]>
Commit | Line | Data |
---|---|---|
dd3b648e | 1 | /* Target-machine dependent code for the AMD 29000 |
7d9884b9 | 2 | Copyright 1990, 1991 Free Software Foundation, Inc. |
dd3b648e RP |
3 | Contributed by Cygnus Support. Written by Jim Kingdon. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e RP |
11 | |
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
20 | |
21 | #include "defs.h" | |
22 | #include "gdbcore.h" | |
23 | #include <stdio.h> | |
24 | #include "frame.h" | |
25 | #include "value.h" | |
dd3b648e RP |
26 | #include "symtab.h" |
27 | #include "inferior.h" | |
28 | ||
7730bd5a JG |
29 | extern CORE_ADDR text_start; /* FIXME, kludge... */ |
30 | ||
dd3b648e RP |
31 | /* Structure to hold cached info about function prologues. */ |
32 | struct prologue_info | |
33 | { | |
34 | CORE_ADDR pc; /* First addr after fn prologue */ | |
35 | unsigned rsize, msize; /* register stack frame size, mem stack ditto */ | |
36 | unsigned mfp_used : 1; /* memory frame pointer used */ | |
37 | unsigned rsize_valid : 1; /* Validity bits for the above */ | |
38 | unsigned msize_valid : 1; | |
39 | unsigned mfp_valid : 1; | |
40 | }; | |
41 | ||
42 | /* Examine the prologue of a function which starts at PC. Return | |
43 | the first addess past the prologue. If MSIZE is non-NULL, then | |
44 | set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, | |
45 | then set *RSIZE to the register stack frame size (not including | |
46 | incoming arguments and the return address & frame pointer stored | |
47 | with them). If no prologue is found, *RSIZE is set to zero. | |
48 | If no prologue is found, or a prologue which doesn't involve | |
49 | allocating a memory stack frame, then set *MSIZE to zero. | |
50 | ||
51 | Note that both msize and rsize are in bytes. This is not consistent | |
52 | with the _User's Manual_ with respect to rsize, but it is much more | |
53 | convenient. | |
54 | ||
55 | If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory | |
56 | frame pointer is being used. */ | |
57 | CORE_ADDR | |
58 | examine_prologue (pc, rsize, msize, mfp_used) | |
59 | CORE_ADDR pc; | |
60 | unsigned *msize; | |
61 | unsigned *rsize; | |
62 | int *mfp_used; | |
63 | { | |
64 | long insn; | |
65 | CORE_ADDR p = pc; | |
66 | int misc_index = find_pc_misc_function (pc); | |
67 | struct prologue_info *mi = 0; | |
68 | ||
69 | if (misc_index >= 0) | |
70 | mi = (struct prologue_info *)misc_function_vector[misc_index].misc_info; | |
71 | ||
72 | if (mi != 0) | |
73 | { | |
74 | int valid = 1; | |
75 | if (rsize != NULL) | |
76 | { | |
77 | *rsize = mi->rsize; | |
78 | valid &= mi->rsize_valid; | |
79 | } | |
80 | if (msize != NULL) | |
81 | { | |
82 | *msize = mi->msize; | |
83 | valid &= mi->msize_valid; | |
84 | } | |
85 | if (mfp_used != NULL) | |
86 | { | |
87 | *mfp_used = mi->mfp_used; | |
88 | valid &= mi->mfp_valid; | |
89 | } | |
90 | if (valid) | |
91 | return mi->pc; | |
92 | } | |
93 | ||
94 | if (rsize != NULL) | |
95 | *rsize = 0; | |
96 | if (msize != NULL) | |
97 | *msize = 0; | |
98 | if (mfp_used != NULL) | |
99 | *mfp_used = 0; | |
100 | ||
101 | /* Prologue must start with subtracting a constant from gr1. | |
102 | Normally this is sub gr1,gr1,<rsize * 4>. */ | |
103 | insn = read_memory_integer (p, 4); | |
104 | if ((insn & 0xffffff00) != 0x25010100) | |
105 | { | |
106 | /* If the frame is large, instead of a single instruction it | |
107 | might be a pair of instructions: | |
108 | const <reg>, <rsize * 4> | |
109 | sub gr1,gr1,<reg> | |
110 | */ | |
111 | int reg; | |
112 | /* Possible value for rsize. */ | |
113 | unsigned int rsize0; | |
114 | ||
115 | if ((insn & 0xff000000) != 0x03000000) | |
116 | { | |
117 | p = pc; | |
118 | goto done; | |
119 | } | |
120 | reg = (insn >> 8) & 0xff; | |
121 | rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); | |
122 | p += 4; | |
123 | insn = read_memory_integer (p, 4); | |
124 | if ((insn & 0xffffff00) != 0x24010100 | |
125 | || (insn & 0xff) != reg) | |
126 | { | |
127 | p = pc; | |
128 | goto done; | |
129 | } | |
130 | if (rsize != NULL) | |
131 | *rsize = rsize0; | |
132 | } | |
133 | else | |
134 | { | |
135 | if (rsize != NULL) | |
136 | *rsize = (insn & 0xff); | |
137 | } | |
138 | p += 4; | |
139 | ||
140 | /* Next instruction must be asgeu V_SPILL,gr1,rab. */ | |
141 | insn = read_memory_integer (p, 4); | |
142 | if (insn != 0x5e40017e) | |
143 | { | |
144 | p = pc; | |
145 | goto done; | |
146 | } | |
147 | p += 4; | |
148 | ||
149 | /* Next instruction usually sets the frame pointer (lr1) by adding | |
150 | <size * 4> from gr1. However, this can (and high C does) be | |
151 | deferred until anytime before the first function call. So it is | |
152 | OK if we don't see anything which sets lr1. */ | |
153 | /* Normally this is just add lr1,gr1,<size * 4>. */ | |
154 | insn = read_memory_integer (p, 4); | |
155 | if ((insn & 0xffffff00) == 0x15810100) | |
156 | p += 4; | |
157 | else | |
158 | { | |
159 | /* However, for large frames it can be | |
160 | const <reg>, <size *4> | |
161 | add lr1,gr1,<reg> | |
162 | */ | |
163 | int reg; | |
164 | CORE_ADDR q; | |
165 | ||
166 | if ((insn & 0xff000000) == 0x03000000) | |
167 | { | |
168 | reg = (insn >> 8) & 0xff; | |
169 | q = p + 4; | |
170 | insn = read_memory_integer (q, 4); | |
171 | if ((insn & 0xffffff00) == 0x14810100 | |
172 | && (insn & 0xff) == reg) | |
173 | p = q; | |
174 | } | |
175 | } | |
176 | ||
177 | /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory | |
178 | frame pointer is in use. We just check for add lr<anything>,msp,0; | |
179 | we don't check this rsize against the first instruction, and | |
180 | we don't check that the trace-back tag indicates a memory frame pointer | |
181 | is in use. | |
182 | ||
183 | The recommended instruction is actually "sll lr<whatever>,msp,0". | |
184 | We check for that, too. Originally Jim Kingdon's code seemed | |
185 | to be looking for a "sub" instruction here, but the mask was set | |
186 | up to lose all the time. */ | |
187 | insn = read_memory_integer (p, 4); | |
188 | if (((insn & 0xff80ffff) == 0x15807d00) /* add */ | |
189 | || ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */ | |
190 | { | |
191 | p += 4; | |
192 | if (mfp_used != NULL) | |
193 | *mfp_used = 1; | |
194 | } | |
195 | ||
196 | /* Next comes a subtraction from msp to allocate a memory frame, | |
197 | but only if a memory frame is | |
198 | being used. We don't check msize against the trace-back tag. | |
199 | ||
200 | Normally this is just | |
201 | sub msp,msp,<msize> | |
202 | */ | |
203 | insn = read_memory_integer (p, 4); | |
204 | if ((insn & 0xffffff00) == 0x257d7d00) | |
205 | { | |
206 | p += 4; | |
207 | if (msize != NULL) | |
208 | *msize = insn & 0xff; | |
209 | } | |
210 | else | |
211 | { | |
212 | /* For large frames, instead of a single instruction it might | |
213 | be | |
214 | ||
215 | const <reg>, <msize> | |
216 | consth <reg>, <msize> ; optional | |
217 | sub msp,msp,<reg> | |
218 | */ | |
219 | int reg; | |
220 | unsigned msize0; | |
221 | CORE_ADDR q = p; | |
222 | ||
223 | if ((insn & 0xff000000) == 0x03000000) | |
224 | { | |
225 | reg = (insn >> 8) & 0xff; | |
226 | msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); | |
227 | q += 4; | |
228 | insn = read_memory_integer (q, 4); | |
229 | /* Check for consth. */ | |
230 | if ((insn & 0xff000000) == 0x02000000 | |
231 | && (insn & 0x0000ff00) == reg) | |
232 | { | |
233 | msize0 |= (insn << 8) & 0xff000000; | |
234 | msize0 |= (insn << 16) & 0x00ff0000; | |
235 | q += 4; | |
236 | insn = read_memory_integer (q, 4); | |
237 | } | |
238 | /* Check for sub msp,msp,<reg>. */ | |
239 | if ((insn & 0xffffff00) == 0x247d7d00 | |
240 | && (insn & 0xff) == reg) | |
241 | { | |
242 | p = q + 4; | |
243 | if (msize != NULL) | |
244 | *msize = msize0; | |
245 | } | |
246 | } | |
247 | } | |
248 | ||
249 | done: | |
250 | if (misc_index >= 0) | |
251 | { | |
252 | if (mi == 0) | |
253 | { | |
254 | /* Add a new cache entry. */ | |
255 | mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); | |
256 | misc_function_vector[misc_index].misc_info = (char *)mi; | |
257 | mi->rsize_valid = 0; | |
258 | mi->msize_valid = 0; | |
259 | mi->mfp_valid = 0; | |
260 | } | |
261 | /* else, cache entry exists, but info is incomplete. */ | |
262 | mi->pc = p; | |
263 | if (rsize != NULL) | |
264 | { | |
265 | mi->rsize = *rsize; | |
266 | mi->rsize_valid = 1; | |
267 | } | |
268 | if (msize != NULL) | |
269 | { | |
270 | mi->msize = *msize; | |
271 | mi->msize_valid = 1; | |
272 | } | |
273 | if (mfp_used != NULL) | |
274 | { | |
275 | mi->mfp_used = *mfp_used; | |
276 | mi->mfp_valid = 1; | |
277 | } | |
278 | } | |
279 | return p; | |
280 | } | |
281 | ||
282 | /* Advance PC across any function entry prologue instructions | |
283 | to reach some "real" code. */ | |
284 | ||
285 | CORE_ADDR | |
286 | skip_prologue (pc) | |
287 | CORE_ADDR pc; | |
288 | { | |
289 | return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL, | |
290 | (int *)NULL); | |
291 | } | |
292 | ||
293 | /* Initialize the frame. In addition to setting "extra" frame info, | |
294 | we also set ->frame because we use it in a nonstandard way, and ->pc | |
295 | because we need to know it to get the other stuff. See the diagram | |
296 | of stacks and the frame cache in tm-29k.h for more detail. */ | |
297 | static void | |
298 | init_frame_info (innermost_frame, fci) | |
299 | int innermost_frame; | |
300 | struct frame_info *fci; | |
301 | { | |
302 | CORE_ADDR p; | |
303 | long insn; | |
304 | unsigned rsize; | |
305 | unsigned msize; | |
306 | int mfp_used; | |
307 | struct symbol *func; | |
308 | ||
309 | p = fci->pc; | |
310 | ||
311 | if (innermost_frame) | |
312 | fci->frame = read_register (GR1_REGNUM); | |
313 | else | |
314 | fci->frame = fci->next_frame + fci->next->rsize; | |
315 | ||
316 | #if CALL_DUMMY_LOCATION == ON_STACK | |
317 | This wont work; | |
318 | #else | |
319 | if (PC_IN_CALL_DUMMY (p, 0, 0)) | |
320 | #endif | |
321 | { | |
322 | fci->rsize = DUMMY_FRAME_RSIZE; | |
323 | /* This doesn't matter since we never try to get locals or args | |
324 | from a dummy frame. */ | |
325 | fci->msize = 0; | |
326 | /* Dummy frames always use a memory frame pointer. */ | |
327 | fci->saved_msp = | |
328 | read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4); | |
329 | return; | |
330 | } | |
331 | ||
332 | func = find_pc_function (p); | |
333 | if (func != NULL) | |
334 | p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); | |
335 | else | |
336 | { | |
337 | /* Search backward to find the trace-back tag. However, | |
338 | do not trace back beyond the start of the text segment | |
339 | (just as a sanity check to avoid going into never-never land). */ | |
340 | while (p >= text_start | |
341 | && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0) | |
342 | p -= 4; | |
343 | ||
344 | if (p < text_start) | |
345 | { | |
346 | /* Couldn't find the trace-back tag. | |
347 | Something strange is going on. */ | |
348 | fci->saved_msp = 0; | |
349 | fci->rsize = 0; | |
350 | fci->msize = 0; | |
351 | return; | |
352 | } | |
353 | else | |
354 | /* Advance to the first word of the function, i.e. the word | |
355 | after the trace-back tag. */ | |
356 | p += 4; | |
357 | } | |
358 | /* We've found the start of the function. Since High C interchanges | |
359 | the meanings of bits 23 and 22 (as of Jul 90), and we | |
360 | need to look at the prologue anyway to figure out | |
361 | what rsize is, ignore the contents of the trace-back tag. */ | |
362 | examine_prologue (p, &rsize, &msize, &mfp_used); | |
363 | fci->rsize = rsize; | |
364 | fci->msize = msize; | |
365 | if (innermost_frame) | |
366 | { | |
367 | fci->saved_msp = read_register (MSP_REGNUM) + msize; | |
368 | } | |
369 | else | |
370 | { | |
371 | if (mfp_used) | |
372 | fci->saved_msp = | |
373 | read_register_stack_integer (fci->frame + rsize - 1, 4); | |
374 | else | |
375 | fci->saved_msp = fci->next->saved_msp + msize; | |
376 | } | |
377 | } | |
378 | ||
379 | void | |
380 | init_extra_frame_info (fci) | |
381 | struct frame_info *fci; | |
382 | { | |
383 | if (fci->next == 0) | |
384 | /* Assume innermost frame. May produce strange results for "info frame" | |
385 | but there isn't any way to tell the difference. */ | |
386 | init_frame_info (1, fci); | |
17f7e032 JG |
387 | else { |
388 | /* We're in get_prev_frame_info. | |
389 | Take care of everything in init_frame_pc. */ | |
390 | ; | |
391 | } | |
dd3b648e RP |
392 | } |
393 | ||
394 | void | |
395 | init_frame_pc (fromleaf, fci) | |
396 | int fromleaf; | |
397 | struct frame_info *fci; | |
398 | { | |
399 | fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) : | |
400 | fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ()); | |
401 | init_frame_info (0, fci); | |
402 | } | |
403 | \f | |
404 | /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their | |
405 | offsets being relative to the memory stack pointer (high C) or | |
406 | saved_msp (gcc). */ | |
407 | ||
408 | CORE_ADDR | |
409 | frame_locals_address (fi) | |
410 | struct frame_info *fi; | |
411 | { | |
412 | struct block *b = block_for_pc (fi->pc); | |
413 | /* If compiled without -g, assume GCC. */ | |
414 | if (b == NULL || BLOCK_GCC_COMPILED (b)) | |
415 | return fi->saved_msp; | |
416 | else | |
417 | return fi->saved_msp - fi->msize; | |
418 | } | |
419 | \f | |
420 | /* Routines for reading the register stack. The caller gets to treat | |
421 | the register stack as a uniform stack in memory, from address $gr1 | |
422 | straight through $rfb and beyond. */ | |
423 | ||
424 | /* Analogous to read_memory except the length is understood to be 4. | |
425 | Also, myaddr can be NULL (meaning don't bother to read), and | |
426 | if actual_mem_addr is non-NULL, store there the address that it | |
427 | was fetched from (or if from a register the offset within | |
428 | registers). Set *LVAL to lval_memory or lval_register, depending | |
429 | on where it came from. */ | |
430 | void | |
431 | read_register_stack (memaddr, myaddr, actual_mem_addr, lval) | |
432 | CORE_ADDR memaddr; | |
433 | char *myaddr; | |
434 | CORE_ADDR *actual_mem_addr; | |
435 | enum lval_type *lval; | |
436 | { | |
437 | long rfb = read_register (RFB_REGNUM); | |
438 | long rsp = read_register (RSP_REGNUM); | |
439 | if (memaddr < rfb) | |
440 | { | |
441 | /* It's in a register. */ | |
442 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
443 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
444 | error ("Attempt to read register stack out of range."); | |
445 | if (myaddr != NULL) | |
446 | read_register_gen (regnum, myaddr); | |
447 | if (lval != NULL) | |
448 | *lval = lval_register; | |
449 | if (actual_mem_addr != NULL) | |
450 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
451 | } | |
452 | else | |
453 | { | |
454 | /* It's in the memory portion of the register stack. */ | |
455 | if (myaddr != NULL) | |
456 | read_memory (memaddr, myaddr, 4); | |
457 | if (lval != NULL) | |
458 | *lval = lval_memory; | |
459 | if (actual_mem_addr != NULL) | |
17f7e032 | 460 | *actual_mem_addr = memaddr; |
dd3b648e RP |
461 | } |
462 | } | |
463 | ||
464 | /* Analogous to read_memory_integer | |
465 | except the length is understood to be 4. */ | |
466 | long | |
467 | read_register_stack_integer (memaddr, len) | |
468 | CORE_ADDR memaddr; | |
469 | int len; | |
470 | { | |
471 | long buf; | |
472 | read_register_stack (memaddr, &buf, NULL, NULL); | |
473 | SWAP_TARGET_AND_HOST (&buf, 4); | |
474 | return buf; | |
475 | } | |
476 | ||
477 | /* Copy 4 bytes from GDB memory at MYADDR into inferior memory | |
478 | at MEMADDR and put the actual address written into in | |
479 | *ACTUAL_MEM_ADDR. */ | |
480 | static void | |
481 | write_register_stack (memaddr, myaddr, actual_mem_addr) | |
482 | CORE_ADDR memaddr; | |
483 | char *myaddr; | |
484 | CORE_ADDR *actual_mem_addr; | |
485 | { | |
486 | long rfb = read_register (RFB_REGNUM); | |
487 | long rsp = read_register (RSP_REGNUM); | |
488 | if (memaddr < rfb) | |
489 | { | |
490 | /* It's in a register. */ | |
491 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
492 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
493 | error ("Attempt to read register stack out of range."); | |
494 | if (myaddr != NULL) | |
495 | write_register (regnum, *(long *)myaddr); | |
496 | if (actual_mem_addr != NULL) | |
497 | *actual_mem_addr = NULL; | |
498 | } | |
499 | else | |
500 | { | |
501 | /* It's in the memory portion of the register stack. */ | |
502 | if (myaddr != NULL) | |
503 | write_memory (memaddr, myaddr, 4); | |
504 | if (actual_mem_addr != NULL) | |
17f7e032 | 505 | *actual_mem_addr = memaddr; |
dd3b648e RP |
506 | } |
507 | } | |
508 | \f | |
509 | /* Find register number REGNUM relative to FRAME and put its | |
510 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
511 | was optimized out (and thus can't be fetched). If the variable | |
512 | was fetched from memory, set *ADDRP to where it was fetched from, | |
513 | otherwise it was fetched from a register. | |
514 | ||
515 | The argument RAW_BUFFER must point to aligned memory. */ | |
516 | void | |
517 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) | |
518 | char *raw_buffer; | |
519 | int *optimized; | |
520 | CORE_ADDR *addrp; | |
521 | FRAME frame; | |
522 | int regnum; | |
523 | enum lval_type *lvalp; | |
524 | { | |
525 | struct frame_info *fi = get_frame_info (frame); | |
526 | CORE_ADDR addr; | |
527 | enum lval_type lval; | |
528 | ||
529 | /* Once something has a register number, it doesn't get optimized out. */ | |
530 | if (optimized != NULL) | |
531 | *optimized = 0; | |
532 | if (regnum == RSP_REGNUM) | |
533 | { | |
534 | if (raw_buffer != NULL) | |
535 | *(CORE_ADDR *)raw_buffer = fi->frame; | |
536 | if (lvalp != NULL) | |
537 | *lvalp = not_lval; | |
538 | return; | |
539 | } | |
540 | else if (regnum == PC_REGNUM) | |
541 | { | |
542 | if (raw_buffer != NULL) | |
543 | *(CORE_ADDR *)raw_buffer = fi->pc; | |
544 | ||
545 | /* Not sure we have to do this. */ | |
546 | if (lvalp != NULL) | |
547 | *lvalp = not_lval; | |
548 | ||
549 | return; | |
550 | } | |
551 | else if (regnum == MSP_REGNUM) | |
552 | { | |
553 | if (raw_buffer != NULL) | |
554 | { | |
555 | if (fi->next != NULL) | |
556 | *(CORE_ADDR *)raw_buffer = fi->next->saved_msp; | |
557 | else | |
558 | *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM); | |
559 | } | |
560 | /* The value may have been computed, not fetched. */ | |
561 | if (lvalp != NULL) | |
562 | *lvalp = not_lval; | |
563 | return; | |
564 | } | |
565 | else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) | |
566 | { | |
567 | /* These registers are not saved over procedure calls, | |
568 | so just print out the current values. */ | |
569 | if (raw_buffer != NULL) | |
570 | *(CORE_ADDR *)raw_buffer = read_register (regnum); | |
571 | if (lvalp != NULL) | |
572 | *lvalp = lval_register; | |
573 | if (addrp != NULL) | |
574 | *addrp = REGISTER_BYTE (regnum); | |
575 | return; | |
576 | } | |
577 | ||
578 | addr = fi->frame + (regnum - LR0_REGNUM) * 4; | |
579 | if (raw_buffer != NULL) | |
580 | read_register_stack (addr, raw_buffer, &addr, &lval); | |
581 | if (lvalp != NULL) | |
582 | *lvalp = lval; | |
583 | if (addrp != NULL) | |
584 | *addrp = addr; | |
585 | } | |
586 | \f | |
587 | /* Discard from the stack the innermost frame, | |
588 | restoring all saved registers. */ | |
589 | ||
590 | void | |
591 | pop_frame () | |
592 | { | |
593 | FRAME frame = get_current_frame (); | |
594 | struct frame_info *fi = get_frame_info (frame); | |
595 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
596 | CORE_ADDR gr1 = fi->frame + fi->rsize; | |
597 | CORE_ADDR lr1; | |
598 | CORE_ADDR ret_addr; | |
599 | int i; | |
600 | ||
601 | /* If popping a dummy frame, need to restore registers. */ | |
602 | if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), | |
603 | read_register (SP_REGNUM), | |
604 | FRAME_FP (fi))) | |
605 | { | |
606 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
607 | write_register | |
608 | (SR_REGNUM (i + 128), | |
609 | read_register (LR0_REGNUM + DUMMY_ARG / 4 + i)); | |
6093e5b0 | 610 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
dd3b648e | 611 | write_register |
6093e5b0 | 612 | (RETURN_REGNUM + i, |
dd3b648e RP |
613 | read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i)); |
614 | } | |
615 | ||
616 | /* Restore the memory stack pointer. */ | |
617 | write_register (MSP_REGNUM, fi->saved_msp); | |
618 | /* Restore the register stack pointer. */ | |
619 | write_register (GR1_REGNUM, gr1); | |
620 | /* Check whether we need to fill registers. */ | |
621 | lr1 = read_register (LR0_REGNUM + 1); | |
622 | if (lr1 > rfb) | |
623 | { | |
624 | /* Fill. */ | |
625 | int num_bytes = lr1 - rfb; | |
626 | int i; | |
627 | long word; | |
628 | write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); | |
629 | write_register (RFB_REGNUM, lr1); | |
630 | for (i = 0; i < num_bytes; i += 4) | |
631 | { | |
632 | /* Note: word is in host byte order. */ | |
633 | word = read_memory_integer (rfb + i, 4); | |
634 | write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); | |
635 | } | |
636 | } | |
637 | ret_addr = read_register (LR0_REGNUM); | |
638 | write_register (PC_REGNUM, ret_addr); | |
639 | write_register (NPC_REGNUM, ret_addr + 4); | |
640 | flush_cached_frames (); | |
641 | set_current_frame (create_new_frame (0, read_pc())); | |
642 | } | |
643 | ||
644 | /* Push an empty stack frame, to record the current PC, etc. */ | |
645 | ||
646 | void | |
647 | push_dummy_frame () | |
648 | { | |
649 | long w; | |
650 | CORE_ADDR rab, gr1; | |
651 | CORE_ADDR msp = read_register (MSP_REGNUM); | |
652 | int i; | |
653 | ||
654 | /* Save the PC. */ | |
655 | write_register (LR0_REGNUM, read_register (PC_REGNUM)); | |
656 | ||
657 | /* Allocate the new frame. */ | |
658 | gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; | |
659 | write_register (GR1_REGNUM, gr1); | |
660 | ||
661 | rab = read_register (RAB_REGNUM); | |
662 | if (gr1 < rab) | |
663 | { | |
664 | /* We need to spill registers. */ | |
665 | int num_bytes = rab - gr1; | |
666 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
667 | int i; | |
668 | long word; | |
669 | ||
670 | write_register (RFB_REGNUM, rfb - num_bytes); | |
671 | write_register (RAB_REGNUM, gr1); | |
672 | for (i = 0; i < num_bytes; i += 4) | |
673 | { | |
674 | /* Note: word is in target byte order. */ | |
675 | read_register_gen (LR0_REGNUM + i / 4, &word, 4); | |
676 | write_memory (rfb - num_bytes + i, &word, 4); | |
677 | } | |
678 | } | |
679 | ||
680 | /* There are no arguments in to the dummy frame, so we don't need | |
681 | more than rsize plus the return address and lr1. */ | |
682 | write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); | |
683 | ||
684 | /* Set the memory frame pointer. */ | |
685 | write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); | |
686 | ||
687 | /* Allocate arg_slop. */ | |
688 | write_register (MSP_REGNUM, msp - 16 * 4); | |
689 | ||
690 | /* Save registers. */ | |
691 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
692 | write_register (LR0_REGNUM + DUMMY_ARG / 4 + i, | |
693 | read_register (SR_REGNUM (i + 128))); | |
6093e5b0 | 694 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
dd3b648e | 695 | write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i, |
6093e5b0 | 696 | read_register (RETURN_REGNUM + i)); |
dd3b648e | 697 | } |