]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
97e091b2 | 2 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 |
0434c1a0 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | Contributed by Alessandro Forin([email protected]) at CMU |
5 | and by Per Bothner([email protected]) at U.Wisconsin. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
361bf6ee | 9 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 10 | it under the terms of the GNU General Public License as published by |
361bf6ee JG |
11 | the Free Software Foundation; either version 2 of the License, or |
12 | (at your option) any later version. | |
bd5635a1 | 13 | |
361bf6ee | 14 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
361bf6ee | 20 | along with this program; if not, write to the Free Software |
09af5868 | 21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 22 | |
bd5635a1 | 23 | #include "defs.h" |
09af5868 | 24 | #include "gdb_string.h" |
bd5635a1 RP |
25 | #include "frame.h" |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "value.h" | |
29 | #include "gdbcmd.h" | |
ef08856f | 30 | #include "language.h" |
bd5635a1 | 31 | #include "gdbcore.h" |
62a469e1 SG |
32 | #include "symfile.h" |
33 | #include "objfiles.h" | |
3fed1c4a | 34 | #include "gdbtypes.h" |
28444bf3 | 35 | #include "target.h" |
bd5635a1 | 36 | |
ee5fb959 JK |
37 | #include "opcode/mips.h" |
38 | ||
28444bf3 | 39 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
70126bf9 KH |
40 | |
41 | /* FIXME: Put this declaration in frame.h. */ | |
42 | extern struct obstack frame_cache_obstack; | |
28444bf3 | 43 | |
002a422b | 44 | #if 0 |
ee5fb959 | 45 | static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); |
002a422b | 46 | #endif |
ee5fb959 | 47 | |
912e805f | 48 | int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); |
28444bf3 | 49 | |
f2bf454e FF |
50 | static void mips_print_register PARAMS ((int, int)); |
51 | ||
52 | static mips_extra_func_info_t | |
53 | heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); | |
54 | ||
55 | static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); | |
56 | ||
28444bf3 | 57 | static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); |
f2bf454e | 58 | |
e4dbd248 PS |
59 | static void mips_set_fpu_command PARAMS ((char *, int, |
60 | struct cmd_list_element *)); | |
61 | ||
62 | static void mips_show_fpu_command PARAMS ((char *, int, | |
63 | struct cmd_list_element *)); | |
64 | ||
9f9f94aa SS |
65 | void mips_set_processor_type_command PARAMS ((char *, int)); |
66 | ||
1d9489c1 JK |
67 | int mips_set_processor_type PARAMS ((char *)); |
68 | ||
69 | static void mips_show_processor_type_command PARAMS ((char *, int)); | |
70 | ||
9f9f94aa SS |
71 | static void reinit_frame_cache_sfunc PARAMS ((char *, int, |
72 | struct cmd_list_element *)); | |
73 | ||
f2bf454e FF |
74 | static mips_extra_func_info_t |
75 | find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); | |
76 | ||
77 | static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, | |
78 | mips_extra_func_info_t proc_desc)); | |
79 | ||
9f9f94aa SS |
80 | /* This value is the model of MIPS in use. It is derived from the value |
81 | of the PrID register. */ | |
82 | ||
83 | char *mips_processor_type; | |
84 | ||
85 | char *tmp_mips_processor_type; | |
86 | ||
c2a0f1cb ILT |
87 | /* Some MIPS boards don't support floating point, so we permit the |
88 | user to turn it off. */ | |
9f9f94aa | 89 | |
e4dbd248 PS |
90 | enum mips_fpu_type mips_fpu; |
91 | ||
92 | static char *mips_fpu_string; | |
c2a0f1cb | 93 | |
9f9f94aa SS |
94 | /* A set of original names, to be used when restoring back to generic |
95 | registers from a specific set. */ | |
96 | ||
97 | char *mips_generic_reg_names[] = REGISTER_NAMES; | |
98 | ||
99 | /* Names of IDT R3041 registers. */ | |
100 | ||
101 | char *mips_r3041_reg_names[] = { | |
102 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
103 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
104 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
105 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
106 | "sr", "lo", "hi", "bad", "cause","pc", | |
107 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
108 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
109 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
110 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
111 | "fsr", "fir", "fp", "", | |
112 | "", "", "bus", "ccfg", "", "", "", "", | |
113 | "", "", "port", "cmp", "", "", "epc", "prid", | |
114 | }; | |
115 | ||
116 | /* Names of IDT R3051 registers. */ | |
117 | ||
118 | char *mips_r3051_reg_names[] = { | |
119 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
120 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
121 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
122 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
123 | "sr", "lo", "hi", "bad", "cause","pc", | |
124 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
125 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
126 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
127 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
128 | "fsr", "fir", "fp", "", | |
129 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
130 | "", "", "ehi", "", "", "", "epc", "prid", | |
131 | }; | |
132 | ||
133 | /* Names of IDT R3081 registers. */ | |
134 | ||
135 | char *mips_r3081_reg_names[] = { | |
136 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
137 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
138 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
139 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
140 | "sr", "lo", "hi", "bad", "cause","pc", | |
141 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
142 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
143 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
144 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
145 | "fsr", "fir", "fp", "", | |
146 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
147 | "", "", "ehi", "", "", "", "epc", "prid", | |
148 | }; | |
149 | ||
e4dbd248 PS |
150 | /* Names of LSI 33k registers. */ |
151 | ||
152 | char *mips_lsi33k_reg_names[] = { | |
153 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
154 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
155 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
156 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
157 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
158 | "dcic", "bpc", "bda", "", "", "", "", "", | |
159 | "", "", "", "", "", "", "", "", | |
160 | "", "", "", "", "", "", "", "", | |
161 | "", "", "", "", "", "", "", "", | |
162 | "", "", "", "", | |
163 | "", "", "", "", "", "", "", "", | |
164 | "", "", "", "", "", "", "", "", | |
165 | }; | |
166 | ||
9f9f94aa SS |
167 | struct { |
168 | char *name; | |
169 | char **regnames; | |
170 | } mips_processor_type_table[] = { | |
171 | { "generic", mips_generic_reg_names }, | |
172 | { "r3041", mips_r3041_reg_names }, | |
173 | { "r3051", mips_r3051_reg_names }, | |
174 | { "r3071", mips_r3081_reg_names }, | |
175 | { "r3081", mips_r3081_reg_names }, | |
e4dbd248 | 176 | { "lsi33k", mips_lsi33k_reg_names }, |
9f9f94aa SS |
177 | { NULL, NULL } |
178 | }; | |
179 | ||
f9f8c14b MA |
180 | /* Table to translate MIPS16 register field to actual register number. */ |
181 | static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; | |
182 | ||
3127785a RP |
183 | /* Heuristic_proc_start may hunt through the text section for a long |
184 | time across a 2400 baud serial line. Allows the user to limit this | |
185 | search. */ | |
9f9f94aa | 186 | |
3127785a RP |
187 | static unsigned int heuristic_fence_post = 0; |
188 | ||
0f552c5f | 189 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
28444bf3 | 190 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ |
0f552c5f JG |
191 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
192 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
af774411 | 193 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) |
0f552c5f JG |
194 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) |
195 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
196 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
197 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
198 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
199 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
bd5635a1 | 200 | #define _PROC_MAGIC_ 0x0F0F0F0F |
0f552c5f JG |
201 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) |
202 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
bd5635a1 RP |
203 | |
204 | struct linked_proc_info | |
205 | { | |
206 | struct mips_extra_func_info info; | |
207 | struct linked_proc_info *next; | |
dac4929a | 208 | } *linked_proc_desc_table = NULL; |
bd5635a1 | 209 | |
f2bf454e | 210 | |
899c4021 MA |
211 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ |
212 | ||
213 | static int | |
214 | pc_is_mips16 (bfd_vma memaddr) | |
215 | { | |
216 | struct minimal_symbol *sym; | |
217 | ||
218 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
219 | if (IS_MIPS16_ADDR (memaddr)) | |
220 | return 1; | |
221 | ||
222 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
223 | the high bit of the info field. Use this to decide if the function is | |
224 | MIPS16 or normal MIPS. */ | |
225 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
226 | if (sym) | |
227 | return MSYMBOL_IS_SPECIAL (sym); | |
228 | else | |
229 | return 0; | |
230 | } | |
231 | ||
232 | ||
f2bf454e FF |
233 | /* This returns the PC of the first inst after the prologue. If we can't |
234 | find the prologue, then return 0. */ | |
235 | ||
236 | static CORE_ADDR | |
237 | after_prologue (pc, proc_desc) | |
238 | CORE_ADDR pc; | |
239 | mips_extra_func_info_t proc_desc; | |
240 | { | |
241 | struct symtab_and_line sal; | |
242 | CORE_ADDR func_addr, func_end; | |
243 | ||
244 | if (!proc_desc) | |
245 | proc_desc = find_proc_desc (pc, NULL); | |
246 | ||
247 | if (proc_desc) | |
248 | { | |
249 | /* If function is frameless, then we need to do it the hard way. I | |
250 | strongly suspect that frameless always means prologueless... */ | |
251 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
252 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
253 | return 0; | |
254 | } | |
255 | ||
256 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
257 | return 0; /* Unknown */ | |
258 | ||
259 | sal = find_pc_line (func_addr, 0); | |
260 | ||
261 | if (sal.end < func_end) | |
262 | return sal.end; | |
263 | ||
264 | /* The line after the prologue is after the end of the function. In this | |
265 | case, tell the caller to find the prologue the hard way. */ | |
266 | ||
267 | return 0; | |
268 | } | |
269 | ||
f9f8c14b MA |
270 | /* Decode a MIPS32 instruction that saves a register in the stack, and |
271 | set the appropriate bit in the general register mask or float register mask | |
272 | to indicate which register is saved. This is a helper function | |
273 | for mips_find_saved_regs. */ | |
274 | ||
275 | static void | |
276 | mips32_decode_reg_save (inst, gen_mask, float_mask) | |
277 | t_inst inst; | |
278 | unsigned long *gen_mask; | |
279 | unsigned long *float_mask; | |
280 | { | |
281 | int reg; | |
282 | ||
283 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
284 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
285 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
286 | { | |
287 | /* It might be possible to use the instruction to | |
288 | find the offset, rather than the code below which | |
289 | is based on things being in a certain order in the | |
290 | frame, but figuring out what the instruction's offset | |
291 | is relative to might be a little tricky. */ | |
292 | reg = (inst & 0x001f0000) >> 16; | |
293 | *gen_mask |= (1 << reg); | |
294 | } | |
295 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
296 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ | |
297 | || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */ | |
298 | ||
299 | { | |
300 | reg = ((inst & 0x001f0000) >> 16); | |
301 | *float_mask |= (1 << reg); | |
302 | } | |
303 | } | |
304 | ||
305 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
306 | set the appropriate bit in the general register or float register mask | |
307 | to indicate which register is saved. This is a helper function | |
308 | for mips_find_saved_regs. */ | |
309 | ||
310 | static void | |
311 | mips16_decode_reg_save (inst, gen_mask) | |
312 | t_inst inst; | |
313 | unsigned long *gen_mask; | |
314 | { | |
b348b9fd | 315 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
f9f8c14b | 316 | { |
b348b9fd MA |
317 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; |
318 | *gen_mask |= (1 << reg); | |
319 | } | |
320 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
321 | { | |
322 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
f9f8c14b MA |
323 | *gen_mask |= (1 << reg); |
324 | } | |
325 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ | |
326 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
af774411 | 327 | *gen_mask |= (1 << RA_REGNUM); |
f9f8c14b MA |
328 | } |
329 | ||
c81a76b3 MA |
330 | |
331 | /* Fetch and return instruction from the specified location. If the PC | |
332 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
333 | ||
334 | static t_inst | |
335 | mips_fetch_instruction (addr) | |
336 | CORE_ADDR addr; | |
337 | { | |
338 | char buf[MIPS_INSTLEN]; | |
339 | int instlen; | |
340 | int status; | |
341 | ||
899c4021 | 342 | if (pc_is_mips16 (addr)) |
c81a76b3 MA |
343 | { |
344 | instlen = MIPS16_INSTLEN; | |
345 | addr = UNMAKE_MIPS16_ADDR (addr); | |
346 | } | |
347 | else | |
348 | instlen = MIPS_INSTLEN; | |
349 | status = read_memory_nobpt (addr, buf, instlen); | |
350 | if (status) | |
351 | memory_error (status, addr); | |
352 | return extract_unsigned_integer (buf, instlen); | |
353 | } | |
354 | ||
355 | ||
88ff9e06 FCE |
356 | /* These the fields of 32 bit mips instructions */ |
357 | #define mips32_op(x) (x >> 25) | |
358 | #define itype_op(x) (x >> 25) | |
359 | #define itype_rs(x) ((x >> 21)& 0x1f) | |
360 | #define itype_rt(x) ((x >> 16) & 0x1f) | |
361 | #define itype_immediate(x) ( x & 0xffff) | |
362 | ||
363 | #define jtype_op(x) (x >> 25) | |
364 | #define jtype_target(x) ( x & 0x03fffff) | |
365 | ||
366 | #define rtype_op(x) (x >>25) | |
367 | #define rtype_rs(x) ((x>>21) & 0x1f) | |
368 | #define rtype_rt(x) ((x>>16) & 0x1f) | |
369 | #define rtype_rd(x) ((x>>11) & 0x1f) | |
370 | #define rtype_shamt(x) ((x>>6) & 0x1f) | |
371 | #define rtype_funct(x) (x & 0x3f ) | |
372 | ||
373 | static CORE_ADDR | |
374 | mips32_relative_offset(unsigned long inst) | |
375 | { long x ; | |
376 | x = itype_immediate(inst) ; | |
377 | if (x & 0x8000) /* sign bit set */ | |
378 | { | |
379 | x |= 0xffff0000 ; /* sign extension */ | |
380 | } | |
381 | x = x << 2 ; | |
382 | return x ; | |
383 | } | |
384 | ||
385 | /* Determine whate to set a single step breakpoint while considering | |
386 | branch prediction */ | |
387 | CORE_ADDR | |
388 | mips32_next_pc(CORE_ADDR pc) | |
389 | { | |
390 | unsigned long inst ; | |
391 | int op ; | |
392 | inst = mips_fetch_instruction(pc) ; | |
393 | if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ | |
394 | { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ | |
395 | { op = ((inst >> 25) & 0x03) ; | |
396 | switch (op) | |
397 | { | |
398 | case 0 : goto equal_branch ; /* BEQL */ | |
399 | case 1 : goto neq_branch ; /* BNEZ */ | |
400 | case 2 : goto less_branch ; /* BLEZ */ | |
401 | case 3 : goto greater_branch ; /* BGTZ */ | |
402 | default : pc += 4 ; | |
403 | } | |
404 | } | |
405 | else pc += 4 ; /* Not a branch, next instruction is easy */ | |
406 | } | |
407 | else | |
408 | { /* This gets way messy */ | |
409 | ||
410 | /* Further subdivide into SPECIAL, REGIMM and other */ | |
411 | switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ | |
412 | { | |
413 | case 0 : /* SPECIAL */ | |
414 | op = rtype_funct(inst) ; | |
415 | switch (op) | |
416 | { | |
417 | case 8 : /* JR */ | |
418 | case 9 : /* JALR */ | |
419 | pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */ | |
420 | break ; | |
421 | default: pc += 4 ; | |
422 | } | |
423 | ||
424 | break ; /* end special */ | |
425 | case 1 : /* REGIMM */ | |
426 | { | |
427 | op = jtype_op(inst) ; /* branch condition */ | |
428 | switch (jtype_op(inst)) | |
429 | { | |
430 | case 0 : /* BLTZ */ | |
431 | case 2 : /* BLTXL */ | |
432 | case 16 : /* BLTZALL */ | |
433 | case 18 : /* BLTZALL */ | |
434 | less_branch: | |
435 | if (read_register(itype_rs(inst)) < 0) | |
436 | pc += mips32_relative_offset(inst) + 4 ; | |
437 | else pc += 8 ; /* after the delay slot */ | |
438 | break ; | |
439 | case 1 : /* GEZ */ | |
440 | case 3 : /* BGEZL */ | |
441 | case 17 : /* BGEZAL */ | |
442 | case 19 : /* BGEZALL */ | |
443 | greater_equal_branch: | |
444 | if (read_register(itype_rs(inst)) >= 0) | |
445 | pc += mips32_relative_offset(inst) + 4 ; | |
446 | else pc += 8 ; /* after the delay slot */ | |
447 | break ; | |
448 | /* All of the other intructions in the REGIMM catagory */ | |
449 | default: pc += 4 ; | |
450 | } | |
451 | } | |
452 | break ; /* end REGIMM */ | |
453 | case 2 : /* J */ | |
454 | case 3 : /* JAL */ | |
455 | { unsigned long reg ; | |
456 | reg = jtype_target(inst) << 2 ; | |
457 | pc = reg + ((pc+4) & 0xf0000000) ; | |
458 | /* Whats this mysterious 0xf000000 adjustment ??? */ | |
459 | } | |
460 | break ; | |
461 | /* FIXME case JALX :*/ | |
462 | { unsigned long reg ; | |
463 | reg = jtype_target(inst) << 2 ; | |
464 | pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */ | |
465 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ | |
466 | } | |
467 | break ; /* The new PC will be alternate mode */ | |
468 | case 4 : /* BEQ , BEQL */ | |
469 | equal_branch : | |
470 | if (read_register(itype_rs(inst)) == | |
471 | read_register(itype_rt(inst))) | |
472 | pc += mips32_relative_offset(inst) + 4 ; | |
473 | else pc += 8 ; | |
474 | break ; | |
475 | case 5 : /* BNE , BNEL */ | |
476 | neq_branch : | |
477 | if (read_register(itype_rs(inst)) != | |
478 | read_register(itype_rs(inst))) | |
479 | pc += mips32_relative_offset(inst) + 4 ; | |
480 | else pc += 8 ; | |
481 | break ; | |
482 | case 6 : /* BLEZ , BLEZL */ | |
483 | less_zero_branch: | |
484 | if (read_register(itype_rs(inst) <= 0)) | |
485 | pc += mips32_relative_offset(inst) + 4 ; | |
486 | else pc += 8 ; | |
487 | break ; | |
488 | case 7 : | |
489 | greater_branch : /* BGTZ BGTZL */ | |
490 | if (read_register(itype_rs(inst) > 0)) | |
491 | pc += mips32_relative_offset(inst) + 4 ; | |
492 | else pc += 8 ; | |
493 | break ; | |
494 | default : pc += 8 ; | |
495 | } /* switch */ | |
496 | } /* else */ | |
497 | return pc ; | |
498 | } /* mips32_next_pc */ | |
499 | ||
500 | /* Decoding the next place to set a breakpoint is irregular for the | |
501 | mips 16 variant, but fortunatly, there fewer instructions. We have to cope | |
502 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. | |
503 | We dont want to set a single step instruction on the extend instruction | |
504 | either. | |
505 | */ | |
506 | ||
507 | /* Lots of mips16 instruction formats */ | |
508 | /* Predicting jumps requires itype,ritype,i8type | |
509 | and their extensions extItype,extritype,extI8type | |
510 | */ | |
511 | enum mips16_inst_fmts | |
512 | { | |
513 | itype, /* 0 immediate 5,10 */ | |
514 | ritype, /* 1 5,3,8 */ | |
515 | rrtype, /* 2 5,3,3,5 */ | |
516 | rritype, /* 3 5,3,3,5 */ | |
517 | rrrtype, /* 4 5,3,3,3,2 */ | |
518 | rriatype, /* 5 5,3,3,1,4 */ | |
519 | shifttype, /* 6 5,3,3,3,2 */ | |
520 | i8type, /* 7 5,3,8 */ | |
521 | i8movtype, /* 8 5,3,3,5 */ | |
522 | i8mov32rtype, /* 9 5,3,5,3 */ | |
523 | i64type, /* 10 5,3,8 */ | |
524 | ri64type, /* 11 5,3,3,5 */ | |
525 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
526 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
527 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
528 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
529 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
530 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
531 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
532 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
533 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
534 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
535 | } ; | |
536 | /* I am heaping all the fields of the formats into one structure and then, | |
537 | only the fields which are involved in instruction extension */ | |
538 | struct upk_mips16 | |
539 | { | |
540 | unsigned short inst ; | |
541 | enum mips16_inst_fmts fmt ; | |
542 | unsigned long offset ; | |
543 | unsigned int regx ; /* Function in i8 type */ | |
544 | unsigned int regy ; | |
545 | } ; | |
546 | ||
547 | ||
548 | ||
549 | static void print_unpack(char * comment, | |
550 | struct upk_mips16 * u) | |
551 | { | |
552 | printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", | |
553 | comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ; | |
554 | } | |
555 | ||
556 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same | |
557 | format for the bits which make up the immediatate extension. | |
558 | */ | |
559 | static unsigned long | |
560 | extended_offset(unsigned long extension) | |
561 | { | |
562 | unsigned long value ; | |
563 | value = (extension >> 21) & 0x3f ; /* * extract 15:11 */ | |
564 | value = value << 6 ; | |
565 | value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */ | |
566 | value = value << 5 ; | |
567 | value |= extension & 0x01f ; /* extract 4:0 */ | |
568 | return value ; | |
569 | } | |
570 | ||
571 | /* Only call this function if you know that this is an extendable | |
572 | instruction, It wont malfunction, but why make excess remote memory references? | |
573 | If the immediate operands get sign extended or somthing, do it after | |
574 | the extension is performed. | |
575 | */ | |
576 | /* FIXME: Every one of these cases needs to worry about sign extension | |
577 | when the offset is to be used in relative addressing */ | |
578 | ||
579 | ||
580 | static unsigned short fetch_mips_16(CORE_ADDR pc) | |
581 | { | |
582 | char buf[8] ; | |
583 | pc &= 0xfffffffe ; /* clear the low order bit */ | |
584 | target_read_memory(pc,buf,2) ; | |
585 | return extract_unsigned_integer(buf,2) ; | |
586 | } | |
587 | ||
588 | static void | |
589 | unpack_mips16(CORE_ADDR pc, | |
590 | struct upk_mips16 * upk) | |
591 | { | |
592 | CORE_ADDR extpc ; | |
593 | unsigned long extension ; | |
594 | int extended ; | |
595 | extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */ | |
596 | /* Decrement to previous address and loose the 16bit mode flag */ | |
597 | /* return if the instruction was extendable, but not actually extended */ | |
598 | extended = ((mips32_op(extension) == 30) ? 1 : 0) ; | |
599 | if (extended) { extension = mips_fetch_instruction(extpc) ;} | |
600 | switch (upk->fmt) | |
601 | { | |
602 | case itype : | |
603 | { | |
604 | unsigned long value ; | |
605 | if (extended) | |
606 | { value = extended_offset(extension) ; | |
607 | value = value << 11 ; /* rom for the original value */ | |
608 | value |= upk->inst & 0x7ff ; /* eleven bits from instruction */ | |
609 | } | |
610 | else | |
611 | { value = upk->inst & 0x7ff ; | |
612 | /* FIXME : Consider sign extension */ | |
613 | } | |
614 | upk->offset = value ; | |
615 | } | |
616 | break ; | |
617 | case ritype : | |
618 | case i8type : | |
619 | { /* A register identifier and an offset */ | |
620 | /* Most of the fields are the same as I type but the | |
621 | immediate value is of a different length */ | |
622 | unsigned long value ; | |
623 | if (extended) | |
624 | { | |
625 | value = extended_offset(extension) ; | |
626 | value = value << 8 ; /* from the original instruction */ | |
627 | value |= upk->inst & 0xff ; /* eleven bits from instruction */ | |
628 | upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */ | |
629 | if (value & 0x4000) /* test the sign bit , bit 26 */ | |
630 | { value &= ~ 0x3fff ; /* remove the sign bit */ | |
631 | value = -value ; | |
632 | } | |
633 | } | |
634 | else { | |
635 | value = upk->inst & 0xff ; /* 8 bits */ | |
636 | upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */ | |
637 | /* FIXME: Do sign extension , this format needs it */ | |
638 | if (value & 0x80) /* THIS CONFUSES ME */ | |
639 | { value &= 0xef ; /* remove the sign bit */ | |
640 | value = -value ; | |
641 | } | |
642 | ||
643 | } | |
644 | upk->offset = value ; | |
645 | break ; | |
646 | } | |
647 | case jalxtype : | |
648 | { | |
649 | unsigned long value ; | |
650 | unsigned short nexthalf ; | |
651 | value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ; | |
652 | value = value << 16 ; | |
653 | nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */ | |
654 | value |= nexthalf ; | |
655 | upk->offset = value ; | |
656 | break ; | |
657 | } | |
658 | default: | |
659 | printf_filtered("Decoding unimplemented instruction format type\n") ; | |
660 | break ; | |
661 | } | |
662 | /* print_unpack("UPK",upk) ; */ | |
663 | } | |
664 | ||
665 | ||
666 | #define mips16_op(x) (x >> 11) | |
667 | ||
668 | /* This is a map of the opcodes which ae known to perform branches */ | |
669 | static unsigned char map16[32] = | |
670 | { 0,0,1,1,1,1,0,0, | |
671 | 0,0,0,0,1,0,0,0, | |
672 | 0,0,0,0,0,0,0,0, | |
673 | 0,0,0,0,0,1,1,0 | |
674 | } ; | |
675 | ||
676 | static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset) | |
677 | { | |
678 | return ((offset << 2) | ((pc + 2) & (0xf0000000))) ; | |
679 | ||
680 | } | |
681 | ||
682 | ||
683 | ||
684 | static struct upk_mips16 upk ; | |
685 | ||
686 | CORE_ADDR mips16_next_pc(CORE_ADDR pc) | |
687 | { | |
688 | int op ; | |
689 | t_inst inst ; | |
690 | /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ | |
691 | inst = fetch_mips_16(pc) ; | |
692 | upk.inst = inst ; | |
693 | op = mips16_op(upk.inst) ; | |
694 | if (map16[op]) | |
695 | { | |
696 | int reg ; | |
697 | switch (op) | |
698 | { | |
699 | case 2 : /* Branch */ | |
700 | upk.fmt = itype ; | |
701 | unpack_mips16(pc,&upk) ; | |
702 | { long offset ; | |
703 | offset = upk.offset ; | |
704 | if (offset & 0x800) | |
705 | { offset &= 0xeff ; | |
706 | offset = - offset ; | |
707 | } | |
708 | pc += (offset << 1) + 2 ; | |
709 | } | |
710 | break ; | |
711 | case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/ | |
712 | upk.fmt = jalxtype ; | |
713 | unpack_mips16(pc,&upk) ; | |
714 | pc = add_offset_16(pc,upk.offset) ; | |
715 | if ((upk.inst >> 10) & 0x01) /* Exchange mode */ | |
716 | pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */ | |
717 | else pc |= 0x01 ; | |
718 | break ; | |
719 | case 4 : /* beqz */ | |
720 | upk.fmt = ritype ; | |
721 | unpack_mips16(pc,&upk) ; | |
722 | reg = read_register(upk.regx) ; | |
723 | if (reg == 0) | |
724 | pc += (upk.offset << 1) + 2 ; | |
725 | else pc += 2 ; | |
726 | break ; | |
727 | case 5 : /* bnez */ | |
728 | upk.fmt = ritype ; | |
729 | unpack_mips16(pc,&upk) ; | |
730 | reg = read_register(upk.regx) ; | |
731 | if (reg != 0) | |
732 | pc += (upk.offset << 1) + 2 ; | |
733 | else pc += 2 ; | |
734 | break ; | |
735 | case 12 : /* I8 Formats btez btnez */ | |
736 | upk.fmt = i8type ; | |
737 | unpack_mips16(pc,&upk) ; | |
738 | /* upk.regx contains the opcode */ | |
739 | reg = read_register(24) ; /* Test register is 24 */ | |
740 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
741 | || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */ | |
742 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
743 | pc += (upk.offset << 1) + 2 ; | |
744 | else pc += 2 ; | |
745 | break ; | |
746 | case 29 : /* RR Formats JR, JALR, JALR-RA */ | |
747 | upk.fmt = rrtype ; | |
748 | op = upk.inst & 0x1f ; | |
749 | if (op == 0) | |
750 | { | |
751 | upk.regx = (upk.inst >> 8) & 0x07 ; | |
752 | upk.regy = (upk.inst >> 5) & 0x07 ; | |
753 | switch (upk.regy) | |
754 | { | |
755 | case 0 : reg = upk.regx ; break ; | |
756 | case 1 : reg = 31 ; break ; /* Function return instruction*/ | |
757 | case 2 : reg = upk.regx ; break ; | |
758 | default: reg = 31 ; break ; /* BOGUS Guess */ | |
759 | } | |
760 | pc = read_register(reg) ; | |
761 | } | |
762 | else pc += 2 ; | |
763 | break ; | |
764 | case 30 : /* This is an extend instruction */ | |
765 | pc += 4 ; /* Dont be setting breakpints on the second half */ | |
766 | break ; | |
767 | default : | |
768 | printf("Filtered - next PC probably incorrrect due to jump inst\n"); | |
769 | pc += 2 ; | |
770 | break ; | |
771 | } | |
772 | } | |
773 | else pc+= 2 ; /* just a good old instruction */ | |
774 | /* See if we CAN actually break on the next instruction */ | |
775 | /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ | |
776 | return pc ; | |
777 | } /* mips16_next_pc */ | |
778 | ||
779 | /* The mips_next_pc function supports single_tep when the remote target monitor or | |
780 | stub is not developed enough to so a single_step. | |
781 | It works by decoding the current instruction and predicting where a branch | |
782 | will go. This isnt hard because all the data is available. | |
783 | The MIPS32 and MIPS16 variants are quite different | |
784 | */ | |
785 | CORE_ADDR mips_next_pc(CORE_ADDR pc) | |
786 | { | |
787 | t_inst inst ; | |
788 | /* inst = mips_fetch_instruction(pc) ; */ | |
789 | /* if (pc_is_mips16) <----- This is failing */ | |
790 | if (pc & 0x01) | |
791 | return mips16_next_pc(pc) ; | |
792 | else return mips32_next_pc(pc) ; | |
793 | } /* mips_next_pc */ | |
794 | ||
70126bf9 KH |
795 | /* Guaranteed to set fci->saved_regs to some values (it never leaves it |
796 | NULL). */ | |
797 | ||
798 | void | |
799 | mips_find_saved_regs (fci) | |
9f9f94aa | 800 | struct frame_info *fci; |
70126bf9 KH |
801 | { |
802 | int ireg; | |
803 | CORE_ADDR reg_position; | |
804 | /* r0 bit means kernel trap */ | |
805 | int kernel_trap; | |
806 | /* What registers have been saved? Bitmasks. */ | |
807 | unsigned long gen_mask, float_mask; | |
808 | mips_extra_func_info_t proc_desc; | |
c81a76b3 | 809 | t_inst inst; |
70126bf9 KH |
810 | |
811 | fci->saved_regs = (struct frame_saved_regs *) | |
812 | obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs)); | |
813 | memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs)); | |
814 | ||
e4dbd248 PS |
815 | /* If it is the frame for sigtramp, the saved registers are located |
816 | in a sigcontext structure somewhere on the stack. | |
817 | If the stack layout for sigtramp changes we might have to change these | |
818 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
819 | #ifndef SIGFRAME_BASE | |
820 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
821 | above the sigtramp frame. */ | |
28444bf3 DP |
822 | #define SIGFRAME_BASE MIPS_REGSIZE |
823 | /* FIXME! Are these correct?? */ | |
824 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
825 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
826 | #define SIGFRAME_FPREGSAVE_OFF \ | |
827 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
e4dbd248 PS |
828 | #endif |
829 | #ifndef SIGFRAME_REG_SIZE | |
28444bf3 DP |
830 | /* FIXME! Is this correct?? */ |
831 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
e4dbd248 PS |
832 | #endif |
833 | if (fci->signal_handler_caller) | |
834 | { | |
28444bf3 | 835 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
836 | { |
837 | reg_position = fci->frame + SIGFRAME_REGSAVE_OFF | |
838 | + ireg * SIGFRAME_REG_SIZE; | |
839 | fci->saved_regs->regs[ireg] = reg_position; | |
840 | } | |
28444bf3 | 841 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
842 | { |
843 | reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF | |
844 | + ireg * SIGFRAME_REG_SIZE; | |
845 | fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position; | |
846 | } | |
847 | fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; | |
848 | return; | |
849 | } | |
850 | ||
70126bf9 KH |
851 | proc_desc = fci->proc_desc; |
852 | if (proc_desc == NULL) | |
853 | /* I'm not sure how/whether this can happen. Normally when we can't | |
854 | find a proc_desc, we "synthesize" one using heuristic_proc_desc | |
855 | and set the saved_regs right away. */ | |
856 | return; | |
857 | ||
858 | kernel_trap = PROC_REG_MASK(proc_desc) & 1; | |
859 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); | |
860 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); | |
861 | ||
f9f8c14b MA |
862 | if (/* In any frame other than the innermost or a frame interrupted by |
863 | a signal, we assume that all registers have been saved. | |
864 | This assumes that all register saves in a function happen before | |
865 | the first function call. */ | |
866 | (fci->next == NULL || fci->next->signal_handler_caller) | |
70126bf9 KH |
867 | |
868 | /* In a dummy frame we know exactly where things are saved. */ | |
869 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
870 | ||
f2bf454e FF |
871 | /* Don't bother unless we are inside a function prologue. Outside the |
872 | prologue, we know where everything is. */ | |
873 | ||
874 | && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) | |
875 | ||
70126bf9 KH |
876 | /* Not sure exactly what kernel_trap means, but if it means |
877 | the kernel saves the registers without a prologue doing it, | |
878 | we better not examine the prologue to see whether registers | |
879 | have been saved yet. */ | |
880 | && !kernel_trap) | |
881 | { | |
882 | /* We need to figure out whether the registers that the proc_desc | |
883 | claims are saved have been saved yet. */ | |
884 | ||
885 | CORE_ADDR addr; | |
70126bf9 KH |
886 | |
887 | /* Bitmasks; set if we have found a save for the register. */ | |
888 | unsigned long gen_save_found = 0; | |
889 | unsigned long float_save_found = 0; | |
c81a76b3 | 890 | int instlen; |
70126bf9 | 891 | |
c1fc0935 MA |
892 | /* If the address is odd, assume this is MIPS16 code. */ |
893 | addr = PROC_LOW_ADDR (proc_desc); | |
899c4021 | 894 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
f9f8c14b | 895 | |
20fa0902 MA |
896 | /* Scan through this function's instructions preceding the current |
897 | PC, and look for those that save registers. */ | |
f9f8c14b MA |
898 | while (addr < fci->pc) |
899 | { | |
c81a76b3 | 900 | inst = mips_fetch_instruction (addr); |
899c4021 | 901 | if (pc_is_mips16 (addr)) |
f9f8c14b MA |
902 | mips16_decode_reg_save (inst, &gen_save_found); |
903 | else | |
904 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
905 | addr += instlen; | |
70126bf9 KH |
906 | } |
907 | gen_mask = gen_save_found; | |
908 | float_mask = float_save_found; | |
909 | } | |
910 | ||
911 | /* Fill in the offsets for the registers which gen_mask says | |
912 | were saved. */ | |
913 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
28444bf3 | 914 | for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) |
70126bf9 KH |
915 | if (gen_mask & 0x80000000) |
916 | { | |
917 | fci->saved_regs->regs[ireg] = reg_position; | |
918 | reg_position -= MIPS_REGSIZE; | |
919 | } | |
c81a76b3 MA |
920 | |
921 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order | |
922 | of that normally used by gcc. Therefore, we have to fetch the first | |
923 | instruction of the function, and if it's an entry instruction that | |
924 | saves $s0 or $s1, correct their saved addresses. */ | |
899c4021 | 925 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) |
c81a76b3 MA |
926 | { |
927 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
928 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
929 | { | |
930 | int reg; | |
931 | int sreg_count = (inst >> 6) & 3; | |
932 | ||
933 | /* Check if the ra register was pushed on the stack. */ | |
934 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
935 | if (inst & 0x20) | |
936 | reg_position -= MIPS_REGSIZE; | |
937 | ||
938 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
939 | for (reg = 16; reg < sreg_count+16; reg++) | |
940 | { | |
941 | fci->saved_regs->regs[reg] = reg_position; | |
942 | reg_position -= MIPS_REGSIZE; | |
943 | } | |
944 | } | |
945 | } | |
946 | ||
70126bf9 KH |
947 | /* Fill in the offsets for the registers which float_mask says |
948 | were saved. */ | |
949 | reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); | |
950 | ||
951 | /* The freg_offset points to where the first *double* register | |
952 | is saved. So skip to the high-order word. */ | |
28444bf3 | 953 | if (! GDB_TARGET_IS_MIPS64) |
c81a76b3 | 954 | reg_position += MIPS_REGSIZE; |
28444bf3 | 955 | |
20fa0902 MA |
956 | /* Fill in the offsets for the float registers which float_mask says |
957 | were saved. */ | |
28444bf3 | 958 | for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) |
70126bf9 KH |
959 | if (float_mask & 0x80000000) |
960 | { | |
961 | fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position; | |
962 | reg_position -= MIPS_REGSIZE; | |
963 | } | |
964 | ||
965 | fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; | |
966 | } | |
bd5635a1 | 967 | |
28444bf3 | 968 | static CORE_ADDR |
bd5635a1 | 969 | read_next_frame_reg(fi, regno) |
9f9f94aa | 970 | struct frame_info *fi; |
bd5635a1 RP |
971 | int regno; |
972 | { | |
bd5635a1 | 973 | for (; fi; fi = fi->next) |
70126bf9 | 974 | { |
e4dbd248 PS |
975 | /* We have to get the saved sp from the sigcontext |
976 | if it is a signal handler frame. */ | |
977 | if (regno == SP_REGNUM && !fi->signal_handler_caller) | |
978 | return fi->frame; | |
70126bf9 KH |
979 | else |
980 | { | |
981 | if (fi->saved_regs == NULL) | |
982 | mips_find_saved_regs (fi); | |
983 | if (fi->saved_regs->regs[regno]) | |
984 | return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE); | |
985 | } | |
986 | } | |
987 | return read_register (regno); | |
bd5635a1 RP |
988 | } |
989 | ||
96431497 MA |
990 | /* mips_addr_bits_remove - remove useless address bits */ |
991 | ||
992 | CORE_ADDR | |
993 | mips_addr_bits_remove (addr) | |
994 | CORE_ADDR addr; | |
995 | { | |
97e091b2 MA |
996 | #if GDB_TARGET_IS_MIPS64 |
997 | if ((addr >> 32 == (CORE_ADDR)0xffffffff) | |
f781fe93 MA |
998 | && (strcmp (target_shortname,"pmon")==0 |
999 | || strcmp (target_shortname,"ddb")==0 | |
1000 | || strcmp (target_shortname,"sim")==0)) | |
96431497 MA |
1001 | { |
1002 | /* This hack is a work-around for existing boards using PMON, | |
1003 | the simulator, and any other 64-bit targets that doesn't have | |
1004 | true 64-bit addressing. On these targets, the upper 32 bits | |
1005 | of addresses are ignored by the hardware. Thus, the PC or SP | |
1006 | are likely to have been sign extended to all 1s by instruction | |
1007 | sequences that load 32-bit addresses. For example, a typical | |
1008 | piece of code that loads an address is this: | |
1009 | lui $r2, <upper 16 bits> | |
1010 | ori $r2, <lower 16 bits> | |
1011 | But the lui sign-extends the value such that the upper 32 bits | |
1012 | may be all 1s. The workaround is simply to mask off these bits. | |
1013 | In the future, gcc may be changed to support true 64-bit | |
1014 | addressing, and this masking will have to be disabled. */ | |
1015 | addr &= (CORE_ADDR)0xffffffff; | |
1016 | } | |
f9f8c14b MA |
1017 | #else |
1018 | /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), | |
1019 | BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. | |
1020 | So we still have to mask off useless bits from addresses. */ | |
1021 | addr &= (CORE_ADDR)0xffffffff; | |
97e091b2 | 1022 | #endif |
96431497 MA |
1023 | |
1024 | return addr; | |
1025 | } | |
1026 | ||
f781fe93 MA |
1027 | void |
1028 | mips_init_frame_pc_first (fromleaf, prev) | |
1029 | int fromleaf; | |
1030 | struct frame_info *prev; | |
1031 | { | |
1032 | CORE_ADDR pc, tmp; | |
1033 | ||
1034 | pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : | |
1035 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); | |
1036 | tmp = mips_skip_stub (pc); | |
1037 | prev->pc = tmp ? tmp : pc; | |
1038 | } | |
1039 | ||
1040 | ||
28444bf3 | 1041 | CORE_ADDR |
bd5635a1 | 1042 | mips_frame_saved_pc(frame) |
9f9f94aa | 1043 | struct frame_info *frame; |
bd5635a1 | 1044 | { |
28444bf3 | 1045 | CORE_ADDR saved_pc; |
0f552c5f | 1046 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
0434c1a0 PS |
1047 | /* We have to get the saved pc from the sigcontext |
1048 | if it is a signal handler frame. */ | |
1049 | int pcreg = frame->signal_handler_caller ? PC_REGNUM | |
1050 | : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); | |
0f552c5f | 1051 | |
bd5635a1 | 1052 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
28444bf3 DP |
1053 | saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); |
1054 | else | |
1055 | saved_pc = read_next_frame_reg(frame, pcreg); | |
0f552c5f | 1056 | |
96431497 | 1057 | return ADDR_BITS_REMOVE (saved_pc); |
bd5635a1 RP |
1058 | } |
1059 | ||
1060 | static struct mips_extra_func_info temp_proc_desc; | |
1061 | static struct frame_saved_regs temp_saved_regs; | |
1062 | ||
639c8612 MA |
1063 | /* Set a register's saved stack address in temp_saved_regs. If an address |
1064 | has already been set for this register, do nothing; this way we will | |
1065 | only recognize the first save of a given register in a function prologue. | |
1066 | This is a helper function for mips{16,32}_heuristic_proc_desc. */ | |
1067 | ||
1068 | static void | |
1069 | set_reg_offset (regno, offset) | |
1070 | int regno; | |
1071 | CORE_ADDR offset; | |
1072 | { | |
1073 | if (temp_saved_regs.regs[regno] == 0) | |
1074 | temp_saved_regs.regs[regno] = offset; | |
1075 | } | |
1076 | ||
1077 | ||
a8172eea RP |
1078 | /* This fencepost looks highly suspicious to me. Removing it also |
1079 | seems suspicious as it could affect remote debugging across serial | |
3127785a | 1080 | lines. */ |
a8172eea | 1081 | |
0f552c5f JG |
1082 | static CORE_ADDR |
1083 | heuristic_proc_start(pc) | |
bd5635a1 RP |
1084 | CORE_ADDR pc; |
1085 | { | |
32dab603 MA |
1086 | CORE_ADDR start_pc; |
1087 | CORE_ADDR fence; | |
20fa0902 | 1088 | int instlen; |
b348b9fd | 1089 | int seen_adjsp = 0; |
0f552c5f | 1090 | |
32dab603 MA |
1091 | pc = ADDR_BITS_REMOVE (pc); |
1092 | start_pc = pc; | |
1093 | fence = start_pc - heuristic_fence_post; | |
0f552c5f | 1094 | if (start_pc == 0) return 0; |
3127785a RP |
1095 | |
1096 | if (heuristic_fence_post == UINT_MAX | |
1097 | || fence < VM_MIN_ADDRESS) | |
1098 | fence = VM_MIN_ADDRESS; | |
0f552c5f | 1099 | |
899c4021 | 1100 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
20fa0902 | 1101 | |
bd5635a1 | 1102 | /* search back for previous return */ |
20fa0902 | 1103 | for (start_pc -= instlen; ; start_pc -= instlen) |
a8172eea RP |
1104 | if (start_pc < fence) |
1105 | { | |
3127785a RP |
1106 | /* It's not clear to me why we reach this point when |
1107 | stop_soon_quietly, but with this test, at least we | |
1108 | don't print out warnings for every child forked (eg, on | |
1109 | decstation). 22apr93 [email protected]. */ | |
1110 | if (!stop_soon_quietly) | |
1111 | { | |
23d35572 JK |
1112 | static int blurb_printed = 0; |
1113 | ||
3127785a RP |
1114 | if (fence == VM_MIN_ADDRESS) |
1115 | warning("Hit beginning of text section without finding"); | |
1116 | else | |
1117 | warning("Hit heuristic-fence-post without finding"); | |
1118 | ||
f781fe93 | 1119 | warning("enclosing function for address 0x%s", paddr_nz (pc)); |
23d35572 JK |
1120 | if (!blurb_printed) |
1121 | { | |
1122 | printf_filtered ("\ | |
1123 | This warning occurs if you are debugging a function without any symbols\n\ | |
1124 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
1125 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
1126 | \n\ | |
1127 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
1128 | (more likely) you have encountered a bug in GDB.\n"); | |
1129 | blurb_printed = 1; | |
1130 | } | |
3127785a RP |
1131 | } |
1132 | ||
a8172eea RP |
1133 | return 0; |
1134 | } | |
899c4021 | 1135 | else if (pc_is_mips16 (start_pc)) |
20fa0902 | 1136 | { |
c1fc0935 MA |
1137 | unsigned short inst; |
1138 | ||
b348b9fd MA |
1139 | /* On MIPS16, any one of the following is likely to be the |
1140 | start of a function: | |
1141 | entry | |
1142 | addiu sp,-n | |
1143 | daddiu sp,-n | |
1144 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
c81a76b3 | 1145 | inst = mips_fetch_instruction (start_pc); |
b348b9fd MA |
1146 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
1147 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
1148 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
1149 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
1150 | break; | |
1151 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
1152 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1153 | seen_adjsp = 1; | |
1154 | else | |
1155 | seen_adjsp = 0; | |
20fa0902 | 1156 | } |
bd5635a1 | 1157 | else if (ABOUT_TO_RETURN(start_pc)) |
20fa0902 MA |
1158 | { |
1159 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
bd5635a1 | 1160 | break; |
20fa0902 | 1161 | } |
bd5635a1 | 1162 | |
bd5635a1 RP |
1163 | #if 0 |
1164 | /* skip nops (usually 1) 0 - is this */ | |
28444bf3 DP |
1165 | while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) |
1166 | start_pc += MIPS_INSTLEN; | |
bd5635a1 RP |
1167 | #endif |
1168 | return start_pc; | |
1169 | } | |
1170 | ||
c81a76b3 | 1171 | /* Fetch the immediate value from a MIPS16 instruction. |
b348b9fd MA |
1172 | If the previous instruction was an EXTEND, use it to extend |
1173 | the upper bits of the immediate value. This is a helper function | |
1174 | for mips16_heuristic_proc_desc. */ | |
1175 | ||
1176 | static int | |
1177 | mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) | |
1178 | unsigned short prev_inst; /* previous instruction */ | |
af774411 | 1179 | unsigned short inst; /* current instruction */ |
b348b9fd MA |
1180 | int nbits; /* number of bits in imm field */ |
1181 | int scale; /* scale factor to be applied to imm */ | |
1182 | int is_signed; /* is the imm field signed? */ | |
1183 | { | |
1184 | int offset; | |
1185 | ||
1186 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
1187 | { | |
7d9e8fac | 1188 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); |
b348b9fd MA |
1189 | if (offset & 0x8000) /* check for negative extend */ |
1190 | offset = 0 - (0x10000 - (offset & 0xffff)); | |
1191 | return offset | (inst & 0x1f); | |
1192 | } | |
1193 | else | |
1194 | { | |
1195 | int max_imm = 1 << nbits; | |
1196 | int mask = max_imm - 1; | |
1197 | int sign_bit = max_imm >> 1; | |
1198 | ||
1199 | offset = inst & mask; | |
1200 | if (is_signed && (offset & sign_bit)) | |
1201 | offset = 0 - (max_imm - offset); | |
1202 | return offset * scale; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | ||
1207 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
1208 | stream from start_pc to limit_pc. */ | |
1209 | ||
1210 | static void | |
1211 | mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
bd5635a1 | 1212 | CORE_ADDR start_pc, limit_pc; |
9f9f94aa | 1213 | struct frame_info *next_frame; |
b348b9fd | 1214 | CORE_ADDR sp; |
bd5635a1 | 1215 | { |
b348b9fd MA |
1216 | CORE_ADDR cur_pc; |
1217 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
1218 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
1219 | unsigned inst = 0; /* current instruction */ | |
639c8612 MA |
1220 | unsigned entry_inst = 0; /* the entry instruction */ |
1221 | int reg, offset; | |
bd5635a1 | 1222 | |
af774411 MA |
1223 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */ |
1224 | PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */ | |
34df79fc | 1225 | |
b348b9fd MA |
1226 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) |
1227 | { | |
b348b9fd MA |
1228 | /* Save the previous instruction. If it's an EXTEND, we'll extract |
1229 | the immediate offset extension from it in mips16_get_imm. */ | |
1230 | prev_inst = inst; | |
1231 | ||
c81a76b3 MA |
1232 | /* Fetch and decode the instruction. */ |
1233 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
b348b9fd MA |
1234 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ |
1235 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
1236 | { | |
1237 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
1238 | if (offset < 0) /* negative stack adjustment? */ | |
1239 | PROC_FRAME_OFFSET(&temp_proc_desc) -= offset; | |
1240 | else | |
1241 | /* Exit loop if a positive stack adjustment is found, which | |
1242 | usually means that the stack cleanup code in the function | |
1243 | epilogue is reached. */ | |
1244 | break; | |
1245 | } | |
1246 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
1247 | { | |
1248 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1249 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
1250 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
639c8612 | 1251 | set_reg_offset (reg, sp + offset); |
b348b9fd MA |
1252 | } |
1253 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
1254 | { | |
1255 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1256 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1257 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
639c8612 | 1258 | set_reg_offset (reg, sp + offset); |
b348b9fd MA |
1259 | } |
1260 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
1261 | { | |
1262 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
af774411 | 1263 | PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); |
639c8612 | 1264 | set_reg_offset (RA_REGNUM, sp + offset); |
97e091b2 | 1265 | } |
b348b9fd MA |
1266 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
1267 | { | |
1268 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
af774411 | 1269 | PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); |
639c8612 | 1270 | set_reg_offset (RA_REGNUM, sp + offset); |
bd5635a1 | 1271 | } |
b348b9fd MA |
1272 | else if (inst == 0x673d) /* move $s1, $sp */ |
1273 | { | |
639c8612 | 1274 | frame_addr = sp; |
b348b9fd | 1275 | PROC_FRAME_REG (&temp_proc_desc) = 17; |
97e091b2 | 1276 | } |
32dab603 MA |
1277 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ |
1278 | { | |
1279 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
1280 | frame_addr = sp + offset; | |
1281 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
af774411 | 1282 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; |
32dab603 | 1283 | } |
b348b9fd MA |
1284 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ |
1285 | { | |
1286 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
1287 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1288 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1289 | set_reg_offset (reg, frame_addr + offset); |
b348b9fd MA |
1290 | } |
1291 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
1292 | { | |
1293 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
1294 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1295 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1296 | set_reg_offset (reg, frame_addr + offset); |
b348b9fd MA |
1297 | } |
1298 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
639c8612 MA |
1299 | entry_inst = inst; /* save for later processing */ |
1300 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ | |
1301 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ | |
1302 | } | |
b348b9fd | 1303 | |
639c8612 MA |
1304 | /* The entry instruction is typically the first instruction in a function, |
1305 | and it stores registers at offsets relative to the value of the old SP | |
1306 | (before the prologue). But the value of the sp parameter to this | |
1307 | function is the new SP (after the prologue has been executed). So we | |
1308 | can't calculate those offsets until we've seen the entire prologue, | |
1309 | and can calculate what the old SP must have been. */ | |
1310 | if (entry_inst != 0) | |
1311 | { | |
1312 | int areg_count = (entry_inst >> 8) & 7; | |
1313 | int sreg_count = (entry_inst >> 6) & 3; | |
b348b9fd | 1314 | |
639c8612 MA |
1315 | /* The entry instruction always subtracts 32 from the SP. */ |
1316 | PROC_FRAME_OFFSET(&temp_proc_desc) += 32; | |
b348b9fd | 1317 | |
639c8612 MA |
1318 | /* Now we can calculate what the SP must have been at the |
1319 | start of the function prologue. */ | |
1320 | sp += PROC_FRAME_OFFSET(&temp_proc_desc); | |
b348b9fd | 1321 | |
639c8612 MA |
1322 | /* Check if a0-a3 were saved in the caller's argument save area. */ |
1323 | for (reg = 4, offset = 0; reg < areg_count+4; reg++) | |
1324 | { | |
1325 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
1326 | set_reg_offset (reg, sp + offset); | |
1327 | offset += MIPS_REGSIZE; | |
1328 | } | |
1329 | ||
1330 | /* Check if the ra register was pushed on the stack. */ | |
1331 | offset = -4; | |
1332 | if (entry_inst & 0x20) | |
1333 | { | |
1334 | PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM; | |
1335 | set_reg_offset (RA_REGNUM, sp + offset); | |
1336 | offset -= MIPS_REGSIZE; | |
1337 | } | |
1338 | ||
1339 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
1340 | for (reg = 16; reg < sreg_count+16; reg++) | |
1341 | { | |
1342 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
1343 | set_reg_offset (reg, sp + offset); | |
1344 | offset -= MIPS_REGSIZE; | |
1345 | } | |
1346 | } | |
b348b9fd MA |
1347 | } |
1348 | ||
1349 | static void | |
1350 | mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
1351 | CORE_ADDR start_pc, limit_pc; | |
1352 | struct frame_info *next_frame; | |
1353 | CORE_ADDR sp; | |
1354 | { | |
1355 | CORE_ADDR cur_pc; | |
1356 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ | |
1357 | restart: | |
1358 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; | |
639c8612 | 1359 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ |
b348b9fd MA |
1360 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) |
1361 | { | |
b348b9fd | 1362 | unsigned long inst, high_word, low_word; |
c81a76b3 | 1363 | int reg; |
b348b9fd MA |
1364 | |
1365 | /* Fetch the instruction. */ | |
c81a76b3 | 1366 | inst = (unsigned long) mips_fetch_instruction (cur_pc); |
b348b9fd MA |
1367 | |
1368 | /* Save some code by pre-extracting some useful fields. */ | |
1369 | high_word = (inst >> 16) & 0xffff; | |
1370 | low_word = inst & 0xffff; | |
1371 | reg = high_word & 0x1f; | |
1372 | ||
1373 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ | |
1374 | || high_word == 0x23bd /* addi $sp,$sp,-i */ | |
1375 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
1376 | { | |
1377 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
1378 | PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word; | |
1379 | else | |
1380 | /* Exit loop if a positive stack adjustment is found, which | |
1381 | usually means that the stack cleanup code in the function | |
1382 | epilogue is reached. */ | |
1383 | break; | |
1384 | } | |
1385 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
1386 | { | |
1387 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1388 | set_reg_offset (reg, sp + low_word); |
b348b9fd MA |
1389 | } |
1390 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
1391 | { | |
1392 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
1393 | but the register size used is only 32 bits. Make the address | |
1394 | for the saved register point to the lower 32 bits. */ | |
1395 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1396 | set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); |
b348b9fd MA |
1397 | } |
1398 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ | |
1399 | { | |
1400 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
32dab603 | 1401 | if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc)) |
b348b9fd MA |
1402 | frame_addr = sp + low_word; |
1403 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1404 | { | |
1405 | unsigned alloca_adjust; | |
1406 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
1407 | frame_addr = read_next_frame_reg(next_frame, 30); | |
1408 | alloca_adjust = (unsigned)(frame_addr - (sp + low_word)); | |
1409 | if (alloca_adjust > 0) | |
1410 | { | |
1411 | /* FP > SP + frame_size. This may be because | |
1412 | * of an alloca or somethings similar. | |
1413 | * Fix sp to "pre-alloca" value, and try again. | |
1414 | */ | |
1415 | sp += alloca_adjust; | |
1416 | goto restart; | |
bd5635a1 RP |
1417 | } |
1418 | } | |
1419 | } | |
b348b9fd MA |
1420 | /* move $30,$sp. With different versions of gas this will be either |
1421 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
1422 | Accept any one of these. */ | |
1423 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
1424 | { | |
1425 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
1426 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
1427 | { | |
1428 | unsigned alloca_adjust; | |
1429 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
1430 | frame_addr = read_next_frame_reg(next_frame, 30); | |
1431 | alloca_adjust = (unsigned)(frame_addr - sp); | |
1432 | if (alloca_adjust > 0) | |
1433 | { | |
1434 | /* FP > SP + frame_size. This may be because | |
1435 | * of an alloca or somethings similar. | |
1436 | * Fix sp to "pre-alloca" value, and try again. | |
1437 | */ | |
1438 | sp += alloca_adjust; | |
1439 | goto restart; | |
97e091b2 MA |
1440 | } |
1441 | } | |
1442 | } | |
b348b9fd MA |
1443 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
1444 | { | |
1445 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
639c8612 | 1446 | set_reg_offset (reg, frame_addr + low_word); |
bd5635a1 RP |
1447 | } |
1448 | } | |
b348b9fd MA |
1449 | } |
1450 | ||
1451 | static mips_extra_func_info_t | |
1452 | heuristic_proc_desc(start_pc, limit_pc, next_frame) | |
1453 | CORE_ADDR start_pc, limit_pc; | |
1454 | struct frame_info *next_frame; | |
1455 | { | |
1456 | CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
1457 | ||
1458 | if (start_pc == 0) return NULL; | |
1459 | memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); | |
1460 | memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); | |
1461 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; | |
1462 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
1463 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
1464 | ||
1465 | if (start_pc + 200 < limit_pc) | |
1466 | limit_pc = start_pc + 200; | |
899c4021 | 1467 | if (pc_is_mips16 (start_pc)) |
b348b9fd MA |
1468 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); |
1469 | else | |
1470 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
1471 | return &temp_proc_desc; | |
bd5635a1 RP |
1472 | } |
1473 | ||
0f552c5f | 1474 | static mips_extra_func_info_t |
c1fc0935 | 1475 | non_heuristic_proc_desc (pc, addrptr) |
9f9f94aa | 1476 | CORE_ADDR pc; |
c1fc0935 | 1477 | CORE_ADDR *addrptr; |
bd5635a1 | 1478 | { |
c1fc0935 | 1479 | CORE_ADDR startaddr; |
bd5635a1 | 1480 | mips_extra_func_info_t proc_desc; |
0f552c5f | 1481 | struct block *b = block_for_pc(pc); |
48be4c35 | 1482 | struct symbol *sym; |
48be4c35 JK |
1483 | |
1484 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
c1fc0935 MA |
1485 | if (addrptr) |
1486 | *addrptr = startaddr; | |
97e091b2 | 1487 | if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) |
48be4c35 JK |
1488 | sym = NULL; |
1489 | else | |
1490 | { | |
1491 | if (startaddr > BLOCK_START (b)) | |
1492 | /* This is the "pathological" case referred to in a comment in | |
1493 | print_frame_info. It might be better to move this check into | |
1494 | symbol reading. */ | |
1495 | sym = NULL; | |
1496 | else | |
c1fc0935 | 1497 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); |
48be4c35 | 1498 | } |
0f552c5f | 1499 | |
e4dbd248 PS |
1500 | /* If we never found a PDR for this function in symbol reading, then |
1501 | examine prologues to find the information. */ | |
0f552c5f | 1502 | if (sym) |
bd5635a1 | 1503 | { |
c1fc0935 MA |
1504 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); |
1505 | if (PROC_FRAME_REG (proc_desc) == -1) | |
1506 | return NULL; | |
1507 | else | |
1508 | return proc_desc; | |
1509 | } | |
1510 | else | |
1511 | return NULL; | |
1512 | } | |
1513 | ||
1514 | ||
1515 | static mips_extra_func_info_t | |
1516 | find_proc_desc (pc, next_frame) | |
1517 | CORE_ADDR pc; | |
1518 | struct frame_info *next_frame; | |
1519 | { | |
1520 | mips_extra_func_info_t proc_desc; | |
1521 | CORE_ADDR startaddr; | |
1522 | ||
1523 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
1524 | ||
1525 | if (proc_desc) | |
1526 | { | |
1527 | /* IF this is the topmost frame AND | |
1528 | * (this proc does not have debugging information OR | |
1529 | * the PC is in the procedure prologue) | |
1530 | * THEN create a "heuristic" proc_desc (by analyzing | |
1531 | * the actual code) to replace the "official" proc_desc. | |
1532 | */ | |
1533 | if (next_frame == NULL) | |
1534 | { | |
1535 | struct symtab_and_line val; | |
1536 | struct symbol *proc_symbol = | |
1537 | PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); | |
1538 | ||
1539 | if (proc_symbol) | |
1540 | { | |
1541 | val = find_pc_line (BLOCK_START | |
1542 | (SYMBOL_BLOCK_VALUE(proc_symbol)), | |
1543 | 0); | |
1544 | val.pc = val.end ? val.end : pc; | |
bd5635a1 | 1545 | } |
c1fc0935 MA |
1546 | if (!proc_symbol || pc < val.pc) |
1547 | { | |
1548 | mips_extra_func_info_t found_heuristic = | |
1549 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), | |
1550 | pc, next_frame); | |
1551 | if (found_heuristic) | |
1552 | proc_desc = found_heuristic; | |
bd5635a1 RP |
1553 | } |
1554 | } | |
1555 | } | |
1556 | else | |
1557 | { | |
0f552c5f JG |
1558 | /* Is linked_proc_desc_table really necessary? It only seems to be used |
1559 | by procedure call dummys. However, the procedures being called ought | |
1560 | to have their own proc_descs, and even if they don't, | |
1561 | heuristic_proc_desc knows how to create them! */ | |
1562 | ||
bd5635a1 | 1563 | register struct linked_proc_info *link; |
9f9f94aa | 1564 | |
bd5635a1 | 1565 | for (link = linked_proc_desc_table; link; link = link->next) |
9f9f94aa SS |
1566 | if (PROC_LOW_ADDR(&link->info) <= pc |
1567 | && PROC_HIGH_ADDR(&link->info) > pc) | |
1568 | return &link->info; | |
23d35572 | 1569 | |
48be4c35 JK |
1570 | if (startaddr == 0) |
1571 | startaddr = heuristic_proc_start (pc); | |
1572 | ||
bd5635a1 | 1573 | proc_desc = |
48be4c35 | 1574 | heuristic_proc_desc (startaddr, pc, next_frame); |
bd5635a1 RP |
1575 | } |
1576 | return proc_desc; | |
1577 | } | |
1578 | ||
96431497 MA |
1579 | static CORE_ADDR |
1580 | get_frame_pointer(frame, proc_desc) | |
1581 | struct frame_info *frame; | |
1582 | mips_extra_func_info_t proc_desc; | |
1583 | { | |
af774411 MA |
1584 | return ADDR_BITS_REMOVE ( |
1585 | read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + | |
1586 | PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); | |
96431497 MA |
1587 | } |
1588 | ||
bd5635a1 RP |
1589 | mips_extra_func_info_t cached_proc_desc; |
1590 | ||
9f9f94aa | 1591 | CORE_ADDR |
0f552c5f | 1592 | mips_frame_chain(frame) |
9f9f94aa | 1593 | struct frame_info *frame; |
bd5635a1 | 1594 | { |
f781fe93 MA |
1595 | mips_extra_func_info_t proc_desc; |
1596 | CORE_ADDR tmp; | |
1597 | CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); | |
1598 | ||
1599 | if (saved_pc == 0 || inside_entry_file (saved_pc)) | |
1600 | return 0; | |
1601 | ||
1602 | /* Check if the PC is inside a call stub. If it is, fetch the | |
1603 | PC of the caller of that stub. */ | |
1604 | if ((tmp = mips_skip_stub (saved_pc)) != 0) | |
1605 | saved_pc = tmp; | |
1606 | ||
1607 | /* Look up the procedure descriptor for this PC. */ | |
1608 | proc_desc = find_proc_desc(saved_pc, frame); | |
1609 | if (!proc_desc) | |
1610 | return 0; | |
1611 | ||
1612 | cached_proc_desc = proc_desc; | |
1613 | ||
1614 | /* If no frame pointer and frame size is zero, we must be at end | |
1615 | of stack (or otherwise hosed). If we don't check frame size, | |
1616 | we loop forever if we see a zero size frame. */ | |
1617 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
1618 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
1619 | /* The previous frame from a sigtramp frame might be frameless | |
1620 | and have frame size zero. */ | |
1621 | && !frame->signal_handler_caller) | |
1622 | return 0; | |
1623 | else | |
1624 | return get_frame_pointer (frame, proc_desc); | |
bd5635a1 RP |
1625 | } |
1626 | ||
1627 | void | |
1628 | init_extra_frame_info(fci) | |
1629 | struct frame_info *fci; | |
1630 | { | |
96431497 MA |
1631 | int regnum; |
1632 | ||
bd5635a1 | 1633 | /* Use proc_desc calculated in frame_chain */ |
ee5fb959 JK |
1634 | mips_extra_func_info_t proc_desc = |
1635 | fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); | |
0f552c5f | 1636 | |
70126bf9 | 1637 | fci->saved_regs = NULL; |
bd5635a1 | 1638 | fci->proc_desc = |
ee5fb959 | 1639 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
bd5635a1 RP |
1640 | if (proc_desc) |
1641 | { | |
c2a0f1cb | 1642 | /* Fixup frame-pointer - only needed for top frame */ |
5efd597b PS |
1643 | /* This may not be quite right, if proc has a real frame register. |
1644 | Get the value of the frame relative sp, procedure might have been | |
1645 | interrupted by a signal at it's very start. */ | |
70126bf9 KH |
1646 | if (fci->pc == PROC_LOW_ADDR (proc_desc) |
1647 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
1648 | fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); | |
c2a0f1cb | 1649 | else |
96431497 | 1650 | fci->frame = get_frame_pointer (fci->next, proc_desc); |
bd5635a1 | 1651 | |
48be4c35 | 1652 | if (proc_desc == &temp_proc_desc) |
ee5fb959 | 1653 | { |
09af5868 PS |
1654 | char *name; |
1655 | ||
1656 | /* Do not set the saved registers for a sigtramp frame, | |
1657 | mips_find_saved_registers will do that for us. | |
1658 | We can't use fci->signal_handler_caller, it is not yet set. */ | |
1659 | find_pc_partial_function (fci->pc, &name, | |
1660 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
1661 | if (!IN_SIGTRAMP (fci->pc, name)) | |
1662 | { | |
1663 | fci->saved_regs = (struct frame_saved_regs*) | |
1664 | obstack_alloc (&frame_cache_obstack, | |
1665 | sizeof (struct frame_saved_regs)); | |
1666 | *fci->saved_regs = temp_saved_regs; | |
1667 | fci->saved_regs->regs[PC_REGNUM] | |
1668 | = fci->saved_regs->regs[RA_REGNUM]; | |
1669 | } | |
ee5fb959 | 1670 | } |
bd5635a1 RP |
1671 | |
1672 | /* hack: if argument regs are saved, guess these contain args */ | |
96431497 MA |
1673 | fci->num_args = -1; /* assume we can't tell how many args for now */ |
1674 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) | |
1675 | { | |
1676 | if (PROC_REG_MASK(proc_desc) & (1 << regnum)) | |
1677 | { | |
1678 | fci->num_args = regnum - A0_REGNUM + 1; | |
1679 | break; | |
1680 | } | |
1681 | } | |
bd5635a1 | 1682 | } |
bd5635a1 RP |
1683 | } |
1684 | ||
a70dc898 RP |
1685 | /* MIPS stack frames are almost impenetrable. When execution stops, |
1686 | we basically have to look at symbol information for the function | |
1687 | that we stopped in, which tells us *which* register (if any) is | |
1688 | the base of the frame pointer, and what offset from that register | |
1689 | the frame itself is at. | |
1690 | ||
1691 | This presents a problem when trying to examine a stack in memory | |
1692 | (that isn't executing at the moment), using the "frame" command. We | |
1693 | don't have a PC, nor do we have any registers except SP. | |
1694 | ||
1695 | This routine takes two arguments, SP and PC, and tries to make the | |
1696 | cached frames look as if these two arguments defined a frame on the | |
1697 | cache. This allows the rest of info frame to extract the important | |
1698 | arguments without difficulty. */ | |
1699 | ||
9f9f94aa | 1700 | struct frame_info * |
c2a0f1cb ILT |
1701 | setup_arbitrary_frame (argc, argv) |
1702 | int argc; | |
9f9f94aa | 1703 | CORE_ADDR *argv; |
a70dc898 | 1704 | { |
c2a0f1cb ILT |
1705 | if (argc != 2) |
1706 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
1707 | ||
1708 | return create_new_frame (argv[0], argv[1]); | |
a70dc898 RP |
1709 | } |
1710 | ||
0f552c5f JG |
1711 | CORE_ADDR |
1712 | mips_push_arguments(nargs, args, sp, struct_return, struct_addr) | |
97e091b2 MA |
1713 | int nargs; |
1714 | value_ptr *args; | |
1715 | CORE_ADDR sp; | |
1716 | int struct_return; | |
1717 | CORE_ADDR struct_addr; | |
bd5635a1 | 1718 | { |
97e091b2 MA |
1719 | int argreg; |
1720 | int float_argreg; | |
1721 | int argnum; | |
1722 | int len = 0; | |
781a59b2 | 1723 | int stack_offset = 0; |
97e091b2 MA |
1724 | |
1725 | /* Macros to round N up or down to the next A boundary; A must be | |
1726 | a power of two. */ | |
1727 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
1728 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
28444bf3 DP |
1729 | |
1730 | /* First ensure that the stack and structure return address (if any) | |
97e091b2 MA |
1731 | are properly aligned. The stack has to be 64-bit aligned even |
1732 | on 32-bit machines, because doubles must be 64-bit aligned. */ | |
1733 | sp = ROUND_DOWN (sp, 8); | |
1734 | struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE); | |
28444bf3 | 1735 | |
97e091b2 MA |
1736 | /* Now make space on the stack for the args. We allocate more |
1737 | than necessary for EABI, because the first few arguments are | |
1738 | passed in registers, but that's OK. */ | |
1739 | for (argnum = 0; argnum < nargs; argnum++) | |
1740 | len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE); | |
61d2d19a | 1741 | sp -= ROUND_UP (len, 8); |
97e091b2 MA |
1742 | |
1743 | /* Initialize the integer and float register pointers. */ | |
1744 | argreg = A0_REGNUM; | |
1745 | float_argreg = FPA0_REGNUM; | |
1746 | ||
1747 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
5efd597b | 1748 | if (struct_return) |
97e091b2 MA |
1749 | write_register (argreg++, struct_addr); |
1750 | ||
97e091b2 MA |
1751 | /* Now load as many as possible of the first arguments into |
1752 | registers, and push the rest onto the stack. Loop thru args | |
1753 | from first to last. */ | |
1754 | for (argnum = 0; argnum < nargs; argnum++) | |
5efd597b | 1755 | { |
97e091b2 | 1756 | char *val; |
912e805f | 1757 | char valbuf[MAX_REGISTER_RAW_SIZE]; |
97e091b2 MA |
1758 | value_ptr arg = args[argnum]; |
1759 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1760 | int len = TYPE_LENGTH (arg_type); | |
1761 | enum type_code typecode = TYPE_CODE (arg_type); | |
1762 | ||
61d2d19a PS |
1763 | /* The EABI passes structures that do not fit in a register by |
1764 | reference. In all other cases, pass the structure by value. */ | |
781a59b2 MS |
1765 | if (MIPS_EABI && len > MIPS_REGSIZE && |
1766 | (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
97e091b2 MA |
1767 | { |
1768 | store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg)); | |
08d8f995 | 1769 | typecode = TYPE_CODE_PTR; |
97e091b2 MA |
1770 | len = MIPS_REGSIZE; |
1771 | val = valbuf; | |
1772 | } | |
1773 | else | |
1774 | val = (char *)VALUE_CONTENTS (arg); | |
1775 | ||
1776 | /* 32-bit ABIs always start floating point arguments in an | |
1777 | even-numbered floating point register. */ | |
1778 | if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT | |
1779 | && (float_argreg & 1)) | |
1780 | float_argreg++; | |
1781 | ||
1782 | /* Floating point arguments passed in registers have to be | |
1783 | treated specially. On 32-bit architectures, doubles | |
1784 | are passed in register pairs; the even register gets | |
c81a76b3 MA |
1785 | the low word, and the odd register gets the high word. |
1786 | On non-EABI processors, the first two floating point arguments are | |
1787 | also copied to general registers, because MIPS16 functions | |
1788 | don't use float registers for arguments. This duplication of | |
1789 | arguments in general registers can't hurt non-MIPS16 functions | |
1790 | because those registers are normally skipped. */ | |
97e091b2 MA |
1791 | if (typecode == TYPE_CODE_FLT |
1792 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM | |
1793 | && mips_fpu != MIPS_FPU_NONE) | |
1794 | { | |
1795 | if (!GDB_TARGET_IS_MIPS64 && len == 8) | |
1796 | { | |
1797 | int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; | |
1798 | unsigned long regval; | |
1799 | ||
c81a76b3 | 1800 | /* Write the low word of the double to the even register(s). */ |
97e091b2 | 1801 | regval = extract_unsigned_integer (val+low_offset, 4); |
c81a76b3 MA |
1802 | write_register (float_argreg++, regval); |
1803 | if (!MIPS_EABI) | |
1804 | write_register (argreg+1, regval); | |
1805 | ||
1806 | /* Write the high word of the double to the odd register(s). */ | |
97e091b2 | 1807 | regval = extract_unsigned_integer (val+4-low_offset, 4); |
c81a76b3 MA |
1808 | write_register (float_argreg++, regval); |
1809 | if (!MIPS_EABI) | |
1810 | { | |
1811 | write_register (argreg, regval); | |
1812 | argreg += 2; | |
1813 | } | |
97e091b2 MA |
1814 | |
1815 | } | |
1816 | else | |
1817 | { | |
c81a76b3 MA |
1818 | /* This is a floating point value that fits entirely |
1819 | in a single register. */ | |
97e091b2 MA |
1820 | CORE_ADDR regval = extract_address (val, len); |
1821 | write_register (float_argreg++, regval); | |
c81a76b3 MA |
1822 | if (!MIPS_EABI) |
1823 | { | |
1824 | write_register (argreg, regval); | |
1825 | argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2; | |
1826 | } | |
97e091b2 | 1827 | } |
97e091b2 MA |
1828 | } |
1829 | else | |
1830 | { | |
1831 | /* Copy the argument to general registers or the stack in | |
1832 | register-sized pieces. Large arguments are split between | |
1833 | registers and stack. */ | |
781a59b2 MS |
1834 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE |
1835 | are treated specially: Irix cc passes them in registers | |
1836 | where gcc sometimes puts them on the stack. For maximum | |
1837 | compatibility, we will put them in both places. */ | |
1838 | ||
1839 | int odd_sized_struct = ((len > MIPS_REGSIZE) && | |
1840 | (len % MIPS_REGSIZE != 0)); | |
97e091b2 MA |
1841 | while (len > 0) |
1842 | { | |
1843 | int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE; | |
61d2d19a | 1844 | |
781a59b2 MS |
1845 | if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) |
1846 | { | |
1847 | /* Write this portion of the argument to the stack. */ | |
912e805f AC |
1848 | /* Should shorter than int integer values be |
1849 | promoted to int before being stored? */ | |
781a59b2 | 1850 | |
912e805f | 1851 | int longword_offset = 0; |
781a59b2 MS |
1852 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
1853 | if (MIPS_REGSIZE == 8 && | |
1854 | (typecode == TYPE_CODE_INT || | |
1855 | typecode == TYPE_CODE_PTR || | |
1856 | typecode == TYPE_CODE_FLT) && len <= 4) | |
912e805f | 1857 | longword_offset = MIPS_REGSIZE - len; |
781a59b2 MS |
1858 | else if ((typecode == TYPE_CODE_STRUCT || |
1859 | typecode == TYPE_CODE_UNION) && | |
1860 | TYPE_LENGTH (arg_type) < MIPS_REGSIZE) | |
1861 | longword_offset = MIPS_REGSIZE - len; | |
1862 | ||
1863 | write_memory (sp + stack_offset + longword_offset, | |
1864 | val, partial_len); | |
1865 | } | |
1866 | ||
1867 | /* Note!!! This is NOT an else clause. | |
1868 | Odd sized structs may go thru BOTH paths. */ | |
97e091b2 MA |
1869 | if (argreg <= MIPS_LAST_ARG_REGNUM) |
1870 | { | |
61d2d19a PS |
1871 | CORE_ADDR regval = extract_address (val, partial_len); |
1872 | ||
c430260c MS |
1873 | /* A non-floating-point argument being passed in a |
1874 | general register. If a struct or union, and if | |
91ee2779 JL |
1875 | the remaining length is smaller than the register |
1876 | size, we have to adjust the register value on | |
1877 | big endian targets. | |
158bda58 | 1878 | |
c430260c MS |
1879 | It does not seem to be necessary to do the |
1880 | same for integral types. | |
158bda58 | 1881 | |
c430260c | 1882 | Also don't do this adjustment on EABI targets. */ |
158bda58 MS |
1883 | |
1884 | if (!MIPS_EABI && | |
91ee2779 JL |
1885 | TARGET_BYTE_ORDER == BIG_ENDIAN && |
1886 | partial_len < MIPS_REGSIZE && | |
c430260c | 1887 | (typecode == TYPE_CODE_STRUCT || |
158bda58 MS |
1888 | typecode == TYPE_CODE_UNION)) |
1889 | regval <<= ((MIPS_REGSIZE - partial_len) * | |
1890 | TARGET_CHAR_BIT); | |
1891 | ||
97e091b2 MA |
1892 | write_register (argreg, regval); |
1893 | argreg++; | |
1894 | ||
1895 | /* If this is the old ABI, prevent subsequent floating | |
1896 | point arguments from being passed in floating point | |
1897 | registers. */ | |
1898 | if (!MIPS_EABI) | |
1899 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
1900 | } | |
97e091b2 MA |
1901 | |
1902 | len -= partial_len; | |
1903 | val += partial_len; | |
781a59b2 MS |
1904 | |
1905 | /* The offset onto the stack at which we will start | |
1906 | copying parameters (after the registers are used up) | |
1907 | begins at (4 * MIPS_REGSIZE) in the old ABI. This | |
1908 | leaves room for the "home" area for register parameters. | |
1909 | ||
1910 | In the new EABI, the 8 register parameters do not | |
1911 | have "home" stack space reserved for them, so the | |
1912 | stack offset does not get incremented until after | |
1913 | we have used up the 8 parameter registers. */ | |
1914 | if (!(MIPS_EABI && argnum < 8)) | |
1915 | stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE); | |
97e091b2 MA |
1916 | } |
1917 | } | |
5efd597b | 1918 | } |
97e091b2 MA |
1919 | |
1920 | /* Set the return address register to point to the entry | |
1921 | point of the program, where a breakpoint lies in wait. */ | |
1922 | write_register (RA_REGNUM, CALL_DUMMY_ADDRESS()); | |
1923 | ||
1924 | /* Return adjusted stack pointer. */ | |
bd5635a1 RP |
1925 | return sp; |
1926 | } | |
1927 | ||
c81a76b3 | 1928 | static void |
28444bf3 DP |
1929 | mips_push_register(CORE_ADDR *sp, int regno) |
1930 | { | |
1931 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1932 | int regsize = REGISTER_RAW_SIZE (regno); | |
1933 | ||
1934 | *sp -= regsize; | |
1935 | read_register_gen (regno, buffer); | |
1936 | write_memory (*sp, buffer, regsize); | |
1937 | } | |
1938 | ||
1939 | /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ | |
e03c0cc6 | 1940 | #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) |
bd5635a1 RP |
1941 | |
1942 | void | |
1943 | mips_push_dummy_frame() | |
1944 | { | |
1945 | int ireg; | |
1946 | struct linked_proc_info *link = (struct linked_proc_info*) | |
1947 | xmalloc(sizeof(struct linked_proc_info)); | |
1948 | mips_extra_func_info_t proc_desc = &link->info; | |
96431497 | 1949 | CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); |
28444bf3 | 1950 | CORE_ADDR old_sp = sp; |
bd5635a1 RP |
1951 | link->next = linked_proc_desc_table; |
1952 | linked_proc_desc_table = link; | |
28444bf3 DP |
1953 | |
1954 | /* FIXME! are these correct ? */ | |
bd5635a1 | 1955 | #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ |
28444bf3 | 1956 | #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) |
bd5635a1 | 1957 | #define FLOAT_REG_SAVE_MASK MASK(0,19) |
e4dbd248 PS |
1958 | #define FLOAT_SINGLE_REG_SAVE_MASK \ |
1959 | ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) | |
bd5635a1 RP |
1960 | /* |
1961 | * The registers we must save are all those not preserved across | |
1962 | * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. | |
28444bf3 DP |
1963 | * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI |
1964 | * and FP Control/Status registers. | |
1965 | * | |
bd5635a1 RP |
1966 | * |
1967 | * Dummy frame layout: | |
1968 | * (high memory) | |
1969 | * Saved PC | |
1970 | * Saved MMHI, MMLO, FPC_CSR | |
1971 | * Saved R31 | |
1972 | * Saved R28 | |
1973 | * ... | |
1974 | * Saved R1 | |
1975 | * Saved D18 (i.e. F19, F18) | |
1976 | * ... | |
1977 | * Saved D0 (i.e. F1, F0) | |
f9f8c14b | 1978 | * Argument build area and stack arguments written via mips_push_arguments |
bd5635a1 RP |
1979 | * (low memory) |
1980 | */ | |
28444bf3 DP |
1981 | |
1982 | /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ | |
28444bf3 DP |
1983 | PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; |
1984 | PROC_FRAME_OFFSET(proc_desc) = 0; | |
639c8612 | 1985 | PROC_FRAME_ADJUST(proc_desc) = 0; |
28444bf3 DP |
1986 | mips_push_register (&sp, PC_REGNUM); |
1987 | mips_push_register (&sp, HI_REGNUM); | |
1988 | mips_push_register (&sp, LO_REGNUM); | |
1989 | mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); | |
1990 | ||
1991 | /* Save general CPU registers */ | |
bd5635a1 | 1992 | PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; |
28444bf3 | 1993 | PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */ |
bd5635a1 RP |
1994 | for (ireg = 32; --ireg >= 0; ) |
1995 | if (PROC_REG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 1996 | mips_push_register (&sp, ireg); |
3fed1c4a | 1997 | |
28444bf3 DP |
1998 | /* Save floating point registers starting with high order word */ |
1999 | PROC_FREG_MASK(proc_desc) = | |
2000 | mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK | |
2001 | : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; | |
2002 | PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */ | |
bd5635a1 RP |
2003 | for (ireg = 32; --ireg >= 0; ) |
2004 | if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 2005 | mips_push_register (&sp, ireg + FP0_REGNUM); |
3fed1c4a | 2006 | |
f9f8c14b MA |
2007 | /* Update the frame pointer for the call dummy and the stack pointer. |
2008 | Set the procedure's starting and ending addresses to point to the | |
2009 | call dummy address at the entry point. */ | |
2010 | write_register (PUSH_FP_REGNUM, old_sp); | |
bd5635a1 | 2011 | write_register (SP_REGNUM, sp); |
97e091b2 MA |
2012 | PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS(); |
2013 | PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4; | |
bd5635a1 RP |
2014 | SET_PROC_DESC_IS_DUMMY(proc_desc); |
2015 | PROC_PC_REG(proc_desc) = RA_REGNUM; | |
2016 | } | |
2017 | ||
2018 | void | |
2019 | mips_pop_frame() | |
dac4929a SG |
2020 | { |
2021 | register int regnum; | |
9f9f94aa SS |
2022 | struct frame_info *frame = get_current_frame (); |
2023 | CORE_ADDR new_sp = FRAME_FP (frame); | |
dac4929a | 2024 | |
a70dc898 | 2025 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
dac4929a SG |
2026 | |
2027 | write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); | |
70126bf9 KH |
2028 | if (frame->saved_regs == NULL) |
2029 | mips_find_saved_regs (frame); | |
61d2d19a | 2030 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
dac4929a | 2031 | { |
61d2d19a PS |
2032 | if (regnum != SP_REGNUM && regnum != PC_REGNUM |
2033 | && frame->saved_regs->regs[regnum]) | |
2034 | write_register (regnum, | |
2035 | read_memory_integer (frame->saved_regs->regs[regnum], | |
2036 | MIPS_REGSIZE)); | |
dac4929a SG |
2037 | } |
2038 | write_register (SP_REGNUM, new_sp); | |
2039 | flush_cached_frames (); | |
dac4929a | 2040 | |
199b2450 | 2041 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
bd5635a1 | 2042 | { |
dac4929a SG |
2043 | struct linked_proc_info *pi_ptr, *prev_ptr; |
2044 | ||
2045 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
2046 | pi_ptr != NULL; | |
2047 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
2048 | { | |
2049 | if (&pi_ptr->info == proc_desc) | |
2050 | break; | |
2051 | } | |
2052 | ||
2053 | if (pi_ptr == NULL) | |
2054 | error ("Can't locate dummy extra frame info\n"); | |
2055 | ||
2056 | if (prev_ptr != NULL) | |
2057 | prev_ptr->next = pi_ptr->next; | |
2058 | else | |
2059 | linked_proc_desc_table = pi_ptr->next; | |
2060 | ||
2061 | free (pi_ptr); | |
2062 | ||
28444bf3 DP |
2063 | write_register (HI_REGNUM, |
2064 | read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); | |
2065 | write_register (LO_REGNUM, | |
2066 | read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); | |
e4dbd248 | 2067 | if (mips_fpu != MIPS_FPU_NONE) |
28444bf3 DP |
2068 | write_register (FCRCS_REGNUM, |
2069 | read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); | |
bd5635a1 | 2070 | } |
bd5635a1 RP |
2071 | } |
2072 | ||
0f552c5f | 2073 | static void |
a70dc898 | 2074 | mips_print_register (regnum, all) |
bd5635a1 RP |
2075 | int regnum, all; |
2076 | { | |
e4dbd248 | 2077 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 2078 | |
48be4c35 JK |
2079 | /* Get the data in raw format. */ |
2080 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2081 | { | |
2082 | printf_filtered ("%s: [Invalid]", reg_names[regnum]); | |
2083 | return; | |
2084 | } | |
2085 | ||
781a59b2 | 2086 | /* If an even floating point register, also print as double. */ |
899c4021 | 2087 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT |
e4dbd248 | 2088 | && !((regnum-FP0_REGNUM) & 1)) |
899c4021 MA |
2089 | if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 */ |
2090 | { | |
2091 | char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; | |
48be4c35 | 2092 | |
899c4021 MA |
2093 | read_relative_register_raw_bytes (regnum, dbuffer); |
2094 | read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE); | |
2095 | REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); | |
c81a76b3 | 2096 | |
899c4021 MA |
2097 | printf_filtered ("(d%d: ", regnum-FP0_REGNUM); |
2098 | val_print (builtin_type_double, dbuffer, 0, | |
2099 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2100 | printf_filtered ("); "); | |
2101 | } | |
199b2450 | 2102 | fputs_filtered (reg_names[regnum], gdb_stdout); |
48be4c35 JK |
2103 | |
2104 | /* The problem with printing numeric register names (r26, etc.) is that | |
2105 | the user can't use them on input. Probably the best solution is to | |
2106 | fix it so that either the numeric or the funky (a2, etc.) names | |
2107 | are accepted on input. */ | |
28444bf3 | 2108 | if (regnum < MIPS_NUMREGS) |
48be4c35 JK |
2109 | printf_filtered ("(r%d): ", regnum); |
2110 | else | |
2111 | printf_filtered (": "); | |
bd5635a1 | 2112 | |
48be4c35 | 2113 | /* If virtual format is floating, print it that way. */ |
ac57e5ad | 2114 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
899c4021 MA |
2115 | if (REGISTER_RAW_SIZE(regnum) == 8) |
2116 | { /* show 8-byte floats as float AND double: */ | |
2117 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2118 | ||
2119 | printf_filtered (" (float) "); | |
2120 | val_print (builtin_type_float, raw_buffer + offset, 0, | |
2121 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2122 | printf_filtered (", (double) "); | |
2123 | val_print (builtin_type_double, raw_buffer, 0, | |
2124 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
2125 | } | |
2126 | else | |
2127 | val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, | |
2128 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
48be4c35 JK |
2129 | /* Else print as integer in hex. */ |
2130 | else | |
ac57e5ad SS |
2131 | print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), |
2132 | 'x', 0, gdb_stdout); | |
bd5635a1 RP |
2133 | } |
2134 | ||
899c4021 MA |
2135 | /* Replacement for generic do_registers_info. |
2136 | Print regs in pretty columns. */ | |
2137 | ||
2138 | static int | |
2139 | do_fp_register_row (regnum) | |
2140 | int regnum; | |
2141 | { /* do values for FP (float) regs */ | |
cf93a3aa ILT |
2142 | char *raw_buffer[2]; |
2143 | char *dbl_buffer; | |
899c4021 MA |
2144 | /* use HI and LO to control the order of combining two flt regs */ |
2145 | int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2146 | int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); | |
2147 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ | |
2148 | int inv1, inv2, inv3; | |
2149 | ||
cf93a3aa ILT |
2150 | raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); |
2151 | raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2152 | dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); | |
2153 | ||
899c4021 MA |
2154 | /* Get the data in raw format. */ |
2155 | if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) | |
2156 | error ("can't read register %d (%s)", regnum, reg_names[regnum]); | |
2157 | if (REGISTER_RAW_SIZE(regnum) == 4) | |
2158 | { | |
2159 | /* 4-byte registers: we can fit two registers per row. */ | |
2160 | /* Also print every pair of 4-byte regs as an 8-byte double. */ | |
2161 | if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) | |
2162 | error ("can't read register %d (%s)", | |
2163 | regnum + 1, reg_names[regnum + 1]); | |
2164 | ||
2165 | /* copy the two floats into one double, and unpack both */ | |
2166 | memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer)); | |
2167 | flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); | |
2168 | flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); | |
2169 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2170 | ||
2171 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2172 | " %-5s%-17.9g", reg_names[regnum], flt1); | |
2173 | printf_filtered (inv2 ? " %-5s: <invalid float>" : | |
2174 | " %-5s%-17.9g", reg_names[regnum + 1], flt2); | |
2175 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : | |
2176 | " dbl: %-24.17g\n", doub); | |
2177 | /* may want to do hex display here (future enhancement) */ | |
2178 | regnum +=2; | |
2179 | } | |
2180 | else | |
2181 | { /* eight byte registers: print each one as float AND as double. */ | |
2182 | int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); | |
2183 | ||
2184 | memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer)); | |
2185 | flt1 = unpack_double (builtin_type_float, | |
2186 | &raw_buffer[HI][offset], &inv1); | |
2187 | doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); | |
2188 | ||
2189 | printf_filtered (inv1 ? " %-5s: <invalid float>" : | |
2190 | " %-5s flt: %-17.9g", reg_names[regnum], flt1); | |
2191 | printf_filtered (inv3 ? " dbl: <invalid double>\n" : | |
2192 | " dbl: %-24.17g\n", doub); | |
2193 | /* may want to do hex display here (future enhancement) */ | |
2194 | regnum++; | |
2195 | } | |
2196 | return regnum; | |
2197 | } | |
2198 | ||
2199 | /* Print a row's worth of GP (int) registers, with name labels above */ | |
2200 | ||
2201 | static int | |
2202 | do_gp_register_row (regnum) | |
2203 | int regnum; | |
912e805f AC |
2204 | { |
2205 | /* do values for GP (int) regs */ | |
2206 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
2207 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ | |
2208 | int col, byte; | |
2209 | int start_regnum = regnum; | |
2210 | int numregs = NUM_REGS; | |
2211 | ||
2212 | /* start-sanitize-sky */ | |
2213 | #ifdef NUM_R5900_REGS | |
2214 | numregs = NUM_R5900_REGS; | |
2215 | #endif | |
2216 | /* end-sanitize-sky */ | |
899c4021 MA |
2217 | |
2218 | /* For GP registers, we print a separate row of names above the vals */ | |
2219 | printf_filtered (" "); | |
912e805f | 2220 | for (col = 0; col < ncols && regnum < numregs; regnum++) |
899c4021 MA |
2221 | { |
2222 | if (*reg_names[regnum] == '\0') | |
2223 | continue; /* unused register */ | |
2224 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2225 | break; /* end the row: reached FP register */ | |
2226 | printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", | |
2227 | reg_names[regnum]); | |
2228 | col++; | |
2229 | } | |
2230 | printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", | |
2231 | start_regnum); /* print the R0 to R31 names */ | |
2232 | ||
2233 | regnum = start_regnum; /* go back to start of row */ | |
2234 | /* now print the values in hex, 4 or 8 to the row */ | |
912e805f | 2235 | for (col = 0; col < ncols && regnum < numregs; regnum++) |
899c4021 MA |
2236 | { |
2237 | if (*reg_names[regnum] == '\0') | |
2238 | continue; /* unused register */ | |
2239 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2240 | break; /* end row: reached FP register */ | |
2241 | /* OK: get the data in raw format. */ | |
2242 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
2243 | error ("can't read register %d (%s)", regnum, reg_names[regnum]); | |
912e805f AC |
2244 | /* pad small registers */ |
2245 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++) | |
2246 | printf_filtered (" "); | |
899c4021 MA |
2247 | /* Now print the register value in hex, endian order. */ |
2248 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
2249 | for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++) | |
2250 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); | |
2251 | else | |
2252 | for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--) | |
2253 | printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); | |
2254 | printf_filtered (" "); | |
2255 | col++; | |
2256 | } | |
2257 | if (col > 0) /* ie. if we actually printed anything... */ | |
2258 | printf_filtered ("\n"); | |
2259 | ||
2260 | return regnum; | |
2261 | } | |
2262 | ||
2263 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
9f9f94aa | 2264 | |
0f552c5f | 2265 | void |
361bf6ee | 2266 | mips_do_registers_info (regnum, fpregs) |
bd5635a1 | 2267 | int regnum; |
361bf6ee | 2268 | int fpregs; |
bd5635a1 | 2269 | { |
899c4021 | 2270 | if (regnum != -1) /* do one specified register */ |
9f9f94aa SS |
2271 | { |
2272 | if (*(reg_names[regnum]) == '\0') | |
2273 | error ("Not a valid register for the current processor type"); | |
2274 | ||
bd5635a1 RP |
2275 | mips_print_register (regnum, 0); |
2276 | printf_filtered ("\n"); | |
9f9f94aa | 2277 | } |
899c4021 | 2278 | else /* do all (or most) registers */ |
9f9f94aa | 2279 | { |
899c4021 MA |
2280 | regnum = 0; |
2281 | while (regnum < NUM_REGS) | |
912e805f AC |
2282 | { |
2283 | if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) | |
2284 | if (fpregs) /* true for "INFO ALL-REGISTERS" command */ | |
2285 | regnum = do_fp_register_row (regnum); /* FP regs */ | |
2286 | else | |
2287 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
899c4021 | 2288 | else |
912e805f AC |
2289 | regnum = do_gp_register_row (regnum); /* GP (int) regs */ |
2290 | /* start-sanitize-sky */ | |
2291 | #ifdef NUM_R5900_REGS | |
2292 | /* For the sky project, NUM_REGS includes the vector slaves, | |
2293 | which are handled elsewhere */ | |
2294 | if (regnum >= NUM_R5900_REGS) | |
2295 | break; | |
2296 | #endif | |
2297 | /* end-sanitize-sky */ | |
2298 | } | |
9f9f94aa | 2299 | } |
bd5635a1 | 2300 | } |
9f9f94aa | 2301 | |
bd5635a1 RP |
2302 | /* Return number of args passed to a frame. described by FIP. |
2303 | Can return -1, meaning no way to tell. */ | |
2304 | ||
0f552c5f | 2305 | int |
9f9f94aa SS |
2306 | mips_frame_num_args (frame) |
2307 | struct frame_info *frame; | |
bd5635a1 | 2308 | { |
9f9f94aa SS |
2309 | #if 0 /* FIXME Use or lose this! */ |
2310 | struct chain_info_t *p; | |
bd5635a1 | 2311 | |
9f9f94aa SS |
2312 | p = mips_find_cached_frame (FRAME_FP (frame)); |
2313 | if (p->valid) | |
2314 | return p->the_info.numargs; | |
bd5635a1 | 2315 | #endif |
9f9f94aa | 2316 | return -1; |
bd5635a1 | 2317 | } |
96431497 | 2318 | |
427fec5d | 2319 | /* Is this a branch with a delay slot? */ |
9f9f94aa | 2320 | |
b5aff268 JK |
2321 | static int is_delayed PARAMS ((unsigned long)); |
2322 | ||
ee5fb959 JK |
2323 | static int |
2324 | is_delayed (insn) | |
2325 | unsigned long insn; | |
2326 | { | |
2327 | int i; | |
2328 | for (i = 0; i < NUMOPCODES; ++i) | |
2329 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
2330 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
2331 | break; | |
427fec5d JK |
2332 | return (i < NUMOPCODES |
2333 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
2334 | | INSN_COND_BRANCH_DELAY | |
2335 | | INSN_COND_BRANCH_LIKELY))); | |
ee5fb959 | 2336 | } |
b5aff268 JK |
2337 | |
2338 | int | |
2339 | mips_step_skips_delay (pc) | |
2340 | CORE_ADDR pc; | |
2341 | { | |
96431497 | 2342 | char buf[MIPS_INSTLEN]; |
b5aff268 | 2343 | |
f9f8c14b | 2344 | /* There is no branch delay slot on MIPS16. */ |
899c4021 | 2345 | if (pc_is_mips16 (pc)) |
f9f8c14b MA |
2346 | return 0; |
2347 | ||
96431497 | 2348 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) |
b5aff268 JK |
2349 | /* If error reading memory, guess that it is not a delayed branch. */ |
2350 | return 0; | |
96431497 | 2351 | return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); |
b5aff268 | 2352 | } |
ee5fb959 | 2353 | |
bd5635a1 | 2354 | |
20fa0902 MA |
2355 | /* Skip the PC past function prologue instructions (32-bit version). |
2356 | This is a helper function for mips_skip_prologue. */ | |
2357 | ||
2358 | static CORE_ADDR | |
2359 | mips32_skip_prologue (pc, lenient) | |
2360 | CORE_ADDR pc; /* starting PC to search from */ | |
ee5fb959 | 2361 | int lenient; |
bd5635a1 | 2362 | { |
28444bf3 | 2363 | t_inst inst; |
20fa0902 | 2364 | CORE_ADDR end_pc; |
0b0d6c3f | 2365 | int seen_sp_adjust = 0; |
ac57e5ad | 2366 | int load_immediate_bytes = 0; |
bd5635a1 | 2367 | |
e157305c PS |
2368 | /* Skip the typical prologue instructions. These are the stack adjustment |
2369 | instruction and the instructions that save registers on the stack | |
2370 | or in the gcc frame. */ | |
20fa0902 | 2371 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) |
ee5fb959 | 2372 | { |
b348b9fd | 2373 | unsigned long high_word; |
ee5fb959 | 2374 | |
c81a76b3 | 2375 | inst = mips_fetch_instruction (pc); |
b348b9fd | 2376 | high_word = (inst >> 16) & 0xffff; |
ee5fb959 | 2377 | |
002a422b | 2378 | #if 0 |
ee5fb959 JK |
2379 | if (lenient && is_delayed (inst)) |
2380 | continue; | |
002a422b | 2381 | #endif |
ee5fb959 | 2382 | |
b348b9fd MA |
2383 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
2384 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
0b0d6c3f | 2385 | seen_sp_adjust = 1; |
ac57e5ad SS |
2386 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ |
2387 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
2388 | seen_sp_adjust = 1; | |
97e091b2 MA |
2389 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ |
2390 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
2391 | && (inst & 0x001F0000)) /* reg != $zero */ | |
2392 | continue; | |
2393 | ||
e157305c PS |
2394 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ |
2395 | continue; | |
2396 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
2397 | /* sx reg,n($s8) */ | |
2398 | continue; /* reg != $zero */ | |
1d9489c1 JK |
2399 | |
2400 | /* move $s8,$sp. With different versions of gas this will be either | |
20fa0902 MA |
2401 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. |
2402 | Accept any one of these. */ | |
2403 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
0b0d6c3f | 2404 | continue; |
1d9489c1 | 2405 | |
1b71de8e PS |
2406 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ |
2407 | continue; | |
b348b9fd | 2408 | else if (high_word == 0x3c1c) /* lui $gp,n */ |
e03c0cc6 | 2409 | continue; |
b348b9fd | 2410 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ |
e03c0cc6 ILT |
2411 | continue; |
2412 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
2413 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
2414 | continue; | |
ac57e5ad SS |
2415 | /* The following instructions load $at or $t0 with an immediate |
2416 | value in preparation for a stack adjustment via | |
2417 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
2418 | a local variable, so we accept them only before a stack adjustment | |
2419 | instruction was seen. */ | |
2420 | else if (!seen_sp_adjust) | |
2421 | { | |
b348b9fd MA |
2422 | if (high_word == 0x3c01 || /* lui $at,n */ |
2423 | high_word == 0x3c08) /* lui $t0,n */ | |
ac57e5ad | 2424 | { |
28444bf3 | 2425 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
2426 | continue; |
2427 | } | |
b348b9fd MA |
2428 | else if (high_word == 0x3421 || /* ori $at,$at,n */ |
2429 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
2430 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
2431 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
ac57e5ad | 2432 | { |
28444bf3 | 2433 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
2434 | continue; |
2435 | } | |
2436 | else | |
2437 | break; | |
2438 | } | |
0b0d6c3f | 2439 | else |
ac57e5ad | 2440 | break; |
d747e0af | 2441 | } |
e157305c | 2442 | |
ac57e5ad SS |
2443 | /* In a frameless function, we might have incorrectly |
2444 | skipped some load immediate instructions. Undo the skipping | |
2445 | if the load immediate was not followed by a stack adjustment. */ | |
2446 | if (load_immediate_bytes && !seen_sp_adjust) | |
20fa0902 MA |
2447 | pc -= load_immediate_bytes; |
2448 | return pc; | |
2449 | } | |
2450 | ||
2451 | /* Skip the PC past function prologue instructions (16-bit version). | |
2452 | This is a helper function for mips_skip_prologue. */ | |
2453 | ||
2454 | static CORE_ADDR | |
2455 | mips16_skip_prologue (pc, lenient) | |
2456 | CORE_ADDR pc; /* starting PC to search from */ | |
2457 | int lenient; | |
2458 | { | |
2459 | CORE_ADDR end_pc; | |
c81a76b3 MA |
2460 | int extend_bytes = 0; |
2461 | int prev_extend_bytes; | |
20fa0902 MA |
2462 | |
2463 | /* Table of instructions likely to be found in a function prologue. */ | |
2464 | static struct | |
2465 | { | |
2466 | unsigned short inst; | |
2467 | unsigned short mask; | |
2468 | } table[] = | |
2469 | { | |
2470 | { 0x6300, 0xff00 }, /* addiu $sp,offset */ | |
2471 | { 0xfb00, 0xff00 }, /* daddiu $sp,offset */ | |
2472 | { 0xd000, 0xf800 }, /* sw reg,n($sp) */ | |
2473 | { 0xf900, 0xff00 }, /* sd reg,n($sp) */ | |
2474 | { 0x6200, 0xff00 }, /* sw $ra,n($sp) */ | |
2475 | { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */ | |
2476 | { 0x673d, 0xffff }, /* move $s1,sp */ | |
2477 | { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */ | |
2478 | { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */ | |
2479 | { 0xe809, 0xf81f }, /* entry pseudo-op */ | |
32dab603 | 2480 | { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */ |
20fa0902 MA |
2481 | { 0, 0 } /* end of table marker */ |
2482 | }; | |
2483 | ||
2484 | /* Skip the typical prologue instructions. These are the stack adjustment | |
2485 | instruction and the instructions that save registers on the stack | |
2486 | or in the gcc frame. */ | |
2487 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
2488 | { | |
20fa0902 | 2489 | unsigned short inst; |
20fa0902 MA |
2490 | int i; |
2491 | ||
c81a76b3 | 2492 | inst = mips_fetch_instruction (pc); |
20fa0902 MA |
2493 | |
2494 | /* Normally we ignore an extend instruction. However, if it is | |
2495 | not followed by a valid prologue instruction, we must adjust | |
2496 | the pc back over the extend so that it won't be considered | |
2497 | part of the prologue. */ | |
2498 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
2499 | { | |
2500 | extend_bytes = MIPS16_INSTLEN; | |
2501 | continue; | |
2502 | } | |
2503 | prev_extend_bytes = extend_bytes; | |
2504 | extend_bytes = 0; | |
2505 | ||
2506 | /* Check for other valid prologue instructions besides extend. */ | |
2507 | for (i = 0; table[i].mask != 0; i++) | |
2508 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
2509 | break; | |
2510 | if (table[i].mask != 0) /* it was in table? */ | |
32dab603 | 2511 | continue; /* ignore it */ |
20fa0902 MA |
2512 | else /* non-prologue */ |
2513 | { | |
2514 | /* Return the current pc, adjusted backwards by 2 if | |
2515 | the previous instruction was an extend. */ | |
2516 | return pc - prev_extend_bytes; | |
2517 | } | |
2518 | } | |
32dab603 | 2519 | return pc; |
20fa0902 MA |
2520 | } |
2521 | ||
2522 | /* To skip prologues, I use this predicate. Returns either PC itself | |
2523 | if the code at PC does not look like a function prologue; otherwise | |
2524 | returns an address that (if we're lucky) follows the prologue. If | |
2525 | LENIENT, then we must skip everything which is involved in setting | |
2526 | up the frame (it's OK to skip more, just so long as we don't skip | |
2527 | anything which might clobber the registers which are being saved. | |
2528 | We must skip more in the case where part of the prologue is in the | |
2529 | delay slot of a non-prologue instruction). */ | |
2530 | ||
2531 | CORE_ADDR | |
2532 | mips_skip_prologue (pc, lenient) | |
2533 | CORE_ADDR pc; | |
2534 | int lenient; | |
2535 | { | |
2536 | /* See if we can determine the end of the prologue via the symbol table. | |
2537 | If so, then return either PC, or the PC after the prologue, whichever | |
2538 | is greater. */ | |
2539 | ||
2540 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
2541 | ||
2542 | if (post_prologue_pc != 0) | |
2543 | return max (pc, post_prologue_pc); | |
2544 | ||
2545 | /* Can't determine prologue from the symbol table, need to examine | |
2546 | instructions. */ | |
2547 | ||
899c4021 | 2548 | if (pc_is_mips16 (pc)) |
20fa0902 MA |
2549 | return mips16_skip_prologue (pc, lenient); |
2550 | else | |
2551 | return mips32_skip_prologue (pc, lenient); | |
bd5635a1 | 2552 | } |
c2a0f1cb | 2553 | |
002a422b | 2554 | #if 0 |
20fa0902 | 2555 | /* The lenient prologue stuff should be superseded by the code in |
002a422b JK |
2556 | init_extra_frame_info which looks to see whether the stores mentioned |
2557 | in the proc_desc have actually taken place. */ | |
2558 | ||
ee5fb959 JK |
2559 | /* Is address PC in the prologue (loosely defined) for function at |
2560 | STARTADDR? */ | |
2561 | ||
2562 | static int | |
2563 | mips_in_lenient_prologue (startaddr, pc) | |
2564 | CORE_ADDR startaddr; | |
2565 | CORE_ADDR pc; | |
2566 | { | |
2567 | CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); | |
2568 | return pc >= startaddr && pc < end_prologue; | |
2569 | } | |
002a422b | 2570 | #endif |
ee5fb959 | 2571 | |
ac8cf67d PS |
2572 | /* Given a return value in `regbuf' with a type `valtype', |
2573 | extract and copy its value into `valbuf'. */ | |
2574 | void | |
2575 | mips_extract_return_value (valtype, regbuf, valbuf) | |
2576 | struct type *valtype; | |
2577 | char regbuf[REGISTER_BYTES]; | |
2578 | char *valbuf; | |
2579 | { | |
2580 | int regnum; | |
92a6d600 | 2581 | int offset = 0; |
c81a76b3 | 2582 | int len = TYPE_LENGTH (valtype); |
ac8cf67d | 2583 | |
e4dbd248 PS |
2584 | regnum = 2; |
2585 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
0af60e03 | 2586 | && (mips_fpu == MIPS_FPU_DOUBLE |
912e805f | 2587 | || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_FPU_SINGLE_REGSIZE))) |
f781fe93 | 2588 | regnum = FP0_REGNUM; |
ac8cf67d | 2589 | |
0af60e03 MS |
2590 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2591 | { /* "un-left-justify" the value from the register */ | |
87910097 | 2592 | if (len < REGISTER_RAW_SIZE (regnum)) |
0af60e03 MS |
2593 | offset = REGISTER_RAW_SIZE (regnum) - len; |
2594 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ | |
2595 | len < REGISTER_RAW_SIZE (regnum) * 2 && | |
2596 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2597 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2598 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
2599 | } | |
c81a76b3 | 2600 | memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); |
f781fe93 | 2601 | REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); |
ac8cf67d PS |
2602 | } |
2603 | ||
2604 | /* Given a return value in `regbuf' with a type `valtype', | |
2605 | write it's value into the appropriate register. */ | |
2606 | void | |
2607 | mips_store_return_value (valtype, valbuf) | |
2608 | struct type *valtype; | |
2609 | char *valbuf; | |
2610 | { | |
2611 | int regnum; | |
0af60e03 MS |
2612 | int offset = 0; |
2613 | int len = TYPE_LENGTH (valtype); | |
ac8cf67d PS |
2614 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
2615 | ||
e4dbd248 PS |
2616 | regnum = 2; |
2617 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
0af60e03 MS |
2618 | && (mips_fpu == MIPS_FPU_DOUBLE |
2619 | || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE))) | |
e4dbd248 PS |
2620 | regnum = FP0_REGNUM; |
2621 | ||
0af60e03 MS |
2622 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2623 | { /* "left-justify" the value in the register */ | |
2624 | if (len < REGISTER_RAW_SIZE (regnum)) | |
2625 | offset = REGISTER_RAW_SIZE (regnum) - len; | |
2626 | if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ | |
2627 | len < REGISTER_RAW_SIZE (regnum) * 2 && | |
2628 | (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
2629 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
2630 | offset = 2 * REGISTER_RAW_SIZE (regnum) - len; | |
2631 | } | |
2632 | memcpy(raw_buffer + offset, valbuf, len); | |
ac8cf67d | 2633 | REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); |
0af60e03 MS |
2634 | write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, |
2635 | len > REGISTER_RAW_SIZE (regnum) ? | |
2636 | len : REGISTER_RAW_SIZE (regnum)); | |
ac8cf67d PS |
2637 | } |
2638 | ||
e03c0cc6 ILT |
2639 | /* Exported procedure: Is PC in the signal trampoline code */ |
2640 | ||
2641 | int | |
2642 | in_sigtramp (pc, ignore) | |
2643 | CORE_ADDR pc; | |
2644 | char *ignore; /* function name */ | |
2645 | { | |
2646 | if (sigtramp_address == 0) | |
2647 | fixup_sigtramp (); | |
2648 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
2649 | } | |
2650 | ||
e4dbd248 PS |
2651 | /* Command to set FPU type. mips_fpu_string will have been set to the |
2652 | user's argument. Set mips_fpu based on mips_fpu_string, and then | |
2653 | canonicalize mips_fpu_string. */ | |
2654 | ||
2655 | /*ARGSUSED*/ | |
2656 | static void | |
2657 | mips_set_fpu_command (args, from_tty, c) | |
2658 | char *args; | |
2659 | int from_tty; | |
2660 | struct cmd_list_element *c; | |
2661 | { | |
2662 | char *err = NULL; | |
2663 | ||
2664 | if (mips_fpu_string == NULL || *mips_fpu_string == '\0') | |
2665 | mips_fpu = MIPS_FPU_DOUBLE; | |
2666 | else if (strcasecmp (mips_fpu_string, "double") == 0 | |
2667 | || strcasecmp (mips_fpu_string, "on") == 0 | |
2668 | || strcasecmp (mips_fpu_string, "1") == 0 | |
2669 | || strcasecmp (mips_fpu_string, "yes") == 0) | |
2670 | mips_fpu = MIPS_FPU_DOUBLE; | |
2671 | else if (strcasecmp (mips_fpu_string, "none") == 0 | |
2672 | || strcasecmp (mips_fpu_string, "off") == 0 | |
2673 | || strcasecmp (mips_fpu_string, "0") == 0 | |
2674 | || strcasecmp (mips_fpu_string, "no") == 0) | |
2675 | mips_fpu = MIPS_FPU_NONE; | |
2676 | else if (strcasecmp (mips_fpu_string, "single") == 0) | |
2677 | mips_fpu = MIPS_FPU_SINGLE; | |
2678 | else | |
2679 | err = strsave (mips_fpu_string); | |
2680 | ||
2681 | if (mips_fpu_string != NULL) | |
2682 | free (mips_fpu_string); | |
2683 | ||
2684 | switch (mips_fpu) | |
2685 | { | |
2686 | case MIPS_FPU_DOUBLE: | |
2687 | mips_fpu_string = strsave ("double"); | |
2688 | break; | |
2689 | case MIPS_FPU_SINGLE: | |
2690 | mips_fpu_string = strsave ("single"); | |
2691 | break; | |
2692 | case MIPS_FPU_NONE: | |
2693 | mips_fpu_string = strsave ("none"); | |
2694 | break; | |
2695 | } | |
2696 | ||
2697 | if (err != NULL) | |
2698 | { | |
2699 | struct cleanup *cleanups = make_cleanup (free, err); | |
2700 | error ("Unknown FPU type `%s'. Use `double', `none', or `single'.", | |
2701 | err); | |
2702 | do_cleanups (cleanups); | |
2703 | } | |
2704 | } | |
2705 | ||
2706 | static void | |
2707 | mips_show_fpu_command (args, from_tty, c) | |
2708 | char *args; | |
2709 | int from_tty; | |
2710 | struct cmd_list_element *c; | |
2711 | { | |
2712 | } | |
2713 | ||
9f9f94aa SS |
2714 | /* Command to set the processor type. */ |
2715 | ||
2716 | void | |
2717 | mips_set_processor_type_command (args, from_tty) | |
2718 | char *args; | |
2719 | int from_tty; | |
2720 | { | |
2721 | int i; | |
2722 | ||
2723 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
2724 | { | |
2725 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
2726 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
2727 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
2728 | ||
2729 | /* Restore the value. */ | |
2730 | tmp_mips_processor_type = strsave (mips_processor_type); | |
2731 | ||
2732 | return; | |
2733 | } | |
2734 | ||
2735 | if (!mips_set_processor_type (tmp_mips_processor_type)) | |
2736 | { | |
2737 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
2738 | /* Restore its value. */ | |
2739 | tmp_mips_processor_type = strsave (mips_processor_type); | |
2740 | } | |
2741 | } | |
2742 | ||
2743 | static void | |
2744 | mips_show_processor_type_command (args, from_tty) | |
2745 | char *args; | |
2746 | int from_tty; | |
2747 | { | |
2748 | } | |
2749 | ||
2750 | /* Modify the actual processor type. */ | |
2751 | ||
2752 | int | |
2753 | mips_set_processor_type (str) | |
2754 | char *str; | |
2755 | { | |
2756 | int i, j; | |
2757 | ||
2758 | if (str == NULL) | |
1d9489c1 | 2759 | return 0; |
9f9f94aa SS |
2760 | |
2761 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
2762 | { | |
2763 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
2764 | { | |
2765 | mips_processor_type = str; | |
2766 | ||
2767 | for (j = 0; j < NUM_REGS; ++j) | |
2768 | reg_names[j] = mips_processor_type_table[i].regnames[j]; | |
2769 | ||
2770 | return 1; | |
2771 | ||
2772 | /* FIXME tweak fpu flag too */ | |
2773 | } | |
2774 | } | |
2775 | ||
2776 | return 0; | |
2777 | } | |
2778 | ||
2779 | /* Attempt to identify the particular processor model by reading the | |
2780 | processor id. */ | |
2781 | ||
2782 | char * | |
2783 | mips_read_processor_type () | |
2784 | { | |
28444bf3 | 2785 | CORE_ADDR prid; |
9f9f94aa SS |
2786 | |
2787 | prid = read_register (PRID_REGNUM); | |
2788 | ||
80e0e92a | 2789 | if ((prid & ~0xf) == 0x700) |
9f9f94aa SS |
2790 | return savestring ("r3041", strlen("r3041")); |
2791 | ||
2792 | return NULL; | |
2793 | } | |
427fec5d JK |
2794 | |
2795 | /* Just like reinit_frame_cache, but with the right arguments to be | |
2796 | callable as an sfunc. */ | |
9f9f94aa | 2797 | |
427fec5d JK |
2798 | static void |
2799 | reinit_frame_cache_sfunc (args, from_tty, c) | |
2800 | char *args; | |
2801 | int from_tty; | |
2802 | struct cmd_list_element *c; | |
2803 | { | |
2804 | reinit_frame_cache (); | |
2805 | } | |
c2a0f1cb | 2806 | |
912e805f | 2807 | int |
18b46e7c SS |
2808 | gdb_print_insn_mips (memaddr, info) |
2809 | bfd_vma memaddr; | |
2810 | disassemble_info *info; | |
2811 | { | |
f9f8c14b MA |
2812 | mips_extra_func_info_t proc_desc; |
2813 | ||
2814 | /* Search for the function containing this address. Set the low bit | |
2815 | of the address when searching, in case we were given an even address | |
2816 | that is the start of a 16-bit function. If we didn't do this, | |
2817 | the search would fail because the symbol table says the function | |
2818 | starts at an odd address, i.e. 1 byte past the given address. */ | |
c1fc0935 MA |
2819 | memaddr = ADDR_BITS_REMOVE (memaddr); |
2820 | proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); | |
f9f8c14b MA |
2821 | |
2822 | /* Make an attempt to determine if this is a 16-bit function. If | |
2823 | the procedure descriptor exists and the address therein is odd, | |
2824 | it's definitely a 16-bit function. Otherwise, we have to just | |
2825 | guess that if the address passed in is odd, it's 16-bits. */ | |
2826 | if (proc_desc) | |
88ff9e06 | 2827 | info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; |
f9f8c14b | 2828 | else |
88ff9e06 | 2829 | info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; |
f9f8c14b | 2830 | |
c1fc0935 | 2831 | /* Round down the instruction address to the appropriate boundary. */ |
f9f8c14b MA |
2832 | memaddr &= (info->mach == 16 ? ~1 : ~3); |
2833 | ||
2834 | /* Call the appropriate disassembler based on the target endian-ness. */ | |
18b46e7c SS |
2835 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2836 | return print_insn_big_mips (memaddr, info); | |
2837 | else | |
2838 | return print_insn_little_mips (memaddr, info); | |
2839 | } | |
2840 | ||
f9f8c14b MA |
2841 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
2842 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
2843 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
2844 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
2845 | (if necessary) to point to the actual memory location where the | |
2846 | breakpoint should be inserted. */ | |
2847 | ||
2848 | unsigned char *mips_breakpoint_from_pc (pcptr, lenptr) | |
2849 | CORE_ADDR *pcptr; | |
2850 | int *lenptr; | |
2851 | { | |
2852 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
2853 | { | |
899c4021 | 2854 | if (pc_is_mips16 (*pcptr)) |
f9f8c14b MA |
2855 | { |
2856 | static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; | |
c1fc0935 | 2857 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2858 | *lenptr = sizeof(mips16_big_breakpoint); |
2859 | return mips16_big_breakpoint; | |
2860 | } | |
2861 | else | |
2862 | { | |
2863 | static char big_breakpoint[] = BIG_BREAKPOINT; | |
f781fe93 MA |
2864 | static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; |
2865 | static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; | |
2866 | ||
f9f8c14b | 2867 | *lenptr = sizeof(big_breakpoint); |
f781fe93 MA |
2868 | |
2869 | if (strcmp (target_shortname, "mips") == 0) | |
2870 | return idt_big_breakpoint; | |
2871 | else if (strcmp (target_shortname, "ddb") == 0 | |
2872 | || strcmp (target_shortname, "pmon") == 0 | |
2873 | || strcmp (target_shortname, "lsi") == 0) | |
2874 | return pmon_big_breakpoint; | |
2875 | else | |
2876 | return big_breakpoint; | |
f9f8c14b MA |
2877 | } |
2878 | } | |
2879 | else | |
2880 | { | |
899c4021 | 2881 | if (pc_is_mips16 (*pcptr)) |
f9f8c14b MA |
2882 | { |
2883 | static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; | |
c1fc0935 | 2884 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2885 | *lenptr = sizeof(mips16_little_breakpoint); |
2886 | return mips16_little_breakpoint; | |
2887 | } | |
2888 | else | |
2889 | { | |
2890 | static char little_breakpoint[] = LITTLE_BREAKPOINT; | |
f781fe93 MA |
2891 | static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; |
2892 | static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; | |
2893 | ||
f9f8c14b | 2894 | *lenptr = sizeof(little_breakpoint); |
f781fe93 MA |
2895 | |
2896 | if (strcmp (target_shortname, "mips") == 0) | |
2897 | return idt_little_breakpoint; | |
2898 | else if (strcmp (target_shortname, "ddb") == 0 | |
2899 | || strcmp (target_shortname, "pmon") == 0 | |
2900 | || strcmp (target_shortname, "lsi") == 0) | |
2901 | return pmon_little_breakpoint; | |
2902 | else | |
2903 | return little_breakpoint; | |
f9f8c14b MA |
2904 | } |
2905 | } | |
2906 | } | |
2907 | ||
2908 | /* Test whether the PC points to the return instruction at the | |
2909 | end of a function. This implements the ABOUT_TO_RETURN macro. */ | |
2910 | ||
2911 | int | |
2912 | mips_about_to_return (pc) | |
2913 | CORE_ADDR pc; | |
2914 | { | |
899c4021 | 2915 | if (pc_is_mips16 (pc)) |
f9f8c14b MA |
2916 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler |
2917 | generates a "jr $ra"; other times it generates code to load | |
2918 | the return address from the stack to an accessible register (such | |
2919 | as $a3), then a "jr" using that register. This second case | |
2920 | is almost impossible to distinguish from an indirect jump | |
2921 | used for switch statements, so we don't even try. */ | |
c81a76b3 | 2922 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ |
f9f8c14b | 2923 | else |
c81a76b3 | 2924 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ |
f9f8c14b MA |
2925 | } |
2926 | ||
2927 | ||
f781fe93 MA |
2928 | /* If PC is in a mips16 call or return stub, return the address of the target |
2929 | PC, which is either the callee or the caller. There are several | |
2930 | cases which must be handled: | |
2931 | ||
2932 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
2933 | target PC is in $31 ($ra). | |
2934 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
2935 | and the target PC is in $2. | |
2936 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
2937 | before the jal instruction, this is effectively a call stub | |
2938 | and the the target PC is in $2. Otherwise this is effectively | |
2939 | a return stub and the target PC is in $18. | |
2940 | ||
2941 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
2942 | gory details. | |
2943 | ||
2944 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
2945 | */ | |
2946 | ||
2947 | CORE_ADDR | |
2948 | mips_skip_stub (pc) | |
2949 | CORE_ADDR pc; | |
2950 | { | |
2951 | char *name; | |
2952 | CORE_ADDR start_addr; | |
2953 | ||
2954 | /* Find the starting address and name of the function containing the PC. */ | |
2955 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2956 | return 0; | |
2957 | ||
2958 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
2959 | target PC is in $31 ($ra). */ | |
2960 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
2961 | || strcmp (name, "__mips16_ret_df") == 0) | |
2962 | return read_register (RA_REGNUM); | |
2963 | ||
2964 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
2965 | { | |
2966 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
2967 | and the target PC is in $2. */ | |
2968 | if (name[19] >= '0' && name[19] <= '9') | |
2969 | return read_register (2); | |
2970 | ||
2971 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
2972 | before the jal instruction, this is effectively a call stub | |
2973 | and the the target PC is in $2. Otherwise this is effectively | |
2974 | a return stub and the target PC is in $18. */ | |
2975 | else if (name[19] == 's' || name[19] == 'd') | |
2976 | { | |
2977 | if (pc == start_addr) | |
2978 | { | |
2979 | /* Check if the target of the stub is a compiler-generated | |
2980 | stub. Such a stub for a function bar might have a name | |
2981 | like __fn_stub_bar, and might look like this: | |
2982 | mfc1 $4,$f13 | |
2983 | mfc1 $5,$f12 | |
2984 | mfc1 $6,$f15 | |
2985 | mfc1 $7,$f14 | |
2986 | la $1,bar (becomes a lui/addiu pair) | |
2987 | jr $1 | |
2988 | So scan down to the lui/addi and extract the target | |
2989 | address from those two instructions. */ | |
2990 | ||
2991 | CORE_ADDR target_pc = read_register (2); | |
2992 | t_inst inst; | |
2993 | int i; | |
2994 | ||
2995 | /* See if the name of the target function is __fn_stub_*. */ | |
2996 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
2997 | return target_pc; | |
2998 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
2999 | && strcmp (name, "etext") != 0 | |
3000 | && strcmp (name, "_etext") != 0) | |
3001 | return target_pc; | |
3002 | ||
3003 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
3004 | The limit on the search is arbitrarily set to 20 | |
3005 | instructions. FIXME. */ | |
3006 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) | |
3007 | { | |
3008 | inst = mips_fetch_instruction (target_pc); | |
3009 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
3010 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
3011 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
3012 | return pc | (inst & 0xffff); /* low word */ | |
3013 | } | |
3014 | ||
3015 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
3016 | return target_pc; | |
3017 | } | |
3018 | else | |
3019 | /* This is the 'return' part of a call stub. The return | |
3020 | address is in $r18. */ | |
3021 | return read_register (18); | |
3022 | } | |
3023 | } | |
3024 | return 0; /* not a stub */ | |
3025 | } | |
3026 | ||
3027 | ||
3028 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
3029 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
3030 | ||
3031 | int | |
3032 | mips_in_call_stub (pc, name) | |
3033 | CORE_ADDR pc; | |
3034 | char *name; | |
3035 | { | |
3036 | CORE_ADDR start_addr; | |
3037 | ||
3038 | /* Find the starting address of the function containing the PC. If the | |
3039 | caller didn't give us a name, look it up at the same time. */ | |
3040 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
3041 | return 0; | |
3042 | ||
3043 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
3044 | { | |
3045 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
3046 | if (name[19] >= '0' && name[19] <= '9') | |
3047 | return 1; | |
3048 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
3049 | before the jal instruction, this is effectively a call stub. */ | |
3050 | else if (name[19] == 's' || name[19] == 'd') | |
3051 | return pc == start_addr; | |
3052 | } | |
3053 | ||
3054 | return 0; /* not a stub */ | |
3055 | } | |
3056 | ||
3057 | ||
3058 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
3059 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
3060 | ||
3061 | int | |
3062 | mips_in_return_stub (pc, name) | |
3063 | CORE_ADDR pc; | |
3064 | char *name; | |
3065 | { | |
3066 | CORE_ADDR start_addr; | |
3067 | ||
3068 | /* Find the starting address of the function containing the PC. */ | |
3069 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
3070 | return 0; | |
3071 | ||
3072 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
3073 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
3074 | || strcmp (name, "__mips16_ret_df") == 0) | |
3075 | return 1; | |
3076 | ||
3077 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
3078 | i.e. after the jal instruction, this is effectively a return stub. */ | |
3079 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 | |
3080 | && (name[19] == 's' || name[19] == 'd') | |
3081 | && pc != start_addr) | |
3082 | return 1; | |
3083 | ||
3084 | return 0; /* not a stub */ | |
3085 | } | |
3086 | ||
3087 | ||
3088 | /* Return non-zero if the PC is in a library helper function that should | |
3089 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
3090 | ||
3091 | int | |
3092 | mips_ignore_helper (pc) | |
3093 | CORE_ADDR pc; | |
3094 | { | |
3095 | char *name; | |
3096 | ||
3097 | /* Find the starting address and name of the function containing the PC. */ | |
3098 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
3099 | return 0; | |
3100 | ||
3101 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
3102 | that we want to ignore. */ | |
3103 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
3104 | || strcmp (name, "__mips16_ret_df") == 0); | |
3105 | } | |
3106 | ||
3107 | ||
c2a0f1cb ILT |
3108 | void |
3109 | _initialize_mips_tdep () | |
3110 | { | |
427fec5d JK |
3111 | struct cmd_list_element *c; |
3112 | ||
912e805f AC |
3113 | if (!tm_print_insn) /* Someone may have already set it */ |
3114 | tm_print_insn = gdb_print_insn_mips; | |
18b46e7c | 3115 | |
427fec5d JK |
3116 | /* Let the user turn off floating point and set the fence post for |
3117 | heuristic_proc_start. */ | |
3118 | ||
e4dbd248 PS |
3119 | c = add_set_cmd ("mipsfpu", class_support, var_string_noescape, |
3120 | (char *) &mips_fpu_string, | |
3121 | "Set use of floating point coprocessor.\n\ | |
3122 | Set to `none' to avoid using floating point instructions when calling\n\ | |
3123 | functions or dealing with return values. Set to `single' to use only\n\ | |
3124 | single precision floating point as on the R4650. Set to `double' for\n\ | |
3125 | normal floating point support.", | |
3126 | &setlist); | |
3127 | c->function.sfunc = mips_set_fpu_command; | |
3128 | c = add_show_from_set (c, &showlist); | |
3129 | c->function.sfunc = mips_show_fpu_command; | |
3130 | ||
91ee2779 | 3131 | #ifndef MIPS_DEFAULT_FPU_TYPE |
e4dbd248 PS |
3132 | mips_fpu = MIPS_FPU_DOUBLE; |
3133 | mips_fpu_string = strsave ("double"); | |
91ee2779 JL |
3134 | #else |
3135 | mips_fpu = MIPS_DEFAULT_FPU_TYPE; | |
3136 | switch (mips_fpu) | |
3137 | { | |
3138 | case MIPS_FPU_DOUBLE: mips_fpu_string = strsave ("double"); break; | |
3139 | case MIPS_FPU_SINGLE: mips_fpu_string = strsave ("single"); break; | |
3140 | case MIPS_FPU_NONE: mips_fpu_string = strsave ("none"); break; | |
3141 | } | |
3142 | #endif | |
3127785a | 3143 | |
9f9f94aa SS |
3144 | c = add_set_cmd ("processor", class_support, var_string_noescape, |
3145 | (char *) &tmp_mips_processor_type, | |
3146 | "Set the type of MIPS processor in use.\n\ | |
3147 | Set this to be able to access processor-type-specific registers.\n\ | |
3148 | ", | |
3149 | &setlist); | |
3150 | c->function.cfunc = mips_set_processor_type_command; | |
3151 | c = add_show_from_set (c, &showlist); | |
3152 | c->function.cfunc = mips_show_processor_type_command; | |
3153 | ||
3154 | tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); | |
3155 | mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); | |
3156 | ||
bdef72d2 JK |
3157 | /* We really would like to have both "0" and "unlimited" work, but |
3158 | command.c doesn't deal with that. So make it a var_zinteger | |
3159 | because the user can always use "999999" or some such for unlimited. */ | |
3160 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
427fec5d JK |
3161 | (char *) &heuristic_fence_post, |
3162 | "\ | |
23d35572 JK |
3163 | Set the distance searched for the start of a function.\n\ |
3164 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
3165 | program for the start of a function. This command sets the distance of the\n\ | |
3166 | search. The only need to set it is when debugging a stripped executable.", | |
427fec5d JK |
3167 | &setlist); |
3168 | /* We need to throw away the frame cache when we set this, since it | |
3169 | might change our ability to get backtraces. */ | |
3170 | c->function.sfunc = reinit_frame_cache_sfunc; | |
3171 | add_show_from_set (c, &showlist); | |
c2a0f1cb | 3172 | } |