]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Perform non-arithmetic operations on values, for GDB. |
67e9b3b3 PS |
2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994 |
3 | Free Software Foundation, Inc. | |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
06b6c733 | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
06b6c733 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
06b6c733 | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
06b6c733 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 20 | |
bd5635a1 | 21 | #include "defs.h" |
bd5635a1 | 22 | #include "symtab.h" |
01be6913 | 23 | #include "gdbtypes.h" |
bd5635a1 RP |
24 | #include "value.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcore.h" | |
28 | #include "target.h" | |
2e4964ad | 29 | #include "demangle.h" |
54023465 | 30 | #include "language.h" |
bd5635a1 RP |
31 | |
32 | #include <errno.h> | |
6d34c236 | 33 | #include <string.h> |
bd5635a1 RP |
34 | |
35 | /* Local functions. */ | |
01be6913 | 36 | |
a91a6192 | 37 | static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[])); |
01be6913 | 38 | |
a91a6192 | 39 | static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **)); |
01be6913 | 40 | |
a91a6192 | 41 | static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr)); |
01be6913 | 42 | |
a91a6192 SS |
43 | static value_ptr search_struct_field PARAMS ((char *, value_ptr, int, |
44 | struct type *, int)); | |
01be6913 | 45 | |
a91a6192 SS |
46 | static value_ptr search_struct_method PARAMS ((char *, value_ptr *, |
47 | value_ptr *, | |
48 | int, int *, struct type *)); | |
01be6913 | 49 | |
a91a6192 | 50 | static int check_field_in PARAMS ((struct type *, const char *)); |
a163ddec | 51 | |
a91a6192 | 52 | static CORE_ADDR allocate_space_in_inferior PARAMS ((int)); |
9ed8604f | 53 | |
5222ca60 | 54 | static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr)); |
9ed8604f PS |
55 | |
56 | #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL) | |
57 | ||
bd5635a1 | 58 | \f |
a163ddec MT |
59 | /* Allocate NBYTES of space in the inferior using the inferior's malloc |
60 | and return a value that is a pointer to the allocated space. */ | |
61 | ||
62 | static CORE_ADDR | |
63 | allocate_space_in_inferior (len) | |
64 | int len; | |
65 | { | |
a91a6192 | 66 | register value_ptr val; |
a163ddec MT |
67 | register struct symbol *sym; |
68 | struct minimal_symbol *msymbol; | |
69 | struct type *type; | |
a91a6192 | 70 | value_ptr blocklen; |
a163ddec MT |
71 | LONGEST maddr; |
72 | ||
73 | /* Find the address of malloc in the inferior. */ | |
74 | ||
75 | sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL); | |
76 | if (sym != NULL) | |
77 | { | |
78 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
79 | { | |
80 | error ("\"malloc\" exists in this program but is not a function."); | |
81 | } | |
479fdd26 | 82 | val = value_of_variable (sym, NULL); |
a163ddec MT |
83 | } |
84 | else | |
85 | { | |
5222ca60 | 86 | msymbol = lookup_minimal_symbol ("malloc", NULL, NULL); |
a163ddec MT |
87 | if (msymbol != NULL) |
88 | { | |
89 | type = lookup_pointer_type (builtin_type_char); | |
90 | type = lookup_function_type (type); | |
91 | type = lookup_pointer_type (type); | |
92 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
93 | val = value_from_longest (type, maddr); | |
94 | } | |
95 | else | |
96 | { | |
97 | error ("evaluation of this expression requires the program to have a function \"malloc\"."); | |
98 | } | |
99 | } | |
100 | ||
101 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
102 | val = call_function_by_hand (val, 1, &blocklen); | |
103 | if (value_logical_not (val)) | |
104 | { | |
105 | error ("No memory available to program."); | |
106 | } | |
107 | return (value_as_long (val)); | |
108 | } | |
109 | ||
bd5635a1 RP |
110 | /* Cast value ARG2 to type TYPE and return as a value. |
111 | More general than a C cast: accepts any two types of the same length, | |
112 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
54023465 | 113 | /* In C++, casts may change pointer or object representations. */ |
bd5635a1 | 114 | |
a91a6192 | 115 | value_ptr |
bd5635a1 RP |
116 | value_cast (type, arg2) |
117 | struct type *type; | |
a91a6192 | 118 | register value_ptr arg2; |
bd5635a1 | 119 | { |
f7a69ed7 | 120 | register enum type_code code1 = TYPE_CODE (type); |
bd5635a1 RP |
121 | register enum type_code code2; |
122 | register int scalar; | |
123 | ||
f91a9e05 PB |
124 | if (VALUE_TYPE (arg2) == type) |
125 | return arg2; | |
126 | ||
f7a69ed7 | 127 | COERCE_REF(arg2); |
13ffa6be JL |
128 | |
129 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
130 | is treated like a cast to (TYPE [N])OBJECT, | |
131 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
132 | if (code1 == TYPE_CODE_ARRAY | |
133 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > 0 | |
134 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) | |
135 | { | |
136 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
137 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
138 | int low_bound = TYPE_LOW_BOUND (range_type); | |
139 | int val_length = TYPE_LENGTH (VALUE_TYPE (arg2)); | |
140 | int new_length = val_length / TYPE_LENGTH (element_type); | |
141 | if (val_length % TYPE_LENGTH (element_type) != 0) | |
142 | warning("array element type size does not divide object size in cast"); | |
36633dcc JK |
143 | /* FIXME-type-allocation: need a way to free this type when we are |
144 | done with it. */ | |
13ffa6be JL |
145 | range_type = create_range_type ((struct type *) NULL, |
146 | TYPE_TARGET_TYPE (range_type), | |
147 | low_bound, new_length + low_bound - 1); | |
148 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
149 | element_type, range_type); | |
150 | return arg2; | |
151 | } | |
9ed8604f | 152 | |
f7a69ed7 PB |
153 | if (current_language->c_style_arrays |
154 | && (VALUE_REPEATED (arg2) | |
155 | || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_ARRAY)) | |
e70bba9f | 156 | arg2 = value_coerce_array (arg2); |
f7a69ed7 | 157 | |
e70bba9f | 158 | if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FUNC) |
f7a69ed7 PB |
159 | arg2 = value_coerce_function (arg2); |
160 | ||
161 | COERCE_VARYING_ARRAY (arg2); | |
162 | ||
163 | code2 = TYPE_CODE (VALUE_TYPE (arg2)); | |
164 | ||
165 | if (code1 == TYPE_CODE_COMPLEX) | |
166 | return cast_into_complex (type, arg2); | |
167 | if (code1 == TYPE_CODE_BOOL) | |
168 | code1 = TYPE_CODE_INT; | |
169 | if (code2 == TYPE_CODE_BOOL) | |
170 | code2 = TYPE_CODE_INT; | |
171 | ||
bd5635a1 | 172 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT |
f91a9e05 | 173 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); |
bd5635a1 | 174 | |
54023465 JK |
175 | if ( code1 == TYPE_CODE_STRUCT |
176 | && code2 == TYPE_CODE_STRUCT | |
177 | && TYPE_NAME (type) != 0) | |
178 | { | |
179 | /* Look in the type of the source to see if it contains the | |
180 | type of the target as a superclass. If so, we'll need to | |
181 | offset the object in addition to changing its type. */ | |
a91a6192 SS |
182 | value_ptr v = search_struct_field (type_name_no_tag (type), |
183 | arg2, 0, VALUE_TYPE (arg2), 1); | |
54023465 JK |
184 | if (v) |
185 | { | |
186 | VALUE_TYPE (v) = type; | |
187 | return v; | |
188 | } | |
189 | } | |
bd5635a1 RP |
190 | if (code1 == TYPE_CODE_FLT && scalar) |
191 | return value_from_double (type, value_as_double (arg2)); | |
f91a9e05 PB |
192 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
193 | || code1 == TYPE_CODE_RANGE) | |
bd5635a1 | 194 | && (scalar || code2 == TYPE_CODE_PTR)) |
06b6c733 | 195 | return value_from_longest (type, value_as_long (arg2)); |
bd5635a1 RP |
196 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2))) |
197 | { | |
198 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
199 | { | |
200 | /* Look in the type of the source to see if it contains the | |
201 | type of the target as a superclass. If so, we'll need to | |
202 | offset the pointer rather than just change its type. */ | |
203 | struct type *t1 = TYPE_TARGET_TYPE (type); | |
204 | struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); | |
2a5ec41d | 205 | if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT |
bd5635a1 RP |
206 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
207 | && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */ | |
208 | { | |
a91a6192 SS |
209 | value_ptr v = search_struct_field (type_name_no_tag (t1), |
210 | value_ind (arg2), 0, t2, 1); | |
bd5635a1 RP |
211 | if (v) |
212 | { | |
213 | v = value_addr (v); | |
214 | VALUE_TYPE (v) = type; | |
215 | return v; | |
216 | } | |
217 | } | |
218 | /* No superclass found, just fall through to change ptr type. */ | |
219 | } | |
220 | VALUE_TYPE (arg2) = type; | |
221 | return arg2; | |
222 | } | |
f91a9e05 PB |
223 | else if (chill_varying_type (type)) |
224 | { | |
225 | struct type *range1, *range2, *eltype1, *eltype2; | |
226 | value_ptr val; | |
227 | int count1, count2; | |
228 | char *valaddr, *valaddr_data; | |
229 | if (code2 == TYPE_CODE_BITSTRING) | |
230 | error ("not implemented: converting bitstring to varying type"); | |
231 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
232 | || (eltype1 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1)), | |
233 | eltype2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)), | |
234 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
235 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) | |
236 | error ("Invalid conversion to varying type"); | |
237 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
238 | range2 = TYPE_FIELD_TYPE (VALUE_TYPE (arg2), 0); | |
239 | count1 = TYPE_HIGH_BOUND (range1) - TYPE_LOW_BOUND (range1) + 1; | |
240 | count2 = TYPE_HIGH_BOUND (range2) - TYPE_LOW_BOUND (range2) + 1; | |
241 | if (count2 > count1) | |
242 | error ("target varying type is too small"); | |
243 | val = allocate_value (type); | |
244 | valaddr = VALUE_CONTENTS_RAW (val); | |
245 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
246 | /* Set val's __var_length field to count2. */ | |
247 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
248 | count2); | |
249 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
250 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
251 | count2 * TYPE_LENGTH (eltype2)); | |
252 | /* Zero the rest of the __var_data field of val. */ | |
253 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
254 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
255 | return val; | |
256 | } | |
bd5635a1 RP |
257 | else if (VALUE_LVAL (arg2) == lval_memory) |
258 | { | |
259 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2)); | |
260 | } | |
d11c44f1 JG |
261 | else if (code1 == TYPE_CODE_VOID) |
262 | { | |
263 | return value_zero (builtin_type_void, not_lval); | |
264 | } | |
bd5635a1 RP |
265 | else |
266 | { | |
267 | error ("Invalid cast."); | |
268 | return 0; | |
269 | } | |
270 | } | |
271 | ||
272 | /* Create a value of type TYPE that is zero, and return it. */ | |
273 | ||
a91a6192 | 274 | value_ptr |
bd5635a1 RP |
275 | value_zero (type, lv) |
276 | struct type *type; | |
277 | enum lval_type lv; | |
278 | { | |
a91a6192 | 279 | register value_ptr val = allocate_value (type); |
bd5635a1 | 280 | |
4ed3a9ea | 281 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type)); |
bd5635a1 RP |
282 | VALUE_LVAL (val) = lv; |
283 | ||
284 | return val; | |
285 | } | |
286 | ||
287 | /* Return a value with type TYPE located at ADDR. | |
288 | ||
289 | Call value_at only if the data needs to be fetched immediately; | |
290 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
291 | value_at_lazy instead. value_at_lazy simply records the address of | |
292 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
293 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
294 | the contents are actually required. */ | |
295 | ||
a91a6192 | 296 | value_ptr |
bd5635a1 RP |
297 | value_at (type, addr) |
298 | struct type *type; | |
299 | CORE_ADDR addr; | |
300 | { | |
a91a6192 SS |
301 | register value_ptr val; |
302 | ||
303 | if (TYPE_CODE (type) == TYPE_CODE_VOID) | |
304 | error ("Attempt to dereference a generic pointer."); | |
305 | ||
306 | val = allocate_value (type); | |
bd5635a1 RP |
307 | |
308 | read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type)); | |
309 | ||
310 | VALUE_LVAL (val) = lval_memory; | |
311 | VALUE_ADDRESS (val) = addr; | |
312 | ||
313 | return val; | |
314 | } | |
315 | ||
316 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
317 | ||
a91a6192 | 318 | value_ptr |
bd5635a1 RP |
319 | value_at_lazy (type, addr) |
320 | struct type *type; | |
321 | CORE_ADDR addr; | |
322 | { | |
a91a6192 SS |
323 | register value_ptr val; |
324 | ||
325 | if (TYPE_CODE (type) == TYPE_CODE_VOID) | |
326 | error ("Attempt to dereference a generic pointer."); | |
327 | ||
328 | val = allocate_value (type); | |
bd5635a1 RP |
329 | |
330 | VALUE_LVAL (val) = lval_memory; | |
331 | VALUE_ADDRESS (val) = addr; | |
332 | VALUE_LAZY (val) = 1; | |
333 | ||
334 | return val; | |
335 | } | |
336 | ||
337 | /* Called only from the VALUE_CONTENTS macro, if the current data for | |
338 | a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the | |
339 | data from the user's process, and clears the lazy flag to indicate | |
340 | that the data in the buffer is valid. | |
341 | ||
9cb602e1 JG |
342 | If the value is zero-length, we avoid calling read_memory, which would |
343 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
344 | ||
bd5635a1 RP |
345 | This function returns a value because it is used in the VALUE_CONTENTS |
346 | macro as part of an expression, where a void would not work. The | |
347 | value is ignored. */ | |
348 | ||
349 | int | |
350 | value_fetch_lazy (val) | |
a91a6192 | 351 | register value_ptr val; |
bd5635a1 RP |
352 | { |
353 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
354 | ||
9cb602e1 JG |
355 | if (TYPE_LENGTH (VALUE_TYPE (val))) |
356 | read_memory (addr, VALUE_CONTENTS_RAW (val), | |
357 | TYPE_LENGTH (VALUE_TYPE (val))); | |
bd5635a1 RP |
358 | VALUE_LAZY (val) = 0; |
359 | return 0; | |
360 | } | |
361 | ||
362 | ||
363 | /* Store the contents of FROMVAL into the location of TOVAL. | |
364 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
365 | ||
a91a6192 | 366 | value_ptr |
bd5635a1 | 367 | value_assign (toval, fromval) |
a91a6192 | 368 | register value_ptr toval, fromval; |
bd5635a1 | 369 | { |
67e9b3b3 | 370 | register struct type *type; |
a91a6192 | 371 | register value_ptr val; |
bd5635a1 | 372 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 RP |
373 | int use_buffer = 0; |
374 | ||
30974778 JK |
375 | if (!toval->modifiable) |
376 | error ("Left operand of assignment is not a modifiable lvalue."); | |
377 | ||
bd5635a1 | 378 | COERCE_ARRAY (fromval); |
8e9a3f3b | 379 | COERCE_REF (toval); |
bd5635a1 | 380 | |
67e9b3b3 | 381 | type = VALUE_TYPE (toval); |
bd5635a1 RP |
382 | if (VALUE_LVAL (toval) != lval_internalvar) |
383 | fromval = value_cast (type, fromval); | |
384 | ||
385 | /* If TOVAL is a special machine register requiring conversion | |
386 | of program values to a special raw format, | |
387 | convert FROMVAL's contents now, with result in `raw_buffer', | |
388 | and set USE_BUFFER to the number of bytes to write. */ | |
389 | ||
ad09cb2b | 390 | #ifdef REGISTER_CONVERTIBLE |
bd5635a1 RP |
391 | if (VALUE_REGNO (toval) >= 0 |
392 | && REGISTER_CONVERTIBLE (VALUE_REGNO (toval))) | |
393 | { | |
394 | int regno = VALUE_REGNO (toval); | |
ad09cb2b PS |
395 | if (REGISTER_CONVERTIBLE (regno)) |
396 | { | |
397 | REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno, | |
398 | VALUE_CONTENTS (fromval), raw_buffer); | |
399 | use_buffer = REGISTER_RAW_SIZE (regno); | |
400 | } | |
bd5635a1 | 401 | } |
ad09cb2b | 402 | #endif |
bd5635a1 RP |
403 | |
404 | switch (VALUE_LVAL (toval)) | |
405 | { | |
406 | case lval_internalvar: | |
407 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
408 | break; | |
409 | ||
410 | case lval_internalvar_component: | |
411 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
412 | VALUE_OFFSET (toval), | |
413 | VALUE_BITPOS (toval), | |
414 | VALUE_BITSIZE (toval), | |
415 | fromval); | |
416 | break; | |
417 | ||
418 | case lval_memory: | |
419 | if (VALUE_BITSIZE (toval)) | |
420 | { | |
4d52ec86 JK |
421 | char buffer[sizeof (LONGEST)]; |
422 | /* We assume that the argument to read_memory is in units of | |
423 | host chars. FIXME: Is that correct? */ | |
424 | int len = (VALUE_BITPOS (toval) | |
425 | + VALUE_BITSIZE (toval) | |
426 | + HOST_CHAR_BIT - 1) | |
427 | / HOST_CHAR_BIT; | |
ad09cb2b | 428 | |
4d52ec86 | 429 | if (len > sizeof (LONGEST)) |
ad09cb2b PS |
430 | error ("Can't handle bitfields which don't fit in a %d bit word.", |
431 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
4d52ec86 | 432 | |
bd5635a1 | 433 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
4d52ec86 JK |
434 | buffer, len); |
435 | modify_field (buffer, value_as_long (fromval), | |
bd5635a1 RP |
436 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
437 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
4d52ec86 | 438 | buffer, len); |
bd5635a1 RP |
439 | } |
440 | else if (use_buffer) | |
441 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
442 | raw_buffer, use_buffer); | |
443 | else | |
444 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
445 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
446 | break; | |
447 | ||
448 | case lval_register: | |
449 | if (VALUE_BITSIZE (toval)) | |
450 | { | |
ad09cb2b | 451 | char buffer[sizeof (LONGEST)]; |
4d52ec86 | 452 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
ad09cb2b PS |
453 | |
454 | if (len > sizeof (LONGEST)) | |
455 | error ("Can't handle bitfields in registers larger than %d bits.", | |
456 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
457 | ||
458 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
459 | > len * HOST_CHAR_BIT) | |
460 | /* Getting this right would involve being very careful about | |
461 | byte order. */ | |
462 | error ("\ | |
463 | Can't handle bitfield which doesn't fit in a single register."); | |
464 | ||
4d52ec86 JK |
465 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
466 | buffer, len); | |
467 | modify_field (buffer, value_as_long (fromval), | |
468 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
469 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
470 | buffer, len); | |
bd5635a1 RP |
471 | } |
472 | else if (use_buffer) | |
473 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
474 | raw_buffer, use_buffer); | |
475 | else | |
54023465 JK |
476 | { |
477 | /* Do any conversion necessary when storing this type to more | |
478 | than one register. */ | |
479 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
480 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
481 | REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer); | |
482 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
483 | raw_buffer, TYPE_LENGTH (type)); | |
484 | #else | |
485 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
486 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
487 | #endif | |
488 | } | |
79971d11 JK |
489 | /* Assigning to the stack pointer, frame pointer, and other |
490 | (architecture and calling convention specific) registers may | |
491 | cause the frame cache to be out of date. We just do this | |
492 | on all assignments to registers for simplicity; I doubt the slowdown | |
493 | matters. */ | |
494 | reinit_frame_cache (); | |
bd5635a1 RP |
495 | break; |
496 | ||
497 | case lval_reg_frame_relative: | |
498 | { | |
499 | /* value is stored in a series of registers in the frame | |
500 | specified by the structure. Copy that value out, modify | |
501 | it, and copy it back in. */ | |
502 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
503 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
504 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
505 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
506 | int amount_copied; | |
4d52ec86 JK |
507 | |
508 | /* Make the buffer large enough in all cases. */ | |
509 | char *buffer = (char *) alloca (amount_to_copy | |
510 | + sizeof (LONGEST) | |
511 | + MAX_REGISTER_RAW_SIZE); | |
512 | ||
bd5635a1 | 513 | int regno; |
6d34c236 | 514 | struct frame_info *frame; |
bd5635a1 RP |
515 | |
516 | /* Figure out which frame this is in currently. */ | |
517 | for (frame = get_current_frame (); | |
518 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
519 | frame = get_prev_frame (frame)) | |
520 | ; | |
521 | ||
522 | if (!frame) | |
523 | error ("Value being assigned to is no longer active."); | |
524 | ||
525 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
526 | ||
527 | /* Copy it out. */ | |
528 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
529 | amount_copied = 0); | |
530 | amount_copied < amount_to_copy; | |
531 | amount_copied += reg_size, regno++) | |
532 | { | |
533 | get_saved_register (buffer + amount_copied, | |
51b57ded | 534 | (int *)NULL, (CORE_ADDR *)NULL, |
bd5635a1 RP |
535 | frame, regno, (enum lval_type *)NULL); |
536 | } | |
537 | ||
538 | /* Modify what needs to be modified. */ | |
539 | if (VALUE_BITSIZE (toval)) | |
540 | modify_field (buffer + byte_offset, | |
479fdd26 | 541 | value_as_long (fromval), |
bd5635a1 RP |
542 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
543 | else if (use_buffer) | |
4ed3a9ea | 544 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); |
bd5635a1 | 545 | else |
4ed3a9ea FF |
546 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), |
547 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
548 | |
549 | /* Copy it back. */ | |
550 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
551 | amount_copied = 0); | |
552 | amount_copied < amount_to_copy; | |
553 | amount_copied += reg_size, regno++) | |
554 | { | |
555 | enum lval_type lval; | |
556 | CORE_ADDR addr; | |
557 | int optim; | |
558 | ||
559 | /* Just find out where to put it. */ | |
560 | get_saved_register ((char *)NULL, | |
561 | &optim, &addr, frame, regno, &lval); | |
562 | ||
563 | if (optim) | |
564 | error ("Attempt to assign to a value that was optimized out."); | |
565 | if (lval == lval_memory) | |
566 | write_memory (addr, buffer + amount_copied, reg_size); | |
567 | else if (lval == lval_register) | |
568 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
569 | else | |
570 | error ("Attempt to assign to an unmodifiable value."); | |
571 | } | |
572 | } | |
573 | break; | |
574 | ||
575 | ||
576 | default: | |
30974778 | 577 | error ("Left operand of assignment is not an lvalue."); |
bd5635a1 RP |
578 | } |
579 | ||
580 | /* Return a value just like TOVAL except with the contents of FROMVAL | |
581 | (except in the case of the type if TOVAL is an internalvar). */ | |
582 | ||
583 | if (VALUE_LVAL (toval) == lval_internalvar | |
584 | || VALUE_LVAL (toval) == lval_internalvar_component) | |
585 | { | |
586 | type = VALUE_TYPE (fromval); | |
587 | } | |
588 | ||
589 | val = allocate_value (type); | |
4ed3a9ea FF |
590 | memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val); |
591 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
592 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
593 | VALUE_TYPE (val) = type; |
594 | ||
595 | return val; | |
596 | } | |
597 | ||
598 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
599 | ||
a91a6192 | 600 | value_ptr |
bd5635a1 | 601 | value_repeat (arg1, count) |
a91a6192 | 602 | value_ptr arg1; |
bd5635a1 RP |
603 | int count; |
604 | { | |
a91a6192 | 605 | register value_ptr val; |
bd5635a1 RP |
606 | |
607 | if (VALUE_LVAL (arg1) != lval_memory) | |
608 | error ("Only values in memory can be extended with '@'."); | |
609 | if (count < 1) | |
610 | error ("Invalid number %d of repetitions.", count); | |
2e12bf4f JK |
611 | if (VALUE_REPEATED (arg1)) |
612 | error ("Cannot create artificial arrays of artificial arrays."); | |
bd5635a1 RP |
613 | |
614 | val = allocate_repeat_value (VALUE_TYPE (arg1), count); | |
615 | ||
616 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
617 | VALUE_CONTENTS_RAW (val), | |
618 | TYPE_LENGTH (VALUE_TYPE (val)) * count); | |
619 | VALUE_LVAL (val) = lval_memory; | |
620 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
621 | ||
622 | return val; | |
623 | } | |
624 | ||
a91a6192 | 625 | value_ptr |
479fdd26 | 626 | value_of_variable (var, b) |
bd5635a1 | 627 | struct symbol *var; |
479fdd26 | 628 | struct block *b; |
bd5635a1 | 629 | { |
a91a6192 | 630 | value_ptr val; |
6d34c236 | 631 | struct frame_info *frame; |
bd5635a1 | 632 | |
479fdd26 JK |
633 | if (b == NULL) |
634 | /* Use selected frame. */ | |
6d34c236 | 635 | frame = NULL; |
479fdd26 JK |
636 | else |
637 | { | |
6d34c236 PB |
638 | frame = block_innermost_frame (b); |
639 | if (frame == NULL && symbol_read_needs_frame (var)) | |
479fdd26 JK |
640 | { |
641 | if (BLOCK_FUNCTION (b) != NULL | |
642 | && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL) | |
643 | error ("No frame is currently executing in block %s.", | |
644 | SYMBOL_NAME (BLOCK_FUNCTION (b))); | |
645 | else | |
646 | error ("No frame is currently executing in specified block"); | |
647 | } | |
648 | } | |
6d34c236 | 649 | val = read_var_value (var, frame); |
bd5635a1 | 650 | if (val == 0) |
2e4964ad | 651 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
652 | return val; |
653 | } | |
654 | ||
a163ddec MT |
655 | /* Given a value which is an array, return a value which is a pointer to its |
656 | first element, regardless of whether or not the array has a nonzero lower | |
657 | bound. | |
658 | ||
659 | FIXME: A previous comment here indicated that this routine should be | |
660 | substracting the array's lower bound. It's not clear to me that this | |
661 | is correct. Given an array subscripting operation, it would certainly | |
662 | work to do the adjustment here, essentially computing: | |
663 | ||
664 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
665 | ||
666 | However I believe a more appropriate and logical place to account for | |
667 | the lower bound is to do so in value_subscript, essentially computing: | |
668 | ||
669 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
670 | ||
671 | As further evidence consider what would happen with operations other | |
672 | than array subscripting, where the caller would get back a value that | |
673 | had an address somewhere before the actual first element of the array, | |
674 | and the information about the lower bound would be lost because of | |
675 | the coercion to pointer type. | |
676 | */ | |
bd5635a1 | 677 | |
a91a6192 | 678 | value_ptr |
bd5635a1 | 679 | value_coerce_array (arg1) |
a91a6192 | 680 | value_ptr arg1; |
bd5635a1 RP |
681 | { |
682 | register struct type *type; | |
bd5635a1 RP |
683 | |
684 | if (VALUE_LVAL (arg1) != lval_memory) | |
685 | error ("Attempt to take address of value not located in memory."); | |
686 | ||
687 | /* Get type of elements. */ | |
852b3831 PB |
688 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY |
689 | || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING) | |
bd5635a1 RP |
690 | type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1)); |
691 | else | |
692 | /* A phony array made by value_repeat. | |
693 | Its type is the type of the elements, not an array type. */ | |
694 | type = VALUE_TYPE (arg1); | |
695 | ||
06b6c733 | 696 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 697 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
698 | } |
699 | ||
700 | /* Given a value which is a function, return a value which is a pointer | |
701 | to it. */ | |
702 | ||
a91a6192 | 703 | value_ptr |
bd5635a1 | 704 | value_coerce_function (arg1) |
a91a6192 | 705 | value_ptr arg1; |
bd5635a1 | 706 | { |
bd5635a1 RP |
707 | |
708 | if (VALUE_LVAL (arg1) != lval_memory) | |
709 | error ("Attempt to take address of value not located in memory."); | |
710 | ||
06b6c733 | 711 | return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
bd5635a1 | 712 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
713 | } |
714 | ||
715 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
716 | ||
a91a6192 | 717 | value_ptr |
bd5635a1 | 718 | value_addr (arg1) |
a91a6192 | 719 | value_ptr arg1; |
bd5635a1 | 720 | { |
8e9a3f3b PB |
721 | struct type *type = VALUE_TYPE (arg1); |
722 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
723 | { | |
724 | /* Copy the value, but change the type from (T&) to (T*). | |
725 | We keep the same location information, which is efficient, | |
726 | and allows &(&X) to get the location containing the reference. */ | |
a91a6192 | 727 | value_ptr arg2 = value_copy (arg1); |
8e9a3f3b PB |
728 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); |
729 | return arg2; | |
730 | } | |
f91a9e05 PB |
731 | if (current_language->c_style_arrays |
732 | && (VALUE_REPEATED (arg1) | |
733 | || TYPE_CODE (type) == TYPE_CODE_ARRAY)) | |
bd5635a1 | 734 | return value_coerce_array (arg1); |
8e9a3f3b | 735 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
bd5635a1 RP |
736 | return value_coerce_function (arg1); |
737 | ||
738 | if (VALUE_LVAL (arg1) != lval_memory) | |
739 | error ("Attempt to take address of value not located in memory."); | |
740 | ||
8e9a3f3b | 741 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 742 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
743 | } |
744 | ||
745 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
746 | ||
a91a6192 | 747 | value_ptr |
bd5635a1 | 748 | value_ind (arg1) |
a91a6192 | 749 | value_ptr arg1; |
bd5635a1 RP |
750 | { |
751 | COERCE_ARRAY (arg1); | |
752 | ||
753 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER) | |
754 | error ("not implemented: member types in value_ind"); | |
755 | ||
756 | /* Allow * on an integer so we can cast it to whatever we want. | |
757 | This returns an int, which seems like the most C-like thing | |
758 | to do. "long long" variables are rare enough that | |
759 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
760 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT) | |
761 | return value_at (builtin_type_int, | |
762 | (CORE_ADDR) value_as_long (arg1)); | |
763 | else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) | |
764 | return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)), | |
d11c44f1 | 765 | value_as_pointer (arg1)); |
bd5635a1 RP |
766 | error ("Attempt to take contents of a non-pointer value."); |
767 | return 0; /* For lint -- never reached */ | |
768 | } | |
769 | \f | |
770 | /* Pushing small parts of stack frames. */ | |
771 | ||
772 | /* Push one word (the size of object that a register holds). */ | |
773 | ||
774 | CORE_ADDR | |
34df79fc | 775 | push_word (sp, word) |
bd5635a1 | 776 | CORE_ADDR sp; |
67e9b3b3 | 777 | unsigned LONGEST word; |
bd5635a1 | 778 | { |
67e9b3b3 | 779 | register int len = REGISTER_SIZE; |
479fdd26 | 780 | char buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 781 | |
479fdd26 | 782 | store_unsigned_integer (buffer, len, word); |
bd5635a1 RP |
783 | #if 1 INNER_THAN 2 |
784 | sp -= len; | |
479fdd26 | 785 | write_memory (sp, buffer, len); |
bd5635a1 | 786 | #else /* stack grows upward */ |
479fdd26 | 787 | write_memory (sp, buffer, len); |
bd5635a1 RP |
788 | sp += len; |
789 | #endif /* stack grows upward */ | |
790 | ||
791 | return sp; | |
792 | } | |
793 | ||
794 | /* Push LEN bytes with data at BUFFER. */ | |
795 | ||
796 | CORE_ADDR | |
797 | push_bytes (sp, buffer, len) | |
798 | CORE_ADDR sp; | |
799 | char *buffer; | |
800 | int len; | |
801 | { | |
802 | #if 1 INNER_THAN 2 | |
803 | sp -= len; | |
804 | write_memory (sp, buffer, len); | |
805 | #else /* stack grows upward */ | |
806 | write_memory (sp, buffer, len); | |
807 | sp += len; | |
808 | #endif /* stack grows upward */ | |
809 | ||
810 | return sp; | |
811 | } | |
812 | ||
813 | /* Push onto the stack the specified value VALUE. */ | |
814 | ||
01be6913 | 815 | static CORE_ADDR |
bd5635a1 RP |
816 | value_push (sp, arg) |
817 | register CORE_ADDR sp; | |
a91a6192 | 818 | value_ptr arg; |
bd5635a1 RP |
819 | { |
820 | register int len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
821 | ||
822 | #if 1 INNER_THAN 2 | |
823 | sp -= len; | |
824 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
825 | #else /* stack grows upward */ | |
826 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
827 | sp += len; | |
828 | #endif /* stack grows upward */ | |
829 | ||
830 | return sp; | |
831 | } | |
832 | ||
833 | /* Perform the standard coercions that are specified | |
5222ca60 | 834 | for arguments to be passed to C functions. |
bd5635a1 | 835 | |
5222ca60 PB |
836 | If PARAM_TYPE is non-NULL, it is the expected parameter type. */ |
837 | ||
838 | static value_ptr | |
839 | value_arg_coerce (arg, param_type) | |
a91a6192 | 840 | value_ptr arg; |
5222ca60 | 841 | struct type *param_type; |
bd5635a1 | 842 | { |
5222ca60 | 843 | register struct type *type = param_type ? param_type : VALUE_TYPE (arg); |
bd5635a1 | 844 | |
5222ca60 PB |
845 | switch (TYPE_CODE (type)) |
846 | { | |
847 | case TYPE_CODE_REF: | |
13ffa6be | 848 | if (TYPE_CODE (VALUE_TYPE (arg)) != TYPE_CODE_REF) |
5222ca60 PB |
849 | { |
850 | arg = value_addr (arg); | |
851 | VALUE_TYPE (arg) = param_type; | |
852 | return arg; | |
853 | } | |
854 | break; | |
855 | case TYPE_CODE_INT: | |
856 | case TYPE_CODE_CHAR: | |
857 | case TYPE_CODE_BOOL: | |
858 | case TYPE_CODE_ENUM: | |
859 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
860 | type = builtin_type_int; | |
861 | break; | |
862 | case TYPE_CODE_FLT: | |
863 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
864 | type = builtin_type_double; | |
865 | break; | |
866 | case TYPE_CODE_FUNC: | |
867 | type = lookup_pointer_type (type); | |
868 | break; | |
869 | } | |
479fdd26 | 870 | |
b5728692 | 871 | #if 1 /* FIXME: This is only a temporary patch. -fnf */ |
f91a9e05 PB |
872 | if (current_language->c_style_arrays |
873 | && (VALUE_REPEATED (arg) | |
874 | || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)) | |
b5728692 | 875 | arg = value_coerce_array (arg); |
b5728692 | 876 | #endif |
bd5635a1 | 877 | |
5222ca60 | 878 | return value_cast (type, arg); |
bd5635a1 RP |
879 | } |
880 | ||
881 | /* Determine a function's address and its return type from its value. | |
882 | Calls error() if the function is not valid for calling. */ | |
883 | ||
01be6913 | 884 | static CORE_ADDR |
bd5635a1 | 885 | find_function_addr (function, retval_type) |
a91a6192 | 886 | value_ptr function; |
bd5635a1 RP |
887 | struct type **retval_type; |
888 | { | |
889 | register struct type *ftype = VALUE_TYPE (function); | |
890 | register enum type_code code = TYPE_CODE (ftype); | |
891 | struct type *value_type; | |
892 | CORE_ADDR funaddr; | |
893 | ||
894 | /* If it's a member function, just look at the function | |
895 | part of it. */ | |
896 | ||
897 | /* Determine address to call. */ | |
898 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
899 | { | |
900 | funaddr = VALUE_ADDRESS (function); | |
901 | value_type = TYPE_TARGET_TYPE (ftype); | |
902 | } | |
903 | else if (code == TYPE_CODE_PTR) | |
904 | { | |
d11c44f1 | 905 | funaddr = value_as_pointer (function); |
bd5635a1 RP |
906 | if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC |
907 | || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD) | |
9ed8604f PS |
908 | { |
909 | #ifdef CONVERT_FROM_FUNC_PTR_ADDR | |
910 | /* FIXME: This is a workaround for the unusual function | |
911 | pointer representation on the RS/6000, see comment | |
912 | in config/rs6000/tm-rs6000.h */ | |
913 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); | |
914 | #endif | |
915 | value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)); | |
916 | } | |
bd5635a1 RP |
917 | else |
918 | value_type = builtin_type_int; | |
919 | } | |
920 | else if (code == TYPE_CODE_INT) | |
921 | { | |
922 | /* Handle the case of functions lacking debugging info. | |
923 | Their values are characters since their addresses are char */ | |
924 | if (TYPE_LENGTH (ftype) == 1) | |
d11c44f1 | 925 | funaddr = value_as_pointer (value_addr (function)); |
bd5635a1 RP |
926 | else |
927 | /* Handle integer used as address of a function. */ | |
d11c44f1 | 928 | funaddr = (CORE_ADDR) value_as_long (function); |
bd5635a1 RP |
929 | |
930 | value_type = builtin_type_int; | |
931 | } | |
932 | else | |
933 | error ("Invalid data type for function to be called."); | |
934 | ||
935 | *retval_type = value_type; | |
936 | return funaddr; | |
937 | } | |
938 | ||
939 | #if defined (CALL_DUMMY) | |
940 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
941 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
942 | frame which looks just like a real frame is so that if you call a | |
943 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
944 | will look right. Whether the backtrace needs to actually show the | |
945 | stack at the time the inferior function was called is debatable, but | |
946 | it certainly needs to not display garbage. So if you are contemplating | |
947 | making dummy frames be different from normal frames, consider that. */ | |
948 | ||
949 | /* Perform a function call in the inferior. | |
950 | ARGS is a vector of values of arguments (NARGS of them). | |
951 | FUNCTION is a value, the function to be called. | |
952 | Returns a value representing what the function returned. | |
953 | May fail to return, if a breakpoint or signal is hit | |
5222ca60 PB |
954 | during the execution of the function. |
955 | ||
956 | ARGS is modified to contain coerced values. */ | |
bd5635a1 | 957 | |
a91a6192 | 958 | value_ptr |
bd5635a1 | 959 | call_function_by_hand (function, nargs, args) |
a91a6192 | 960 | value_ptr function; |
bd5635a1 | 961 | int nargs; |
a91a6192 | 962 | value_ptr *args; |
bd5635a1 RP |
963 | { |
964 | register CORE_ADDR sp; | |
965 | register int i; | |
966 | CORE_ADDR start_sp; | |
67e9b3b3 PS |
967 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word |
968 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
969 | and remove any extra bytes which might exist because unsigned LONGEST is | |
970 | bigger than REGISTER_SIZE. */ | |
971 | static unsigned LONGEST dummy[] = CALL_DUMMY; | |
972 | char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)]; | |
bd5635a1 RP |
973 | CORE_ADDR old_sp; |
974 | struct type *value_type; | |
975 | unsigned char struct_return; | |
976 | CORE_ADDR struct_addr; | |
977 | struct inferior_status inf_status; | |
978 | struct cleanup *old_chain; | |
979 | CORE_ADDR funaddr; | |
980 | int using_gcc; | |
9f739abd | 981 | CORE_ADDR real_pc; |
5222ca60 | 982 | struct type *ftype = SYMBOL_TYPE (function); |
bd5635a1 | 983 | |
e17960fb JG |
984 | if (!target_has_execution) |
985 | noprocess(); | |
986 | ||
bd5635a1 RP |
987 | save_inferior_status (&inf_status, 1); |
988 | old_chain = make_cleanup (restore_inferior_status, &inf_status); | |
989 | ||
990 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
991 | (and POP_FRAME for restoring them). (At least on most machines) | |
992 | they are saved on the stack in the inferior. */ | |
993 | PUSH_DUMMY_FRAME; | |
994 | ||
54023465 | 995 | old_sp = sp = read_sp (); |
bd5635a1 RP |
996 | |
997 | #if 1 INNER_THAN 2 /* Stack grows down */ | |
9ed8604f | 998 | sp -= sizeof dummy1; |
bd5635a1 RP |
999 | start_sp = sp; |
1000 | #else /* Stack grows up */ | |
1001 | start_sp = sp; | |
9ed8604f | 1002 | sp += sizeof dummy1; |
bd5635a1 RP |
1003 | #endif |
1004 | ||
1005 | funaddr = find_function_addr (function, &value_type); | |
1006 | ||
1007 | { | |
1008 | struct block *b = block_for_pc (funaddr); | |
1009 | /* If compiled without -g, assume GCC. */ | |
f7a69ed7 | 1010 | using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b); |
bd5635a1 RP |
1011 | } |
1012 | ||
1013 | /* Are we returning a value using a structure return or a normal | |
1014 | value return? */ | |
1015 | ||
1016 | struct_return = using_struct_return (function, funaddr, value_type, | |
1017 | using_gcc); | |
1018 | ||
1019 | /* Create a call sequence customized for this function | |
1020 | and the number of arguments for it. */ | |
67e9b3b3 PS |
1021 | for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++) |
1022 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], | |
1023 | REGISTER_SIZE, | |
34df79fc | 1024 | (unsigned LONGEST)dummy[i]); |
9f739abd SG |
1025 | |
1026 | #ifdef GDB_TARGET_IS_HPPA | |
b5728692 SG |
1027 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
1028 | value_type, using_gcc); | |
9f739abd | 1029 | #else |
bd5635a1 RP |
1030 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
1031 | value_type, using_gcc); | |
9f739abd SG |
1032 | real_pc = start_sp; |
1033 | #endif | |
bd5635a1 RP |
1034 | |
1035 | #if CALL_DUMMY_LOCATION == ON_STACK | |
9ed8604f | 1036 | write_memory (start_sp, (char *)dummy1, sizeof dummy1); |
cef4c2e7 | 1037 | #endif /* On stack. */ |
bd5635a1 | 1038 | |
bd5635a1 RP |
1039 | #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END |
1040 | /* Convex Unix prohibits executing in the stack segment. */ | |
1041 | /* Hope there is empty room at the top of the text segment. */ | |
1042 | { | |
84d82b1c | 1043 | extern CORE_ADDR text_end; |
bd5635a1 RP |
1044 | static checked = 0; |
1045 | if (!checked) | |
9ed8604f | 1046 | for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp) |
bd5635a1 RP |
1047 | if (read_memory_integer (start_sp, 1) != 0) |
1048 | error ("text segment full -- no place to put call"); | |
1049 | checked = 1; | |
1050 | sp = old_sp; | |
9ed8604f PS |
1051 | real_pc = text_end - sizeof dummy1; |
1052 | write_memory (real_pc, (char *)dummy1, sizeof dummy1); | |
bd5635a1 | 1053 | } |
cef4c2e7 PS |
1054 | #endif /* Before text_end. */ |
1055 | ||
1056 | #if CALL_DUMMY_LOCATION == AFTER_TEXT_END | |
bd5635a1 | 1057 | { |
84d82b1c | 1058 | extern CORE_ADDR text_end; |
bd5635a1 RP |
1059 | int errcode; |
1060 | sp = old_sp; | |
30d20d15 | 1061 | real_pc = text_end; |
9ed8604f | 1062 | errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1); |
bd5635a1 RP |
1063 | if (errcode != 0) |
1064 | error ("Cannot write text segment -- call_function failed"); | |
1065 | } | |
1066 | #endif /* After text_end. */ | |
cef4c2e7 PS |
1067 | |
1068 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
1069 | real_pc = funaddr; | |
1070 | #endif /* At entry point. */ | |
bd5635a1 RP |
1071 | |
1072 | #ifdef lint | |
1073 | sp = old_sp; /* It really is used, for some ifdef's... */ | |
1074 | #endif | |
1075 | ||
f7a69ed7 PB |
1076 | if (nargs < TYPE_NFIELDS (ftype)) |
1077 | error ("too few arguments in function call"); | |
1078 | ||
5222ca60 PB |
1079 | for (i = nargs - 1; i >= 0; i--) |
1080 | { | |
1081 | struct type *param_type; | |
1082 | if (TYPE_NFIELDS (ftype) > i) | |
1083 | param_type = TYPE_FIELD_TYPE (ftype, i); | |
1084 | else | |
1085 | param_type = 0; | |
1086 | args[i] = value_arg_coerce (args[i], param_type); | |
1087 | } | |
1088 | ||
bd5635a1 RP |
1089 | #if defined (REG_STRUCT_HAS_ADDR) |
1090 | { | |
a91a6192 | 1091 | /* This is a machine like the sparc, where we may need to pass a pointer |
bd5635a1 | 1092 | to the structure, not the structure itself. */ |
a91a6192 | 1093 | for (i = nargs - 1; i >= 0; i--) |
f7a69ed7 PB |
1094 | if ((TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT |
1095 | || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_UNION | |
1096 | || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_ARRAY | |
1097 | || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRING) | |
a91a6192 SS |
1098 | && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i]))) |
1099 | { | |
1100 | CORE_ADDR addr; | |
f7a69ed7 PB |
1101 | int len = TYPE_LENGTH (VALUE_TYPE (args[i])); |
1102 | #ifdef STACK_ALIGN | |
1103 | int aligned_len = STACK_ALIGN (len); | |
1104 | #else | |
1105 | int aligned_len = len; | |
1106 | #endif | |
bd5635a1 | 1107 | #if !(1 INNER_THAN 2) |
a91a6192 SS |
1108 | /* The stack grows up, so the address of the thing we push |
1109 | is the stack pointer before we push it. */ | |
1110 | addr = sp; | |
f7a69ed7 PB |
1111 | #else |
1112 | sp -= aligned_len; | |
bd5635a1 | 1113 | #endif |
a91a6192 | 1114 | /* Push the structure. */ |
f7a69ed7 | 1115 | write_memory (sp, VALUE_CONTENTS (args[i]), len); |
bd5635a1 | 1116 | #if 1 INNER_THAN 2 |
a91a6192 SS |
1117 | /* The stack grows down, so the address of the thing we push |
1118 | is the stack pointer after we push it. */ | |
1119 | addr = sp; | |
f7a69ed7 PB |
1120 | #else |
1121 | sp += aligned_len; | |
bd5635a1 | 1122 | #endif |
a91a6192 SS |
1123 | /* The value we're going to pass is the address of the thing |
1124 | we just pushed. */ | |
1125 | args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1126 | (LONGEST) addr); | |
1127 | } | |
bd5635a1 RP |
1128 | } |
1129 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1130 | ||
f7a69ed7 PB |
1131 | /* Reserve space for the return structure to be written on the |
1132 | stack, if necessary */ | |
1133 | ||
1134 | if (struct_return) | |
1135 | { | |
1136 | int len = TYPE_LENGTH (value_type); | |
1137 | #ifdef STACK_ALIGN | |
1138 | len = STACK_ALIGN (len); | |
1139 | #endif | |
1140 | #if 1 INNER_THAN 2 | |
1141 | sp -= len; | |
1142 | struct_addr = sp; | |
1143 | #else | |
1144 | struct_addr = sp; | |
1145 | sp += len; | |
1146 | #endif | |
1147 | } | |
1148 | ||
1149 | #ifdef STACK_ALIGN | |
1150 | /* If stack grows down, we must leave a hole at the top. */ | |
1151 | { | |
1152 | int len = 0; | |
1153 | ||
1154 | for (i = nargs - 1; i >= 0; i--) | |
1155 | len += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1156 | #ifdef CALL_DUMMY_STACK_ADJUST | |
1157 | len += CALL_DUMMY_STACK_ADJUST; | |
1158 | #endif | |
1159 | #if 1 INNER_THAN 2 | |
1160 | sp -= STACK_ALIGN (len) - len; | |
1161 | #else | |
1162 | sp += STACK_ALIGN (len) - len; | |
1163 | #endif | |
1164 | } | |
1165 | #endif /* STACK_ALIGN */ | |
1166 | ||
bd5635a1 RP |
1167 | #ifdef PUSH_ARGUMENTS |
1168 | PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr); | |
1169 | #else /* !PUSH_ARGUMENTS */ | |
1170 | for (i = nargs - 1; i >= 0; i--) | |
5222ca60 | 1171 | sp = value_push (sp, args[i]); |
bd5635a1 RP |
1172 | #endif /* !PUSH_ARGUMENTS */ |
1173 | ||
1174 | #ifdef CALL_DUMMY_STACK_ADJUST | |
1175 | #if 1 INNER_THAN 2 | |
1176 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1177 | #else | |
1178 | sp += CALL_DUMMY_STACK_ADJUST; | |
1179 | #endif | |
1180 | #endif /* CALL_DUMMY_STACK_ADJUST */ | |
1181 | ||
1182 | /* Store the address at which the structure is supposed to be | |
1183 | written. Note that this (and the code which reserved the space | |
1184 | above) assumes that gcc was used to compile this function. Since | |
1185 | it doesn't cost us anything but space and if the function is pcc | |
1186 | it will ignore this value, we will make that assumption. | |
1187 | ||
1188 | Also note that on some machines (like the sparc) pcc uses a | |
1189 | convention like gcc's. */ | |
1190 | ||
1191 | if (struct_return) | |
1192 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1193 | ||
1194 | /* Write the stack pointer. This is here because the statements above | |
1195 | might fool with it. On SPARC, this write also stores the register | |
1196 | window into the right place in the new stack frame, which otherwise | |
5632cd56 | 1197 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ |
54023465 | 1198 | write_sp (sp); |
bd5635a1 | 1199 | |
bd5635a1 RP |
1200 | { |
1201 | char retbuf[REGISTER_BYTES]; | |
54023465 JK |
1202 | char *name; |
1203 | struct symbol *symbol; | |
1204 | ||
1205 | name = NULL; | |
1206 | symbol = find_pc_function (funaddr); | |
1207 | if (symbol) | |
1208 | { | |
1209 | name = SYMBOL_SOURCE_NAME (symbol); | |
1210 | } | |
1211 | else | |
1212 | { | |
1213 | /* Try the minimal symbols. */ | |
1214 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1215 | ||
1216 | if (msymbol) | |
1217 | { | |
1218 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1219 | } | |
1220 | } | |
1221 | if (name == NULL) | |
1222 | { | |
1223 | char format[80]; | |
1224 | sprintf (format, "at %s", local_hex_format ()); | |
1225 | name = alloca (80); | |
30974778 | 1226 | /* FIXME-32x64: assumes funaddr fits in a long. */ |
cef4c2e7 | 1227 | sprintf (name, format, (unsigned long) funaddr); |
54023465 | 1228 | } |
bd5635a1 RP |
1229 | |
1230 | /* Execute the stack dummy routine, calling FUNCTION. | |
1231 | When it is done, discard the empty frame | |
1232 | after storing the contents of all regs into retbuf. */ | |
860a1754 JK |
1233 | if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf)) |
1234 | { | |
1235 | /* We stopped somewhere besides the call dummy. */ | |
1236 | ||
1237 | /* If we did the cleanups, we would print a spurious error message | |
1238 | (Unable to restore previously selected frame), would write the | |
1239 | registers from the inf_status (which is wrong), and would do other | |
1240 | wrong things (like set stop_bpstat to the wrong thing). */ | |
1241 | discard_cleanups (old_chain); | |
1242 | /* Prevent memory leak. */ | |
30d20d15 | 1243 | bpstat_clear (&inf_status.stop_bpstat); |
860a1754 JK |
1244 | |
1245 | /* The following error message used to say "The expression | |
1246 | which contained the function call has been discarded." It | |
1247 | is a hard concept to explain in a few words. Ideally, GDB | |
1248 | would be able to resume evaluation of the expression when | |
1249 | the function finally is done executing. Perhaps someday | |
1250 | this will be implemented (it would not be easy). */ | |
1251 | ||
1252 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1253 | a C++ name with arguments and stuff. */ | |
1254 | error ("\ | |
1255 | The program being debugged stopped while in a function called from GDB.\n\ | |
1256 | When the function (%s) is done executing, GDB will silently\n\ | |
1257 | stop (instead of continuing to evaluate the expression containing\n\ | |
1258 | the function call).", name); | |
1259 | } | |
bd5635a1 RP |
1260 | |
1261 | do_cleanups (old_chain); | |
1262 | ||
860a1754 | 1263 | /* Figure out the value returned by the function. */ |
bd5635a1 RP |
1264 | return value_being_returned (value_type, retbuf, struct_return); |
1265 | } | |
1266 | } | |
1267 | #else /* no CALL_DUMMY. */ | |
a91a6192 | 1268 | value_ptr |
bd5635a1 | 1269 | call_function_by_hand (function, nargs, args) |
a91a6192 | 1270 | value_ptr function; |
bd5635a1 | 1271 | int nargs; |
a91a6192 | 1272 | value_ptr *args; |
bd5635a1 RP |
1273 | { |
1274 | error ("Cannot invoke functions on this machine."); | |
1275 | } | |
1276 | #endif /* no CALL_DUMMY. */ | |
a163ddec | 1277 | |
bd5635a1 | 1278 | \f |
a163ddec MT |
1279 | /* Create a value for an array by allocating space in the inferior, copying |
1280 | the data into that space, and then setting up an array value. | |
1281 | ||
1282 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1283 | populated from the values passed in ELEMVEC. | |
1284 | ||
1285 | The element type of the array is inherited from the type of the | |
1286 | first element, and all elements must have the same size (though we | |
1287 | don't currently enforce any restriction on their types). */ | |
bd5635a1 | 1288 | |
a91a6192 | 1289 | value_ptr |
a163ddec MT |
1290 | value_array (lowbound, highbound, elemvec) |
1291 | int lowbound; | |
1292 | int highbound; | |
a91a6192 | 1293 | value_ptr *elemvec; |
bd5635a1 | 1294 | { |
a163ddec MT |
1295 | int nelem; |
1296 | int idx; | |
1297 | int typelength; | |
a91a6192 | 1298 | value_ptr val; |
a163ddec MT |
1299 | struct type *rangetype; |
1300 | struct type *arraytype; | |
1301 | CORE_ADDR addr; | |
bd5635a1 | 1302 | |
a163ddec MT |
1303 | /* Validate that the bounds are reasonable and that each of the elements |
1304 | have the same size. */ | |
bd5635a1 | 1305 | |
a163ddec MT |
1306 | nelem = highbound - lowbound + 1; |
1307 | if (nelem <= 0) | |
bd5635a1 | 1308 | { |
a163ddec | 1309 | error ("bad array bounds (%d, %d)", lowbound, highbound); |
bd5635a1 | 1310 | } |
a163ddec MT |
1311 | typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0])); |
1312 | for (idx = 0; idx < nelem; idx++) | |
bd5635a1 | 1313 | { |
a163ddec MT |
1314 | if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength) |
1315 | { | |
1316 | error ("array elements must all be the same size"); | |
1317 | } | |
bd5635a1 RP |
1318 | } |
1319 | ||
a163ddec MT |
1320 | /* Allocate space to store the array in the inferior, and then initialize |
1321 | it by copying in each element. FIXME: Is it worth it to create a | |
1322 | local buffer in which to collect each value and then write all the | |
1323 | bytes in one operation? */ | |
1324 | ||
1325 | addr = allocate_space_in_inferior (nelem * typelength); | |
1326 | for (idx = 0; idx < nelem; idx++) | |
1327 | { | |
1328 | write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]), | |
1329 | typelength); | |
1330 | } | |
1331 | ||
1332 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1333 | ||
1334 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1335 | lowbound, highbound); | |
1336 | arraytype = create_array_type ((struct type *) NULL, | |
1337 | VALUE_TYPE (elemvec[0]), rangetype); | |
1338 | val = value_at_lazy (arraytype, addr); | |
1339 | return (val); | |
1340 | } | |
1341 | ||
1342 | /* Create a value for a string constant by allocating space in the inferior, | |
1343 | copying the data into that space, and returning the address with type | |
1344 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1345 | of characters. | |
1346 | Note that string types are like array of char types with a lower bound of | |
1347 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1348 | embedded null bytes. */ | |
1349 | ||
a91a6192 | 1350 | value_ptr |
a163ddec MT |
1351 | value_string (ptr, len) |
1352 | char *ptr; | |
1353 | int len; | |
1354 | { | |
a91a6192 | 1355 | value_ptr val; |
5222ca60 | 1356 | int lowbound = current_language->string_lower_bound; |
f91a9e05 | 1357 | struct type *rangetype = create_range_type ((struct type *) NULL, |
5222ca60 PB |
1358 | builtin_type_int, |
1359 | lowbound, len + lowbound - 1); | |
f91a9e05 PB |
1360 | struct type *stringtype |
1361 | = create_string_type ((struct type *) NULL, rangetype); | |
a163ddec MT |
1362 | CORE_ADDR addr; |
1363 | ||
f91a9e05 PB |
1364 | if (current_language->c_style_arrays == 0) |
1365 | { | |
1366 | val = allocate_value (stringtype); | |
1367 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1368 | return val; | |
1369 | } | |
1370 | ||
1371 | ||
a163ddec MT |
1372 | /* Allocate space to store the string in the inferior, and then |
1373 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1374 | ||
1375 | addr = allocate_space_in_inferior (len); | |
1376 | write_memory (addr, ptr, len); | |
1377 | ||
a163ddec MT |
1378 | val = value_at_lazy (stringtype, addr); |
1379 | return (val); | |
bd5635a1 | 1380 | } |
6d34c236 PB |
1381 | |
1382 | value_ptr | |
1383 | value_bitstring (ptr, len) | |
1384 | char *ptr; | |
1385 | int len; | |
1386 | { | |
1387 | value_ptr val; | |
1388 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1389 | 0, len - 1); | |
1390 | struct type *type = create_set_type ((struct type*) NULL, domain_type); | |
1391 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; | |
1392 | val = allocate_value (type); | |
1393 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type) / TARGET_CHAR_BIT); | |
1394 | return val; | |
1395 | } | |
bd5635a1 | 1396 | \f |
479fdd26 JK |
1397 | /* See if we can pass arguments in T2 to a function which takes arguments |
1398 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1399 | arguments need coercion of some sort, then the coerced values are written | |
1400 | into T2. Return value is 0 if the arguments could be matched, or the | |
1401 | position at which they differ if not. | |
a163ddec MT |
1402 | |
1403 | STATICP is nonzero if the T1 argument list came from a | |
1404 | static member function. | |
1405 | ||
1406 | For non-static member functions, we ignore the first argument, | |
1407 | which is the type of the instance variable. This is because we want | |
1408 | to handle calls with objects from derived classes. This is not | |
1409 | entirely correct: we should actually check to make sure that a | |
1410 | requested operation is type secure, shouldn't we? FIXME. */ | |
1411 | ||
1412 | static int | |
1413 | typecmp (staticp, t1, t2) | |
1414 | int staticp; | |
1415 | struct type *t1[]; | |
a91a6192 | 1416 | value_ptr t2[]; |
a163ddec MT |
1417 | { |
1418 | int i; | |
1419 | ||
1420 | if (t2 == 0) | |
1421 | return 1; | |
1422 | if (staticp && t1 == 0) | |
1423 | return t2[1] != 0; | |
1424 | if (t1 == 0) | |
1425 | return 1; | |
1426 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0; | |
1427 | if (t1[!staticp] == 0) return 0; | |
1428 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) | |
1429 | { | |
40620258 | 1430 | struct type *tt1, *tt2; |
a163ddec MT |
1431 | if (! t2[i]) |
1432 | return i+1; | |
40620258 KH |
1433 | tt1 = t1[i]; |
1434 | tt2 = VALUE_TYPE(t2[i]); | |
1435 | if (TYPE_CODE (tt1) == TYPE_CODE_REF | |
479fdd26 | 1436 | /* We should be doing hairy argument matching, as below. */ |
40620258 | 1437 | && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2))) |
479fdd26 JK |
1438 | { |
1439 | t2[i] = value_addr (t2[i]); | |
1440 | continue; | |
1441 | } | |
1442 | ||
40620258 KH |
1443 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR |
1444 | && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR)) | |
1445 | { | |
1446 | tt1 = TYPE_TARGET_TYPE(tt1); | |
1447 | tt2 = TYPE_TARGET_TYPE(tt2); | |
1448 | } | |
1449 | if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue; | |
1450 | /* Array to pointer is a `trivial conversion' according to the ARM. */ | |
479fdd26 JK |
1451 | |
1452 | /* We should be doing much hairier argument matching (see section 13.2 | |
1453 | of the ARM), but as a quick kludge, just check for the same type | |
1454 | code. */ | |
a163ddec MT |
1455 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
1456 | return i+1; | |
1457 | } | |
1458 | if (!t1[i]) return 0; | |
1459 | return t2[i] ? i+1 : 0; | |
1460 | } | |
1461 | ||
bd5635a1 RP |
1462 | /* Helper function used by value_struct_elt to recurse through baseclasses. |
1463 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1464 | and search in it assuming it has (class) type TYPE. |
d3bab255 JK |
1465 | If found, return value, else return NULL. |
1466 | ||
1467 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1468 | look for a baseclass named NAME. */ | |
bd5635a1 | 1469 | |
a91a6192 | 1470 | static value_ptr |
d3bab255 | 1471 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) |
bd5635a1 | 1472 | char *name; |
a91a6192 | 1473 | register value_ptr arg1; |
bd5635a1 RP |
1474 | int offset; |
1475 | register struct type *type; | |
d3bab255 | 1476 | int looking_for_baseclass; |
bd5635a1 RP |
1477 | { |
1478 | int i; | |
1479 | ||
1480 | check_stub_type (type); | |
1481 | ||
d3bab255 JK |
1482 | if (! looking_for_baseclass) |
1483 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1484 | { | |
1485 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1486 | ||
2e4964ad | 1487 | if (t_field_name && STREQ (t_field_name, name)) |
d3bab255 | 1488 | { |
a91a6192 | 1489 | value_ptr v; |
01be6913 PB |
1490 | if (TYPE_FIELD_STATIC (type, i)) |
1491 | { | |
1492 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i); | |
1493 | struct symbol *sym = | |
2e4964ad FF |
1494 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); |
1495 | if (sym == NULL) | |
1496 | error ("Internal error: could not find physical static variable named %s", | |
1497 | phys_name); | |
01be6913 PB |
1498 | v = value_at (TYPE_FIELD_TYPE (type, i), |
1499 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
1500 | } | |
1501 | else | |
1502 | v = value_primitive_field (arg1, offset, i, type); | |
d3bab255 JK |
1503 | if (v == 0) |
1504 | error("there is no field named %s", name); | |
1505 | return v; | |
1506 | } | |
6d34c236 PB |
1507 | if (t_field_name && t_field_name[0] == '\0' |
1508 | && TYPE_CODE (TYPE_FIELD_TYPE (type, i)) == TYPE_CODE_UNION) | |
1509 | { | |
1510 | /* Look for a match through the fields of an anonymous union. */ | |
1511 | value_ptr v; | |
1512 | v = search_struct_field (name, arg1, offset, | |
1513 | TYPE_FIELD_TYPE (type, i), | |
1514 | looking_for_baseclass); | |
1515 | if (v) | |
1516 | return v; | |
1517 | } | |
d3bab255 | 1518 | } |
bd5635a1 RP |
1519 | |
1520 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1521 | { | |
a91a6192 | 1522 | value_ptr v; |
bd5635a1 | 1523 | /* If we are looking for baseclasses, this is what we get when we |
54023465 JK |
1524 | hit them. But it could happen that the base part's member name |
1525 | is not yet filled in. */ | |
d3bab255 | 1526 | int found_baseclass = (looking_for_baseclass |
54023465 | 1527 | && TYPE_BASECLASS_NAME (type, i) != NULL |
2e4964ad | 1528 | && STREQ (name, TYPE_BASECLASS_NAME (type, i))); |
bd5635a1 RP |
1529 | |
1530 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1531 | { | |
a91a6192 | 1532 | value_ptr v2; |
bac89d6c | 1533 | /* Fix to use baseclass_offset instead. FIXME */ |
d11c44f1 JG |
1534 | baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, |
1535 | &v2, (int *)NULL); | |
bd5635a1 RP |
1536 | if (v2 == 0) |
1537 | error ("virtual baseclass botch"); | |
1538 | if (found_baseclass) | |
1539 | return v2; | |
d3bab255 JK |
1540 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), |
1541 | looking_for_baseclass); | |
bd5635a1 | 1542 | } |
01be6913 | 1543 | else if (found_baseclass) |
bd5635a1 RP |
1544 | v = value_primitive_field (arg1, offset, i, type); |
1545 | else | |
1546 | v = search_struct_field (name, arg1, | |
1547 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | |
d3bab255 JK |
1548 | TYPE_BASECLASS (type, i), |
1549 | looking_for_baseclass); | |
bd5635a1 RP |
1550 | if (v) return v; |
1551 | } | |
1552 | return NULL; | |
1553 | } | |
1554 | ||
1555 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1556 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1557 | and search in it assuming it has (class) type TYPE. |
cef4c2e7 | 1558 | If found, return value, else if name matched and args not return (value)-1, |
5b5c6d94 | 1559 | else return NULL. */ |
bd5635a1 | 1560 | |
a91a6192 | 1561 | static value_ptr |
bac89d6c | 1562 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) |
bd5635a1 | 1563 | char *name; |
a91a6192 | 1564 | register value_ptr *arg1p, *args; |
bd5635a1 RP |
1565 | int offset, *static_memfuncp; |
1566 | register struct type *type; | |
1567 | { | |
1568 | int i; | |
a91a6192 | 1569 | value_ptr v; |
67e9b3b3 | 1570 | int name_matched = 0; |
6ebc9cdd | 1571 | char dem_opname[64]; |
bd5635a1 RP |
1572 | |
1573 | check_stub_type (type); | |
1574 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1575 | { | |
1576 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
6ebc9cdd KH |
1577 | if (strncmp(t_field_name, "__", 2)==0 || |
1578 | strncmp(t_field_name, "op", 2)==0 || | |
1579 | strncmp(t_field_name, "type", 4)==0 ) | |
1580 | { | |
1581 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1582 | t_field_name = dem_opname; | |
1583 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1584 | t_field_name = dem_opname; | |
1585 | } | |
2e4964ad | 1586 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1587 | { |
d3bab255 | 1588 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; |
bd5635a1 | 1589 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
5b5c6d94 | 1590 | name_matched = 1; |
bd5635a1 | 1591 | |
d3bab255 JK |
1592 | if (j > 0 && args == 0) |
1593 | error ("cannot resolve overloaded method `%s'", name); | |
1594 | while (j >= 0) | |
bd5635a1 | 1595 | { |
8e9a3f3b | 1596 | if (TYPE_FN_FIELD_STUB (f, j)) |
bd5635a1 RP |
1597 | check_stub_method (type, i, j); |
1598 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
1599 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
1600 | { | |
1601 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
a91a6192 | 1602 | return value_virtual_fn_field (arg1p, f, j, type, offset); |
bd5635a1 RP |
1603 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) |
1604 | *static_memfuncp = 1; | |
a91a6192 SS |
1605 | v = value_fn_field (arg1p, f, j, type, offset); |
1606 | if (v != NULL) return v; | |
bd5635a1 | 1607 | } |
d3bab255 | 1608 | j--; |
bd5635a1 RP |
1609 | } |
1610 | } | |
1611 | } | |
1612 | ||
1613 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1614 | { | |
01be6913 | 1615 | int base_offset; |
bd5635a1 RP |
1616 | |
1617 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1618 | { | |
9f739abd | 1619 | base_offset = baseclass_offset (type, i, *arg1p, offset); |
bac89d6c | 1620 | if (base_offset == -1) |
bd5635a1 | 1621 | error ("virtual baseclass botch"); |
bd5635a1 | 1622 | } |
01be6913 PB |
1623 | else |
1624 | { | |
01be6913 PB |
1625 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
1626 | } | |
bac89d6c | 1627 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
bd5635a1 | 1628 | static_memfuncp, TYPE_BASECLASS (type, i)); |
a91a6192 | 1629 | if (v == (value_ptr) -1) |
5b5c6d94 KH |
1630 | { |
1631 | name_matched = 1; | |
1632 | } | |
1633 | else if (v) | |
bac89d6c FF |
1634 | { |
1635 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
1636 | /* *arg1p = arg1_tmp;*/ | |
1637 | return v; | |
1638 | } | |
bd5635a1 | 1639 | } |
a91a6192 | 1640 | if (name_matched) return (value_ptr) -1; |
5b5c6d94 | 1641 | else return NULL; |
bd5635a1 RP |
1642 | } |
1643 | ||
1644 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1645 | extract the component named NAME from the ultimate target structure/union | |
1646 | and return it as a value with its appropriate type. | |
1647 | ERR is used in the error message if *ARGP's type is wrong. | |
1648 | ||
1649 | C++: ARGS is a list of argument types to aid in the selection of | |
1650 | an appropriate method. Also, handle derived types. | |
1651 | ||
1652 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1653 | where the truthvalue of whether the function that was resolved was | |
1654 | a static member function or not is stored. | |
1655 | ||
1656 | ERR is an error message to be printed in case the field is not found. */ | |
1657 | ||
a91a6192 | 1658 | value_ptr |
bd5635a1 | 1659 | value_struct_elt (argp, args, name, static_memfuncp, err) |
a91a6192 | 1660 | register value_ptr *argp, *args; |
bd5635a1 RP |
1661 | char *name; |
1662 | int *static_memfuncp; | |
1663 | char *err; | |
1664 | { | |
1665 | register struct type *t; | |
a91a6192 | 1666 | value_ptr v; |
bd5635a1 RP |
1667 | |
1668 | COERCE_ARRAY (*argp); | |
1669 | ||
1670 | t = VALUE_TYPE (*argp); | |
1671 | ||
1672 | /* Follow pointers until we get to a non-pointer. */ | |
1673 | ||
1674 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1675 | { | |
bd5635a1 | 1676 | *argp = value_ind (*argp); |
f2ebc25f JK |
1677 | /* Don't coerce fn pointer to fn and then back again! */ |
1678 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1679 | COERCE_ARRAY (*argp); | |
bd5635a1 RP |
1680 | t = VALUE_TYPE (*argp); |
1681 | } | |
1682 | ||
1683 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1684 | error ("not implemented: member type in value_struct_elt"); | |
1685 | ||
2a5ec41d | 1686 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1687 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1688 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1689 | ||
1690 | /* Assume it's not, unless we see that it is. */ | |
1691 | if (static_memfuncp) | |
1692 | *static_memfuncp =0; | |
1693 | ||
1694 | if (!args) | |
1695 | { | |
1696 | /* if there are no arguments ...do this... */ | |
1697 | ||
d3bab255 | 1698 | /* Try as a field first, because if we succeed, there |
bd5635a1 | 1699 | is less work to be done. */ |
d3bab255 | 1700 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1701 | if (v) |
1702 | return v; | |
1703 | ||
1704 | /* C++: If it was not found as a data field, then try to | |
1705 | return it as a pointer to a method. */ | |
1706 | ||
1707 | if (destructor_name_p (name, t)) | |
1708 | error ("Cannot get value of destructor"); | |
1709 | ||
bac89d6c | 1710 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1711 | |
a91a6192 | 1712 | if (v == (value_ptr) -1) |
67e9b3b3 PS |
1713 | error ("Cannot take address of a method"); |
1714 | else if (v == 0) | |
bd5635a1 RP |
1715 | { |
1716 | if (TYPE_NFN_FIELDS (t)) | |
1717 | error ("There is no member or method named %s.", name); | |
1718 | else | |
1719 | error ("There is no member named %s.", name); | |
1720 | } | |
1721 | return v; | |
1722 | } | |
1723 | ||
1724 | if (destructor_name_p (name, t)) | |
1725 | { | |
1726 | if (!args[1]) | |
1727 | { | |
1728 | /* destructors are a special case. */ | |
a91a6192 SS |
1729 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0), |
1730 | TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0); | |
40620258 KH |
1731 | if (!v) error("could not find destructor function named %s.", name); |
1732 | else return v; | |
bd5635a1 RP |
1733 | } |
1734 | else | |
1735 | { | |
1736 | error ("destructor should not have any argument"); | |
1737 | } | |
1738 | } | |
1739 | else | |
bac89d6c | 1740 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1741 | |
a91a6192 | 1742 | if (v == (value_ptr) -1) |
5b5c6d94 KH |
1743 | { |
1744 | error("Argument list of %s mismatch with component in the structure.", name); | |
1745 | } | |
1746 | else if (v == 0) | |
bd5635a1 RP |
1747 | { |
1748 | /* See if user tried to invoke data as function. If so, | |
1749 | hand it back. If it's not callable (i.e., a pointer to function), | |
1750 | gdb should give an error. */ | |
d3bab255 | 1751 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1752 | } |
1753 | ||
1754 | if (!v) | |
1755 | error ("Structure has no component named %s.", name); | |
1756 | return v; | |
1757 | } | |
1758 | ||
1759 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
1760 | of type TYPE. If TYPE does not have a destructor, or | |
1761 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
1762 | int | |
1763 | destructor_name_p (name, type) | |
7919c3ed JG |
1764 | const char *name; |
1765 | const struct type *type; | |
bd5635a1 RP |
1766 | { |
1767 | /* destructors are a special case. */ | |
1768 | ||
1769 | if (name[0] == '~') | |
1770 | { | |
1771 | char *dname = type_name_no_tag (type); | |
6d34c236 PB |
1772 | char *cp = strchr (dname, '<'); |
1773 | int len; | |
1774 | ||
1775 | /* Do not compare the template part for template classes. */ | |
1776 | if (cp == NULL) | |
1777 | len = strlen (dname); | |
1778 | else | |
1779 | len = cp - dname; | |
1780 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
bd5635a1 RP |
1781 | error ("name of destructor must equal name of class"); |
1782 | else | |
1783 | return 1; | |
1784 | } | |
1785 | return 0; | |
1786 | } | |
1787 | ||
1788 | /* Helper function for check_field: Given TYPE, a structure/union, | |
1789 | return 1 if the component named NAME from the ultimate | |
1790 | target structure/union is defined, otherwise, return 0. */ | |
1791 | ||
1792 | static int | |
1793 | check_field_in (type, name) | |
1794 | register struct type *type; | |
01be6913 | 1795 | const char *name; |
bd5635a1 RP |
1796 | { |
1797 | register int i; | |
1798 | ||
1799 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1800 | { | |
1801 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2e4964ad | 1802 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 RP |
1803 | return 1; |
1804 | } | |
1805 | ||
1806 | /* C++: If it was not found as a data field, then try to | |
1807 | return it as a pointer to a method. */ | |
1808 | ||
1809 | /* Destructors are a special case. */ | |
1810 | if (destructor_name_p (name, type)) | |
1811 | return 1; | |
1812 | ||
1813 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
1814 | { | |
2e4964ad | 1815 | if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name)) |
bd5635a1 RP |
1816 | return 1; |
1817 | } | |
1818 | ||
1819 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1820 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
1821 | return 1; | |
1822 | ||
1823 | return 0; | |
1824 | } | |
1825 | ||
1826 | ||
1827 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
1828 | return 1 if the component named NAME from the ultimate | |
1829 | target structure/union is defined, otherwise, return 0. */ | |
1830 | ||
1831 | int | |
1832 | check_field (arg1, name) | |
a91a6192 | 1833 | register value_ptr arg1; |
7919c3ed | 1834 | const char *name; |
bd5635a1 RP |
1835 | { |
1836 | register struct type *t; | |
1837 | ||
1838 | COERCE_ARRAY (arg1); | |
1839 | ||
1840 | t = VALUE_TYPE (arg1); | |
1841 | ||
1842 | /* Follow pointers until we get to a non-pointer. */ | |
1843 | ||
1844 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1845 | t = TYPE_TARGET_TYPE (t); | |
1846 | ||
1847 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1848 | error ("not implemented: member type in check_field"); | |
1849 | ||
2a5ec41d | 1850 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1851 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1852 | error ("Internal error: `this' is not an aggregate"); | |
1853 | ||
1854 | return check_field_in (t, name); | |
1855 | } | |
1856 | ||
01be6913 | 1857 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2a5ec41d | 1858 | return the address of this member as a "pointer to member" |
bd5635a1 RP |
1859 | type. If INTYPE is non-null, then it will be the type |
1860 | of the member we are looking for. This will help us resolve | |
01be6913 PB |
1861 | "pointers to member functions". This function is used |
1862 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
bd5635a1 | 1863 | |
a91a6192 | 1864 | value_ptr |
51b57ded | 1865 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) |
01be6913 | 1866 | struct type *domain, *curtype, *intype; |
51b57ded | 1867 | int offset; |
bd5635a1 RP |
1868 | char *name; |
1869 | { | |
01be6913 | 1870 | register struct type *t = curtype; |
bd5635a1 | 1871 | register int i; |
a91a6192 | 1872 | value_ptr v; |
bd5635a1 | 1873 | |
2a5ec41d | 1874 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 | 1875 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
01be6913 | 1876 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); |
bd5635a1 | 1877 | |
01be6913 | 1878 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) |
bd5635a1 | 1879 | { |
01be6913 PB |
1880 | char *t_field_name = TYPE_FIELD_NAME (t, i); |
1881 | ||
2e4964ad | 1882 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1883 | { |
01be6913 | 1884 | if (TYPE_FIELD_STATIC (t, i)) |
bd5635a1 | 1885 | { |
01be6913 PB |
1886 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i); |
1887 | struct symbol *sym = | |
1888 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
2e4964ad FF |
1889 | if (sym == NULL) |
1890 | error ("Internal error: could not find physical static variable named %s", | |
01be6913 PB |
1891 | phys_name); |
1892 | return value_at (SYMBOL_TYPE (sym), | |
1893 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
bd5635a1 | 1894 | } |
01be6913 PB |
1895 | if (TYPE_FIELD_PACKED (t, i)) |
1896 | error ("pointers to bitfield members not allowed"); | |
1897 | ||
1898 | return value_from_longest | |
1899 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
1900 | domain)), | |
51b57ded | 1901 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); |
bd5635a1 | 1902 | } |
bd5635a1 RP |
1903 | } |
1904 | ||
1905 | /* C++: If it was not found as a data field, then try to | |
1906 | return it as a pointer to a method. */ | |
bd5635a1 RP |
1907 | |
1908 | /* Destructors are a special case. */ | |
1909 | if (destructor_name_p (name, t)) | |
1910 | { | |
2a5ec41d | 1911 | error ("member pointers to destructors not implemented yet"); |
bd5635a1 RP |
1912 | } |
1913 | ||
1914 | /* Perform all necessary dereferencing. */ | |
1915 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
1916 | intype = TYPE_TARGET_TYPE (intype); | |
1917 | ||
01be6913 | 1918 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) |
bd5635a1 | 1919 | { |
852b3831 PB |
1920 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
1921 | char dem_opname[64]; | |
1922 | ||
1923 | if (strncmp(t_field_name, "__", 2)==0 || | |
1924 | strncmp(t_field_name, "op", 2)==0 || | |
1925 | strncmp(t_field_name, "type", 4)==0 ) | |
1926 | { | |
1927 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1928 | t_field_name = dem_opname; | |
1929 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1930 | t_field_name = dem_opname; | |
1931 | } | |
1932 | if (t_field_name && STREQ (t_field_name, name)) | |
bd5635a1 | 1933 | { |
01be6913 PB |
1934 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); |
1935 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
1936 | ||
1937 | if (intype == 0 && j > 1) | |
1938 | error ("non-unique member `%s' requires type instantiation", name); | |
1939 | if (intype) | |
bd5635a1 | 1940 | { |
01be6913 PB |
1941 | while (j--) |
1942 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
1943 | break; | |
1944 | if (j < 0) | |
1945 | error ("no member function matches that type instantiation"); | |
1946 | } | |
1947 | else | |
1948 | j = 0; | |
1949 | ||
1950 | if (TYPE_FN_FIELD_STUB (f, j)) | |
1951 | check_stub_method (t, i, j); | |
1952 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1953 | { | |
1954 | return value_from_longest | |
1955 | (lookup_reference_type | |
1956 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1957 | domain)), | |
13ffa6be | 1958 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); |
01be6913 PB |
1959 | } |
1960 | else | |
1961 | { | |
1962 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
1963 | 0, VAR_NAMESPACE, 0, NULL); | |
35fcebce PB |
1964 | if (s == NULL) |
1965 | { | |
1966 | v = 0; | |
1967 | } | |
1968 | else | |
1969 | { | |
1970 | v = read_var_value (s, 0); | |
01be6913 | 1971 | #if 0 |
35fcebce PB |
1972 | VALUE_TYPE (v) = lookup_reference_type |
1973 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1974 | domain)); | |
01be6913 | 1975 | #endif |
bd5635a1 | 1976 | } |
35fcebce | 1977 | return v; |
bd5635a1 RP |
1978 | } |
1979 | } | |
35fcebce | 1980 | } |
01be6913 PB |
1981 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) |
1982 | { | |
a91a6192 | 1983 | value_ptr v; |
51b57ded FF |
1984 | int base_offset; |
1985 | ||
1986 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
1987 | base_offset = 0; | |
1988 | else | |
1989 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
01be6913 | 1990 | v = value_struct_elt_for_reference (domain, |
51b57ded | 1991 | offset + base_offset, |
01be6913 PB |
1992 | TYPE_BASECLASS (t, i), |
1993 | name, | |
1994 | intype); | |
1995 | if (v) | |
1996 | return v; | |
bd5635a1 RP |
1997 | } |
1998 | return 0; | |
1999 | } | |
2000 | ||
bd5635a1 RP |
2001 | /* C++: return the value of the class instance variable, if one exists. |
2002 | Flag COMPLAIN signals an error if the request is made in an | |
2003 | inappropriate context. */ | |
6d34c236 | 2004 | |
a91a6192 | 2005 | value_ptr |
bd5635a1 RP |
2006 | value_of_this (complain) |
2007 | int complain; | |
2008 | { | |
bd5635a1 RP |
2009 | struct symbol *func, *sym; |
2010 | struct block *b; | |
2011 | int i; | |
2012 | static const char funny_this[] = "this"; | |
a91a6192 | 2013 | value_ptr this; |
bd5635a1 RP |
2014 | |
2015 | if (selected_frame == 0) | |
2016 | if (complain) | |
2017 | error ("no frame selected"); | |
2018 | else return 0; | |
2019 | ||
2020 | func = get_frame_function (selected_frame); | |
2021 | if (!func) | |
2022 | { | |
2023 | if (complain) | |
2024 | error ("no `this' in nameless context"); | |
2025 | else return 0; | |
2026 | } | |
2027 | ||
2028 | b = SYMBOL_BLOCK_VALUE (func); | |
2029 | i = BLOCK_NSYMS (b); | |
2030 | if (i <= 0) | |
2031 | if (complain) | |
2032 | error ("no args, no `this'"); | |
2033 | else return 0; | |
2034 | ||
2035 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2036 | symbol instead of the LOC_ARG one (if both exist). */ | |
2037 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
2038 | if (sym == NULL) | |
2039 | { | |
2040 | if (complain) | |
2041 | error ("current stack frame not in method"); | |
2042 | else | |
2043 | return NULL; | |
2044 | } | |
2045 | ||
2046 | this = read_var_value (sym, selected_frame); | |
2047 | if (this == 0 && complain) | |
2048 | error ("`this' argument at unknown address"); | |
2049 | return this; | |
2050 | } | |
a91a6192 | 2051 | |
f91a9e05 PB |
2052 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements |
2053 | long, starting at LOWBOUND. The result has the same lower bound as | |
2054 | the original ARRAY. */ | |
2055 | ||
2056 | value_ptr | |
2057 | value_slice (array, lowbound, length) | |
2058 | value_ptr array; | |
2059 | int lowbound, length; | |
2060 | { | |
36633dcc | 2061 | COERCE_VARYING_ARRAY (array); |
f91a9e05 PB |
2062 | if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_BITSTRING) |
2063 | error ("not implemented - bitstring slice"); | |
2064 | if (TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_ARRAY | |
2065 | && TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_STRING) | |
2066 | error ("cannot take slice of non-array"); | |
2067 | else | |
2068 | { | |
2069 | struct type *slice_range_type, *slice_type; | |
2070 | value_ptr slice; | |
2071 | struct type *range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0); | |
2072 | struct type *element_type = TYPE_TARGET_TYPE (VALUE_TYPE (array)); | |
2073 | int lowerbound = TYPE_LOW_BOUND (range_type); | |
2074 | int upperbound = TYPE_HIGH_BOUND (range_type); | |
2075 | int offset = (lowbound - lowerbound) * TYPE_LENGTH (element_type); | |
2076 | if (lowbound < lowerbound || length < 0 | |
2077 | || lowbound + length - 1 > upperbound) | |
2078 | error ("slice out of range"); | |
36633dcc JK |
2079 | /* FIXME-type-allocation: need a way to free this type when we are |
2080 | done with it. */ | |
f91a9e05 PB |
2081 | slice_range_type = create_range_type ((struct type*) NULL, |
2082 | TYPE_TARGET_TYPE (range_type), | |
2083 | lowerbound, | |
2084 | lowerbound + length - 1); | |
2085 | slice_type = create_array_type ((struct type*) NULL, element_type, | |
2086 | slice_range_type); | |
2087 | TYPE_CODE (slice_type) = TYPE_CODE (VALUE_TYPE (array)); | |
2088 | slice = allocate_value (slice_type); | |
2089 | if (VALUE_LAZY (array)) | |
2090 | VALUE_LAZY (slice) = 1; | |
2091 | else | |
2092 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
2093 | TYPE_LENGTH (slice_type)); | |
2094 | if (VALUE_LVAL (array) == lval_internalvar) | |
2095 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2096 | else | |
2097 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2098 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
2099 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
2100 | return slice; | |
2101 | } | |
2102 | } | |
2103 | ||
2104 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
2105 | value as a fixed-length array. */ | |
2106 | ||
2107 | value_ptr | |
2108 | varying_to_slice (varray) | |
2109 | value_ptr varray; | |
2110 | { | |
2111 | struct type *vtype = VALUE_TYPE (varray); | |
2112 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
2113 | VALUE_CONTENTS (varray) | |
2114 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
2115 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
2116 | } | |
2117 | ||
a91a6192 SS |
2118 | /* Create a value for a FORTRAN complex number. Currently most of |
2119 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2120 | composed of 2 doubles. This really should be a smarter routine | |
2121 | that figures out precision inteligently as opposed to assuming | |
2122 | doubles. FIXME: fmb */ | |
2123 | ||
2124 | value_ptr | |
5222ca60 | 2125 | value_literal_complex (arg1, arg2, type) |
a91a6192 SS |
2126 | value_ptr arg1; |
2127 | value_ptr arg2; | |
5222ca60 | 2128 | struct type *type; |
a91a6192 | 2129 | { |
a91a6192 | 2130 | register value_ptr val; |
5222ca60 | 2131 | struct type *real_type = TYPE_TARGET_TYPE (type); |
a91a6192 | 2132 | |
5222ca60 PB |
2133 | val = allocate_value (type); |
2134 | arg1 = value_cast (real_type, arg1); | |
2135 | arg2 = value_cast (real_type, arg2); | |
a91a6192 | 2136 | |
5222ca60 PB |
2137 | memcpy (VALUE_CONTENTS_RAW (val), |
2138 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
2139 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
2140 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
a91a6192 SS |
2141 | return val; |
2142 | } | |
9ed8604f | 2143 | |
5222ca60 | 2144 | /* Cast a value into the appropriate complex data type. */ |
9ed8604f PS |
2145 | |
2146 | static value_ptr | |
5222ca60 | 2147 | cast_into_complex (type, val) |
9ed8604f PS |
2148 | struct type *type; |
2149 | register value_ptr val; | |
2150 | { | |
5222ca60 PB |
2151 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2152 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
9ed8604f | 2153 | { |
5222ca60 PB |
2154 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); |
2155 | value_ptr re_val = allocate_value (val_real_type); | |
2156 | value_ptr im_val = allocate_value (val_real_type); | |
9ed8604f | 2157 | |
5222ca60 PB |
2158 | memcpy (VALUE_CONTENTS_RAW (re_val), |
2159 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
2160 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
2161 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
2162 | TYPE_LENGTH (val_real_type)); | |
9ed8604f | 2163 | |
5222ca60 | 2164 | return value_literal_complex (re_val, im_val, type); |
9ed8604f | 2165 | } |
5222ca60 PB |
2166 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT |
2167 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
2168 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
9ed8604f | 2169 | else |
5222ca60 | 2170 | error ("cannot cast non-number to complex"); |
9ed8604f | 2171 | } |