in the inferior. | |
858 | ARGS is a vector of values of arguments (NARGS of them). | |
859 | FUNCTION is a value, the function to be called. | |
860 | Returns a value representing what the function returned. | |
861 | May fail to return, if a breakpoint or signal is hit | |
862 | during the execution of the function. */ | |
863 | ||
864 | value | |
865 | call_function_by_hand (function, nargs, args) | |
866 | value function; | |
867 | int nargs; | |
868 | value *args; | |
869 | { | |
870 | register CORE_ADDR sp; | |
871 | register int i; | |
872 | CORE_ADDR start_sp; | |
67e9b3b3 PS |
873 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word |
874 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
875 | and remove any extra bytes which might exist because unsigned LONGEST is | |
876 | bigger than REGISTER_SIZE. */ | |
877 | static unsigned LONGEST dummy[] = CALL_DUMMY; | |
878 | char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)]; | |
bd5635a1 RP |
879 | CORE_ADDR old_sp; |
880 | struct type *value_type; | |
881 | unsigned char struct_return; | |
882 | CORE_ADDR struct_addr; | |
883 | struct inferior_status inf_status; | |
884 | struct cleanup *old_chain; | |
885 | CORE_ADDR funaddr; | |
886 | int using_gcc; | |
9f739abd | 887 | CORE_ADDR real_pc; |
bd5635a1 | 888 | |
e17960fb JG |
889 | if (!target_has_execution) |
890 | noprocess(); | |
891 | ||
bd5635a1 RP |
892 | save_inferior_status (&inf_status, 1); |
893 | old_chain = make_cleanup (restore_inferior_status, &inf_status); | |
894 | ||
895 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
896 | (and POP_FRAME for restoring them). (At least on most machines) | |
897 | they are saved on the stack in the inferior. */ | |
898 | PUSH_DUMMY_FRAME; | |
899 | ||
54023465 | 900 | old_sp = sp = read_sp (); |
bd5635a1 RP |
901 | |
902 | #if 1 INNER_THAN 2 /* Stack grows down */ | |
903 | sp -= sizeof dummy; | |
904 | start_sp = sp; | |
905 | #else /* Stack grows up */ | |
906 | start_sp = sp; | |
907 | sp += sizeof dummy; | |
908 | #endif | |
909 | ||
910 | funaddr = find_function_addr (function, &value_type); | |
911 | ||
912 | { | |
913 | struct block *b = block_for_pc (funaddr); | |
914 | /* If compiled without -g, assume GCC. */ | |
915 | using_gcc = b == NULL || BLOCK_GCC_COMPILED (b); | |
916 | } | |
917 | ||
918 | /* Are we returning a value using a structure return or a normal | |
919 | value return? */ | |
920 | ||
921 | struct_return = using_struct_return (function, funaddr, value_type, | |
922 | using_gcc); | |
923 | ||
924 | /* Create a call sequence customized for this function | |
925 | and the number of arguments for it. */ | |
67e9b3b3 PS |
926 | for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++) |
927 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], | |
928 | REGISTER_SIZE, | |
34df79fc | 929 | (unsigned LONGEST)dummy[i]); |
9f739abd SG |
930 | |
931 | #ifdef GDB_TARGET_IS_HPPA | |
b5728692 SG |
932 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
933 | value_type, using_gcc); | |
9f739abd | 934 | #else |
bd5635a1 RP |
935 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
936 | value_type, using_gcc); | |
9f739abd SG |
937 | real_pc = start_sp; |
938 | #endif | |
bd5635a1 RP |
939 | |
940 | #if CALL_DUMMY_LOCATION == ON_STACK | |
941 | write_memory (start_sp, (char *)dummy1, sizeof dummy); | |
cef4c2e7 | 942 | #endif /* On stack. */ |
bd5635a1 | 943 | |
bd5635a1 RP |
944 | #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END |
945 | /* Convex Unix prohibits executing in the stack segment. */ | |
946 | /* Hope there is empty room at the top of the text segment. */ | |
947 | { | |
84d82b1c | 948 | extern CORE_ADDR text_end; |
bd5635a1 RP |
949 | static checked = 0; |
950 | if (!checked) | |
951 | for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp) | |
952 | if (read_memory_integer (start_sp, 1) != 0) | |
953 | error ("text segment full -- no place to put call"); | |
954 | checked = 1; | |
955 | sp = old_sp; | |
30d20d15 PS |
956 | real_pc = text_end - sizeof dummy; |
957 | write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 | 958 | } |
cef4c2e7 PS |
959 | #endif /* Before text_end. */ |
960 | ||
961 | #if CALL_DUMMY_LOCATION == AFTER_TEXT_END | |
bd5635a1 | 962 | { |
84d82b1c | 963 | extern CORE_ADDR text_end; |
bd5635a1 RP |
964 | int errcode; |
965 | sp = old_sp; | |
30d20d15 PS |
966 | real_pc = text_end; |
967 | errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 RP |
968 | if (errcode != 0) |
969 | error ("Cannot write text segment -- call_function failed"); | |
970 | } | |
971 | #endif /* After text_end. */ | |
cef4c2e7 PS |
972 | |
973 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
974 | real_pc = funaddr; | |
975 | #endif /* At entry point. */ | |
bd5635a1 RP |
976 | |
977 | #ifdef lint | |
978 | sp = old_sp; /* It really is used, for some ifdef's... */ | |
979 | #endif | |
980 | ||
981 | #ifdef STACK_ALIGN | |
982 | /* If stack grows down, we must leave a hole at the top. */ | |
983 | { | |
984 | int len = 0; | |
985 | ||
986 | /* Reserve space for the return structure to be written on the | |
987 | stack, if necessary */ | |
988 | ||
989 | if (struct_return) | |
990 | len += TYPE_LENGTH (value_type); | |
991 | ||
992 | for (i = nargs - 1; i >= 0; i--) | |
993 | len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i]))); | |
994 | #ifdef CALL_DUMMY_STACK_ADJUST | |
995 | len += CALL_DUMMY_STACK_ADJUST; | |
996 | #endif | |
997 | #if 1 INNER_THAN 2 | |
998 | sp -= STACK_ALIGN (len) - len; | |
999 | #else | |
1000 | sp += STACK_ALIGN (len) - len; | |
1001 | #endif | |
1002 | } | |
1003 | #endif /* STACK_ALIGN */ | |
1004 | ||
1005 | /* Reserve space for the return structure to be written on the | |
1006 | stack, if necessary */ | |
1007 | ||
1008 | if (struct_return) | |
1009 | { | |
1010 | #if 1 INNER_THAN 2 | |
1011 | sp -= TYPE_LENGTH (value_type); | |
1012 | struct_addr = sp; | |
1013 | #else | |
1014 | struct_addr = sp; | |
1015 | sp += TYPE_LENGTH (value_type); | |
1016 | #endif | |
1017 | } | |
1018 | ||
1019 | #if defined (REG_STRUCT_HAS_ADDR) | |
1020 | { | |
1021 | /* This is a machine like the sparc, where we need to pass a pointer | |
1022 | to the structure, not the structure itself. */ | |
1023 | if (REG_STRUCT_HAS_ADDR (using_gcc)) | |
1024 | for (i = nargs - 1; i >= 0; i--) | |
1025 | if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT) | |
1026 | { | |
1027 | CORE_ADDR addr; | |
1028 | #if !(1 INNER_THAN 2) | |
1029 | /* The stack grows up, so the address of the thing we push | |
1030 | is the stack pointer before we push it. */ | |
1031 | addr = sp; | |
1032 | #endif | |
1033 | /* Push the structure. */ | |
1034 | sp = value_push (sp, args[i]); | |
1035 | #if 1 INNER_THAN 2 | |
1036 | /* The stack grows down, so the address of the thing we push | |
1037 | is the stack pointer after we push it. */ | |
1038 | addr = sp; | |
1039 | #endif | |
1040 | /* The value we're going to pass is the address of the thing | |
1041 | we just pushed. */ | |
06b6c733 JG |
1042 | args[i] = value_from_longest (lookup_pointer_type (value_type), |
1043 | (LONGEST) addr); | |
bd5635a1 RP |
1044 | } |
1045 | } | |
1046 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1047 | ||
1048 | #ifdef PUSH_ARGUMENTS | |
1049 | PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr); | |
1050 | #else /* !PUSH_ARGUMENTS */ | |
1051 | for (i = nargs - 1; i >= 0; i--) | |
1052 | sp = value_arg_push (sp, args[i]); | |
1053 | #endif /* !PUSH_ARGUMENTS */ | |
1054 | ||
1055 | #ifdef CALL_DUMMY_STACK_ADJUST | |
1056 | #if 1 INNER_THAN 2 | |
1057 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1058 | #else | |
1059 | sp += CALL_DUMMY_STACK_ADJUST; | |
1060 | #endif | |
1061 | #endif /* CALL_DUMMY_STACK_ADJUST */ | |
1062 | ||
1063 | /* Store the address at which the structure is supposed to be | |
1064 | written. Note that this (and the code which reserved the space | |
1065 | above) assumes that gcc was used to compile this function. Since | |
1066 | it doesn't cost us anything but space and if the function is pcc | |
1067 | it will ignore this value, we will make that assumption. | |
1068 | ||
1069 | Also note that on some machines (like the sparc) pcc uses a | |
1070 | convention like gcc's. */ | |
1071 | ||
1072 | if (struct_return) | |
1073 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1074 | ||
1075 | /* Write the stack pointer. This is here because the statements above | |
1076 | might fool with it. On SPARC, this write also stores the register | |
1077 | window into the right place in the new stack frame, which otherwise | |
5632cd56 | 1078 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ |
54023465 | 1079 | write_sp (sp); |
bd5635a1 | 1080 | |
bd5635a1 RP |
1081 | { |
1082 | char retbuf[REGISTER_BYTES]; | |
54023465 JK |
1083 | char *name; |
1084 | struct symbol *symbol; | |
1085 | ||
1086 | name = NULL; | |
1087 | symbol = find_pc_function (funaddr); | |
1088 | if (symbol) | |
1089 | { | |
1090 | name = SYMBOL_SOURCE_NAME (symbol); | |
1091 | } | |
1092 | else | |
1093 | { | |
1094 | /* Try the minimal symbols. */ | |
1095 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1096 | ||
1097 | if (msymbol) | |
1098 | { | |
1099 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1100 | } | |
1101 | } | |
1102 | if (name == NULL) | |
1103 | { | |
1104 | char format[80]; | |
1105 | sprintf (format, "at %s", local_hex_format ()); | |
1106 | name = alloca (80); | |
30974778 | 1107 | /* FIXME-32x64: assumes funaddr fits in a long. */ |
cef4c2e7 | 1108 | sprintf (name, format, (unsigned long) funaddr); |
54023465 | 1109 | } |
bd5635a1 RP |
1110 | |
1111 | /* Execute the stack dummy routine, calling FUNCTION. | |
1112 | When it is done, discard the empty frame | |
1113 | after storing the contents of all regs into retbuf. */ | |
860a1754 JK |
1114 | if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf)) |
1115 | { | |
1116 | /* We stopped somewhere besides the call dummy. */ | |
1117 | ||
1118 | /* If we did the cleanups, we would print a spurious error message | |
1119 | (Unable to restore previously selected frame), would write the | |
1120 | registers from the inf_status (which is wrong), and would do other | |
1121 | wrong things (like set stop_bpstat to the wrong thing). */ | |
1122 | discard_cleanups (old_chain); | |
1123 | /* Prevent memory leak. */ | |
30d20d15 | 1124 | bpstat_clear (&inf_status.stop_bpstat); |
860a1754 JK |
1125 | |
1126 | /* The following error message used to say "The expression | |
1127 | which contained the function call has been discarded." It | |
1128 | is a hard concept to explain in a few words. Ideally, GDB | |
1129 | would be able to resume evaluation of the expression when | |
1130 | the function finally is done executing. Perhaps someday | |
1131 | this will be implemented (it would not be easy). */ | |
1132 | ||
1133 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1134 | a C++ name with arguments and stuff. */ | |
1135 | error ("\ | |
1136 | The program being debugged stopped while in a function called from GDB.\n\ | |
1137 | When the function (%s) is done executing, GDB will silently\n\ | |
1138 | stop (instead of continuing to evaluate the expression containing\n\ | |
1139 | the function call).", name); | |
1140 | } | |
bd5635a1 RP |
1141 | |
1142 | do_cleanups (old_chain); | |
1143 | ||
860a1754 | 1144 | /* Figure out the value returned by the function. */ |
bd5635a1 RP |
1145 | return value_being_returned (value_type, retbuf, struct_return); |
1146 | } | |
1147 | } | |
1148 | #else /* no CALL_DUMMY. */ | |
1149 | value | |
1150 | call_function_by_hand (function, nargs, args) | |
1151 | value function; | |
1152 | int nargs; | |
1153 | value *args; | |
1154 | { | |
1155 | error ("Cannot invoke functions on this machine."); | |
1156 | } | |
1157 | #endif /* no CALL_DUMMY. */ | |
a163ddec | 1158 | |
bd5635a1 | 1159 | \f |
a163ddec MT |
1160 | /* Create a value for an array by allocating space in the inferior, copying |
1161 | the data into that space, and then setting up an array value. | |
1162 | ||
1163 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1164 | populated from the values passed in ELEMVEC. | |
1165 | ||
1166 | The element type of the array is inherited from the type of the | |
1167 | first element, and all elements must have the same size (though we | |
1168 | don't currently enforce any restriction on their types). */ | |
bd5635a1 RP |
1169 | |
1170 | value | |
a163ddec MT |
1171 | value_array (lowbound, highbound, elemvec) |
1172 | int lowbound; | |
1173 | int highbound; | |
1174 | value *elemvec; | |
bd5635a1 | 1175 | { |
a163ddec MT |
1176 | int nelem; |
1177 | int idx; | |
1178 | int typelength; | |
1179 | value val; | |
1180 | struct type *rangetype; | |
1181 | struct type *arraytype; | |
1182 | CORE_ADDR addr; | |
bd5635a1 | 1183 | |
a163ddec MT |
1184 | /* Validate that the bounds are reasonable and that each of the elements |
1185 | have the same size. */ | |
bd5635a1 | 1186 | |
a163ddec MT |
1187 | nelem = highbound - lowbound + 1; |
1188 | if (nelem <= 0) | |
bd5635a1 | 1189 | { |
a163ddec | 1190 | error ("bad array bounds (%d, %d)", lowbound, highbound); |
bd5635a1 | 1191 | } |
a163ddec MT |
1192 | typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0])); |
1193 | for (idx = 0; idx < nelem; idx++) | |
bd5635a1 | 1194 | { |
a163ddec MT |
1195 | if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength) |
1196 | { | |
1197 | error ("array elements must all be the same size"); | |
1198 | } | |
bd5635a1 RP |
1199 | } |
1200 | ||
a163ddec MT |
1201 | /* Allocate space to store the array in the inferior, and then initialize |
1202 | it by copying in each element. FIXME: Is it worth it to create a | |
1203 | local buffer in which to collect each value and then write all the | |
1204 | bytes in one operation? */ | |
1205 | ||
1206 | addr = allocate_space_in_inferior (nelem * typelength); | |
1207 | for (idx = 0; idx < nelem; idx++) | |
1208 | { | |
1209 | write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]), | |
1210 | typelength); | |
1211 | } | |
1212 | ||
1213 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1214 | ||
1215 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1216 | lowbound, highbound); | |
1217 | arraytype = create_array_type ((struct type *) NULL, | |
1218 | VALUE_TYPE (elemvec[0]), rangetype); | |
1219 | val = value_at_lazy (arraytype, addr); | |
1220 | return (val); | |
1221 | } | |
1222 | ||
1223 | /* Create a value for a string constant by allocating space in the inferior, | |
1224 | copying the data into that space, and returning the address with type | |
1225 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1226 | of characters. | |
1227 | Note that string types are like array of char types with a lower bound of | |
1228 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1229 | embedded null bytes. */ | |
1230 | ||
1231 | value | |
1232 | value_string (ptr, len) | |
1233 | char *ptr; | |
1234 | int len; | |
1235 | { | |
1236 | value val; | |
1237 | struct type *rangetype; | |
1238 | struct type *stringtype; | |
1239 | CORE_ADDR addr; | |
1240 | ||
1241 | /* Allocate space to store the string in the inferior, and then | |
1242 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1243 | ||
1244 | addr = allocate_space_in_inferior (len); | |
1245 | write_memory (addr, ptr, len); | |
1246 | ||
1247 | /* Create the string type and set up a string value to be evaluated | |
1248 | lazily. */ | |
1249 | ||
1250 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1251 | 0, len - 1); | |
1252 | stringtype = create_string_type ((struct type *) NULL, rangetype); | |
1253 | val = value_at_lazy (stringtype, addr); | |
1254 | return (val); | |
bd5635a1 RP |
1255 | } |
1256 | \f | |
479fdd26 JK |
1257 | /* See if we can pass arguments in T2 to a function which takes arguments |
1258 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1259 | arguments need coercion of some sort, then the coerced values are written | |
1260 | into T2. Return value is 0 if the arguments could be matched, or the | |
1261 | position at which they differ if not. | |
a163ddec MT |
1262 | |
1263 | STATICP is nonzero if the T1 argument list came from a | |
1264 | static member function. | |
1265 | ||
1266 | For non-static member functions, we ignore the first argument, | |
1267 | which is the type of the instance variable. This is because we want | |
1268 | to handle calls with objects from derived classes. This is not | |
1269 | entirely correct: we should actually check to make sure that a | |
1270 | requested operation is type secure, shouldn't we? FIXME. */ | |
1271 | ||
1272 | static int | |
1273 | typecmp (staticp, t1, t2) | |
1274 | int staticp; | |
1275 | struct type *t1[]; | |
1276 | value t2[]; | |
1277 | { | |
1278 | int i; | |
1279 | ||
1280 | if (t2 == 0) | |
1281 | return 1; | |
1282 | if (staticp && t1 == 0) | |
1283 | return t2[1] != 0; | |
1284 | if (t1 == 0) | |
1285 | return 1; | |
1286 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0; | |
1287 | if (t1[!staticp] == 0) return 0; | |
1288 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) | |
1289 | { | |
40620258 | 1290 | struct type *tt1, *tt2; |
a163ddec MT |
1291 | if (! t2[i]) |
1292 | return i+1; | |
40620258 KH |
1293 | tt1 = t1[i]; |
1294 | tt2 = VALUE_TYPE(t2[i]); | |
1295 | if (TYPE_CODE (tt1) == TYPE_CODE_REF | |
479fdd26 | 1296 | /* We should be doing hairy argument matching, as below. */ |
40620258 | 1297 | && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2))) |
479fdd26 JK |
1298 | { |
1299 | t2[i] = value_addr (t2[i]); | |
1300 | continue; | |
1301 | } | |
1302 | ||
40620258 KH |
1303 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR |
1304 | && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR)) | |
1305 | { | |
1306 | tt1 = TYPE_TARGET_TYPE(tt1); | |
1307 | tt2 = TYPE_TARGET_TYPE(tt2); | |
1308 | } | |
1309 | if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue; | |
1310 | /* Array to pointer is a `trivial conversion' according to the ARM. */ | |
479fdd26 JK |
1311 | |
1312 | /* We should be doing much hairier argument matching (see section 13.2 | |
1313 | of the ARM), but as a quick kludge, just check for the same type | |
1314 | code. */ | |
a163ddec MT |
1315 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
1316 | return i+1; | |
1317 | } | |
1318 | if (!t1[i]) return 0; | |
1319 | return t2[i] ? i+1 : 0; | |
1320 | } | |
1321 | ||
bd5635a1 RP |
1322 | /* Helper function used by value_struct_elt to recurse through baseclasses. |
1323 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1324 | and search in it assuming it has (class) type TYPE. |
d3bab255 JK |
1325 | If found, return value, else return NULL. |
1326 | ||
1327 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1328 | look for a baseclass named NAME. */ | |
bd5635a1 RP |
1329 | |
1330 | static value | |
d3bab255 | 1331 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) |
bd5635a1 RP |
1332 | char *name; |
1333 | register value arg1; | |
1334 | int offset; | |
1335 | register struct type *type; | |
d3bab255 | 1336 | int looking_for_baseclass; |
bd5635a1 RP |
1337 | { |
1338 | int i; | |
1339 | ||
1340 | check_stub_type (type); | |
1341 | ||
d3bab255 JK |
1342 | if (! looking_for_baseclass) |
1343 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1344 | { | |
1345 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1346 | ||
2e4964ad | 1347 | if (t_field_name && STREQ (t_field_name, name)) |
d3bab255 | 1348 | { |
01be6913 PB |
1349 | value v; |
1350 | if (TYPE_FIELD_STATIC (type, i)) | |
1351 | { | |
1352 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i); | |
1353 | struct symbol *sym = | |
2e4964ad FF |
1354 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); |
1355 | if (sym == NULL) | |
1356 | error ("Internal error: could not find physical static variable named %s", | |
1357 | phys_name); | |
01be6913 PB |
1358 | v = value_at (TYPE_FIELD_TYPE (type, i), |
1359 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
1360 | } | |
1361 | else | |
1362 | v = value_primitive_field (arg1, offset, i, type); | |
d3bab255 JK |
1363 | if (v == 0) |
1364 | error("there is no field named %s", name); | |
1365 | return v; | |
1366 | } | |
1367 | } | |
bd5635a1 RP |
1368 | |
1369 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1370 | { | |
1371 | value v; | |
1372 | /* If we are looking for baseclasses, this is what we get when we | |
54023465 JK |
1373 | hit them. But it could happen that the base part's member name |
1374 | is not yet filled in. */ | |
d3bab255 | 1375 | int found_baseclass = (looking_for_baseclass |
54023465 | 1376 | && TYPE_BASECLASS_NAME (type, i) != NULL |
2e4964ad | 1377 | && STREQ (name, TYPE_BASECLASS_NAME (type, i))); |
bd5635a1 RP |
1378 | |
1379 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1380 | { | |
1381 | value v2; | |
bac89d6c | 1382 | /* Fix to use baseclass_offset instead. FIXME */ |
d11c44f1 JG |
1383 | baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, |
1384 | &v2, (int *)NULL); | |
bd5635a1 RP |
1385 | if (v2 == 0) |
1386 | error ("virtual baseclass botch"); | |
1387 | if (found_baseclass) | |
1388 | return v2; | |
d3bab255 JK |
1389 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), |
1390 | looking_for_baseclass); | |
bd5635a1 | 1391 | } |
01be6913 | 1392 | else if (found_baseclass) |
bd5635a1 RP |
1393 | v = value_primitive_field (arg1, offset, i, type); |
1394 | else | |
1395 | v = search_struct_field (name, arg1, | |
1396 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | |
d3bab255 JK |
1397 | TYPE_BASECLASS (type, i), |
1398 | looking_for_baseclass); | |
bd5635a1 RP |
1399 | if (v) return v; |
1400 | } | |
1401 | return NULL; | |
1402 | } | |
1403 | ||
1404 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1405 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1406 | and search in it assuming it has (class) type TYPE. |
cef4c2e7 | 1407 | If found, return value, else if name matched and args not return (value)-1, |
5b5c6d94 | 1408 | else return NULL. */ |
bd5635a1 RP |
1409 | |
1410 | static value | |
bac89d6c | 1411 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) |
bd5635a1 | 1412 | char *name; |
bac89d6c | 1413 | register value *arg1p, *args; |
bd5635a1 RP |
1414 | int offset, *static_memfuncp; |
1415 | register struct type *type; | |
1416 | { | |
1417 | int i; | |
40620258 | 1418 | value v; |
67e9b3b3 | 1419 | int name_matched = 0; |
6ebc9cdd | 1420 | char dem_opname[64]; |
bd5635a1 RP |
1421 | |
1422 | check_stub_type (type); | |
1423 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1424 | { | |
1425 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
6ebc9cdd KH |
1426 | if (strncmp(t_field_name, "__", 2)==0 || |
1427 | strncmp(t_field_name, "op", 2)==0 || | |
1428 | strncmp(t_field_name, "type", 4)==0 ) | |
1429 | { | |
1430 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1431 | t_field_name = dem_opname; | |
1432 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1433 | t_field_name = dem_opname; | |
1434 | } | |
2e4964ad | 1435 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1436 | { |
d3bab255 | 1437 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; |
bd5635a1 | 1438 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
5b5c6d94 | 1439 | name_matched = 1; |
bd5635a1 | 1440 | |
d3bab255 JK |
1441 | if (j > 0 && args == 0) |
1442 | error ("cannot resolve overloaded method `%s'", name); | |
1443 | while (j >= 0) | |
bd5635a1 | 1444 | { |
8e9a3f3b | 1445 | if (TYPE_FN_FIELD_STUB (f, j)) |
bd5635a1 RP |
1446 | check_stub_method (type, i, j); |
1447 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
1448 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
1449 | { | |
1450 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
bac89d6c | 1451 | return (value)value_virtual_fn_field (arg1p, f, j, type, offset); |
bd5635a1 RP |
1452 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) |
1453 | *static_memfuncp = 1; | |
40620258 KH |
1454 | v = (value)value_fn_field (arg1p, f, j, type, offset); |
1455 | if (v != (value)NULL) return v; | |
bd5635a1 | 1456 | } |
d3bab255 | 1457 | j--; |
bd5635a1 RP |
1458 | } |
1459 | } | |
1460 | } | |
1461 | ||
1462 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1463 | { | |
01be6913 | 1464 | int base_offset; |
bd5635a1 RP |
1465 | |
1466 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1467 | { | |
9f739abd | 1468 | base_offset = baseclass_offset (type, i, *arg1p, offset); |
bac89d6c | 1469 | if (base_offset == -1) |
bd5635a1 | 1470 | error ("virtual baseclass botch"); |
bd5635a1 | 1471 | } |
01be6913 PB |
1472 | else |
1473 | { | |
01be6913 PB |
1474 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
1475 | } | |
bac89d6c | 1476 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
bd5635a1 | 1477 | static_memfuncp, TYPE_BASECLASS (type, i)); |
cef4c2e7 | 1478 | if (v == (value) -1) |
5b5c6d94 KH |
1479 | { |
1480 | name_matched = 1; | |
1481 | } | |
1482 | else if (v) | |
bac89d6c FF |
1483 | { |
1484 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
1485 | /* *arg1p = arg1_tmp;*/ | |
1486 | return v; | |
1487 | } | |
bd5635a1 | 1488 | } |
cef4c2e7 | 1489 | if (name_matched) return (value) -1; |
5b5c6d94 | 1490 | else return NULL; |
bd5635a1 RP |
1491 | } |
1492 | ||
1493 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1494 | extract the component named NAME from the ultimate target structure/union | |
1495 | and return it as a value with its appropriate type. | |
1496 | ERR is used in the error message if *ARGP's type is wrong. | |
1497 | ||
1498 | C++: ARGS is a list of argument types to aid in the selection of | |
1499 | an appropriate method. Also, handle derived types. | |
1500 | ||
1501 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1502 | where the truthvalue of whether the function that was resolved was | |
1503 | a static member function or not is stored. | |
1504 | ||
1505 | ERR is an error message to be printed in case the field is not found. */ | |
1506 | ||
1507 | value | |
1508 | value_struct_elt (argp, args, name, static_memfuncp, err) | |
1509 | register value *argp, *args; | |
1510 | char *name; | |
1511 | int *static_memfuncp; | |
1512 | char *err; | |
1513 | { | |
1514 | register struct type *t; | |
bd5635a1 RP |
1515 | value v; |
1516 | ||
1517 | COERCE_ARRAY (*argp); | |
1518 | ||
1519 | t = VALUE_TYPE (*argp); | |
1520 | ||
1521 | /* Follow pointers until we get to a non-pointer. */ | |
1522 | ||
1523 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1524 | { | |
bd5635a1 | 1525 | *argp = value_ind (*argp); |
f2ebc25f JK |
1526 | /* Don't coerce fn pointer to fn and then back again! */ |
1527 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1528 | COERCE_ARRAY (*argp); | |
bd5635a1 RP |
1529 | t = VALUE_TYPE (*argp); |
1530 | } | |
1531 | ||
1532 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1533 | error ("not implemented: member type in value_struct_elt"); | |
1534 | ||
2a5ec41d | 1535 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1536 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1537 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1538 | ||
1539 | /* Assume it's not, unless we see that it is. */ | |
1540 | if (static_memfuncp) | |
1541 | *static_memfuncp =0; | |
1542 | ||
1543 | if (!args) | |
1544 | { | |
1545 | /* if there are no arguments ...do this... */ | |
1546 | ||
d3bab255 | 1547 | /* Try as a field first, because if we succeed, there |
bd5635a1 | 1548 | is less work to be done. */ |
d3bab255 | 1549 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1550 | if (v) |
1551 | return v; | |
1552 | ||
1553 | /* C++: If it was not found as a data field, then try to | |
1554 | return it as a pointer to a method. */ | |
1555 | ||
1556 | if (destructor_name_p (name, t)) | |
1557 | error ("Cannot get value of destructor"); | |
1558 | ||
bac89d6c | 1559 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1560 | |
67e9b3b3 PS |
1561 | if (v == (value) -1) |
1562 | error ("Cannot take address of a method"); | |
1563 | else if (v == 0) | |
bd5635a1 RP |
1564 | { |
1565 | if (TYPE_NFN_FIELDS (t)) | |
1566 | error ("There is no member or method named %s.", name); | |
1567 | else | |
1568 | error ("There is no member named %s.", name); | |
1569 | } | |
1570 | return v; | |
1571 | } | |
1572 | ||
1573 | if (destructor_name_p (name, t)) | |
1574 | { | |
1575 | if (!args[1]) | |
1576 | { | |
1577 | /* destructors are a special case. */ | |
40620258 KH |
1578 | v = (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0), |
1579 | TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0); | |
1580 | if (!v) error("could not find destructor function named %s.", name); | |
1581 | else return v; | |
bd5635a1 RP |
1582 | } |
1583 | else | |
1584 | { | |
1585 | error ("destructor should not have any argument"); | |
1586 | } | |
1587 | } | |
1588 | else | |
bac89d6c | 1589 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1590 | |
cef4c2e7 | 1591 | if (v == (value) -1) |
5b5c6d94 KH |
1592 | { |
1593 | error("Argument list of %s mismatch with component in the structure.", name); | |
1594 | } | |
1595 | else if (v == 0) | |
bd5635a1 RP |
1596 | { |
1597 | /* See if user tried to invoke data as function. If so, | |
1598 | hand it back. If it's not callable (i.e., a pointer to function), | |
1599 | gdb should give an error. */ | |
d3bab255 | 1600 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1601 | } |
1602 | ||
1603 | if (!v) | |
1604 | error ("Structure has no component named %s.", name); | |
1605 | return v; | |
1606 | } | |
1607 | ||
1608 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
1609 | of type TYPE. If TYPE does not have a destructor, or | |
1610 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
1611 | int | |
1612 | destructor_name_p (name, type) | |
7919c3ed JG |
1613 | const char *name; |
1614 | const struct type *type; | |
bd5635a1 RP |
1615 | { |
1616 | /* destructors are a special case. */ | |
1617 | ||
1618 | if (name[0] == '~') | |
1619 | { | |
1620 | char *dname = type_name_no_tag (type); | |
2e4964ad | 1621 | if (!STREQ (dname, name+1)) |
bd5635a1 RP |
1622 | error ("name of destructor must equal name of class"); |
1623 | else | |
1624 | return 1; | |
1625 | } | |
1626 | return 0; | |
1627 | } | |
1628 | ||
1629 | /* Helper function for check_field: Given TYPE, a structure/union, | |
1630 | return 1 if the component named NAME from the ultimate | |
1631 | target structure/union is defined, otherwise, return 0. */ | |
1632 | ||
1633 | static int | |
1634 | check_field_in (type, name) | |
1635 | register struct type *type; | |
01be6913 | 1636 | const char *name; |
bd5635a1 RP |
1637 | { |
1638 | register int i; | |
1639 | ||
1640 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1641 | { | |
1642 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2e4964ad | 1643 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 RP |
1644 | return 1; |
1645 | } | |
1646 | ||
1647 | /* C++: If it was not found as a data field, then try to | |
1648 | return it as a pointer to a method. */ | |
1649 | ||
1650 | /* Destructors are a special case. */ | |
1651 | if (destructor_name_p (name, type)) | |
1652 | return 1; | |
1653 | ||
1654 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
1655 | { | |
2e4964ad | 1656 | if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name)) |
bd5635a1 RP |
1657 | return 1; |
1658 | } | |
1659 | ||
1660 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1661 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
1662 | return 1; | |
1663 | ||
1664 | return 0; | |
1665 | } | |
1666 | ||
1667 | ||
1668 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
1669 | return 1 if the component named NAME from the ultimate | |
1670 | target structure/union is defined, otherwise, return 0. */ | |
1671 | ||
1672 | int | |
1673 | check_field (arg1, name) | |
01be6913 | 1674 | register value arg1; |
7919c3ed | 1675 | const char *name; |
bd5635a1 RP |
1676 | { |
1677 | register struct type *t; | |
1678 | ||
1679 | COERCE_ARRAY (arg1); | |
1680 | ||
1681 | t = VALUE_TYPE (arg1); | |
1682 | ||
1683 | /* Follow pointers until we get to a non-pointer. */ | |
1684 | ||
1685 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1686 | t = TYPE_TARGET_TYPE (t); | |
1687 | ||
1688 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1689 | error ("not implemented: member type in check_field"); | |
1690 | ||
2a5ec41d | 1691 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1692 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1693 | error ("Internal error: `this' is not an aggregate"); | |
1694 | ||
1695 | return check_field_in (t, name); | |
1696 | } | |
1697 | ||
01be6913 | 1698 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2a5ec41d | 1699 | return the address of this member as a "pointer to member" |
bd5635a1 RP |
1700 | type. If INTYPE is non-null, then it will be the type |
1701 | of the member we are looking for. This will help us resolve | |
01be6913 PB |
1702 | "pointers to member functions". This function is used |
1703 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
bd5635a1 RP |
1704 | |
1705 | value | |
51b57ded | 1706 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) |
01be6913 | 1707 | struct type *domain, *curtype, *intype; |
51b57ded | 1708 | int offset; |
bd5635a1 RP |
1709 | char *name; |
1710 | { | |
01be6913 | 1711 | register struct type *t = curtype; |
bd5635a1 RP |
1712 | register int i; |
1713 | value v; | |
1714 | ||
2a5ec41d | 1715 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 | 1716 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
01be6913 | 1717 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); |
bd5635a1 | 1718 | |
01be6913 | 1719 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) |
bd5635a1 | 1720 | { |
01be6913 PB |
1721 | char *t_field_name = TYPE_FIELD_NAME (t, i); |
1722 | ||
2e4964ad | 1723 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1724 | { |
01be6913 | 1725 | if (TYPE_FIELD_STATIC (t, i)) |
bd5635a1 | 1726 | { |
01be6913 PB |
1727 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i); |
1728 | struct symbol *sym = | |
1729 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
2e4964ad FF |
1730 | if (sym == NULL) |
1731 | error ("Internal error: could not find physical static variable named %s", | |
01be6913 PB |
1732 | phys_name); |
1733 | return value_at (SYMBOL_TYPE (sym), | |
1734 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
bd5635a1 | 1735 | } |
01be6913 PB |
1736 | if (TYPE_FIELD_PACKED (t, i)) |
1737 | error ("pointers to bitfield members not allowed"); | |
1738 | ||
1739 | return value_from_longest | |
1740 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
1741 | domain)), | |
51b57ded | 1742 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); |
bd5635a1 | 1743 | } |
bd5635a1 RP |
1744 | } |
1745 | ||
1746 | /* C++: If it was not found as a data field, then try to | |
1747 | return it as a pointer to a method. */ | |
bd5635a1 RP |
1748 | |
1749 | /* Destructors are a special case. */ | |
1750 | if (destructor_name_p (name, t)) | |
1751 | { | |
2a5ec41d | 1752 | error ("member pointers to destructors not implemented yet"); |
bd5635a1 RP |
1753 | } |
1754 | ||
1755 | /* Perform all necessary dereferencing. */ | |
1756 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
1757 | intype = TYPE_TARGET_TYPE (intype); | |
1758 | ||
01be6913 | 1759 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) |
bd5635a1 | 1760 | { |
852b3831 PB |
1761 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
1762 | char dem_opname[64]; | |
1763 | ||
1764 | if (strncmp(t_field_name, "__", 2)==0 || | |
1765 | strncmp(t_field_name, "op", 2)==0 || | |
1766 | strncmp(t_field_name, "type", 4)==0 ) | |
1767 | { | |
1768 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1769 | t_field_name = dem_opname; | |
1770 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1771 | t_field_name = dem_opname; | |
1772 | } | |
1773 | if (t_field_name && STREQ (t_field_name, name)) | |
bd5635a1 | 1774 | { |
01be6913 PB |
1775 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); |
1776 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
1777 | ||
1778 | if (intype == 0 && j > 1) | |
1779 | error ("non-unique member `%s' requires type instantiation", name); | |
1780 | if (intype) | |
bd5635a1 | 1781 | { |
01be6913 PB |
1782 | while (j--) |
1783 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
1784 | break; | |
1785 | if (j < 0) | |
1786 | error ("no member function matches that type instantiation"); | |
1787 | } | |
1788 | else | |
1789 | j = 0; | |
1790 | ||
1791 | if (TYPE_FN_FIELD_STUB (f, j)) | |
1792 | check_stub_method (t, i, j); | |
1793 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1794 | { | |
1795 | return value_from_longest | |
1796 | (lookup_reference_type | |
1797 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1798 | domain)), | |
bac89d6c FF |
1799 | (LONGEST) METHOD_PTR_FROM_VOFFSET |
1800 | (TYPE_FN_FIELD_VOFFSET (f, j))); | |
01be6913 PB |
1801 | } |
1802 | else | |
1803 | { | |
1804 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
1805 | 0, VAR_NAMESPACE, 0, NULL); | |
35fcebce PB |
1806 | if (s == NULL) |
1807 | { | |
1808 | v = 0; | |
1809 | } | |
1810 | else | |
1811 | { | |
1812 | v = read_var_value (s, 0); | |
01be6913 | 1813 | #if 0 |
35fcebce PB |
1814 | VALUE_TYPE (v) = lookup_reference_type |
1815 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1816 | domain)); | |
01be6913 | 1817 | #endif |
bd5635a1 | 1818 | } |
35fcebce | 1819 | return v; |
bd5635a1 RP |
1820 | } |
1821 | } | |
35fcebce | 1822 | } |
01be6913 PB |
1823 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) |
1824 | { | |
51b57ded FF |
1825 | value v; |
1826 | int base_offset; | |
1827 | ||
1828 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
1829 | base_offset = 0; | |
1830 | else | |
1831 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
01be6913 | 1832 | v = value_struct_elt_for_reference (domain, |
51b57ded | 1833 | offset + base_offset, |
01be6913 PB |
1834 | TYPE_BASECLASS (t, i), |
1835 | name, | |
1836 | intype); | |
1837 | if (v) | |
1838 | return v; | |
bd5635a1 RP |
1839 | } |
1840 | return 0; | |
1841 | } | |
1842 | ||
bd5635a1 RP |
1843 | /* C++: return the value of the class instance variable, if one exists. |
1844 | Flag COMPLAIN signals an error if the request is made in an | |
1845 | inappropriate context. */ | |
1846 | value | |
1847 | value_of_this (complain) | |
1848 | int complain; | |
1849 | { | |
1850 | extern FRAME selected_frame; | |
1851 | struct symbol *func, *sym; | |
1852 | struct block *b; | |
1853 | int i; | |
1854 | static const char funny_this[] = "this"; | |
1855 | value this; | |
bd5635a1 RP |
1856 | |
1857 | if (selected_frame == 0) | |
1858 | if (complain) | |
1859 | error ("no frame selected"); | |
1860 | else return 0; | |
1861 | ||
1862 | func = get_frame_function (selected_frame); | |
1863 | if (!func) | |
1864 | { | |
1865 | if (complain) | |
1866 | error ("no `this' in nameless context"); | |
1867 | else return 0; | |
1868 | } | |
1869 | ||
1870 | b = SYMBOL_BLOCK_VALUE (func); | |
1871 | i = BLOCK_NSYMS (b); | |
1872 | if (i <= 0) | |
1873 | if (complain) | |
1874 | error ("no args, no `this'"); | |
1875 | else return 0; | |
1876 | ||
1877 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
1878 | symbol instead of the LOC_ARG one (if both exist). */ | |
1879 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
1880 | if (sym == NULL) | |
1881 | { | |
1882 | if (complain) | |
1883 | error ("current stack frame not in method"); | |
1884 | else | |
1885 | return NULL; | |
1886 | } | |
1887 | ||
1888 | this = read_var_value (sym, selected_frame); | |
1889 | if (this == 0 && complain) | |
1890 | error ("`this' argument at unknown address"); | |
1891 | return this; | |
1892 | } |