]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Symbol table lookup for the GNU debugger, GDB. |
2 | Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998 | |
c5aa993b | 3 | Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
38 | ||
39 | #include "obstack.h" | |
40 | ||
41 | #include <sys/types.h> | |
42 | #include <fcntl.h> | |
43 | #include "gdb_string.h" | |
44 | #include "gdb_stat.h" | |
45 | #include <ctype.h> | |
46 | ||
47 | /* Prototype for one function in parser-defs.h, | |
48 | instead of including that entire file. */ | |
49 | ||
c5aa993b | 50 | extern char *find_template_name_end PARAMS ((char *)); |
c906108c SS |
51 | |
52 | /* Prototypes for local functions */ | |
53 | ||
54 | static int find_methods PARAMS ((struct type *, char *, struct symbol **)); | |
55 | ||
c5aa993b JM |
56 | static void completion_list_add_name PARAMS ((char *, char *, int, char *, |
57 | char *)); | |
c906108c | 58 | |
c5aa993b JM |
59 | static void build_canonical_line_spec PARAMS ((struct symtab_and_line *, |
60 | char *, char ***)); | |
c906108c | 61 | |
c5aa993b JM |
62 | static struct symtabs_and_lines decode_line_2 PARAMS ((struct symbol *[], |
63 | int, int, char ***)); | |
c906108c SS |
64 | |
65 | static void rbreak_command PARAMS ((char *, int)); | |
66 | ||
67 | static void types_info PARAMS ((char *, int)); | |
68 | ||
69 | static void functions_info PARAMS ((char *, int)); | |
70 | ||
71 | static void variables_info PARAMS ((char *, int)); | |
72 | ||
73 | static void sources_info PARAMS ((char *, int)); | |
74 | ||
75 | static void output_source_filename PARAMS ((char *, int *)); | |
76 | ||
77 | char *operator_chars PARAMS ((char *, char **)); | |
78 | ||
79 | static int find_line_common PARAMS ((struct linetable *, int, int *)); | |
80 | ||
c5aa993b JM |
81 | static struct partial_symbol *lookup_partial_symbol PARAMS |
82 | ((struct partial_symtab *, const char *, | |
83 | int, namespace_enum)); | |
c906108c | 84 | |
c5aa993b JM |
85 | static struct partial_symbol *fixup_psymbol_section PARAMS ((struct |
86 | partial_symbol *, struct objfile *)); | |
c906108c SS |
87 | |
88 | static struct symtab *lookup_symtab_1 PARAMS ((char *)); | |
89 | ||
90 | static void cplusplus_hint PARAMS ((char *)); | |
91 | ||
c5aa993b JM |
92 | static struct symbol *find_active_alias PARAMS ((struct symbol * sym, |
93 | CORE_ADDR addr)); | |
c906108c SS |
94 | |
95 | /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */ | |
96 | /* Signals the presence of objects compiled by HP compilers */ | |
97 | int hp_som_som_object_present = 0; | |
98 | ||
c5aa993b JM |
99 | static void fixup_section PARAMS ((struct general_symbol_info *, |
100 | struct objfile *)); | |
c906108c SS |
101 | |
102 | static int file_matches PARAMS ((char *, char **, int)); | |
103 | ||
c5aa993b JM |
104 | static void print_symbol_info PARAMS ((namespace_enum, |
105 | struct symtab *, struct symbol *, | |
106 | int, char *)); | |
c906108c SS |
107 | |
108 | static void print_msymbol_info PARAMS ((struct minimal_symbol *)); | |
109 | ||
110 | static void symtab_symbol_info PARAMS ((char *, namespace_enum, int)); | |
111 | ||
c5aa993b | 112 | static void overload_list_add_symbol PARAMS ((struct symbol * sym, |
392a587b JM |
113 | char *oload_name)); |
114 | ||
c906108c SS |
115 | void _initialize_symtab PARAMS ((void)); |
116 | ||
117 | /* */ | |
118 | ||
119 | /* The single non-language-specific builtin type */ | |
120 | struct type *builtin_type_error; | |
121 | ||
122 | /* Block in which the most recently searched-for symbol was found. | |
123 | Might be better to make this a parameter to lookup_symbol and | |
124 | value_of_this. */ | |
125 | ||
126 | const struct block *block_found; | |
127 | ||
128 | char no_symtab_msg[] = "No symbol table is loaded. Use the \"file\" command."; | |
129 | ||
130 | /* While the C++ support is still in flux, issue a possibly helpful hint on | |
131 | using the new command completion feature on single quoted demangled C++ | |
132 | symbols. Remove when loose ends are cleaned up. FIXME -fnf */ | |
133 | ||
134 | static void | |
135 | cplusplus_hint (name) | |
136 | char *name; | |
137 | { | |
138 | while (*name == '\'') | |
139 | name++; | |
140 | printf_filtered ("Hint: try '%s<TAB> or '%s<ESC-?>\n", name, name); | |
141 | printf_filtered ("(Note leading single quote.)\n"); | |
142 | } | |
143 | ||
144 | /* Check for a symtab of a specific name; first in symtabs, then in | |
145 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
146 | in the symtab filename will also work. */ | |
147 | ||
148 | static struct symtab * | |
149 | lookup_symtab_1 (name) | |
150 | char *name; | |
151 | { | |
152 | register struct symtab *s; | |
153 | register struct partial_symtab *ps; | |
154 | register char *slash; | |
155 | register struct objfile *objfile; | |
156 | ||
c5aa993b | 157 | got_symtab: |
c906108c SS |
158 | |
159 | /* First, search for an exact match */ | |
160 | ||
161 | ALL_SYMTABS (objfile, s) | |
162 | if (STREQ (name, s->filename)) | |
c5aa993b | 163 | return s; |
c906108c SS |
164 | |
165 | slash = strchr (name, '/'); | |
166 | ||
167 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ | |
168 | ||
169 | if (!slash) | |
170 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
171 | { |
172 | char *p = s->filename; | |
173 | char *tail = strrchr (p, '/'); | |
c906108c | 174 | |
c5aa993b JM |
175 | if (tail) |
176 | p = tail + 1; | |
c906108c | 177 | |
c5aa993b JM |
178 | if (STREQ (p, name)) |
179 | return s; | |
180 | } | |
c906108c SS |
181 | |
182 | /* Same search rules as above apply here, but now we look thru the | |
183 | psymtabs. */ | |
184 | ||
185 | ps = lookup_partial_symtab (name); | |
186 | if (!ps) | |
187 | return (NULL); | |
188 | ||
c5aa993b | 189 | if (ps->readin) |
c906108c | 190 | error ("Internal: readin %s pst for `%s' found when no symtab found.", |
c5aa993b | 191 | ps->filename, name); |
c906108c SS |
192 | |
193 | s = PSYMTAB_TO_SYMTAB (ps); | |
194 | ||
195 | if (s) | |
196 | return s; | |
197 | ||
198 | /* At this point, we have located the psymtab for this file, but | |
199 | the conversion to a symtab has failed. This usually happens | |
200 | when we are looking up an include file. In this case, | |
201 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
202 | been created. So, we need to run through the symtabs again in | |
203 | order to find the file. | |
204 | XXX - This is a crock, and should be fixed inside of the the | |
205 | symbol parsing routines. */ | |
206 | goto got_symtab; | |
207 | } | |
208 | ||
209 | /* Lookup the symbol table of a source file named NAME. Try a couple | |
210 | of variations if the first lookup doesn't work. */ | |
211 | ||
212 | struct symtab * | |
213 | lookup_symtab (name) | |
214 | char *name; | |
215 | { | |
216 | register struct symtab *s; | |
217 | #if 0 | |
218 | register char *copy; | |
219 | #endif | |
220 | ||
221 | s = lookup_symtab_1 (name); | |
c5aa993b JM |
222 | if (s) |
223 | return s; | |
c906108c SS |
224 | |
225 | #if 0 | |
226 | /* This screws c-exp.y:yylex if there is both a type "tree" and a symtab | |
227 | "tree.c". */ | |
228 | ||
229 | /* If name not found as specified, see if adding ".c" helps. */ | |
230 | /* Why is this? Is it just a user convenience? (If so, it's pretty | |
231 | questionable in the presence of C++, FORTRAN, etc.). It's not in | |
232 | the GDB manual. */ | |
233 | ||
234 | copy = (char *) alloca (strlen (name) + 3); | |
235 | strcpy (copy, name); | |
236 | strcat (copy, ".c"); | |
237 | s = lookup_symtab_1 (copy); | |
c5aa993b JM |
238 | if (s) |
239 | return s; | |
c906108c SS |
240 | #endif /* 0 */ |
241 | ||
242 | /* We didn't find anything; die. */ | |
243 | return 0; | |
244 | } | |
245 | ||
246 | /* Lookup the partial symbol table of a source file named NAME. | |
247 | *If* there is no '/' in the name, a match after a '/' | |
248 | in the psymtab filename will also work. */ | |
249 | ||
250 | struct partial_symtab * | |
251 | lookup_partial_symtab (name) | |
c5aa993b | 252 | char *name; |
c906108c SS |
253 | { |
254 | register struct partial_symtab *pst; | |
255 | register struct objfile *objfile; | |
c5aa993b | 256 | |
c906108c | 257 | ALL_PSYMTABS (objfile, pst) |
c5aa993b JM |
258 | { |
259 | if (STREQ (name, pst->filename)) | |
260 | { | |
261 | return (pst); | |
262 | } | |
263 | } | |
c906108c SS |
264 | |
265 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ | |
266 | ||
267 | if (!strchr (name, '/')) | |
268 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b JM |
269 | { |
270 | char *p = pst->filename; | |
271 | char *tail = strrchr (p, '/'); | |
c906108c | 272 | |
c5aa993b JM |
273 | if (tail) |
274 | p = tail + 1; | |
c906108c | 275 | |
c5aa993b JM |
276 | if (STREQ (p, name)) |
277 | return (pst); | |
278 | } | |
c906108c SS |
279 | |
280 | return (NULL); | |
281 | } | |
282 | \f | |
283 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
284 | full method name, which consist of the class name (from T), the unadorned | |
285 | method name from METHOD_ID, and the signature for the specific overload, | |
286 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
287 | ||
288 | char * | |
289 | gdb_mangle_name (type, method_id, signature_id) | |
290 | struct type *type; | |
291 | int method_id, signature_id; | |
292 | { | |
293 | int mangled_name_len; | |
294 | char *mangled_name; | |
295 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
296 | struct fn_field *method = &f[signature_id]; | |
297 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
298 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
299 | char *newname = type_name_no_tag (type); | |
300 | ||
301 | /* Does the form of physname indicate that it is the full mangled name | |
302 | of a constructor (not just the args)? */ | |
303 | int is_full_physname_constructor; | |
304 | ||
305 | int is_constructor; | |
306 | int is_destructor = DESTRUCTOR_PREFIX_P (physname); | |
307 | /* Need a new type prefix. */ | |
308 | char *const_prefix = method->is_const ? "C" : ""; | |
309 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
310 | char buf[20]; | |
311 | int len = (newname == NULL ? 0 : strlen (newname)); | |
312 | ||
c5aa993b JM |
313 | is_full_physname_constructor = |
314 | ((physname[0] == '_' && physname[1] == '_' && | |
315 | (isdigit (physname[2]) || physname[2] == 'Q' || physname[2] == 't')) | |
316 | || (strncmp (physname, "__ct", 4) == 0)); | |
c906108c SS |
317 | |
318 | is_constructor = | |
c5aa993b | 319 | is_full_physname_constructor || (newname && STREQ (field_name, newname)); |
c906108c SS |
320 | |
321 | if (!is_destructor) | |
c5aa993b | 322 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
323 | |
324 | if (is_destructor || is_full_physname_constructor) | |
325 | { | |
c5aa993b JM |
326 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
327 | strcpy (mangled_name, physname); | |
c906108c SS |
328 | return mangled_name; |
329 | } | |
330 | ||
331 | if (len == 0) | |
332 | { | |
333 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
334 | } | |
335 | else if (physname[0] == 't' || physname[0] == 'Q') | |
336 | { | |
337 | /* The physname for template and qualified methods already includes | |
c5aa993b | 338 | the class name. */ |
c906108c SS |
339 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
340 | newname = NULL; | |
341 | len = 0; | |
342 | } | |
343 | else | |
344 | { | |
345 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
346 | } | |
347 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
c5aa993b JM |
348 | + strlen (buf) + len |
349 | + strlen (physname) | |
350 | + 1); | |
c906108c SS |
351 | |
352 | /* Only needed for GNU-mangled names. ANSI-mangled names | |
353 | work with the normal mechanisms. */ | |
354 | if (OPNAME_PREFIX_P (field_name)) | |
355 | { | |
356 | const char *opname = cplus_mangle_opname (field_name + 3, 0); | |
357 | if (opname == NULL) | |
358 | error ("No mangling for \"%s\"", field_name); | |
359 | mangled_name_len += strlen (opname); | |
c5aa993b | 360 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
361 | |
362 | strncpy (mangled_name, field_name, 3); | |
363 | mangled_name[3] = '\0'; | |
364 | strcat (mangled_name, opname); | |
365 | } | |
366 | else | |
367 | { | |
c5aa993b | 368 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
369 | if (is_constructor) |
370 | mangled_name[0] = '\0'; | |
371 | else | |
372 | strcpy (mangled_name, field_name); | |
373 | } | |
374 | strcat (mangled_name, buf); | |
375 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
376 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 377 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
378 | if (newname != NULL) |
379 | strcat (mangled_name, newname); | |
380 | ||
381 | strcat (mangled_name, physname); | |
382 | return (mangled_name); | |
383 | } | |
c906108c SS |
384 | \f |
385 | ||
c5aa993b | 386 | |
c906108c SS |
387 | /* Find which partial symtab on contains PC and SECTION. Return 0 if none. */ |
388 | ||
389 | struct partial_symtab * | |
390 | find_pc_sect_psymtab (pc, section) | |
391 | CORE_ADDR pc; | |
392 | asection *section; | |
393 | { | |
394 | register struct partial_symtab *pst; | |
395 | register struct objfile *objfile; | |
396 | ||
397 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 398 | { |
c5aa993b | 399 | if (pc >= pst->textlow && pc < pst->texthigh) |
c5aa993b JM |
400 | { |
401 | struct minimal_symbol *msymbol; | |
402 | struct partial_symtab *tpst; | |
403 | ||
404 | /* An objfile that has its functions reordered might have | |
405 | many partial symbol tables containing the PC, but | |
406 | we want the partial symbol table that contains the | |
407 | function containing the PC. */ | |
408 | if (!(objfile->flags & OBJF_REORDERED) && | |
409 | section == 0) /* can't validate section this way */ | |
410 | return (pst); | |
411 | ||
412 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
413 | if (msymbol == NULL) | |
414 | return (pst); | |
415 | ||
416 | for (tpst = pst; tpst != NULL; tpst = tpst->next) | |
417 | { | |
c5aa993b | 418 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
c5aa993b JM |
419 | { |
420 | struct partial_symbol *p; | |
c906108c | 421 | |
c5aa993b JM |
422 | p = find_pc_sect_psymbol (tpst, pc, section); |
423 | if (p != NULL | |
424 | && SYMBOL_VALUE_ADDRESS (p) | |
425 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
426 | return (tpst); | |
427 | } | |
428 | } | |
429 | return (pst); | |
430 | } | |
431 | } | |
c906108c SS |
432 | return (NULL); |
433 | } | |
434 | ||
435 | /* Find which partial symtab contains PC. Return 0 if none. | |
436 | Backward compatibility, no section */ | |
437 | ||
438 | struct partial_symtab * | |
439 | find_pc_psymtab (pc) | |
440 | CORE_ADDR pc; | |
441 | { | |
442 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
443 | } | |
444 | ||
445 | /* Find which partial symbol within a psymtab matches PC and SECTION. | |
446 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ | |
447 | ||
448 | struct partial_symbol * | |
449 | find_pc_sect_psymbol (psymtab, pc, section) | |
450 | struct partial_symtab *psymtab; | |
451 | CORE_ADDR pc; | |
452 | asection *section; | |
453 | { | |
454 | struct partial_symbol *best = NULL, *p, **pp; | |
455 | CORE_ADDR best_pc; | |
c5aa993b | 456 | |
c906108c SS |
457 | if (!psymtab) |
458 | psymtab = find_pc_sect_psymtab (pc, section); | |
459 | if (!psymtab) | |
460 | return 0; | |
461 | ||
462 | /* Cope with programs that start at address 0 */ | |
463 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
464 | ||
465 | /* Search the global symbols as well as the static symbols, so that | |
466 | find_pc_partial_function doesn't use a minimal symbol and thus | |
467 | cache a bad endaddr. */ | |
468 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
469 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
470 | < psymtab->n_global_syms); | |
c906108c SS |
471 | pp++) |
472 | { | |
473 | p = *pp; | |
474 | if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE | |
475 | && SYMBOL_CLASS (p) == LOC_BLOCK | |
476 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
477 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
478 | || (psymtab->textlow == 0 | |
479 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
480 | { | |
c5aa993b | 481 | if (section) /* match on a specific section */ |
c906108c SS |
482 | { |
483 | fixup_psymbol_section (p, psymtab->objfile); | |
484 | if (SYMBOL_BFD_SECTION (p) != section) | |
485 | continue; | |
486 | } | |
487 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
488 | best = p; | |
489 | } | |
490 | } | |
491 | ||
492 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
493 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
494 | < psymtab->n_static_syms); | |
c906108c SS |
495 | pp++) |
496 | { | |
497 | p = *pp; | |
498 | if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE | |
499 | && SYMBOL_CLASS (p) == LOC_BLOCK | |
500 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
501 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 502 | || (psymtab->textlow == 0 |
c906108c SS |
503 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
504 | { | |
c5aa993b | 505 | if (section) /* match on a specific section */ |
c906108c SS |
506 | { |
507 | fixup_psymbol_section (p, psymtab->objfile); | |
508 | if (SYMBOL_BFD_SECTION (p) != section) | |
509 | continue; | |
510 | } | |
511 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
512 | best = p; | |
513 | } | |
514 | } | |
515 | ||
516 | return best; | |
517 | } | |
518 | ||
519 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. | |
520 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ | |
521 | ||
522 | struct partial_symbol * | |
523 | find_pc_psymbol (psymtab, pc) | |
524 | struct partial_symtab *psymtab; | |
525 | CORE_ADDR pc; | |
526 | { | |
527 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
528 | } | |
529 | \f | |
530 | /* Debug symbols usually don't have section information. We need to dig that | |
531 | out of the minimal symbols and stash that in the debug symbol. */ | |
532 | ||
533 | static void | |
534 | fixup_section (ginfo, objfile) | |
535 | struct general_symbol_info *ginfo; | |
536 | struct objfile *objfile; | |
537 | { | |
538 | struct minimal_symbol *msym; | |
539 | msym = lookup_minimal_symbol (ginfo->name, NULL, objfile); | |
540 | ||
541 | if (msym) | |
542 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym); | |
543 | } | |
544 | ||
545 | struct symbol * | |
546 | fixup_symbol_section (sym, objfile) | |
547 | struct symbol *sym; | |
548 | struct objfile *objfile; | |
549 | { | |
550 | if (!sym) | |
551 | return NULL; | |
552 | ||
553 | if (SYMBOL_BFD_SECTION (sym)) | |
554 | return sym; | |
555 | ||
556 | fixup_section (&sym->ginfo, objfile); | |
557 | ||
558 | return sym; | |
559 | } | |
560 | ||
561 | static struct partial_symbol * | |
562 | fixup_psymbol_section (psym, objfile) | |
563 | struct partial_symbol *psym; | |
564 | struct objfile *objfile; | |
565 | { | |
566 | if (!psym) | |
567 | return NULL; | |
568 | ||
569 | if (SYMBOL_BFD_SECTION (psym)) | |
570 | return psym; | |
571 | ||
572 | fixup_section (&psym->ginfo, objfile); | |
573 | ||
574 | return psym; | |
575 | } | |
576 | ||
577 | /* Find the definition for a specified symbol name NAME | |
578 | in namespace NAMESPACE, visible from lexical block BLOCK. | |
579 | Returns the struct symbol pointer, or zero if no symbol is found. | |
580 | If SYMTAB is non-NULL, store the symbol table in which the | |
581 | symbol was found there, or NULL if not found. | |
582 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
583 | NAME is a field of the current implied argument `this'. If so set | |
584 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
585 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
586 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
587 | ||
588 | /* This function has a bunch of loops in it and it would seem to be | |
589 | attractive to put in some QUIT's (though I'm not really sure | |
590 | whether it can run long enough to be really important). But there | |
591 | are a few calls for which it would appear to be bad news to quit | |
592 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c, and | |
593 | nindy_frame_chain_valid in nindy-tdep.c. (Note that there is C++ | |
594 | code below which can error(), but that probably doesn't affect | |
595 | these calls since they are looking for a known variable and thus | |
596 | can probably assume it will never hit the C++ code). */ | |
597 | ||
598 | struct symbol * | |
599 | lookup_symbol (name, block, namespace, is_a_field_of_this, symtab) | |
600 | const char *name; | |
601 | register const struct block *block; | |
602 | const namespace_enum namespace; | |
603 | int *is_a_field_of_this; | |
604 | struct symtab **symtab; | |
605 | { | |
606 | register struct symbol *sym; | |
607 | register struct symtab *s = NULL; | |
608 | register struct partial_symtab *ps; | |
609 | struct blockvector *bv; | |
610 | register struct objfile *objfile = NULL; | |
611 | register struct block *b; | |
612 | register struct minimal_symbol *msymbol; | |
613 | ||
614 | /* Search specified block and its superiors. */ | |
615 | ||
616 | while (block != 0) | |
617 | { | |
618 | sym = lookup_block_symbol (block, name, namespace); | |
c5aa993b | 619 | if (sym) |
c906108c SS |
620 | { |
621 | block_found = block; | |
622 | if (symtab != NULL) | |
623 | { | |
624 | /* Search the list of symtabs for one which contains the | |
c5aa993b | 625 | address of the start of this block. */ |
c906108c | 626 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
627 | { |
628 | bv = BLOCKVECTOR (s); | |
629 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
630 | if (BLOCK_START (b) <= BLOCK_START (block) | |
631 | && BLOCK_END (b) > BLOCK_START (block)) | |
632 | goto found; | |
633 | } | |
634 | found: | |
c906108c SS |
635 | *symtab = s; |
636 | } | |
637 | ||
638 | return fixup_symbol_section (sym, objfile); | |
639 | } | |
640 | block = BLOCK_SUPERBLOCK (block); | |
641 | } | |
642 | ||
643 | /* FIXME: this code is never executed--block is always NULL at this | |
644 | point. What is it trying to do, anyway? We already should have | |
645 | checked the STATIC_BLOCK above (it is the superblock of top-level | |
646 | blocks). Why is VAR_NAMESPACE special-cased? */ | |
647 | /* Don't need to mess with the psymtabs; if we have a block, | |
648 | that file is read in. If we don't, then we deal later with | |
649 | all the psymtab stuff that needs checking. */ | |
650 | /* Note (RT): The following never-executed code looks unnecessary to me also. | |
651 | * If we change the code to use the original (passed-in) | |
652 | * value of 'block', we could cause it to execute, but then what | |
653 | * would it do? The STATIC_BLOCK of the symtab containing the passed-in | |
654 | * 'block' was already searched by the above code. And the STATIC_BLOCK's | |
655 | * of *other* symtabs (those files not containing 'block' lexically) | |
656 | * should not contain 'block' address-wise. So we wouldn't expect this | |
657 | * code to find any 'sym''s that were not found above. I vote for | |
658 | * deleting the following paragraph of code. | |
659 | */ | |
660 | if (namespace == VAR_NAMESPACE && block != NULL) | |
661 | { | |
662 | struct block *b; | |
663 | /* Find the right symtab. */ | |
664 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
665 | { |
666 | bv = BLOCKVECTOR (s); | |
667 | b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
668 | if (BLOCK_START (b) <= BLOCK_START (block) | |
669 | && BLOCK_END (b) > BLOCK_START (block)) | |
670 | { | |
671 | sym = lookup_block_symbol (b, name, VAR_NAMESPACE); | |
672 | if (sym) | |
673 | { | |
674 | block_found = b; | |
675 | if (symtab != NULL) | |
676 | *symtab = s; | |
677 | return fixup_symbol_section (sym, objfile); | |
678 | } | |
679 | } | |
680 | } | |
c906108c SS |
681 | } |
682 | ||
683 | ||
684 | /* C++: If requested to do so by the caller, | |
685 | check to see if NAME is a field of `this'. */ | |
686 | if (is_a_field_of_this) | |
687 | { | |
688 | struct value *v = value_of_this (0); | |
c5aa993b | 689 | |
c906108c SS |
690 | *is_a_field_of_this = 0; |
691 | if (v && check_field (v, name)) | |
692 | { | |
693 | *is_a_field_of_this = 1; | |
694 | if (symtab != NULL) | |
695 | *symtab = NULL; | |
696 | return NULL; | |
697 | } | |
698 | } | |
699 | ||
700 | /* Now search all global blocks. Do the symtab's first, then | |
701 | check the psymtab's. If a psymtab indicates the existence | |
702 | of the desired name as a global, then do psymtab-to-symtab | |
703 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 704 | |
c906108c | 705 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
706 | { |
707 | bv = BLOCKVECTOR (s); | |
708 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
709 | sym = lookup_block_symbol (block, name, namespace); | |
710 | if (sym) | |
711 | { | |
712 | block_found = block; | |
713 | if (symtab != NULL) | |
714 | *symtab = s; | |
715 | return fixup_symbol_section (sym, objfile); | |
716 | } | |
717 | } | |
c906108c SS |
718 | |
719 | #ifndef HPUXHPPA | |
720 | ||
721 | /* Check for the possibility of the symbol being a function or | |
722 | a mangled variable that is stored in one of the minimal symbol tables. | |
723 | Eventually, all global symbols might be resolved in this way. */ | |
c5aa993b | 724 | |
c906108c SS |
725 | if (namespace == VAR_NAMESPACE) |
726 | { | |
727 | msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
728 | if (msymbol != NULL) | |
729 | { | |
730 | s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 731 | SYMBOL_BFD_SECTION (msymbol)); |
c906108c SS |
732 | if (s != NULL) |
733 | { | |
734 | /* This is a function which has a symtab for its address. */ | |
735 | bv = BLOCKVECTOR (s); | |
736 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
737 | sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol), | |
738 | namespace); | |
c5aa993b JM |
739 | /* We kept static functions in minimal symbol table as well as |
740 | in static scope. We want to find them in the symbol table. */ | |
741 | if (!sym) | |
742 | { | |
c906108c SS |
743 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); |
744 | sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol), | |
745 | namespace); | |
746 | } | |
747 | ||
748 | /* sym == 0 if symbol was found in the minimal symbol table | |
c5aa993b JM |
749 | but not in the symtab. |
750 | Return 0 to use the msymbol definition of "foo_". | |
c906108c | 751 | |
c5aa993b JM |
752 | This happens for Fortran "foo_" symbols, |
753 | which are "foo" in the symtab. | |
c906108c | 754 | |
c5aa993b JM |
755 | This can also happen if "asm" is used to make a |
756 | regular symbol but not a debugging symbol, e.g. | |
757 | asm(".globl _main"); | |
758 | asm("_main:"); | |
759 | */ | |
c906108c SS |
760 | |
761 | if (symtab != NULL) | |
762 | *symtab = s; | |
763 | return fixup_symbol_section (sym, objfile); | |
764 | } | |
765 | else if (MSYMBOL_TYPE (msymbol) != mst_text | |
766 | && MSYMBOL_TYPE (msymbol) != mst_file_text | |
767 | && !STREQ (name, SYMBOL_NAME (msymbol))) | |
768 | { | |
769 | /* This is a mangled variable, look it up by its | |
c5aa993b JM |
770 | mangled name. */ |
771 | return lookup_symbol (SYMBOL_NAME (msymbol), block, | |
c906108c SS |
772 | namespace, is_a_field_of_this, symtab); |
773 | } | |
774 | /* There are no debug symbols for this file, or we are looking | |
775 | for an unmangled variable. | |
776 | Try to find a matching static symbol below. */ | |
777 | } | |
778 | } | |
c5aa993b | 779 | |
c906108c SS |
780 | #endif |
781 | ||
782 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
783 | { |
784 | if (!ps->readin && lookup_partial_symbol (ps, name, 1, namespace)) | |
785 | { | |
786 | s = PSYMTAB_TO_SYMTAB (ps); | |
787 | bv = BLOCKVECTOR (s); | |
788 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
789 | sym = lookup_block_symbol (block, name, namespace); | |
790 | if (!sym) | |
791 | { | |
792 | /* This shouldn't be necessary, but as a last resort | |
793 | * try looking in the statics even though the psymtab | |
794 | * claimed the symbol was global. It's possible that | |
795 | * the psymtab gets it wrong in some cases. | |
796 | */ | |
797 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
798 | sym = lookup_block_symbol (block, name, namespace); | |
799 | if (!sym) | |
800 | error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
801 | %s may be an inlined function, or may be a template function\n\ |
802 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
803 | name, ps->filename, name, name); |
804 | } | |
805 | if (symtab != NULL) | |
806 | *symtab = s; | |
807 | return fixup_symbol_section (sym, objfile); | |
808 | } | |
809 | } | |
c906108c SS |
810 | |
811 | /* Now search all static file-level symbols. | |
812 | Not strictly correct, but more useful than an error. | |
813 | Do the symtabs first, then check the psymtabs. | |
814 | If a psymtab indicates the existence | |
815 | of the desired name as a file-level static, then do psymtab-to-symtab | |
816 | conversion on the fly and return the found symbol. */ | |
817 | ||
818 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
819 | { |
820 | bv = BLOCKVECTOR (s); | |
821 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
822 | sym = lookup_block_symbol (block, name, namespace); | |
823 | if (sym) | |
824 | { | |
825 | block_found = block; | |
826 | if (symtab != NULL) | |
827 | *symtab = s; | |
828 | return fixup_symbol_section (sym, objfile); | |
829 | } | |
830 | } | |
c906108c SS |
831 | |
832 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
833 | { |
834 | if (!ps->readin && lookup_partial_symbol (ps, name, 0, namespace)) | |
835 | { | |
836 | s = PSYMTAB_TO_SYMTAB (ps); | |
837 | bv = BLOCKVECTOR (s); | |
838 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
839 | sym = lookup_block_symbol (block, name, namespace); | |
840 | if (!sym) | |
841 | { | |
842 | /* This shouldn't be necessary, but as a last resort | |
843 | * try looking in the globals even though the psymtab | |
844 | * claimed the symbol was static. It's possible that | |
845 | * the psymtab gets it wrong in some cases. | |
846 | */ | |
847 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
848 | sym = lookup_block_symbol (block, name, namespace); | |
849 | if (!sym) | |
850 | error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
851 | %s may be an inlined function, or may be a template function\n\ |
852 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
853 | name, ps->filename, name, name); |
854 | } | |
855 | if (symtab != NULL) | |
856 | *symtab = s; | |
857 | return fixup_symbol_section (sym, objfile); | |
858 | } | |
859 | } | |
c906108c SS |
860 | |
861 | #ifdef HPUXHPPA | |
862 | ||
863 | /* Check for the possibility of the symbol being a function or | |
864 | a global variable that is stored in one of the minimal symbol tables. | |
865 | The "minimal symbol table" is built from linker-supplied info. | |
866 | ||
867 | RT: I moved this check to last, after the complete search of | |
868 | the global (p)symtab's and static (p)symtab's. For HP-generated | |
869 | symbol tables, this check was causing a premature exit from | |
870 | lookup_symbol with NULL return, and thus messing up symbol lookups | |
871 | of things like "c::f". It seems to me a check of the minimal | |
872 | symbol table ought to be a last resort in any case. I'm vaguely | |
873 | worried about the comment below which talks about FORTRAN routines "foo_" | |
874 | though... is it saying we need to do the "minsym" check before | |
875 | the static check in this case? | |
876 | */ | |
c5aa993b | 877 | |
c906108c SS |
878 | if (namespace == VAR_NAMESPACE) |
879 | { | |
880 | msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
881 | if (msymbol != NULL) | |
882 | { | |
c5aa993b JM |
883 | /* OK, we found a minimal symbol in spite of not |
884 | * finding any symbol. There are various possible | |
885 | * explanations for this. One possibility is the symbol | |
886 | * exists in code not compiled -g. Another possibility | |
887 | * is that the 'psymtab' isn't doing its job. | |
888 | * A third possibility, related to #2, is that we were confused | |
889 | * by name-mangling. For instance, maybe the psymtab isn't | |
890 | * doing its job because it only know about demangled | |
891 | * names, but we were given a mangled name... | |
892 | */ | |
893 | ||
894 | /* We first use the address in the msymbol to try to | |
895 | * locate the appropriate symtab. Note that find_pc_symtab() | |
896 | * has a side-effect of doing psymtab-to-symtab expansion, | |
897 | * for the found symtab. | |
898 | */ | |
c906108c SS |
899 | s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)); |
900 | if (s != NULL) | |
901 | { | |
902 | bv = BLOCKVECTOR (s); | |
903 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
904 | sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol), | |
905 | namespace); | |
c5aa993b JM |
906 | /* We kept static functions in minimal symbol table as well as |
907 | in static scope. We want to find them in the symbol table. */ | |
908 | if (!sym) | |
909 | { | |
c906108c SS |
910 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); |
911 | sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol), | |
912 | namespace); | |
913 | } | |
c5aa993b JM |
914 | /* If we found one, return it */ |
915 | if (sym) | |
916 | { | |
917 | if (symtab != NULL) | |
918 | *symtab = s; | |
919 | return sym; | |
920 | } | |
c906108c SS |
921 | |
922 | /* If we get here with sym == 0, the symbol was | |
c5aa993b JM |
923 | found in the minimal symbol table |
924 | but not in the symtab. | |
925 | Fall through and return 0 to use the msymbol | |
926 | definition of "foo_". | |
927 | (Note that outer code generally follows up a call | |
928 | to this routine with a call to lookup_minimal_symbol(), | |
929 | so a 0 return means we'll just flow into that other routine). | |
930 | ||
931 | This happens for Fortran "foo_" symbols, | |
932 | which are "foo" in the symtab. | |
933 | ||
934 | This can also happen if "asm" is used to make a | |
935 | regular symbol but not a debugging symbol, e.g. | |
936 | asm(".globl _main"); | |
937 | asm("_main:"); | |
938 | */ | |
c906108c SS |
939 | } |
940 | ||
c5aa993b JM |
941 | /* If the lookup-by-address fails, try repeating the |
942 | * entire lookup process with the symbol name from | |
943 | * the msymbol (if different from the original symbol name). | |
944 | */ | |
c906108c SS |
945 | else if (MSYMBOL_TYPE (msymbol) != mst_text |
946 | && MSYMBOL_TYPE (msymbol) != mst_file_text | |
947 | && !STREQ (name, SYMBOL_NAME (msymbol))) | |
948 | { | |
949 | return lookup_symbol (SYMBOL_NAME (msymbol), block, | |
950 | namespace, is_a_field_of_this, symtab); | |
951 | } | |
952 | } | |
953 | } | |
954 | ||
955 | #endif | |
956 | ||
957 | if (symtab != NULL) | |
958 | *symtab = NULL; | |
959 | return 0; | |
960 | } | |
961 | ||
962 | /* Look, in partial_symtab PST, for symbol NAME. Check the global | |
963 | symbols if GLOBAL, the static symbols if not */ | |
964 | ||
965 | static struct partial_symbol * | |
966 | lookup_partial_symbol (pst, name, global, namespace) | |
967 | struct partial_symtab *pst; | |
968 | const char *name; | |
969 | int global; | |
970 | namespace_enum namespace; | |
971 | { | |
972 | struct partial_symbol **start, **psym; | |
973 | struct partial_symbol **top, **bottom, **center; | |
974 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
975 | int do_linear_search = 1; | |
976 | ||
977 | if (length == 0) | |
978 | { | |
979 | return (NULL); | |
980 | } | |
c5aa993b | 981 | |
c906108c SS |
982 | start = (global ? |
983 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 984 | pst->objfile->static_psymbols.list + pst->statics_offset); |
c906108c | 985 | |
c5aa993b | 986 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
987 | { |
988 | do_linear_search = 0; | |
989 | ||
990 | /* Binary search. This search is guaranteed to end with center | |
991 | pointing at the earliest partial symbol with the correct | |
c5aa993b JM |
992 | name. At that point *all* partial symbols with that name |
993 | will be checked against the correct namespace. */ | |
c906108c SS |
994 | |
995 | bottom = start; | |
996 | top = start + length - 1; | |
997 | while (top > bottom) | |
998 | { | |
999 | center = bottom + (top - bottom) / 2; | |
1000 | if (!(center < top)) | |
1001 | abort (); | |
1002 | if (!do_linear_search | |
1003 | && (SYMBOL_LANGUAGE (*center) == language_cplus | |
1004 | || SYMBOL_LANGUAGE (*center) == language_java | |
c5aa993b | 1005 | )) |
c906108c SS |
1006 | { |
1007 | do_linear_search = 1; | |
1008 | } | |
1009 | if (STRCMP (SYMBOL_NAME (*center), name) >= 0) | |
1010 | { | |
1011 | top = center; | |
1012 | } | |
1013 | else | |
1014 | { | |
1015 | bottom = center + 1; | |
1016 | } | |
1017 | } | |
1018 | if (!(top == bottom)) | |
1019 | abort (); | |
1020 | while (STREQ (SYMBOL_NAME (*top), name)) | |
1021 | { | |
1022 | if (SYMBOL_NAMESPACE (*top) == namespace) | |
1023 | { | |
1024 | return (*top); | |
1025 | } | |
c5aa993b | 1026 | top++; |
c906108c SS |
1027 | } |
1028 | } | |
1029 | ||
1030 | /* Can't use a binary search or else we found during the binary search that | |
1031 | we should also do a linear search. */ | |
1032 | ||
1033 | if (do_linear_search) | |
1034 | { | |
1035 | for (psym = start; psym < start + length; psym++) | |
1036 | { | |
1037 | if (namespace == SYMBOL_NAMESPACE (*psym)) | |
1038 | { | |
1039 | if (SYMBOL_MATCHES_NAME (*psym, name)) | |
1040 | { | |
1041 | return (*psym); | |
1042 | } | |
1043 | } | |
1044 | } | |
1045 | } | |
1046 | ||
1047 | return (NULL); | |
1048 | } | |
1049 | ||
1050 | /* Look up a type named NAME in the struct_namespace. The type returned | |
1051 | must not be opaque -- i.e., must have at least one field defined | |
1052 | ||
1053 | This code was modelled on lookup_symbol -- the parts not relevant to looking | |
1054 | up types were just left out. In particular it's assumed here that types | |
1055 | are available in struct_namespace and only at file-static or global blocks. */ | |
1056 | ||
1057 | ||
1058 | struct type * | |
1059 | lookup_transparent_type (name) | |
1060 | const char *name; | |
1061 | { | |
1062 | register struct symbol *sym; | |
1063 | register struct symtab *s = NULL; | |
1064 | register struct partial_symtab *ps; | |
1065 | struct blockvector *bv; | |
1066 | register struct objfile *objfile; | |
1067 | register struct block *block; | |
c906108c SS |
1068 | |
1069 | /* Now search all the global symbols. Do the symtab's first, then | |
1070 | check the psymtab's. If a psymtab indicates the existence | |
1071 | of the desired name as a global, then do psymtab-to-symtab | |
1072 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1073 | |
c906108c | 1074 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
1075 | { |
1076 | bv = BLOCKVECTOR (s); | |
1077 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1078 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1079 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1080 | { | |
1081 | return SYMBOL_TYPE (sym); | |
1082 | } | |
1083 | } | |
c906108c SS |
1084 | |
1085 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
1086 | { |
1087 | if (!ps->readin && lookup_partial_symbol (ps, name, 1, STRUCT_NAMESPACE)) | |
1088 | { | |
1089 | s = PSYMTAB_TO_SYMTAB (ps); | |
1090 | bv = BLOCKVECTOR (s); | |
1091 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1092 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1093 | if (!sym) | |
1094 | { | |
1095 | /* This shouldn't be necessary, but as a last resort | |
1096 | * try looking in the statics even though the psymtab | |
1097 | * claimed the symbol was global. It's possible that | |
1098 | * the psymtab gets it wrong in some cases. | |
1099 | */ | |
1100 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1101 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1102 | if (!sym) | |
1103 | error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1104 | %s may be an inlined function, or may be a template function\n\ |
1105 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1106 | name, ps->filename, name, name); |
1107 | } | |
1108 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1109 | return SYMBOL_TYPE (sym); | |
1110 | } | |
1111 | } | |
c906108c SS |
1112 | |
1113 | /* Now search the static file-level symbols. | |
1114 | Not strictly correct, but more useful than an error. | |
1115 | Do the symtab's first, then | |
1116 | check the psymtab's. If a psymtab indicates the existence | |
1117 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1118 | conversion on the fly and return the found symbol. | |
1119 | */ | |
1120 | ||
1121 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1122 | { |
1123 | bv = BLOCKVECTOR (s); | |
1124 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1125 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1126 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1127 | { | |
1128 | return SYMBOL_TYPE (sym); | |
1129 | } | |
1130 | } | |
c906108c SS |
1131 | |
1132 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
1133 | { |
1134 | if (!ps->readin && lookup_partial_symbol (ps, name, 0, STRUCT_NAMESPACE)) | |
1135 | { | |
1136 | s = PSYMTAB_TO_SYMTAB (ps); | |
1137 | bv = BLOCKVECTOR (s); | |
1138 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1139 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1140 | if (!sym) | |
1141 | { | |
1142 | /* This shouldn't be necessary, but as a last resort | |
1143 | * try looking in the globals even though the psymtab | |
1144 | * claimed the symbol was static. It's possible that | |
1145 | * the psymtab gets it wrong in some cases. | |
1146 | */ | |
1147 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1148 | sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE); | |
1149 | if (!sym) | |
1150 | error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ | |
c906108c SS |
1151 | %s may be an inlined function, or may be a template function\n\ |
1152 | (if a template, try specifying an instantiation: %s<type>).", | |
c5aa993b JM |
1153 | name, ps->filename, name, name); |
1154 | } | |
1155 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1156 | return SYMBOL_TYPE (sym); | |
1157 | } | |
1158 | } | |
c906108c SS |
1159 | return (struct type *) 0; |
1160 | } | |
1161 | ||
1162 | ||
1163 | /* Find the psymtab containing main(). */ | |
1164 | /* FIXME: What about languages without main() or specially linked | |
1165 | executables that have no main() ? */ | |
1166 | ||
1167 | struct partial_symtab * | |
1168 | find_main_psymtab () | |
1169 | { | |
1170 | register struct partial_symtab *pst; | |
1171 | register struct objfile *objfile; | |
1172 | ||
1173 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b JM |
1174 | { |
1175 | if (lookup_partial_symbol (pst, "main", 1, VAR_NAMESPACE)) | |
1176 | { | |
1177 | return (pst); | |
1178 | } | |
1179 | } | |
c906108c SS |
1180 | return (NULL); |
1181 | } | |
1182 | ||
1183 | /* Search BLOCK for symbol NAME in NAMESPACE. | |
1184 | ||
1185 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1186 | to find a match during the binary search of the non-encoded names, but | |
1187 | for now we don't worry about the slight inefficiency of looking for | |
1188 | a match we'll never find, since it will go pretty quick. Once the | |
1189 | binary search terminates, we drop through and do a straight linear | |
1190 | search on the symbols. Each symbol which is marked as being a C++ | |
1191 | symbol (language_cplus set) has both the encoded and non-encoded names | |
1192 | tested for a match. */ | |
1193 | ||
1194 | struct symbol * | |
1195 | lookup_block_symbol (block, name, namespace) | |
1196 | register const struct block *block; | |
1197 | const char *name; | |
1198 | const namespace_enum namespace; | |
1199 | { | |
1200 | register int bot, top, inc; | |
1201 | register struct symbol *sym; | |
1202 | register struct symbol *sym_found = NULL; | |
1203 | register int do_linear_search = 1; | |
1204 | ||
1205 | /* If the blocks's symbols were sorted, start with a binary search. */ | |
1206 | ||
1207 | if (BLOCK_SHOULD_SORT (block)) | |
1208 | { | |
1209 | /* Reset the linear search flag so if the binary search fails, we | |
c5aa993b JM |
1210 | won't do the linear search once unless we find some reason to |
1211 | do so, such as finding a C++ symbol during the binary search. | |
1212 | Note that for C++ modules, ALL the symbols in a block should | |
1213 | end up marked as C++ symbols. */ | |
c906108c SS |
1214 | |
1215 | do_linear_search = 0; | |
1216 | top = BLOCK_NSYMS (block); | |
1217 | bot = 0; | |
1218 | ||
1219 | /* Advance BOT to not far before the first symbol whose name is NAME. */ | |
1220 | ||
1221 | while (1) | |
1222 | { | |
1223 | inc = (top - bot + 1); | |
1224 | /* No need to keep binary searching for the last few bits worth. */ | |
1225 | if (inc < 4) | |
1226 | { | |
1227 | break; | |
1228 | } | |
1229 | inc = (inc >> 1) + bot; | |
1230 | sym = BLOCK_SYM (block, inc); | |
1231 | if (!do_linear_search | |
1232 | && (SYMBOL_LANGUAGE (sym) == language_cplus | |
1233 | || SYMBOL_LANGUAGE (sym) == language_java | |
c5aa993b | 1234 | )) |
c906108c SS |
1235 | { |
1236 | do_linear_search = 1; | |
1237 | } | |
1238 | if (SYMBOL_NAME (sym)[0] < name[0]) | |
1239 | { | |
1240 | bot = inc; | |
1241 | } | |
1242 | else if (SYMBOL_NAME (sym)[0] > name[0]) | |
1243 | { | |
1244 | top = inc; | |
1245 | } | |
1246 | else if (STRCMP (SYMBOL_NAME (sym), name) < 0) | |
1247 | { | |
1248 | bot = inc; | |
1249 | } | |
1250 | else | |
1251 | { | |
1252 | top = inc; | |
1253 | } | |
1254 | } | |
1255 | ||
1256 | /* Now scan forward until we run out of symbols, find one whose | |
c5aa993b JM |
1257 | name is greater than NAME, or find one we want. If there is |
1258 | more than one symbol with the right name and namespace, we | |
1259 | return the first one; I believe it is now impossible for us | |
1260 | to encounter two symbols with the same name and namespace | |
1261 | here, because blocks containing argument symbols are no | |
1262 | longer sorted. */ | |
c906108c SS |
1263 | |
1264 | top = BLOCK_NSYMS (block); | |
1265 | while (bot < top) | |
1266 | { | |
1267 | sym = BLOCK_SYM (block, bot); | |
1268 | inc = SYMBOL_NAME (sym)[0] - name[0]; | |
1269 | if (inc == 0) | |
1270 | { | |
1271 | inc = STRCMP (SYMBOL_NAME (sym), name); | |
1272 | } | |
1273 | if (inc == 0 && SYMBOL_NAMESPACE (sym) == namespace) | |
1274 | { | |
1275 | return (sym); | |
1276 | } | |
1277 | if (inc > 0) | |
1278 | { | |
1279 | break; | |
1280 | } | |
1281 | bot++; | |
1282 | } | |
1283 | } | |
1284 | ||
1285 | /* Here if block isn't sorted, or we fail to find a match during the | |
1286 | binary search above. If during the binary search above, we find a | |
1287 | symbol which is a C++ symbol, then we have re-enabled the linear | |
1288 | search flag which was reset when starting the binary search. | |
1289 | ||
1290 | This loop is equivalent to the loop above, but hacked greatly for speed. | |
1291 | ||
1292 | Note that parameter symbols do not always show up last in the | |
1293 | list; this loop makes sure to take anything else other than | |
1294 | parameter symbols first; it only uses parameter symbols as a | |
1295 | last resort. Note that this only takes up extra computation | |
1296 | time on a match. */ | |
1297 | ||
1298 | if (do_linear_search) | |
1299 | { | |
1300 | top = BLOCK_NSYMS (block); | |
1301 | bot = 0; | |
1302 | while (bot < top) | |
1303 | { | |
1304 | sym = BLOCK_SYM (block, bot); | |
1305 | if (SYMBOL_NAMESPACE (sym) == namespace && | |
1306 | SYMBOL_MATCHES_NAME (sym, name)) | |
1307 | { | |
1308 | /* If SYM has aliases, then use any alias that is active | |
c5aa993b JM |
1309 | at the current PC. If no alias is active at the current |
1310 | PC, then use the main symbol. | |
c906108c | 1311 | |
c5aa993b | 1312 | ?!? Is checking the current pc correct? Is this routine |
a0b3c4fd JM |
1313 | ever called to look up a symbol from another context? |
1314 | ||
1315 | FIXME: No, it's not correct. If someone sets a | |
1316 | conditional breakpoint at an address, then the | |
1317 | breakpoint's `struct expression' should refer to the | |
1318 | `struct symbol' appropriate for the breakpoint's | |
1319 | address, which may not be the PC. | |
1320 | ||
1321 | Even if it were never called from another context, | |
1322 | it's totally bizarre for lookup_symbol's behavior to | |
1323 | depend on the value of the inferior's current PC. We | |
1324 | should pass in the appropriate PC as well as the | |
1325 | block. The interface to lookup_symbol should change | |
1326 | to require the caller to provide a PC. */ | |
1327 | ||
c5aa993b JM |
1328 | if (SYMBOL_ALIASES (sym)) |
1329 | sym = find_active_alias (sym, read_pc ()); | |
c906108c SS |
1330 | |
1331 | sym_found = sym; | |
1332 | if (SYMBOL_CLASS (sym) != LOC_ARG && | |
1333 | SYMBOL_CLASS (sym) != LOC_LOCAL_ARG && | |
1334 | SYMBOL_CLASS (sym) != LOC_REF_ARG && | |
1335 | SYMBOL_CLASS (sym) != LOC_REGPARM && | |
1336 | SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR && | |
1337 | SYMBOL_CLASS (sym) != LOC_BASEREG_ARG) | |
1338 | { | |
1339 | break; | |
1340 | } | |
1341 | } | |
1342 | bot++; | |
1343 | } | |
1344 | } | |
1345 | return (sym_found); /* Will be NULL if not found. */ | |
1346 | } | |
1347 | ||
1348 | /* Given a main symbol SYM and ADDR, search through the alias | |
1349 | list to determine if an alias is active at ADDR and return | |
1350 | the active alias. | |
1351 | ||
1352 | If no alias is active, then return SYM. */ | |
1353 | ||
1354 | static struct symbol * | |
1355 | find_active_alias (sym, addr) | |
c5aa993b JM |
1356 | struct symbol *sym; |
1357 | CORE_ADDR addr; | |
c906108c SS |
1358 | { |
1359 | struct range_list *r; | |
1360 | struct alias_list *aliases; | |
1361 | ||
1362 | /* If we have aliases, check them first. */ | |
1363 | aliases = SYMBOL_ALIASES (sym); | |
1364 | ||
1365 | while (aliases) | |
1366 | { | |
1367 | if (!SYMBOL_RANGES (aliases->sym)) | |
c5aa993b | 1368 | return aliases->sym; |
c906108c SS |
1369 | for (r = SYMBOL_RANGES (aliases->sym); r; r = r->next) |
1370 | { | |
1371 | if (r->start <= addr && r->end > addr) | |
1372 | return aliases->sym; | |
1373 | } | |
1374 | aliases = aliases->next; | |
1375 | } | |
1376 | ||
1377 | /* Nothing found, return the main symbol. */ | |
1378 | return sym; | |
1379 | } | |
c906108c | 1380 | \f |
c5aa993b | 1381 | |
c906108c SS |
1382 | /* Return the symbol for the function which contains a specified |
1383 | lexical block, described by a struct block BL. */ | |
1384 | ||
1385 | struct symbol * | |
1386 | block_function (bl) | |
1387 | struct block *bl; | |
1388 | { | |
1389 | while (BLOCK_FUNCTION (bl) == 0 && BLOCK_SUPERBLOCK (bl) != 0) | |
1390 | bl = BLOCK_SUPERBLOCK (bl); | |
1391 | ||
1392 | return BLOCK_FUNCTION (bl); | |
1393 | } | |
1394 | ||
1395 | /* Find the symtab associated with PC and SECTION. Look through the | |
1396 | psymtabs and read in another symtab if necessary. */ | |
1397 | ||
1398 | struct symtab * | |
1399 | find_pc_sect_symtab (pc, section) | |
1400 | CORE_ADDR pc; | |
1401 | asection *section; | |
1402 | { | |
1403 | register struct block *b; | |
1404 | struct blockvector *bv; | |
1405 | register struct symtab *s = NULL; | |
1406 | register struct symtab *best_s = NULL; | |
1407 | register struct partial_symtab *ps; | |
1408 | register struct objfile *objfile; | |
1409 | CORE_ADDR distance = 0; | |
1410 | ||
1411 | /* Search all symtabs for the one whose file contains our address, and which | |
1412 | is the smallest of all the ones containing the address. This is designed | |
1413 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1414 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1415 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1416 | ||
1417 | This happens for native ecoff format, where code from included files | |
1418 | gets its own symtab. The symtab for the included file should have | |
1419 | been read in already via the dependency mechanism. | |
1420 | It might be swifter to create several symtabs with the same name | |
1421 | like xcoff does (I'm not sure). | |
1422 | ||
1423 | It also happens for objfiles that have their functions reordered. | |
1424 | For these, the symtab we are looking for is not necessarily read in. */ | |
1425 | ||
1426 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1427 | { |
1428 | bv = BLOCKVECTOR (s); | |
1429 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1430 | |
c5aa993b | 1431 | if (BLOCK_START (b) <= pc |
c5aa993b | 1432 | && BLOCK_END (b) > pc |
c5aa993b JM |
1433 | && (distance == 0 |
1434 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1435 | { | |
1436 | /* For an objfile that has its functions reordered, | |
1437 | find_pc_psymtab will find the proper partial symbol table | |
1438 | and we simply return its corresponding symtab. */ | |
1439 | /* In order to better support objfiles that contain both | |
1440 | stabs and coff debugging info, we continue on if a psymtab | |
1441 | can't be found. */ | |
1442 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
1443 | { | |
1444 | ps = find_pc_sect_psymtab (pc, section); | |
1445 | if (ps) | |
1446 | return PSYMTAB_TO_SYMTAB (ps); | |
1447 | } | |
1448 | if (section != 0) | |
1449 | { | |
1450 | int i; | |
c906108c | 1451 | |
c5aa993b JM |
1452 | for (i = 0; i < b->nsyms; i++) |
1453 | { | |
1454 | fixup_symbol_section (b->sym[i], objfile); | |
1455 | if (section == SYMBOL_BFD_SECTION (b->sym[i])) | |
1456 | break; | |
1457 | } | |
1458 | if (i >= b->nsyms) | |
1459 | continue; /* no symbol in this symtab matches section */ | |
1460 | } | |
1461 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1462 | best_s = s; | |
1463 | } | |
1464 | } | |
c906108c SS |
1465 | |
1466 | if (best_s != NULL) | |
c5aa993b | 1467 | return (best_s); |
c906108c SS |
1468 | |
1469 | s = NULL; | |
1470 | ps = find_pc_sect_psymtab (pc, section); | |
1471 | if (ps) | |
1472 | { | |
1473 | if (ps->readin) | |
1474 | /* Might want to error() here (in case symtab is corrupt and | |
1475 | will cause a core dump), but maybe we can successfully | |
1476 | continue, so let's not. */ | |
1477 | /* FIXME-32x64: assumes pc fits in a long */ | |
1478 | warning ("\ | |
1479 | (Internal error: pc 0x%lx in read in psymtab, but not in symtab.)\n", | |
c5aa993b | 1480 | (unsigned long) pc); |
c906108c SS |
1481 | s = PSYMTAB_TO_SYMTAB (ps); |
1482 | } | |
1483 | return (s); | |
1484 | } | |
1485 | ||
1486 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1487 | read in another symtab if necessary. Backward compatibility, no section */ | |
1488 | ||
1489 | struct symtab * | |
1490 | find_pc_symtab (pc) | |
1491 | CORE_ADDR pc; | |
1492 | { | |
1493 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1494 | } | |
c906108c | 1495 | \f |
c5aa993b | 1496 | |
c906108c SS |
1497 | #if 0 |
1498 | ||
1499 | /* Find the closest symbol value (of any sort -- function or variable) | |
1500 | for a given address value. Slow but complete. (currently unused, | |
1501 | mainly because it is too slow. We could fix it if each symtab and | |
1502 | psymtab had contained in it the addresses ranges of each of its | |
1503 | sections, which also would be required to make things like "info | |
1504 | line *0x2345" cause psymtabs to be converted to symtabs). */ | |
1505 | ||
1506 | struct symbol * | |
1507 | find_addr_symbol (addr, symtabp, symaddrp) | |
1508 | CORE_ADDR addr; | |
1509 | struct symtab **symtabp; | |
1510 | CORE_ADDR *symaddrp; | |
1511 | { | |
1512 | struct symtab *symtab, *best_symtab; | |
1513 | struct objfile *objfile; | |
1514 | register int bot, top; | |
1515 | register struct symbol *sym; | |
1516 | register CORE_ADDR sym_addr; | |
1517 | struct block *block; | |
1518 | int blocknum; | |
1519 | ||
1520 | /* Info on best symbol seen so far */ | |
1521 | ||
1522 | register CORE_ADDR best_sym_addr = 0; | |
1523 | struct symbol *best_sym = 0; | |
1524 | ||
1525 | /* FIXME -- we should pull in all the psymtabs, too! */ | |
1526 | ALL_SYMTABS (objfile, symtab) | |
c5aa993b JM |
1527 | { |
1528 | /* Search the global and static blocks in this symtab for | |
1529 | the closest symbol-address to the desired address. */ | |
c906108c | 1530 | |
c5aa993b JM |
1531 | for (blocknum = GLOBAL_BLOCK; blocknum <= STATIC_BLOCK; blocknum++) |
1532 | { | |
1533 | QUIT; | |
1534 | block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), blocknum); | |
1535 | top = BLOCK_NSYMS (block); | |
1536 | for (bot = 0; bot < top; bot++) | |
1537 | { | |
1538 | sym = BLOCK_SYM (block, bot); | |
1539 | switch (SYMBOL_CLASS (sym)) | |
1540 | { | |
1541 | case LOC_STATIC: | |
1542 | case LOC_LABEL: | |
1543 | sym_addr = SYMBOL_VALUE_ADDRESS (sym); | |
1544 | break; | |
1545 | ||
1546 | case LOC_INDIRECT: | |
1547 | sym_addr = SYMBOL_VALUE_ADDRESS (sym); | |
1548 | /* An indirect symbol really lives at *sym_addr, | |
1549 | * so an indirection needs to be done. | |
1550 | * However, I am leaving this commented out because it's | |
1551 | * expensive, and it's possible that symbolization | |
1552 | * could be done without an active process (in | |
1553 | * case this read_memory will fail). RT | |
1554 | sym_addr = read_memory_unsigned_integer | |
1555 | (sym_addr, TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
1556 | */ | |
1557 | break; | |
c906108c | 1558 | |
c5aa993b JM |
1559 | case LOC_BLOCK: |
1560 | sym_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1561 | break; | |
c906108c | 1562 | |
c5aa993b JM |
1563 | default: |
1564 | continue; | |
1565 | } | |
c906108c | 1566 | |
c5aa993b JM |
1567 | if (sym_addr <= addr) |
1568 | if (sym_addr > best_sym_addr) | |
1569 | { | |
1570 | /* Quit if we found an exact match. */ | |
1571 | best_sym = sym; | |
1572 | best_sym_addr = sym_addr; | |
1573 | best_symtab = symtab; | |
1574 | if (sym_addr == addr) | |
1575 | goto done; | |
1576 | } | |
1577 | } | |
1578 | } | |
1579 | } | |
c906108c | 1580 | |
c5aa993b | 1581 | done: |
c906108c SS |
1582 | if (symtabp) |
1583 | *symtabp = best_symtab; | |
1584 | if (symaddrp) | |
1585 | *symaddrp = best_sym_addr; | |
1586 | return best_sym; | |
1587 | } | |
1588 | #endif /* 0 */ | |
1589 | ||
1590 | /* Find the source file and line number for a given PC value and section. | |
1591 | Return a structure containing a symtab pointer, a line number, | |
1592 | and a pc range for the entire source line. | |
1593 | The value's .pc field is NOT the specified pc. | |
1594 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1595 | use the line that ends there. Otherwise, in that case, the line | |
1596 | that begins there is used. */ | |
1597 | ||
1598 | /* The big complication here is that a line may start in one file, and end just | |
1599 | before the start of another file. This usually occurs when you #include | |
1600 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1601 | range, we must search all symtabs associated with this compilation unit, and | |
1602 | find the one whose first PC is closer than that of the next line in this | |
1603 | symtab. */ | |
1604 | ||
1605 | /* If it's worth the effort, we could be using a binary search. */ | |
1606 | ||
1607 | struct symtab_and_line | |
1608 | find_pc_sect_line (pc, section, notcurrent) | |
1609 | CORE_ADDR pc; | |
1610 | struct sec *section; | |
1611 | int notcurrent; | |
1612 | { | |
1613 | struct symtab *s; | |
1614 | register struct linetable *l; | |
1615 | register int len; | |
1616 | register int i; | |
1617 | register struct linetable_entry *item; | |
1618 | struct symtab_and_line val; | |
1619 | struct blockvector *bv; | |
1620 | struct minimal_symbol *msymbol; | |
1621 | struct minimal_symbol *mfunsym; | |
1622 | ||
1623 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1624 | ||
1625 | struct linetable_entry *best = NULL; | |
1626 | CORE_ADDR best_end = 0; | |
1627 | struct symtab *best_symtab = 0; | |
1628 | ||
1629 | /* Store here the first line number | |
1630 | of a file which contains the line at the smallest pc after PC. | |
1631 | If we don't find a line whose range contains PC, | |
1632 | we will use a line one less than this, | |
1633 | with a range from the start of that file to the first line's pc. */ | |
1634 | struct linetable_entry *alt = NULL; | |
1635 | struct symtab *alt_symtab = 0; | |
1636 | ||
1637 | /* Info on best line seen in this file. */ | |
1638 | ||
1639 | struct linetable_entry *prev; | |
1640 | ||
1641 | /* If this pc is not from the current frame, | |
1642 | it is the address of the end of a call instruction. | |
1643 | Quite likely that is the start of the following statement. | |
1644 | But what we want is the statement containing the instruction. | |
1645 | Fudge the pc to make sure we get that. */ | |
1646 | ||
c5aa993b | 1647 | INIT_SAL (&val); /* initialize to zeroes */ |
c906108c SS |
1648 | |
1649 | if (notcurrent) | |
1650 | pc -= 1; | |
1651 | ||
c5aa993b | 1652 | /* elz: added this because this function returned the wrong |
c906108c SS |
1653 | information if the pc belongs to a stub (import/export) |
1654 | to call a shlib function. This stub would be anywhere between | |
1655 | two functions in the target, and the line info was erroneously | |
1656 | taken to be the one of the line before the pc. | |
c5aa993b | 1657 | */ |
c906108c | 1658 | /* RT: Further explanation: |
c5aa993b | 1659 | |
c906108c SS |
1660 | * We have stubs (trampolines) inserted between procedures. |
1661 | * | |
1662 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
1663 | * exists in the main image. | |
1664 | * | |
1665 | * In the minimal symbol table, we have a bunch of symbols | |
1666 | * sorted by start address. The stubs are marked as "trampoline", | |
1667 | * the others appear as text. E.g.: | |
1668 | * | |
1669 | * Minimal symbol table for main image | |
1670 | * main: code for main (text symbol) | |
1671 | * shr1: stub (trampoline symbol) | |
1672 | * foo: code for foo (text symbol) | |
1673 | * ... | |
1674 | * Minimal symbol table for "shr1" image: | |
1675 | * ... | |
1676 | * shr1: code for shr1 (text symbol) | |
1677 | * ... | |
1678 | * | |
1679 | * So the code below is trying to detect if we are in the stub | |
1680 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
1681 | * and if found, do the symbolization from the real-code address | |
1682 | * rather than the stub address. | |
1683 | * | |
1684 | * Assumptions being made about the minimal symbol table: | |
1685 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
1686 | * if we're really in the trampoline. If we're beyond it (say | |
1687 | * we're in "foo" in the above example), it'll have a closer | |
1688 | * symbol (the "foo" text symbol for example) and will not | |
1689 | * return the trampoline. | |
1690 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
1691 | * corresponding to the trampoline, and whose address will | |
1692 | * be different than the trampoline address. I put in a sanity | |
1693 | * check for the address being the same, to avoid an | |
1694 | * infinite recursion. | |
1695 | */ | |
c5aa993b JM |
1696 | msymbol = lookup_minimal_symbol_by_pc (pc); |
1697 | if (msymbol != NULL) | |
c906108c | 1698 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b JM |
1699 | { |
1700 | mfunsym = lookup_minimal_symbol_text (SYMBOL_NAME (msymbol), NULL, NULL); | |
1701 | if (mfunsym == NULL) | |
1702 | /* I eliminated this warning since it is coming out | |
1703 | * in the following situation: | |
1704 | * gdb shmain // test program with shared libraries | |
1705 | * (gdb) break shr1 // function in shared lib | |
1706 | * Warning: In stub for ... | |
1707 | * In the above situation, the shared lib is not loaded yet, | |
1708 | * so of course we can't find the real func/line info, | |
1709 | * but the "break" still works, and the warning is annoying. | |
1710 | * So I commented out the warning. RT */ | |
1711 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ; | |
1712 | /* fall through */ | |
1713 | else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol)) | |
1714 | /* Avoid infinite recursion */ | |
1715 | /* See above comment about why warning is commented out */ | |
1716 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ; | |
1717 | /* fall through */ | |
1718 | else | |
1719 | return find_pc_line (SYMBOL_VALUE (mfunsym), 0); | |
1720 | } | |
c906108c SS |
1721 | |
1722 | ||
1723 | s = find_pc_sect_symtab (pc, section); | |
1724 | if (!s) | |
1725 | { | |
1726 | /* if no symbol information, return previous pc */ | |
1727 | if (notcurrent) | |
1728 | pc++; | |
1729 | val.pc = pc; | |
1730 | return val; | |
1731 | } | |
1732 | ||
1733 | bv = BLOCKVECTOR (s); | |
1734 | ||
1735 | /* Look at all the symtabs that share this blockvector. | |
1736 | They all have the same apriori range, that we found was right; | |
1737 | but they have different line tables. */ | |
1738 | ||
1739 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
1740 | { | |
1741 | /* Find the best line in this symtab. */ | |
1742 | l = LINETABLE (s); | |
1743 | if (!l) | |
c5aa993b | 1744 | continue; |
c906108c SS |
1745 | len = l->nitems; |
1746 | if (len <= 0) | |
1747 | { | |
1748 | /* I think len can be zero if the symtab lacks line numbers | |
1749 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
1750 | I'm not sure which, and maybe it depends on the symbol | |
1751 | reader). */ | |
1752 | continue; | |
1753 | } | |
1754 | ||
1755 | prev = NULL; | |
1756 | item = l->item; /* Get first line info */ | |
1757 | ||
1758 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 1759 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
1760 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
1761 | { | |
1762 | alt = item; | |
1763 | alt_symtab = s; | |
1764 | } | |
1765 | ||
1766 | for (i = 0; i < len; i++, item++) | |
1767 | { | |
1768 | /* Leave prev pointing to the linetable entry for the last line | |
1769 | that started at or before PC. */ | |
1770 | if (item->pc > pc) | |
1771 | break; | |
1772 | ||
1773 | prev = item; | |
1774 | } | |
1775 | ||
1776 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
1777 | item points at the next line. If we ran off the end of the linetable |
1778 | (pc >= start of the last line), then prev == item. If pc < start of | |
1779 | the first line, prev will not be set. */ | |
c906108c SS |
1780 | |
1781 | /* Is this file's best line closer than the best in the other files? | |
c5aa993b | 1782 | If so, record this file, and its best line, as best so far. */ |
c906108c SS |
1783 | |
1784 | if (prev && (!best || prev->pc > best->pc)) | |
1785 | { | |
1786 | best = prev; | |
1787 | best_symtab = s; | |
1788 | /* If another line is in the linetable, and its PC is closer | |
1789 | than the best_end we currently have, take it as best_end. */ | |
1790 | if (i < len && (best_end == 0 || best_end > item->pc)) | |
1791 | best_end = item->pc; | |
1792 | } | |
1793 | } | |
1794 | ||
1795 | if (!best_symtab) | |
1796 | { | |
1797 | if (!alt_symtab) | |
1798 | { /* If we didn't find any line # info, just | |
1799 | return zeros. */ | |
1800 | val.pc = pc; | |
1801 | } | |
1802 | else | |
1803 | { | |
1804 | val.symtab = alt_symtab; | |
1805 | val.line = alt->line - 1; | |
1806 | ||
1807 | /* Don't return line 0, that means that we didn't find the line. */ | |
c5aa993b JM |
1808 | if (val.line == 0) |
1809 | ++val.line; | |
c906108c SS |
1810 | |
1811 | val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
1812 | val.end = alt->pc; | |
1813 | } | |
1814 | } | |
1815 | else | |
1816 | { | |
1817 | val.symtab = best_symtab; | |
1818 | val.line = best->line; | |
1819 | val.pc = best->pc; | |
1820 | if (best_end && (!alt || best_end < alt->pc)) | |
1821 | val.end = best_end; | |
1822 | else if (alt) | |
1823 | val.end = alt->pc; | |
1824 | else | |
1825 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
1826 | } | |
1827 | val.section = section; | |
1828 | return val; | |
1829 | } | |
1830 | ||
1831 | /* Backward compatibility (no section) */ | |
1832 | ||
1833 | struct symtab_and_line | |
1834 | find_pc_line (pc, notcurrent) | |
1835 | CORE_ADDR pc; | |
1836 | int notcurrent; | |
1837 | { | |
c5aa993b | 1838 | asection *section; |
c906108c SS |
1839 | |
1840 | section = find_pc_overlay (pc); | |
1841 | if (pc_in_unmapped_range (pc, section)) | |
1842 | pc = overlay_mapped_address (pc, section); | |
1843 | return find_pc_sect_line (pc, section, notcurrent); | |
1844 | } | |
c906108c | 1845 | \f |
c5aa993b JM |
1846 | |
1847 | static struct symtab *find_line_symtab PARAMS ((struct symtab *, int, | |
c906108c SS |
1848 | int *, int *)); |
1849 | ||
1850 | /* Find line number LINE in any symtab whose name is the same as | |
1851 | SYMTAB. | |
1852 | ||
1853 | If found, return the symtab that contains the linetable in which it was | |
1854 | found, set *INDEX to the index in the linetable of the best entry | |
1855 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
1856 | exact match. | |
1857 | ||
1858 | If not found, return NULL. */ | |
1859 | ||
c5aa993b | 1860 | static struct symtab * |
c906108c SS |
1861 | find_line_symtab (symtab, line, index, exact_match) |
1862 | struct symtab *symtab; | |
1863 | int line; | |
1864 | int *index; | |
1865 | int *exact_match; | |
1866 | { | |
1867 | int exact; | |
1868 | ||
1869 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
1870 | so far seen. */ | |
1871 | ||
1872 | int best_index; | |
1873 | struct linetable *best_linetable; | |
1874 | struct symtab *best_symtab; | |
1875 | ||
1876 | /* First try looking it up in the given symtab. */ | |
1877 | best_linetable = LINETABLE (symtab); | |
1878 | best_symtab = symtab; | |
1879 | best_index = find_line_common (best_linetable, line, &exact); | |
1880 | if (best_index < 0 || !exact) | |
1881 | { | |
1882 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
1883 | another symtab with the same name. In the case of xcoff, |
1884 | multiple csects for one source file (produced by IBM's FORTRAN | |
1885 | compiler) produce multiple symtabs (this is unavoidable | |
1886 | assuming csects can be at arbitrary places in memory and that | |
1887 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
1888 | |
1889 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
1890 | or 0 if none has been seen so far. |
1891 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
1892 | int best; |
1893 | ||
1894 | struct objfile *objfile; | |
1895 | struct symtab *s; | |
1896 | ||
1897 | if (best_index >= 0) | |
1898 | best = best_linetable->item[best_index].line; | |
1899 | else | |
1900 | best = 0; | |
1901 | ||
1902 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1903 | { |
1904 | struct linetable *l; | |
1905 | int ind; | |
c906108c | 1906 | |
c5aa993b JM |
1907 | if (!STREQ (symtab->filename, s->filename)) |
1908 | continue; | |
1909 | l = LINETABLE (s); | |
1910 | ind = find_line_common (l, line, &exact); | |
1911 | if (ind >= 0) | |
1912 | { | |
1913 | if (exact) | |
1914 | { | |
1915 | best_index = ind; | |
1916 | best_linetable = l; | |
1917 | best_symtab = s; | |
1918 | goto done; | |
1919 | } | |
1920 | if (best == 0 || l->item[ind].line < best) | |
1921 | { | |
1922 | best = l->item[ind].line; | |
1923 | best_index = ind; | |
1924 | best_linetable = l; | |
1925 | best_symtab = s; | |
1926 | } | |
1927 | } | |
1928 | } | |
c906108c | 1929 | } |
c5aa993b | 1930 | done: |
c906108c SS |
1931 | if (best_index < 0) |
1932 | return NULL; | |
1933 | ||
1934 | if (index) | |
1935 | *index = best_index; | |
1936 | if (exact_match) | |
1937 | *exact_match = exact; | |
1938 | ||
1939 | return best_symtab; | |
1940 | } | |
1941 | \f | |
1942 | /* Set the PC value for a given source file and line number and return true. | |
1943 | Returns zero for invalid line number (and sets the PC to 0). | |
1944 | The source file is specified with a struct symtab. */ | |
1945 | ||
1946 | int | |
1947 | find_line_pc (symtab, line, pc) | |
1948 | struct symtab *symtab; | |
1949 | int line; | |
1950 | CORE_ADDR *pc; | |
1951 | { | |
1952 | struct linetable *l; | |
1953 | int ind; | |
1954 | ||
1955 | *pc = 0; | |
1956 | if (symtab == 0) | |
1957 | return 0; | |
1958 | ||
1959 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
1960 | if (symtab != NULL) | |
1961 | { | |
1962 | l = LINETABLE (symtab); | |
1963 | *pc = l->item[ind].pc; | |
1964 | return 1; | |
1965 | } | |
1966 | else | |
1967 | return 0; | |
1968 | } | |
1969 | ||
1970 | /* Find the range of pc values in a line. | |
1971 | Store the starting pc of the line into *STARTPTR | |
1972 | and the ending pc (start of next line) into *ENDPTR. | |
1973 | Returns 1 to indicate success. | |
1974 | Returns 0 if could not find the specified line. */ | |
1975 | ||
1976 | int | |
1977 | find_line_pc_range (sal, startptr, endptr) | |
1978 | struct symtab_and_line sal; | |
1979 | CORE_ADDR *startptr, *endptr; | |
1980 | { | |
1981 | CORE_ADDR startaddr; | |
1982 | struct symtab_and_line found_sal; | |
1983 | ||
1984 | startaddr = sal.pc; | |
c5aa993b | 1985 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
1986 | return 0; |
1987 | ||
1988 | /* This whole function is based on address. For example, if line 10 has | |
1989 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
1990 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
1991 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
1992 | This also insures that we never give a range like "starts at 0x134 | |
1993 | and ends at 0x12c". */ | |
1994 | ||
1995 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
1996 | if (found_sal.line != sal.line) | |
1997 | { | |
1998 | /* The specified line (sal) has zero bytes. */ | |
1999 | *startptr = found_sal.pc; | |
2000 | *endptr = found_sal.pc; | |
2001 | } | |
2002 | else | |
2003 | { | |
2004 | *startptr = found_sal.pc; | |
2005 | *endptr = found_sal.end; | |
2006 | } | |
2007 | return 1; | |
2008 | } | |
2009 | ||
2010 | /* Given a line table and a line number, return the index into the line | |
2011 | table for the pc of the nearest line whose number is >= the specified one. | |
2012 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2013 | ||
2014 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2015 | ||
2016 | static int | |
2017 | find_line_common (l, lineno, exact_match) | |
2018 | register struct linetable *l; | |
2019 | register int lineno; | |
2020 | int *exact_match; | |
2021 | { | |
2022 | register int i; | |
2023 | register int len; | |
2024 | ||
2025 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2026 | or 0 if none has been seen so far. | |
2027 | BEST_INDEX identifies the item for it. */ | |
2028 | ||
2029 | int best_index = -1; | |
2030 | int best = 0; | |
2031 | ||
2032 | if (lineno <= 0) | |
2033 | return -1; | |
2034 | if (l == 0) | |
2035 | return -1; | |
2036 | ||
2037 | len = l->nitems; | |
2038 | for (i = 0; i < len; i++) | |
2039 | { | |
2040 | register struct linetable_entry *item = &(l->item[i]); | |
2041 | ||
2042 | if (item->line == lineno) | |
2043 | { | |
2044 | /* Return the first (lowest address) entry which matches. */ | |
2045 | *exact_match = 1; | |
2046 | return i; | |
2047 | } | |
2048 | ||
2049 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2050 | { | |
2051 | best = item->line; | |
2052 | best_index = i; | |
2053 | } | |
2054 | } | |
2055 | ||
2056 | /* If we got here, we didn't get an exact match. */ | |
2057 | ||
2058 | *exact_match = 0; | |
2059 | return best_index; | |
2060 | } | |
2061 | ||
2062 | int | |
2063 | find_pc_line_pc_range (pc, startptr, endptr) | |
2064 | CORE_ADDR pc; | |
2065 | CORE_ADDR *startptr, *endptr; | |
2066 | { | |
2067 | struct symtab_and_line sal; | |
2068 | sal = find_pc_line (pc, 0); | |
2069 | *startptr = sal.pc; | |
2070 | *endptr = sal.end; | |
2071 | return sal.symtab != 0; | |
2072 | } | |
2073 | ||
2074 | /* Given a function symbol SYM, find the symtab and line for the start | |
2075 | of the function. | |
2076 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2077 | of real code inside the function. */ | |
2078 | ||
2079 | static struct symtab_and_line | |
c5aa993b | 2080 | find_function_start_sal PARAMS ((struct symbol * sym, int)); |
c906108c SS |
2081 | |
2082 | static struct symtab_and_line | |
2083 | find_function_start_sal (sym, funfirstline) | |
2084 | struct symbol *sym; | |
2085 | int funfirstline; | |
2086 | { | |
2087 | CORE_ADDR pc; | |
2088 | struct symtab_and_line sal; | |
2089 | ||
2090 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2091 | fixup_symbol_section (sym, NULL); | |
2092 | if (funfirstline) | |
c5aa993b | 2093 | { /* skip "first line" of function (which is actually its prologue) */ |
c906108c SS |
2094 | asection *section = SYMBOL_BFD_SECTION (sym); |
2095 | /* If function is in an unmapped overlay, use its unmapped LMA | |
c5aa993b | 2096 | address, so that SKIP_PROLOGUE has something unique to work on */ |
c906108c SS |
2097 | if (section_is_overlay (section) && |
2098 | !section_is_mapped (section)) | |
2099 | pc = overlay_unmapped_address (pc, section); | |
2100 | ||
2101 | pc += FUNCTION_START_OFFSET; | |
b83266a0 | 2102 | pc = SKIP_PROLOGUE (pc); |
c906108c SS |
2103 | |
2104 | /* For overlays, map pc back into its mapped VMA range */ | |
2105 | pc = overlay_mapped_address (pc, section); | |
2106 | } | |
2107 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2108 | ||
2109 | #ifdef PROLOGUE_FIRSTLINE_OVERLAP | |
2110 | /* Convex: no need to suppress code on first line, if any */ | |
2111 | sal.pc = pc; | |
2112 | #else | |
2113 | /* Check if SKIP_PROLOGUE left us in mid-line, and the next | |
2114 | line is still part of the same function. */ | |
2115 | if (sal.pc != pc | |
2116 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end | |
2117 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2118 | { | |
2119 | /* First pc of next line */ | |
2120 | pc = sal.end; | |
2121 | /* Recalculate the line number (might not be N+1). */ | |
2122 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2123 | } | |
2124 | sal.pc = pc; | |
2125 | #endif | |
2126 | ||
2127 | return sal; | |
2128 | } | |
2129 | \f | |
2130 | /* If P is of the form "operator[ \t]+..." where `...' is | |
2131 | some legitimate operator text, return a pointer to the | |
2132 | beginning of the substring of the operator text. | |
2133 | Otherwise, return "". */ | |
2134 | char * | |
2135 | operator_chars (p, end) | |
2136 | char *p; | |
2137 | char **end; | |
2138 | { | |
2139 | *end = ""; | |
2140 | if (strncmp (p, "operator", 8)) | |
2141 | return *end; | |
2142 | p += 8; | |
2143 | ||
2144 | /* Don't get faked out by `operator' being part of a longer | |
2145 | identifier. */ | |
c5aa993b | 2146 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2147 | return *end; |
2148 | ||
2149 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2150 | while (*p == ' ' || *p == '\t') | |
2151 | p++; | |
2152 | ||
2153 | /* Recognize 'operator TYPENAME'. */ | |
2154 | ||
c5aa993b | 2155 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2156 | { |
c5aa993b JM |
2157 | register char *q = p + 1; |
2158 | while (isalnum (*q) || *q == '_' || *q == '$') | |
c906108c SS |
2159 | q++; |
2160 | *end = q; | |
2161 | return p; | |
2162 | } | |
2163 | ||
2164 | switch (*p) | |
2165 | { | |
2166 | case '!': | |
2167 | case '=': | |
2168 | case '*': | |
2169 | case '/': | |
2170 | case '%': | |
2171 | case '^': | |
2172 | if (p[1] == '=') | |
c5aa993b | 2173 | *end = p + 2; |
c906108c | 2174 | else |
c5aa993b | 2175 | *end = p + 1; |
c906108c SS |
2176 | return p; |
2177 | case '<': | |
2178 | case '>': | |
2179 | case '+': | |
2180 | case '-': | |
2181 | case '&': | |
2182 | case '|': | |
2183 | if (p[1] == '=' || p[1] == p[0]) | |
c5aa993b | 2184 | *end = p + 2; |
c906108c | 2185 | else |
c5aa993b | 2186 | *end = p + 1; |
c906108c SS |
2187 | return p; |
2188 | case '~': | |
2189 | case ',': | |
c5aa993b | 2190 | *end = p + 1; |
c906108c SS |
2191 | return p; |
2192 | case '(': | |
2193 | if (p[1] != ')') | |
2194 | error ("`operator ()' must be specified without whitespace in `()'"); | |
c5aa993b | 2195 | *end = p + 2; |
c906108c SS |
2196 | return p; |
2197 | case '?': | |
2198 | if (p[1] != ':') | |
2199 | error ("`operator ?:' must be specified without whitespace in `?:'"); | |
c5aa993b | 2200 | *end = p + 2; |
c906108c SS |
2201 | return p; |
2202 | case '[': | |
2203 | if (p[1] != ']') | |
2204 | error ("`operator []' must be specified without whitespace in `[]'"); | |
c5aa993b | 2205 | *end = p + 2; |
c906108c SS |
2206 | return p; |
2207 | default: | |
2208 | error ("`operator %s' not supported", p); | |
2209 | break; | |
2210 | } | |
2211 | *end = ""; | |
2212 | return *end; | |
2213 | } | |
2214 | ||
2215 | /* Return the number of methods described for TYPE, including the | |
2216 | methods from types it derives from. This can't be done in the symbol | |
2217 | reader because the type of the baseclass might still be stubbed | |
2218 | when the definition of the derived class is parsed. */ | |
2219 | ||
c5aa993b | 2220 | static int total_number_of_methods PARAMS ((struct type * type)); |
c906108c SS |
2221 | |
2222 | static int | |
2223 | total_number_of_methods (type) | |
2224 | struct type *type; | |
2225 | { | |
2226 | int n; | |
2227 | int count; | |
2228 | ||
2229 | CHECK_TYPEDEF (type); | |
2230 | if (TYPE_CPLUS_SPECIFIC (type) == NULL) | |
2231 | return 0; | |
2232 | count = TYPE_NFN_FIELDS_TOTAL (type); | |
2233 | ||
2234 | for (n = 0; n < TYPE_N_BASECLASSES (type); n++) | |
2235 | count += total_number_of_methods (TYPE_BASECLASS (type, n)); | |
2236 | ||
2237 | return count; | |
2238 | } | |
2239 | ||
2240 | /* Recursive helper function for decode_line_1. | |
2241 | Look for methods named NAME in type T. | |
2242 | Return number of matches. | |
2243 | Put matches in SYM_ARR, which should have been allocated with | |
2244 | a size of total_number_of_methods (T) * sizeof (struct symbol *). | |
2245 | Note that this function is g++ specific. */ | |
2246 | ||
2247 | static int | |
2248 | find_methods (t, name, sym_arr) | |
2249 | struct type *t; | |
2250 | char *name; | |
2251 | struct symbol **sym_arr; | |
2252 | { | |
2253 | int i1 = 0; | |
2254 | int ibase; | |
2255 | struct symbol *sym_class; | |
2256 | char *class_name = type_name_no_tag (t); | |
2257 | ||
2258 | /* Ignore this class if it doesn't have a name. This is ugly, but | |
2259 | unless we figure out how to get the physname without the name of | |
2260 | the class, then the loop can't do any good. */ | |
2261 | if (class_name | |
2262 | && (sym_class = lookup_symbol (class_name, | |
c5aa993b | 2263 | (struct block *) NULL, |
c906108c | 2264 | STRUCT_NAMESPACE, |
c5aa993b JM |
2265 | (int *) NULL, |
2266 | (struct symtab **) NULL))) | |
c906108c SS |
2267 | { |
2268 | int method_counter; | |
2269 | ||
2270 | /* FIXME: Shouldn't this just be CHECK_TYPEDEF (t)? */ | |
2271 | t = SYMBOL_TYPE (sym_class); | |
2272 | ||
2273 | /* Loop over each method name. At this level, all overloads of a name | |
c5aa993b JM |
2274 | are counted as a single name. There is an inner loop which loops over |
2275 | each overload. */ | |
c906108c SS |
2276 | |
2277 | for (method_counter = TYPE_NFN_FIELDS (t) - 1; | |
2278 | method_counter >= 0; | |
2279 | --method_counter) | |
2280 | { | |
2281 | int field_counter; | |
2282 | char *method_name = TYPE_FN_FIELDLIST_NAME (t, method_counter); | |
2283 | char dem_opname[64]; | |
2284 | ||
c5aa993b | 2285 | if (strncmp (method_name, "__", 2) == 0 || |
c906108c SS |
2286 | strncmp (method_name, "op", 2) == 0 || |
2287 | strncmp (method_name, "type", 4) == 0) | |
c5aa993b | 2288 | { |
c906108c | 2289 | if (cplus_demangle_opname (method_name, dem_opname, DMGL_ANSI)) |
c5aa993b | 2290 | method_name = dem_opname; |
c906108c | 2291 | else if (cplus_demangle_opname (method_name, dem_opname, 0)) |
c5aa993b JM |
2292 | method_name = dem_opname; |
2293 | } | |
c906108c SS |
2294 | |
2295 | if (STREQ (name, method_name)) | |
2296 | /* Find all the overloaded methods with that name. */ | |
2297 | for (field_counter = TYPE_FN_FIELDLIST_LENGTH (t, method_counter) - 1; | |
2298 | field_counter >= 0; | |
2299 | --field_counter) | |
2300 | { | |
2301 | struct fn_field *f; | |
2302 | char *phys_name; | |
2303 | ||
2304 | f = TYPE_FN_FIELDLIST1 (t, method_counter); | |
2305 | ||
2306 | if (TYPE_FN_FIELD_STUB (f, field_counter)) | |
2307 | { | |
2308 | char *tmp_name; | |
2309 | ||
2310 | tmp_name = gdb_mangle_name (t, | |
c5aa993b JM |
2311 | method_counter, |
2312 | field_counter); | |
c906108c SS |
2313 | phys_name = alloca (strlen (tmp_name) + 1); |
2314 | strcpy (phys_name, tmp_name); | |
2315 | free (tmp_name); | |
2316 | } | |
2317 | else | |
2318 | phys_name = TYPE_FN_FIELD_PHYSNAME (f, field_counter); | |
2319 | ||
2320 | /* Destructor is handled by caller, dont add it to the list */ | |
2321 | if (DESTRUCTOR_PREFIX_P (phys_name)) | |
2322 | continue; | |
2323 | ||
2324 | sym_arr[i1] = lookup_symbol (phys_name, | |
2325 | NULL, VAR_NAMESPACE, | |
2326 | (int *) NULL, | |
2327 | (struct symtab **) NULL); | |
2328 | if (sym_arr[i1]) | |
2329 | i1++; | |
2330 | else | |
2331 | { | |
2332 | /* This error message gets printed, but the method | |
2333 | still seems to be found | |
2334 | fputs_filtered("(Cannot find method ", gdb_stdout); | |
2335 | fprintf_symbol_filtered (gdb_stdout, phys_name, | |
2336 | language_cplus, | |
2337 | DMGL_PARAMS | DMGL_ANSI); | |
2338 | fputs_filtered(" - possibly inlined.)\n", gdb_stdout); | |
c5aa993b | 2339 | */ |
c906108c SS |
2340 | } |
2341 | } | |
2342 | } | |
2343 | } | |
2344 | ||
2345 | /* Only search baseclasses if there is no match yet, since names in | |
2346 | derived classes override those in baseclasses. | |
2347 | ||
2348 | FIXME: The above is not true; it is only true of member functions | |
2349 | if they have the same number of arguments (??? - section 13.1 of the | |
2350 | ARM says the function members are not in the same scope but doesn't | |
2351 | really spell out the rules in a way I understand. In any case, if | |
2352 | the number of arguments differ this is a case in which we can overload | |
2353 | rather than hiding without any problem, and gcc 2.4.5 does overload | |
2354 | rather than hiding in this case). */ | |
2355 | ||
2356 | if (i1 == 0) | |
2357 | for (ibase = 0; ibase < TYPE_N_BASECLASSES (t); ibase++) | |
2358 | i1 += find_methods (TYPE_BASECLASS (t, ibase), name, sym_arr + i1); | |
2359 | ||
2360 | return i1; | |
2361 | } | |
2362 | ||
2363 | /* Helper function for decode_line_1. | |
2364 | Build a canonical line spec in CANONICAL if it is non-NULL and if | |
2365 | the SAL has a symtab. | |
2366 | If SYMNAME is non-NULL the canonical line spec is `filename:symname'. | |
2367 | If SYMNAME is NULL the line number from SAL is used and the canonical | |
2368 | line spec is `filename:linenum'. */ | |
2369 | ||
2370 | static void | |
2371 | build_canonical_line_spec (sal, symname, canonical) | |
2372 | struct symtab_and_line *sal; | |
2373 | char *symname; | |
2374 | char ***canonical; | |
2375 | { | |
2376 | char **canonical_arr; | |
2377 | char *canonical_name; | |
2378 | char *filename; | |
2379 | struct symtab *s = sal->symtab; | |
2380 | ||
c5aa993b JM |
2381 | if (s == (struct symtab *) NULL |
2382 | || s->filename == (char *) NULL | |
2383 | || canonical == (char ***) NULL) | |
c906108c | 2384 | return; |
c5aa993b | 2385 | |
c906108c SS |
2386 | canonical_arr = (char **) xmalloc (sizeof (char *)); |
2387 | *canonical = canonical_arr; | |
2388 | ||
2389 | filename = s->filename; | |
2390 | if (symname != NULL) | |
2391 | { | |
2392 | canonical_name = xmalloc (strlen (filename) + strlen (symname) + 2); | |
2393 | sprintf (canonical_name, "%s:%s", filename, symname); | |
2394 | } | |
2395 | else | |
2396 | { | |
2397 | canonical_name = xmalloc (strlen (filename) + 30); | |
2398 | sprintf (canonical_name, "%s:%d", filename, sal->line); | |
2399 | } | |
2400 | canonical_arr[0] = canonical_name; | |
2401 | } | |
2402 | ||
da59e081 JM |
2403 | |
2404 | ||
2405 | /* Find an instance of the character C in the string S that is outside | |
2406 | of all parenthesis pairs, single-quoted strings, and double-quoted | |
2407 | strings. */ | |
2408 | static char * | |
2409 | find_toplevel_char (char *s, char c) | |
2410 | { | |
2411 | int quoted = 0; /* zero if we're not in quotes; | |
2412 | '"' if we're in a double-quoted string; | |
2413 | '\'' if we're in a single-quoted string. */ | |
2414 | int depth = 0; /* number of unclosed parens we've seen */ | |
2415 | char *scan; | |
2416 | ||
2417 | for (scan = s; *scan; scan++) | |
2418 | { | |
2419 | if (quoted) | |
2420 | { | |
2421 | if (*scan == quoted) | |
2422 | quoted = 0; | |
2423 | else if (*scan == '\\' && *(scan + 1)) | |
2424 | scan++; | |
2425 | } | |
2426 | else if (*scan == c && ! quoted && depth == 0) | |
2427 | return scan; | |
2428 | else if (*scan == '"' || *scan == '\'') | |
2429 | quoted = *scan; | |
2430 | else if (*scan == '(') | |
2431 | depth++; | |
2432 | else if (*scan == ')' && depth > 0) | |
2433 | depth--; | |
2434 | } | |
2435 | ||
2436 | return 0; | |
2437 | } | |
2438 | ||
2439 | ||
c906108c SS |
2440 | /* Parse a string that specifies a line number. |
2441 | Pass the address of a char * variable; that variable will be | |
2442 | advanced over the characters actually parsed. | |
2443 | ||
2444 | The string can be: | |
2445 | ||
2446 | LINENUM -- that line number in current file. PC returned is 0. | |
2447 | FILE:LINENUM -- that line in that file. PC returned is 0. | |
2448 | FUNCTION -- line number of openbrace of that function. | |
c5aa993b | 2449 | PC returned is the start of the function. |
c906108c | 2450 | VARIABLE -- line number of definition of that variable. |
c5aa993b | 2451 | PC returned is 0. |
c906108c SS |
2452 | FILE:FUNCTION -- likewise, but prefer functions in that file. |
2453 | *EXPR -- line in which address EXPR appears. | |
2454 | ||
085dd6e6 JM |
2455 | This may all be followed by an "if EXPR", which we ignore. |
2456 | ||
c906108c SS |
2457 | FUNCTION may be an undebuggable function found in minimal symbol table. |
2458 | ||
2459 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2460 | of real code inside a function when a function is specified, and it is | |
2461 | not OK to specify a variable or type to get its line number. | |
2462 | ||
2463 | DEFAULT_SYMTAB specifies the file to use if none is specified. | |
2464 | It defaults to current_source_symtab. | |
2465 | DEFAULT_LINE specifies the line number to use for relative | |
2466 | line numbers (that start with signs). Defaults to current_source_line. | |
2467 | If CANONICAL is non-NULL, store an array of strings containing the canonical | |
2468 | line specs there if necessary. Currently overloaded member functions and | |
2469 | line numbers or static functions without a filename yield a canonical | |
2470 | line spec. The array and the line spec strings are allocated on the heap, | |
2471 | it is the callers responsibility to free them. | |
2472 | ||
2473 | Note that it is possible to return zero for the symtab | |
2474 | if no file is validly specified. Callers must check that. | |
2475 | Also, the line number returned may be invalid. */ | |
2476 | ||
2477 | /* We allow single quotes in various places. This is a hideous | |
2478 | kludge, which exists because the completer can't yet deal with the | |
2479 | lack of single quotes. FIXME: write a linespec_completer which we | |
2480 | can use as appropriate instead of make_symbol_completion_list. */ | |
2481 | ||
2482 | struct symtabs_and_lines | |
2483 | decode_line_1 (argptr, funfirstline, default_symtab, default_line, canonical) | |
2484 | char **argptr; | |
2485 | int funfirstline; | |
2486 | struct symtab *default_symtab; | |
2487 | int default_line; | |
2488 | char ***canonical; | |
2489 | { | |
2490 | struct symtabs_and_lines values; | |
2491 | #ifdef HPPA_COMPILER_BUG | |
2492 | /* FIXME: The native HP 9000/700 compiler has a bug which appears | |
2493 | when optimizing this file with target i960-vxworks. I haven't | |
2494 | been able to construct a simple test case. The problem is that | |
2495 | in the second call to SKIP_PROLOGUE below, the compiler somehow | |
2496 | does not realize that the statement val = find_pc_line (...) will | |
2497 | change the values of the fields of val. It extracts the elements | |
2498 | into registers at the top of the block, and does not update the | |
2499 | registers after the call to find_pc_line. You can check this by | |
2500 | inserting a printf at the end of find_pc_line to show what values | |
2501 | it is returning for val.pc and val.end and another printf after | |
2502 | the call to see what values the function actually got (remember, | |
2503 | this is compiling with cc -O, with this patch removed). You can | |
2504 | also examine the assembly listing: search for the second call to | |
2505 | skip_prologue; the LDO statement before the next call to | |
2506 | find_pc_line loads the address of the structure which | |
2507 | find_pc_line will return; if there is a LDW just before the LDO, | |
2508 | which fetches an element of the structure, then the compiler | |
2509 | still has the bug. | |
2510 | ||
2511 | Setting val to volatile avoids the problem. We must undef | |
2512 | volatile, because the HPPA native compiler does not define | |
2513 | __STDC__, although it does understand volatile, and so volatile | |
2514 | will have been defined away in defs.h. */ | |
2515 | #undef volatile | |
2516 | volatile struct symtab_and_line val; | |
c5aa993b | 2517 | #define volatile /*nothing */ |
c906108c SS |
2518 | #else |
2519 | struct symtab_and_line val; | |
2520 | #endif | |
2521 | register char *p, *p1; | |
2522 | char *q, *pp, *ii, *p2; | |
2523 | #if 0 | |
2524 | char *q1; | |
2525 | #endif | |
2526 | register struct symtab *s; | |
2527 | ||
2528 | register struct symbol *sym; | |
2529 | /* The symtab that SYM was found in. */ | |
2530 | struct symtab *sym_symtab; | |
2531 | ||
2532 | register CORE_ADDR pc; | |
2533 | register struct minimal_symbol *msymbol; | |
2534 | char *copy; | |
2535 | struct symbol *sym_class; | |
2536 | int i1; | |
2537 | int is_quoted; | |
cce74817 | 2538 | int is_quote_enclosed; |
c5aa993b | 2539 | int has_parens; |
c906108c | 2540 | int has_if = 0; |
cce74817 | 2541 | int has_comma = 0; |
c906108c SS |
2542 | struct symbol **sym_arr; |
2543 | struct type *t; | |
2544 | char *saved_arg = *argptr; | |
2545 | extern char *gdb_completer_quote_characters; | |
c5aa993b JM |
2546 | |
2547 | INIT_SAL (&val); /* initialize to zeroes */ | |
c906108c SS |
2548 | |
2549 | /* Defaults have defaults. */ | |
2550 | ||
2551 | if (default_symtab == 0) | |
2552 | { | |
2553 | default_symtab = current_source_symtab; | |
2554 | default_line = current_source_line; | |
2555 | } | |
2556 | ||
2557 | /* See if arg is *PC */ | |
2558 | ||
2559 | if (**argptr == '*') | |
2560 | { | |
2561 | (*argptr)++; | |
2562 | pc = parse_and_eval_address_1 (argptr); | |
2563 | ||
2564 | values.sals = (struct symtab_and_line *) | |
2565 | xmalloc (sizeof (struct symtab_and_line)); | |
2566 | ||
2567 | values.nelts = 1; | |
2568 | values.sals[0] = find_pc_line (pc, 0); | |
2569 | values.sals[0].pc = pc; | |
2570 | values.sals[0].section = find_pc_overlay (pc); | |
2571 | ||
2572 | return values; | |
2573 | } | |
2574 | ||
2575 | /* 'has_if' is for the syntax: | |
2576 | * (gdb) break foo if (a==b) | |
2577 | */ | |
c5aa993b JM |
2578 | if ((ii = strstr (*argptr, " if ")) != NULL || |
2579 | (ii = strstr (*argptr, "\tif ")) != NULL || | |
2580 | (ii = strstr (*argptr, " if\t")) != NULL || | |
2581 | (ii = strstr (*argptr, "\tif\t")) != NULL || | |
2582 | (ii = strstr (*argptr, " if(")) != NULL || | |
2583 | (ii = strstr (*argptr, "\tif( ")) != NULL) | |
c906108c SS |
2584 | has_if = 1; |
2585 | /* Temporarily zap out "if (condition)" to not | |
2586 | * confuse the parenthesis-checking code below. | |
2587 | * This is undone below. Do not change ii!! | |
2588 | */ | |
c5aa993b JM |
2589 | if (has_if) |
2590 | { | |
2591 | *ii = '\0'; | |
2592 | } | |
c906108c SS |
2593 | |
2594 | /* Set various flags. | |
2595 | * 'has_parens' is important for overload checking, where | |
2596 | * we allow things like: | |
2597 | * (gdb) break c::f(int) | |
2598 | */ | |
2599 | ||
2600 | /* Maybe arg is FILE : LINENUM or FILE : FUNCTION */ | |
2601 | ||
2602 | is_quoted = (**argptr | |
2603 | && strchr (gdb_completer_quote_characters, **argptr) != NULL); | |
2604 | ||
2605 | has_parens = ((pp = strchr (*argptr, '(')) != NULL | |
c2c6d25f | 2606 | && (pp = strrchr (pp, ')')) != NULL); |
c906108c SS |
2607 | |
2608 | /* Now that we're safely past the has_parens check, | |
2609 | * put back " if (condition)" so outer layers can see it | |
2610 | */ | |
2611 | if (has_if) | |
2612 | *ii = ' '; | |
2613 | ||
cce74817 JM |
2614 | /* Maybe we were called with a line range FILENAME:LINENUM,FILENAME:LINENUM |
2615 | and we must isolate the first half. Outer layers will call again later | |
da59e081 JM |
2616 | for the second half. |
2617 | ||
2618 | Don't count commas that appear in argument lists of overloaded | |
2619 | functions, or in quoted strings. It's stupid to go to this much | |
2620 | trouble when the rest of the function is such an obvious roach hotel. */ | |
2621 | ii = find_toplevel_char (*argptr, ','); | |
2622 | has_comma = (ii != 0); | |
2623 | ||
cce74817 JM |
2624 | /* Temporarily zap out second half to not |
2625 | * confuse the code below. | |
2626 | * This is undone below. Do not change ii!! | |
2627 | */ | |
c5aa993b JM |
2628 | if (has_comma) |
2629 | { | |
2630 | *ii = '\0'; | |
2631 | } | |
cce74817 | 2632 | |
c906108c SS |
2633 | /* Maybe arg is FILE : LINENUM or FILE : FUNCTION */ |
2634 | /* May also be CLASS::MEMBER, or NAMESPACE::NAME */ | |
2635 | /* Look for ':', but ignore inside of <> */ | |
2636 | ||
2637 | s = NULL; | |
cce74817 JM |
2638 | p = *argptr; |
2639 | if (p[0] == '"') | |
2640 | { | |
2641 | is_quote_enclosed = 1; | |
2642 | p++; | |
2643 | } | |
2644 | else | |
c5aa993b JM |
2645 | is_quote_enclosed = 0; |
2646 | for (; *p; p++) | |
c906108c | 2647 | { |
c5aa993b | 2648 | if (p[0] == '<') |
c906108c | 2649 | { |
c5aa993b JM |
2650 | char *temp_end = find_template_name_end (p); |
2651 | if (!temp_end) | |
2652 | error ("malformed template specification in command"); | |
2653 | p = temp_end; | |
c906108c | 2654 | } |
cce74817 JM |
2655 | /* Check for the end of the first half of the linespec. End of line, |
2656 | a tab, a double colon or the last single colon, or a space. But | |
2657 | if enclosed in double quotes we do not break on enclosed spaces */ | |
2658 | if (!*p | |
c5aa993b JM |
2659 | || p[0] == '\t' |
2660 | || ((p[0] == ':') | |
2661 | && ((p[1] == ':') || (strchr (p + 1, ':') == NULL))) | |
2662 | || ((p[0] == ' ') && !is_quote_enclosed)) | |
2663 | break; | |
2664 | if (p[0] == '.' && strchr (p, ':') == NULL) /* Java qualified method. */ | |
c906108c SS |
2665 | { |
2666 | /* Find the *last* '.', since the others are package qualifiers. */ | |
c5aa993b | 2667 | for (p1 = p; *p1; p1++) |
c906108c SS |
2668 | { |
2669 | if (*p1 == '.') | |
2670 | p = p1; | |
2671 | } | |
2672 | break; | |
2673 | } | |
2674 | } | |
c5aa993b JM |
2675 | while (p[0] == ' ' || p[0] == '\t') |
2676 | p++; | |
da59e081 | 2677 | |
cce74817 | 2678 | /* if the closing double quote was left at the end, remove it */ |
da59e081 JM |
2679 | if (is_quote_enclosed) |
2680 | { | |
2681 | char *closing_quote = strchr (p, '"'); | |
2682 | if (closing_quote && closing_quote[1] == '\0') | |
2683 | *closing_quote = '\0'; | |
2684 | } | |
cce74817 JM |
2685 | |
2686 | /* Now that we've safely parsed the first half, | |
2687 | * put back ',' so outer layers can see it | |
2688 | */ | |
2689 | if (has_comma) | |
2690 | *ii = ','; | |
c906108c SS |
2691 | |
2692 | if ((p[0] == ':' || p[0] == '.') && !has_parens) | |
2693 | { | |
2694 | /* C++ */ | |
2695 | /* ... or Java */ | |
c5aa993b JM |
2696 | if (is_quoted) |
2697 | *argptr = *argptr + 1; | |
2698 | if (p[0] == '.' || p[1] == ':') | |
c906108c | 2699 | { |
c5aa993b JM |
2700 | char *saved_arg2 = *argptr; |
2701 | char *temp_end; | |
2702 | /* First check for "global" namespace specification, | |
2703 | of the form "::foo". If found, skip over the colons | |
2704 | and jump to normal symbol processing */ | |
2705 | if ((*argptr == p) || (p[-1] == ' ') || (p[-1] == '\t')) | |
2706 | saved_arg2 += 2; | |
2707 | ||
2708 | /* We have what looks like a class or namespace | |
2709 | scope specification (A::B), possibly with many | |
2710 | levels of namespaces or classes (A::B::C::D). | |
2711 | ||
2712 | Some versions of the HP ANSI C++ compiler (as also possibly | |
2713 | other compilers) generate class/function/member names with | |
2714 | embedded double-colons if they are inside namespaces. To | |
2715 | handle this, we loop a few times, considering larger and | |
2716 | larger prefixes of the string as though they were single | |
2717 | symbols. So, if the initially supplied string is | |
2718 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
2719 | then "A::B::C", then "A::B::C::D", and finally | |
2720 | "A::B::C::D::foo" as single, monolithic symbols, because | |
2721 | A, B, C or D may be namespaces. | |
2722 | ||
2723 | Note that namespaces can nest only inside other | |
2724 | namespaces, and not inside classes. So we need only | |
2725 | consider *prefixes* of the string; there is no need to look up | |
2726 | "B::C" separately as a symbol in the previous example. */ | |
2727 | ||
2728 | p2 = p; /* save for restart */ | |
2729 | while (1) | |
2730 | { | |
2731 | /* Extract the class name. */ | |
2732 | p1 = p; | |
2733 | while (p != *argptr && p[-1] == ' ') | |
2734 | --p; | |
2735 | copy = (char *) alloca (p - *argptr + 1); | |
2736 | memcpy (copy, *argptr, p - *argptr); | |
2737 | copy[p - *argptr] = 0; | |
2738 | ||
2739 | /* Discard the class name from the arg. */ | |
2740 | p = p1 + (p1[0] == ':' ? 2 : 1); | |
2741 | while (*p == ' ' || *p == '\t') | |
2742 | p++; | |
2743 | *argptr = p; | |
2744 | ||
2745 | sym_class = lookup_symbol (copy, 0, STRUCT_NAMESPACE, 0, | |
2746 | (struct symtab **) NULL); | |
2747 | ||
2748 | if (sym_class && | |
2749 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
2750 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
2751 | || TYPE_CODE (t) == TYPE_CODE_UNION))) | |
c906108c | 2752 | { |
c5aa993b JM |
2753 | /* Arg token is not digits => try it as a function name |
2754 | Find the next token(everything up to end or next blank). */ | |
2755 | if (**argptr | |
2756 | && strchr (gdb_completer_quote_characters, **argptr) != NULL) | |
2757 | { | |
2758 | p = skip_quoted (*argptr); | |
2759 | *argptr = *argptr + 1; | |
2760 | } | |
2761 | else | |
2762 | { | |
2763 | p = *argptr; | |
2764 | while (*p && *p != ' ' && *p != '\t' && *p != ',' && *p != ':') | |
2765 | p++; | |
2766 | } | |
2767 | /* | |
2768 | q = operator_chars (*argptr, &q1); | |
2769 | if (q1 - q) | |
2770 | { | |
2771 | char *opname; | |
2772 | char *tmp = alloca (q1 - q + 1); | |
2773 | memcpy (tmp, q, q1 - q); | |
2774 | tmp[q1 - q] = '\0'; | |
2775 | opname = cplus_mangle_opname (tmp, DMGL_ANSI); | |
2776 | if (opname == NULL) | |
2777 | { | |
2778 | error_begin (); | |
2779 | printf_filtered ("no mangling for \"%s\"\n", tmp); | |
2780 | cplusplus_hint (saved_arg); | |
2781 | return_to_top_level (RETURN_ERROR); | |
2782 | } | |
2783 | copy = (char*) alloca (3 + strlen(opname)); | |
2784 | sprintf (copy, "__%s", opname); | |
2785 | p = q1; | |
2786 | } | |
2787 | else | |
2788 | */ | |
2789 | { | |
2790 | copy = (char *) alloca (p - *argptr + 1); | |
2791 | memcpy (copy, *argptr, p - *argptr); | |
2792 | copy[p - *argptr] = '\0'; | |
2793 | if (p != *argptr | |
2794 | && copy[p - *argptr - 1] | |
2795 | && strchr (gdb_completer_quote_characters, | |
2796 | copy[p - *argptr - 1]) != NULL) | |
2797 | copy[p - *argptr - 1] = '\0'; | |
2798 | } | |
2799 | ||
2800 | /* no line number may be specified */ | |
2801 | while (*p == ' ' || *p == '\t') | |
2802 | p++; | |
2803 | *argptr = p; | |
2804 | ||
2805 | sym = 0; | |
2806 | i1 = 0; /* counter for the symbol array */ | |
2807 | sym_arr = (struct symbol **) alloca (total_number_of_methods (t) | |
2808 | * sizeof (struct symbol *)); | |
2809 | ||
2810 | if (destructor_name_p (copy, t)) | |
c906108c | 2811 | { |
c5aa993b JM |
2812 | /* Destructors are a special case. */ |
2813 | int m_index, f_index; | |
2814 | ||
2815 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2816 | { | |
2817 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, m_index); | |
2818 | ||
2819 | sym_arr[i1] = | |
2820 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, f_index), | |
2821 | NULL, VAR_NAMESPACE, (int *) NULL, | |
2822 | (struct symtab **) NULL); | |
2823 | if (sym_arr[i1]) | |
2824 | i1++; | |
2825 | } | |
2826 | } | |
2827 | else | |
2828 | i1 = find_methods (t, copy, sym_arr); | |
2829 | if (i1 == 1) | |
2830 | { | |
2831 | /* There is exactly one field with that name. */ | |
2832 | sym = sym_arr[0]; | |
2833 | ||
2834 | if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
2835 | { | |
2836 | values.sals = (struct symtab_and_line *) | |
2837 | xmalloc (sizeof (struct symtab_and_line)); | |
2838 | values.nelts = 1; | |
2839 | values.sals[0] = find_function_start_sal (sym, | |
2840 | funfirstline); | |
2841 | } | |
2842 | else | |
2843 | { | |
2844 | values.nelts = 0; | |
2845 | } | |
2846 | return values; | |
2847 | } | |
2848 | if (i1 > 0) | |
2849 | { | |
2850 | /* There is more than one field with that name | |
2851 | (overloaded). Ask the user which one to use. */ | |
2852 | return decode_line_2 (sym_arr, i1, funfirstline, canonical); | |
2853 | } | |
2854 | else | |
2855 | { | |
2856 | char *tmp; | |
2857 | ||
2858 | if (OPNAME_PREFIX_P (copy)) | |
2859 | { | |
2860 | tmp = (char *) alloca (strlen (copy + 3) + 9); | |
2861 | strcpy (tmp, "operator "); | |
2862 | strcat (tmp, copy + 3); | |
2863 | } | |
2864 | else | |
2865 | tmp = copy; | |
c906108c | 2866 | error_begin (); |
c5aa993b JM |
2867 | if (tmp[0] == '~') |
2868 | printf_filtered | |
2869 | ("the class `%s' does not have destructor defined\n", | |
2870 | SYMBOL_SOURCE_NAME (sym_class)); | |
2871 | else | |
2872 | printf_filtered | |
2873 | ("the class %s does not have any method named %s\n", | |
2874 | SYMBOL_SOURCE_NAME (sym_class), tmp); | |
c906108c SS |
2875 | cplusplus_hint (saved_arg); |
2876 | return_to_top_level (RETURN_ERROR); | |
2877 | } | |
c906108c | 2878 | } |
c5aa993b JM |
2879 | |
2880 | /* Move pointer up to next possible class/namespace token */ | |
2881 | p = p2 + 1; /* restart with old value +1 */ | |
2882 | /* Move pointer ahead to next double-colon */ | |
2883 | while (*p && (p[0] != ' ') && (p[0] != '\t') && (p[0] != '\'')) | |
2884 | { | |
2885 | if (p[0] == '<') | |
2886 | { | |
2887 | temp_end = find_template_name_end (p); | |
2888 | if (!temp_end) | |
2889 | error ("malformed template specification in command"); | |
2890 | p = temp_end; | |
2891 | } | |
2892 | else if ((p[0] == ':') && (p[1] == ':')) | |
2893 | break; /* found double-colon */ | |
2894 | else | |
2895 | p++; | |
2896 | } | |
2897 | ||
2898 | if (*p != ':') | |
2899 | break; /* out of the while (1) */ | |
2900 | ||
2901 | p2 = p; /* save restart for next time around */ | |
2902 | *argptr = saved_arg2; /* restore argptr */ | |
2903 | } /* while (1) */ | |
2904 | ||
2905 | /* Last chance attempt -- check entire name as a symbol */ | |
2906 | /* Use "copy" in preparation for jumping out of this block, | |
2907 | to be consistent with usage following the jump target */ | |
2908 | copy = (char *) alloca (p - saved_arg2 + 1); | |
2909 | memcpy (copy, saved_arg2, p - saved_arg2); | |
2910 | /* Note: if is_quoted should be true, we snuff out quote here anyway */ | |
2911 | copy[p - saved_arg2] = '\000'; | |
2912 | /* Set argptr to skip over the name */ | |
2913 | *argptr = (*p == '\'') ? p + 1 : p; | |
2914 | /* Look up entire name */ | |
2915 | sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab); | |
2916 | s = (struct symtab *) 0; | |
2917 | /* Prepare to jump: restore the " if (condition)" so outer layers see it */ | |
2918 | /* Symbol was found --> jump to normal symbol processing. | |
2919 | Code following "symbol_found" expects "copy" to have the | |
2920 | symbol name, "sym" to have the symbol pointer, "s" to be | |
2921 | a specified file's symtab, and sym_symtab to be the symbol's | |
2922 | symtab. */ | |
2923 | /* By jumping there we avoid falling through the FILE:LINE and | |
2924 | FILE:FUNC processing stuff below */ | |
2925 | if (sym) | |
2926 | goto symbol_found; | |
2927 | ||
2928 | /* Couldn't find any interpretation as classes/namespaces, so give up */ | |
2929 | error_begin (); | |
2930 | /* The quotes are important if copy is empty. */ | |
2931 | printf_filtered | |
2932 | ("Can't find member of namespace, class, struct, or union named \"%s\"\n", copy); | |
2933 | cplusplus_hint (saved_arg); | |
2934 | return_to_top_level (RETURN_ERROR); | |
2935 | } | |
c906108c SS |
2936 | /* end of C++ */ |
2937 | ||
2938 | ||
2939 | /* Extract the file name. */ | |
2940 | p1 = p; | |
c5aa993b JM |
2941 | while (p != *argptr && p[-1] == ' ') |
2942 | --p; | |
2943 | if ((*p == '"') && is_quote_enclosed) | |
2944 | --p; | |
c906108c | 2945 | copy = (char *) alloca (p - *argptr + 1); |
cce74817 | 2946 | if ((**argptr == '"') && is_quote_enclosed) |
c5aa993b JM |
2947 | { |
2948 | memcpy (copy, *argptr + 1, p - *argptr - 1); | |
2949 | /* It may have the ending quote right after the file name */ | |
2950 | if (copy[p - *argptr - 2] == '"') | |
2951 | copy[p - *argptr - 2] = 0; | |
2952 | else | |
2953 | copy[p - *argptr - 1] = 0; | |
2954 | } | |
cce74817 | 2955 | else |
c5aa993b JM |
2956 | { |
2957 | memcpy (copy, *argptr, p - *argptr); | |
2958 | copy[p - *argptr] = 0; | |
2959 | } | |
c906108c SS |
2960 | |
2961 | /* Find that file's data. */ | |
2962 | s = lookup_symtab (copy); | |
2963 | if (s == 0) | |
2964 | { | |
2965 | if (!have_full_symbols () && !have_partial_symbols ()) | |
2966 | error (no_symtab_msg); | |
2967 | error ("No source file named %s.", copy); | |
2968 | } | |
2969 | ||
2970 | /* Discard the file name from the arg. */ | |
2971 | p = p1 + 1; | |
c5aa993b JM |
2972 | while (*p == ' ' || *p == '\t') |
2973 | p++; | |
c906108c SS |
2974 | *argptr = p; |
2975 | } | |
7a292a7a SS |
2976 | #if 0 |
2977 | /* No one really seems to know why this was added. It certainly | |
2978 | breaks the command line, though, whenever the passed | |
2979 | name is of the form ClassName::Method. This bit of code | |
2980 | singles out the class name, and if funfirstline is set (for | |
2981 | example, you are setting a breakpoint at this function), | |
2982 | you get an error. This did not occur with earlier | |
2983 | verions, so I am ifdef'ing this out. 3/29/99 */ | |
c5aa993b JM |
2984 | else |
2985 | { | |
2986 | /* Check if what we have till now is a symbol name */ | |
2987 | ||
2988 | /* We may be looking at a template instantiation such | |
2989 | as "foo<int>". Check here whether we know about it, | |
2990 | instead of falling through to the code below which | |
2991 | handles ordinary function names, because that code | |
2992 | doesn't like seeing '<' and '>' in a name -- the | |
2993 | skip_quoted call doesn't go past them. So see if we | |
2994 | can figure it out right now. */ | |
2995 | ||
2996 | copy = (char *) alloca (p - *argptr + 1); | |
2997 | memcpy (copy, *argptr, p - *argptr); | |
2998 | copy[p - *argptr] = '\000'; | |
2999 | sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab); | |
3000 | if (sym) | |
3001 | { | |
3002 | /* Yes, we have a symbol; jump to symbol processing */ | |
3003 | /* Code after symbol_found expects S, SYM_SYMTAB, SYM, | |
3004 | and COPY to be set correctly */ | |
3005 | *argptr = (*p == '\'') ? p + 1 : p; | |
3006 | s = (struct symtab *) 0; | |
3007 | goto symbol_found; | |
3008 | } | |
3009 | /* Otherwise fall out from here and go to file/line spec | |
3010 | processing, etc. */ | |
c906108c | 3011 | } |
7a292a7a | 3012 | #endif |
c906108c SS |
3013 | |
3014 | /* S is specified file's symtab, or 0 if no file specified. | |
3015 | arg no longer contains the file name. */ | |
3016 | ||
3017 | /* Check whether arg is all digits (and sign) */ | |
3018 | ||
3019 | q = *argptr; | |
c5aa993b JM |
3020 | if (*q == '-' || *q == '+') |
3021 | q++; | |
c906108c SS |
3022 | while (*q >= '0' && *q <= '9') |
3023 | q++; | |
3024 | ||
3025 | if (q != *argptr && (*q == 0 || *q == ' ' || *q == '\t' || *q == ',')) | |
3026 | { | |
3027 | /* We found a token consisting of all digits -- at least one digit. */ | |
c5aa993b JM |
3028 | enum sign |
3029 | { | |
3030 | none, plus, minus | |
3031 | } | |
3032 | sign = none; | |
c906108c SS |
3033 | |
3034 | /* We might need a canonical line spec if no file was specified. */ | |
3035 | int need_canonical = (s == 0) ? 1 : 0; | |
3036 | ||
3037 | /* This is where we need to make sure that we have good defaults. | |
c5aa993b JM |
3038 | We must guarantee that this section of code is never executed |
3039 | when we are called with just a function name, since | |
3040 | select_source_symtab calls us with such an argument */ | |
c906108c SS |
3041 | |
3042 | if (s == 0 && default_symtab == 0) | |
3043 | { | |
3044 | select_source_symtab (0); | |
3045 | default_symtab = current_source_symtab; | |
3046 | default_line = current_source_line; | |
3047 | } | |
3048 | ||
3049 | if (**argptr == '+') | |
3050 | sign = plus, (*argptr)++; | |
3051 | else if (**argptr == '-') | |
3052 | sign = minus, (*argptr)++; | |
3053 | val.line = atoi (*argptr); | |
3054 | switch (sign) | |
3055 | { | |
3056 | case plus: | |
3057 | if (q == *argptr) | |
3058 | val.line = 5; | |
3059 | if (s == 0) | |
3060 | val.line = default_line + val.line; | |
3061 | break; | |
3062 | case minus: | |
3063 | if (q == *argptr) | |
3064 | val.line = 15; | |
3065 | if (s == 0) | |
3066 | val.line = default_line - val.line; | |
3067 | else | |
3068 | val.line = 1; | |
3069 | break; | |
3070 | case none: | |
c5aa993b | 3071 | break; /* No need to adjust val.line. */ |
c906108c SS |
3072 | } |
3073 | ||
c5aa993b JM |
3074 | while (*q == ' ' || *q == '\t') |
3075 | q++; | |
c906108c SS |
3076 | *argptr = q; |
3077 | if (s == 0) | |
3078 | s = default_symtab; | |
3079 | ||
3080 | /* It is possible that this source file has more than one symtab, | |
c5aa993b JM |
3081 | and that the new line number specification has moved us from the |
3082 | default (in s) to a new one. */ | |
c906108c SS |
3083 | val.symtab = find_line_symtab (s, val.line, NULL, NULL); |
3084 | if (val.symtab == 0) | |
3085 | val.symtab = s; | |
c5aa993b | 3086 | |
c906108c SS |
3087 | val.pc = 0; |
3088 | values.sals = (struct symtab_and_line *) | |
3089 | xmalloc (sizeof (struct symtab_and_line)); | |
3090 | values.sals[0] = val; | |
3091 | values.nelts = 1; | |
3092 | if (need_canonical) | |
3093 | build_canonical_line_spec (values.sals, NULL, canonical); | |
3094 | return values; | |
3095 | } | |
3096 | ||
3097 | /* Arg token is not digits => try it as a variable name | |
3098 | Find the next token (everything up to end or next whitespace). */ | |
3099 | ||
3100 | if (**argptr == '$') /* May be a convenience variable */ | |
c5aa993b | 3101 | p = skip_quoted (*argptr + (((*argptr)[1] == '$') ? 2 : 1)); /* One or two $ chars possible */ |
c906108c SS |
3102 | else if (is_quoted) |
3103 | { | |
3104 | p = skip_quoted (*argptr); | |
3105 | if (p[-1] != '\'') | |
c5aa993b | 3106 | error ("Unmatched single quote."); |
c906108c SS |
3107 | } |
3108 | else if (has_parens) | |
3109 | { | |
c5aa993b | 3110 | p = pp + 1; |
c906108c | 3111 | } |
c5aa993b | 3112 | else |
c906108c | 3113 | { |
c5aa993b | 3114 | p = skip_quoted (*argptr); |
c906108c SS |
3115 | } |
3116 | ||
da59e081 JM |
3117 | if (is_quote_enclosed && **argptr == '"') |
3118 | (*argptr)++; | |
3119 | ||
c906108c SS |
3120 | copy = (char *) alloca (p - *argptr + 1); |
3121 | memcpy (copy, *argptr, p - *argptr); | |
3122 | copy[p - *argptr] = '\0'; | |
3123 | if (p != *argptr | |
3124 | && copy[0] | |
c5aa993b | 3125 | && copy[0] == copy[p - *argptr - 1] |
c906108c SS |
3126 | && strchr (gdb_completer_quote_characters, copy[0]) != NULL) |
3127 | { | |
c5aa993b | 3128 | copy[p - *argptr - 1] = '\0'; |
c906108c SS |
3129 | copy++; |
3130 | } | |
c5aa993b JM |
3131 | while (*p == ' ' || *p == '\t') |
3132 | p++; | |
c906108c SS |
3133 | *argptr = p; |
3134 | ||
3135 | /* If it starts with $: may be a legitimate variable or routine name | |
3136 | (e.g. HP-UX millicode routines such as $$dyncall), or it may | |
c5aa993b | 3137 | be history value, or it may be a convenience variable */ |
c906108c SS |
3138 | |
3139 | if (*copy == '$') | |
3140 | { | |
3141 | value_ptr valx; | |
3142 | int index = 0; | |
3143 | int need_canonical = 0; | |
3144 | ||
3145 | p = (copy[1] == '$') ? copy + 2 : copy + 1; | |
3146 | while (*p >= '0' && *p <= '9') | |
c5aa993b JM |
3147 | p++; |
3148 | if (!*p) /* reached end of token without hitting non-digit */ | |
3149 | { | |
3150 | /* We have a value history reference */ | |
3151 | sscanf ((copy[1] == '$') ? copy + 2 : copy + 1, "%d", &index); | |
3152 | valx = access_value_history ((copy[1] == '$') ? -index : index); | |
3153 | if (TYPE_CODE (VALUE_TYPE (valx)) != TYPE_CODE_INT) | |
3154 | error ("History values used in line specs must have integer values."); | |
3155 | } | |
3156 | else | |
3157 | { | |
3158 | /* Not all digits -- may be user variable/function or a | |
3159 | convenience variable */ | |
3160 | ||
3161 | /* Look up entire name as a symbol first */ | |
3162 | sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab); | |
3163 | s = (struct symtab *) 0; | |
3164 | need_canonical = 1; | |
3165 | /* Symbol was found --> jump to normal symbol processing. | |
3166 | Code following "symbol_found" expects "copy" to have the | |
3167 | symbol name, "sym" to have the symbol pointer, "s" to be | |
3168 | a specified file's symtab, and sym_symtab to be the symbol's | |
3169 | symtab. */ | |
3170 | if (sym) | |
3171 | goto symbol_found; | |
3172 | ||
3173 | /* If symbol was not found, look in minimal symbol tables */ | |
3174 | msymbol = lookup_minimal_symbol (copy, 0, 0); | |
3175 | /* Min symbol was found --> jump to minsym processing. */ | |
3176 | if (msymbol) | |
3177 | goto minimal_symbol_found; | |
3178 | ||
3179 | /* Not a user variable or function -- must be convenience variable */ | |
3180 | need_canonical = (s == 0) ? 1 : 0; | |
3181 | valx = value_of_internalvar (lookup_internalvar (copy + 1)); | |
3182 | if (TYPE_CODE (VALUE_TYPE (valx)) != TYPE_CODE_INT) | |
3183 | error ("Convenience variables used in line specs must have integer values."); | |
3184 | } | |
3185 | ||
3186 | /* Either history value or convenience value from above, in valx */ | |
c906108c SS |
3187 | val.symtab = s ? s : default_symtab; |
3188 | val.line = value_as_long (valx); | |
3189 | val.pc = 0; | |
3190 | ||
c5aa993b | 3191 | values.sals = (struct symtab_and_line *) xmalloc (sizeof val); |
c906108c SS |
3192 | values.sals[0] = val; |
3193 | values.nelts = 1; | |
3194 | ||
3195 | if (need_canonical) | |
3196 | build_canonical_line_spec (values.sals, NULL, canonical); | |
3197 | ||
3198 | return values; | |
3199 | } | |
3200 | ||
3201 | ||
3202 | /* Look up that token as a variable. | |
3203 | If file specified, use that file's per-file block to start with. */ | |
3204 | ||
3205 | sym = lookup_symbol (copy, | |
3206 | (s ? BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK) | |
3207 | : get_selected_block ()), | |
3208 | VAR_NAMESPACE, 0, &sym_symtab); | |
c5aa993b JM |
3209 | |
3210 | symbol_found: /* We also jump here from inside the C++ class/namespace | |
3211 | code on finding a symbol of the form "A::B::C" */ | |
c906108c SS |
3212 | |
3213 | if (sym != NULL) | |
3214 | { | |
3215 | if (SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3216 | { | |
3217 | /* Arg is the name of a function */ | |
3218 | values.sals = (struct symtab_and_line *) | |
3219 | xmalloc (sizeof (struct symtab_and_line)); | |
3220 | values.sals[0] = find_function_start_sal (sym, funfirstline); | |
3221 | values.nelts = 1; | |
3222 | ||
3223 | /* Don't use the SYMBOL_LINE; if used at all it points to | |
3224 | the line containing the parameters or thereabouts, not | |
3225 | the first line of code. */ | |
3226 | ||
3227 | /* We might need a canonical line spec if it is a static | |
3228 | function. */ | |
3229 | if (s == 0) | |
3230 | { | |
3231 | struct blockvector *bv = BLOCKVECTOR (sym_symtab); | |
3232 | struct block *b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
3233 | if (lookup_block_symbol (b, copy, VAR_NAMESPACE) != NULL) | |
3234 | build_canonical_line_spec (values.sals, copy, canonical); | |
3235 | } | |
3236 | return values; | |
3237 | } | |
3238 | else | |
3239 | { | |
3240 | if (funfirstline) | |
3241 | error ("\"%s\" is not a function", copy); | |
3242 | else if (SYMBOL_LINE (sym) != 0) | |
3243 | { | |
3244 | /* We know its line number. */ | |
3245 | values.sals = (struct symtab_and_line *) | |
3246 | xmalloc (sizeof (struct symtab_and_line)); | |
3247 | values.nelts = 1; | |
3248 | memset (&values.sals[0], 0, sizeof (values.sals[0])); | |
3249 | values.sals[0].symtab = sym_symtab; | |
3250 | values.sals[0].line = SYMBOL_LINE (sym); | |
3251 | return values; | |
3252 | } | |
3253 | else | |
3254 | /* This can happen if it is compiled with a compiler which doesn't | |
3255 | put out line numbers for variables. */ | |
3256 | /* FIXME: Shouldn't we just set .line and .symtab to zero | |
3257 | and return? For example, "info line foo" could print | |
3258 | the address. */ | |
3259 | error ("Line number not known for symbol \"%s\"", copy); | |
3260 | } | |
3261 | } | |
3262 | ||
3263 | msymbol = lookup_minimal_symbol (copy, NULL, NULL); | |
3264 | ||
c5aa993b JM |
3265 | minimal_symbol_found: /* We also jump here from the case for variables |
3266 | that begin with '$' */ | |
3267 | ||
c906108c SS |
3268 | if (msymbol != NULL) |
3269 | { | |
3270 | values.sals = (struct symtab_and_line *) | |
3271 | xmalloc (sizeof (struct symtab_and_line)); | |
c5aa993b JM |
3272 | values.sals[0] = find_pc_sect_line (SYMBOL_VALUE_ADDRESS (msymbol), |
3273 | (struct sec *) 0, 0); | |
c906108c SS |
3274 | values.sals[0].section = SYMBOL_BFD_SECTION (msymbol); |
3275 | if (funfirstline) | |
3276 | { | |
3277 | values.sals[0].pc += FUNCTION_START_OFFSET; | |
b83266a0 | 3278 | values.sals[0].pc = SKIP_PROLOGUE (values.sals[0].pc); |
c906108c SS |
3279 | } |
3280 | values.nelts = 1; | |
3281 | return values; | |
3282 | } | |
3283 | ||
3284 | if (!have_full_symbols () && | |
3285 | !have_partial_symbols () && !have_minimal_symbols ()) | |
3286 | error (no_symtab_msg); | |
3287 | ||
3288 | error ("Function \"%s\" not defined.", copy); | |
c5aa993b | 3289 | return values; /* for lint */ |
c906108c SS |
3290 | } |
3291 | ||
3292 | struct symtabs_and_lines | |
3293 | decode_line_spec (string, funfirstline) | |
3294 | char *string; | |
3295 | int funfirstline; | |
3296 | { | |
3297 | struct symtabs_and_lines sals; | |
3298 | if (string == 0) | |
3299 | error ("Empty line specification."); | |
3300 | sals = decode_line_1 (&string, funfirstline, | |
3301 | current_source_symtab, current_source_line, | |
c5aa993b | 3302 | (char ***) NULL); |
c906108c SS |
3303 | if (*string) |
3304 | error ("Junk at end of line specification: %s", string); | |
3305 | return sals; | |
3306 | } | |
3307 | ||
3308 | /* Given a list of NELTS symbols in SYM_ARR, return a list of lines to | |
3309 | operate on (ask user if necessary). | |
3310 | If CANONICAL is non-NULL return a corresponding array of mangled names | |
3311 | as canonical line specs there. */ | |
3312 | ||
3313 | static struct symtabs_and_lines | |
3314 | decode_line_2 (sym_arr, nelts, funfirstline, canonical) | |
3315 | struct symbol *sym_arr[]; | |
3316 | int nelts; | |
3317 | int funfirstline; | |
3318 | char ***canonical; | |
3319 | { | |
3320 | struct symtabs_and_lines values, return_values; | |
3321 | char *args, *arg1; | |
3322 | int i; | |
3323 | char *prompt; | |
3324 | char *symname; | |
3325 | struct cleanup *old_chain; | |
c5aa993b | 3326 | char **canonical_arr = (char **) NULL; |
c906108c | 3327 | |
c5aa993b JM |
3328 | values.sals = (struct symtab_and_line *) |
3329 | alloca (nelts * sizeof (struct symtab_and_line)); | |
3330 | return_values.sals = (struct symtab_and_line *) | |
3331 | xmalloc (nelts * sizeof (struct symtab_and_line)); | |
c906108c SS |
3332 | old_chain = make_cleanup (free, return_values.sals); |
3333 | ||
3334 | if (canonical) | |
3335 | { | |
3336 | canonical_arr = (char **) xmalloc (nelts * sizeof (char *)); | |
3337 | make_cleanup (free, canonical_arr); | |
3338 | memset (canonical_arr, 0, nelts * sizeof (char *)); | |
3339 | *canonical = canonical_arr; | |
3340 | } | |
3341 | ||
3342 | i = 0; | |
c5aa993b | 3343 | printf_unfiltered ("[0] cancel\n[1] all\n"); |
c906108c SS |
3344 | while (i < nelts) |
3345 | { | |
3346 | INIT_SAL (&return_values.sals[i]); /* initialize to zeroes */ | |
3347 | INIT_SAL (&values.sals[i]); | |
3348 | if (sym_arr[i] && SYMBOL_CLASS (sym_arr[i]) == LOC_BLOCK) | |
3349 | { | |
3350 | values.sals[i] = find_function_start_sal (sym_arr[i], funfirstline); | |
3351 | printf_unfiltered ("[%d] %s at %s:%d\n", | |
c5aa993b | 3352 | (i + 2), |
c906108c SS |
3353 | SYMBOL_SOURCE_NAME (sym_arr[i]), |
3354 | values.sals[i].symtab->filename, | |
3355 | values.sals[i].line); | |
3356 | } | |
3357 | else | |
3358 | printf_unfiltered ("?HERE\n"); | |
3359 | i++; | |
3360 | } | |
c5aa993b | 3361 | |
c906108c SS |
3362 | if ((prompt = getenv ("PS2")) == NULL) |
3363 | { | |
3364 | prompt = "> "; | |
3365 | } | |
3366 | args = command_line_input (prompt, 0, "overload-choice"); | |
c5aa993b | 3367 | |
c906108c SS |
3368 | if (args == 0 || *args == 0) |
3369 | error_no_arg ("one or more choice numbers"); | |
3370 | ||
3371 | i = 0; | |
3372 | while (*args) | |
3373 | { | |
3374 | int num; | |
3375 | ||
3376 | arg1 = args; | |
c5aa993b JM |
3377 | while (*arg1 >= '0' && *arg1 <= '9') |
3378 | arg1++; | |
c906108c SS |
3379 | if (*arg1 && *arg1 != ' ' && *arg1 != '\t') |
3380 | error ("Arguments must be choice numbers."); | |
3381 | ||
3382 | num = atoi (args); | |
3383 | ||
3384 | if (num == 0) | |
3385 | error ("cancelled"); | |
3386 | else if (num == 1) | |
3387 | { | |
3388 | if (canonical_arr) | |
3389 | { | |
3390 | for (i = 0; i < nelts; i++) | |
3391 | { | |
c5aa993b | 3392 | if (canonical_arr[i] == NULL) |
c906108c SS |
3393 | { |
3394 | symname = SYMBOL_NAME (sym_arr[i]); | |
c5aa993b | 3395 | canonical_arr[i] = savestring (symname, strlen (symname)); |
c906108c SS |
3396 | } |
3397 | } | |
3398 | } | |
3399 | memcpy (return_values.sals, values.sals, | |
c5aa993b | 3400 | (nelts * sizeof (struct symtab_and_line))); |
c906108c SS |
3401 | return_values.nelts = nelts; |
3402 | discard_cleanups (old_chain); | |
3403 | return return_values; | |
3404 | } | |
3405 | ||
3406 | if (num >= nelts + 2) | |
3407 | { | |
3408 | printf_unfiltered ("No choice number %d.\n", num); | |
3409 | } | |
3410 | else | |
3411 | { | |
3412 | num -= 2; | |
3413 | if (values.sals[num].pc) | |
3414 | { | |
3415 | if (canonical_arr) | |
3416 | { | |
3417 | symname = SYMBOL_NAME (sym_arr[num]); | |
3418 | make_cleanup (free, symname); | |
3419 | canonical_arr[i] = savestring (symname, strlen (symname)); | |
3420 | } | |
3421 | return_values.sals[i++] = values.sals[num]; | |
3422 | values.sals[num].pc = 0; | |
3423 | } | |
3424 | else | |
3425 | { | |
3426 | printf_unfiltered ("duplicate request for %d ignored.\n", num); | |
3427 | } | |
3428 | } | |
3429 | ||
3430 | args = arg1; | |
c5aa993b JM |
3431 | while (*args == ' ' || *args == '\t') |
3432 | args++; | |
c906108c SS |
3433 | } |
3434 | return_values.nelts = i; | |
3435 | discard_cleanups (old_chain); | |
3436 | return return_values; | |
3437 | } | |
c906108c | 3438 | \f |
c5aa993b | 3439 | |
c906108c SS |
3440 | /* Slave routine for sources_info. Force line breaks at ,'s. |
3441 | NAME is the name to print and *FIRST is nonzero if this is the first | |
3442 | name printed. Set *FIRST to zero. */ | |
3443 | static void | |
3444 | output_source_filename (name, first) | |
3445 | char *name; | |
3446 | int *first; | |
3447 | { | |
3448 | /* Table of files printed so far. Since a single source file can | |
3449 | result in several partial symbol tables, we need to avoid printing | |
3450 | it more than once. Note: if some of the psymtabs are read in and | |
3451 | some are not, it gets printed both under "Source files for which | |
3452 | symbols have been read" and "Source files for which symbols will | |
3453 | be read in on demand". I consider this a reasonable way to deal | |
3454 | with the situation. I'm not sure whether this can also happen for | |
3455 | symtabs; it doesn't hurt to check. */ | |
3456 | static char **tab = NULL; | |
3457 | /* Allocated size of tab in elements. | |
3458 | Start with one 256-byte block (when using GNU malloc.c). | |
3459 | 24 is the malloc overhead when range checking is in effect. */ | |
3460 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
3461 | /* Current size of tab in elements. */ | |
3462 | static int tab_cur_size; | |
3463 | ||
3464 | char **p; | |
3465 | ||
3466 | if (*first) | |
3467 | { | |
3468 | if (tab == NULL) | |
3469 | tab = (char **) xmalloc (tab_alloc_size * sizeof (*tab)); | |
3470 | tab_cur_size = 0; | |
3471 | } | |
3472 | ||
3473 | /* Is NAME in tab? */ | |
3474 | for (p = tab; p < tab + tab_cur_size; p++) | |
3475 | if (STREQ (*p, name)) | |
3476 | /* Yes; don't print it again. */ | |
3477 | return; | |
3478 | /* No; add it to tab. */ | |
3479 | if (tab_cur_size == tab_alloc_size) | |
3480 | { | |
3481 | tab_alloc_size *= 2; | |
3482 | tab = (char **) xrealloc ((char *) tab, tab_alloc_size * sizeof (*tab)); | |
3483 | } | |
3484 | tab[tab_cur_size++] = name; | |
3485 | ||
3486 | if (*first) | |
3487 | { | |
3488 | *first = 0; | |
3489 | } | |
3490 | else | |
3491 | { | |
3492 | printf_filtered (", "); | |
3493 | } | |
3494 | ||
3495 | wrap_here (""); | |
3496 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 3497 | } |
c906108c SS |
3498 | |
3499 | static void | |
3500 | sources_info (ignore, from_tty) | |
3501 | char *ignore; | |
3502 | int from_tty; | |
3503 | { | |
3504 | register struct symtab *s; | |
3505 | register struct partial_symtab *ps; | |
3506 | register struct objfile *objfile; | |
3507 | int first; | |
c5aa993b | 3508 | |
c906108c SS |
3509 | if (!have_full_symbols () && !have_partial_symbols ()) |
3510 | { | |
3511 | error (no_symtab_msg); | |
3512 | } | |
c5aa993b | 3513 | |
c906108c SS |
3514 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
3515 | ||
3516 | first = 1; | |
3517 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3518 | { |
3519 | output_source_filename (s->filename, &first); | |
3520 | } | |
c906108c | 3521 | printf_filtered ("\n\n"); |
c5aa993b | 3522 | |
c906108c SS |
3523 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
3524 | ||
3525 | first = 1; | |
3526 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3527 | { |
3528 | if (!ps->readin) | |
3529 | { | |
3530 | output_source_filename (ps->filename, &first); | |
3531 | } | |
3532 | } | |
c906108c SS |
3533 | printf_filtered ("\n"); |
3534 | } | |
3535 | ||
3536 | static int | |
3537 | file_matches (file, files, nfiles) | |
3538 | char *file; | |
3539 | char *files[]; | |
3540 | int nfiles; | |
3541 | { | |
3542 | int i; | |
3543 | ||
3544 | if (file != NULL && nfiles != 0) | |
3545 | { | |
3546 | for (i = 0; i < nfiles; i++) | |
c5aa993b JM |
3547 | { |
3548 | if (strcmp (files[i], basename (file)) == 0) | |
3549 | return 1; | |
3550 | } | |
c906108c SS |
3551 | } |
3552 | else if (nfiles == 0) | |
3553 | return 1; | |
3554 | return 0; | |
3555 | } | |
3556 | ||
3557 | /* Free any memory associated with a search. */ | |
3558 | void | |
3559 | free_search_symbols (symbols) | |
3560 | struct symbol_search *symbols; | |
3561 | { | |
3562 | struct symbol_search *p; | |
3563 | struct symbol_search *next; | |
3564 | ||
3565 | for (p = symbols; p != NULL; p = next) | |
3566 | { | |
3567 | next = p->next; | |
3568 | free (p); | |
3569 | } | |
3570 | } | |
3571 | ||
3572 | /* Search the symbol table for matches to the regular expression REGEXP, | |
3573 | returning the results in *MATCHES. | |
3574 | ||
3575 | Only symbols of KIND are searched: | |
c5aa993b JM |
3576 | FUNCTIONS_NAMESPACE - search all functions |
3577 | TYPES_NAMESPACE - search all type names | |
3578 | METHODS_NAMESPACE - search all methods NOT IMPLEMENTED | |
3579 | VARIABLES_NAMESPACE - search all symbols, excluding functions, type names, | |
3580 | and constants (enums) | |
c906108c SS |
3581 | |
3582 | free_search_symbols should be called when *MATCHES is no longer needed. | |
c5aa993b | 3583 | */ |
c906108c SS |
3584 | void |
3585 | search_symbols (regexp, kind, nfiles, files, matches) | |
3586 | char *regexp; | |
3587 | namespace_enum kind; | |
3588 | int nfiles; | |
3589 | char *files[]; | |
3590 | struct symbol_search **matches; | |
c5aa993b | 3591 | |
c906108c SS |
3592 | { |
3593 | register struct symtab *s; | |
3594 | register struct partial_symtab *ps; | |
3595 | register struct blockvector *bv; | |
3596 | struct blockvector *prev_bv = 0; | |
3597 | register struct block *b; | |
3598 | register int i = 0; | |
3599 | register int j; | |
3600 | register struct symbol *sym; | |
3601 | struct partial_symbol **psym; | |
3602 | struct objfile *objfile; | |
3603 | struct minimal_symbol *msymbol; | |
3604 | char *val; | |
3605 | int found_misc = 0; | |
3606 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
3607 | = |
3608 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 3609 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
3610 | = |
3611 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 3612 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
3613 | = |
3614 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 3615 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
3616 | = |
3617 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
3618 | enum minimal_symbol_type ourtype; |
3619 | enum minimal_symbol_type ourtype2; | |
3620 | enum minimal_symbol_type ourtype3; | |
3621 | enum minimal_symbol_type ourtype4; | |
3622 | struct symbol_search *sr; | |
3623 | struct symbol_search *psr; | |
3624 | struct symbol_search *tail; | |
3625 | struct cleanup *old_chain = NULL; | |
3626 | ||
3627 | if (kind < LABEL_NAMESPACE) | |
3628 | error ("must search on specific namespace"); | |
3629 | ||
3630 | ourtype = types[(int) (kind - LABEL_NAMESPACE)]; | |
3631 | ourtype2 = types2[(int) (kind - LABEL_NAMESPACE)]; | |
3632 | ourtype3 = types3[(int) (kind - LABEL_NAMESPACE)]; | |
3633 | ourtype4 = types4[(int) (kind - LABEL_NAMESPACE)]; | |
3634 | ||
3635 | sr = *matches = NULL; | |
3636 | tail = NULL; | |
3637 | ||
3638 | if (regexp != NULL) | |
3639 | { | |
3640 | /* Make sure spacing is right for C++ operators. | |
3641 | This is just a courtesy to make the matching less sensitive | |
3642 | to how many spaces the user leaves between 'operator' | |
3643 | and <TYPENAME> or <OPERATOR>. */ | |
3644 | char *opend; | |
3645 | char *opname = operator_chars (regexp, &opend); | |
3646 | if (*opname) | |
c5aa993b JM |
3647 | { |
3648 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
3649 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
3650 | { | |
3651 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
3652 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
3653 | fix = 1; | |
3654 | } | |
3655 | else | |
3656 | { | |
3657 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
3658 | if (opname[-1] == ' ') | |
3659 | fix = 0; | |
3660 | } | |
3661 | /* If wrong number of spaces, fix it. */ | |
3662 | if (fix >= 0) | |
3663 | { | |
3664 | char *tmp = (char *) alloca (opend - opname + 10); | |
3665 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); | |
3666 | regexp = tmp; | |
3667 | } | |
3668 | } | |
3669 | ||
c906108c | 3670 | if (0 != (val = re_comp (regexp))) |
c5aa993b | 3671 | error ("Invalid regexp (%s): %s", val, regexp); |
c906108c SS |
3672 | } |
3673 | ||
3674 | /* Search through the partial symtabs *first* for all symbols | |
3675 | matching the regexp. That way we don't have to reproduce all of | |
3676 | the machinery below. */ | |
3677 | ||
3678 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3679 | { |
3680 | struct partial_symbol **bound, **gbound, **sbound; | |
3681 | int keep_going = 1; | |
3682 | ||
3683 | if (ps->readin) | |
3684 | continue; | |
3685 | ||
3686 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
3687 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
3688 | bound = gbound; | |
3689 | ||
3690 | /* Go through all of the symbols stored in a partial | |
3691 | symtab in one loop. */ | |
3692 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
3693 | while (keep_going) | |
3694 | { | |
3695 | if (psym >= bound) | |
3696 | { | |
3697 | if (bound == gbound && ps->n_static_syms != 0) | |
3698 | { | |
3699 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
3700 | bound = sbound; | |
3701 | } | |
3702 | else | |
3703 | keep_going = 0; | |
3704 | continue; | |
3705 | } | |
3706 | else | |
3707 | { | |
3708 | QUIT; | |
3709 | ||
3710 | /* If it would match (logic taken from loop below) | |
3711 | load the file and go on to the next one */ | |
3712 | if (file_matches (ps->filename, files, nfiles) | |
3713 | && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (*psym)) | |
3714 | && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (*psym) != LOC_TYPEDEF | |
3715 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) | |
3716 | || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK) | |
3717 | || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_TYPEDEF) | |
3718 | || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK)))) | |
3719 | { | |
3720 | PSYMTAB_TO_SYMTAB (ps); | |
3721 | keep_going = 0; | |
3722 | } | |
3723 | } | |
3724 | psym++; | |
3725 | } | |
3726 | } | |
c906108c SS |
3727 | |
3728 | /* Here, we search through the minimal symbol tables for functions | |
3729 | and variables that match, and force their symbols to be read. | |
3730 | This is in particular necessary for demangled variable names, | |
3731 | which are no longer put into the partial symbol tables. | |
3732 | The symbol will then be found during the scan of symtabs below. | |
3733 | ||
3734 | For functions, find_pc_symtab should succeed if we have debug info | |
3735 | for the function, for variables we have to call lookup_symbol | |
3736 | to determine if the variable has debug info. | |
3737 | If the lookup fails, set found_misc so that we will rescan to print | |
3738 | any matching symbols without debug info. | |
c5aa993b | 3739 | */ |
c906108c SS |
3740 | |
3741 | if (nfiles == 0 && (kind == VARIABLES_NAMESPACE || kind == FUNCTIONS_NAMESPACE)) | |
3742 | { | |
3743 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3744 | { |
3745 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3746 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3747 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3748 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3749 | { | |
3750 | if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol)) | |
3751 | { | |
3752 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3753 | { | |
3754 | if (kind == FUNCTIONS_NAMESPACE | |
3755 | || lookup_symbol (SYMBOL_NAME (msymbol), | |
3756 | (struct block *) NULL, | |
3757 | VAR_NAMESPACE, | |
3758 | 0, (struct symtab **) NULL) == NULL) | |
3759 | found_misc = 1; | |
3760 | } | |
3761 | } | |
3762 | } | |
3763 | } | |
c906108c SS |
3764 | } |
3765 | ||
3766 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3767 | { |
3768 | bv = BLOCKVECTOR (s); | |
3769 | /* Often many files share a blockvector. | |
3770 | Scan each blockvector only once so that | |
3771 | we don't get every symbol many times. | |
3772 | It happens that the first symtab in the list | |
3773 | for any given blockvector is the main file. */ | |
3774 | if (bv != prev_bv) | |
3775 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
3776 | { | |
3777 | b = BLOCKVECTOR_BLOCK (bv, i); | |
3778 | /* Skip the sort if this block is always sorted. */ | |
3779 | if (!BLOCK_SHOULD_SORT (b)) | |
3780 | sort_block_syms (b); | |
3781 | for (j = 0; j < BLOCK_NSYMS (b); j++) | |
3782 | { | |
3783 | QUIT; | |
3784 | sym = BLOCK_SYM (b, j); | |
3785 | if (file_matches (s->filename, files, nfiles) | |
3786 | && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (sym)) | |
3787 | && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
3788 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
3789 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
3790 | || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK) | |
3791 | || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3792 | || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK)))) | |
3793 | { | |
3794 | /* match */ | |
3795 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3796 | psr->block = i; | |
3797 | psr->symtab = s; | |
3798 | psr->symbol = sym; | |
3799 | psr->msymbol = NULL; | |
3800 | psr->next = NULL; | |
3801 | if (tail == NULL) | |
3802 | { | |
3803 | sr = psr; | |
3804 | old_chain = make_cleanup ((make_cleanup_func) | |
3805 | free_search_symbols, sr); | |
3806 | } | |
3807 | else | |
3808 | tail->next = psr; | |
3809 | tail = psr; | |
3810 | } | |
3811 | } | |
3812 | } | |
3813 | prev_bv = bv; | |
3814 | } | |
c906108c SS |
3815 | |
3816 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3817 | no debug symbols, then print directly from the msymbol_vector. */ | |
3818 | ||
3819 | if (found_misc || kind != FUNCTIONS_NAMESPACE) | |
3820 | { | |
3821 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3822 | { |
3823 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3824 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3825 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3826 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3827 | { | |
3828 | if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol)) | |
3829 | { | |
3830 | /* Functions: Look up by address. */ | |
3831 | if (kind != FUNCTIONS_NAMESPACE || | |
3832 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) | |
3833 | { | |
3834 | /* Variables/Absolutes: Look up by name */ | |
3835 | if (lookup_symbol (SYMBOL_NAME (msymbol), | |
3836 | (struct block *) NULL, VAR_NAMESPACE, | |
3837 | 0, (struct symtab **) NULL) == NULL) | |
3838 | { | |
3839 | /* match */ | |
3840 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3841 | psr->block = i; | |
3842 | psr->msymbol = msymbol; | |
3843 | psr->symtab = NULL; | |
3844 | psr->symbol = NULL; | |
3845 | psr->next = NULL; | |
3846 | if (tail == NULL) | |
3847 | { | |
3848 | sr = psr; | |
3849 | old_chain = make_cleanup ((make_cleanup_func) | |
3850 | free_search_symbols, &sr); | |
3851 | } | |
3852 | else | |
3853 | tail->next = psr; | |
3854 | tail = psr; | |
3855 | } | |
3856 | } | |
3857 | } | |
3858 | } | |
3859 | } | |
c906108c SS |
3860 | } |
3861 | ||
3862 | *matches = sr; | |
3863 | if (sr != NULL) | |
3864 | discard_cleanups (old_chain); | |
3865 | } | |
3866 | ||
3867 | /* Helper function for symtab_symbol_info, this function uses | |
3868 | the data returned from search_symbols() to print information | |
3869 | regarding the match to gdb_stdout. | |
c5aa993b | 3870 | */ |
c906108c SS |
3871 | static void |
3872 | print_symbol_info (kind, s, sym, block, last) | |
3873 | namespace_enum kind; | |
3874 | struct symtab *s; | |
3875 | struct symbol *sym; | |
3876 | int block; | |
3877 | char *last; | |
3878 | { | |
3879 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3880 | { | |
3881 | fputs_filtered ("\nFile ", gdb_stdout); | |
3882 | fputs_filtered (s->filename, gdb_stdout); | |
3883 | fputs_filtered (":\n", gdb_stdout); | |
3884 | } | |
3885 | ||
3886 | if (kind != TYPES_NAMESPACE && block == STATIC_BLOCK) | |
3887 | printf_filtered ("static "); | |
c5aa993b | 3888 | |
c906108c SS |
3889 | /* Typedef that is not a C++ class */ |
3890 | if (kind == TYPES_NAMESPACE | |
3891 | && SYMBOL_NAMESPACE (sym) != STRUCT_NAMESPACE) | |
c5aa993b | 3892 | c_typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3893 | /* variable, func, or typedef-that-is-c++-class */ |
c5aa993b JM |
3894 | else if (kind < TYPES_NAMESPACE || |
3895 | (kind == TYPES_NAMESPACE && | |
3896 | SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE)) | |
c906108c SS |
3897 | { |
3898 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b JM |
3899 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
3900 | ? "" : SYMBOL_SOURCE_NAME (sym)), | |
3901 | gdb_stdout, 0); | |
c906108c SS |
3902 | |
3903 | printf_filtered (";\n"); | |
3904 | } | |
3905 | else | |
3906 | { | |
c5aa993b | 3907 | #if 0 |
c906108c SS |
3908 | /* Tiemann says: "info methods was never implemented." */ |
3909 | char *demangled_name; | |
c5aa993b JM |
3910 | c_type_print_base (TYPE_FN_FIELD_TYPE (t, block), |
3911 | gdb_stdout, 0, 0); | |
3912 | c_type_print_varspec_prefix (TYPE_FN_FIELD_TYPE (t, block), | |
3913 | gdb_stdout, 0); | |
c906108c | 3914 | if (TYPE_FN_FIELD_STUB (t, block)) |
c5aa993b | 3915 | check_stub_method (TYPE_DOMAIN_TYPE (type), j, block); |
c906108c | 3916 | demangled_name = |
c5aa993b JM |
3917 | cplus_demangle (TYPE_FN_FIELD_PHYSNAME (t, block), |
3918 | DMGL_ANSI | DMGL_PARAMS); | |
c906108c | 3919 | if (demangled_name == NULL) |
c5aa993b JM |
3920 | fprintf_filtered (stream, "<badly mangled name %s>", |
3921 | TYPE_FN_FIELD_PHYSNAME (t, block)); | |
c906108c | 3922 | else |
c5aa993b JM |
3923 | { |
3924 | fputs_filtered (demangled_name, stream); | |
3925 | free (demangled_name); | |
3926 | } | |
3927 | #endif | |
c906108c SS |
3928 | } |
3929 | } | |
3930 | ||
3931 | /* This help function for symtab_symbol_info() prints information | |
3932 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3933 | */ |
c906108c SS |
3934 | static void |
3935 | print_msymbol_info (msymbol) | |
3936 | struct minimal_symbol *msymbol; | |
3937 | { | |
3938 | printf_filtered (" %08lx %s\n", | |
c5aa993b JM |
3939 | (unsigned long) SYMBOL_VALUE_ADDRESS (msymbol), |
3940 | SYMBOL_SOURCE_NAME (msymbol)); | |
c906108c SS |
3941 | } |
3942 | ||
3943 | /* This is the guts of the commands "info functions", "info types", and | |
3944 | "info variables". It calls search_symbols to find all matches and then | |
3945 | print_[m]symbol_info to print out some useful information about the | |
3946 | matches. | |
c5aa993b | 3947 | */ |
c906108c SS |
3948 | static void |
3949 | symtab_symbol_info (regexp, kind, from_tty) | |
3950 | char *regexp; | |
3951 | namespace_enum kind; | |
c5aa993b | 3952 | int from_tty; |
c906108c SS |
3953 | { |
3954 | static char *classnames[] | |
c5aa993b JM |
3955 | = |
3956 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3957 | struct symbol_search *symbols; |
3958 | struct symbol_search *p; | |
3959 | struct cleanup *old_chain; | |
3960 | char *last_filename = NULL; | |
3961 | int first = 1; | |
3962 | ||
3963 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3964 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
3965 | old_chain = make_cleanup ((make_cleanup_func) free_search_symbols, symbols); | |
3966 | ||
3967 | printf_filtered (regexp | |
c5aa993b JM |
3968 | ? "All %ss matching regular expression \"%s\":\n" |
3969 | : "All defined %ss:\n", | |
3970 | classnames[(int) (kind - LABEL_NAMESPACE - 1)], regexp); | |
c906108c SS |
3971 | |
3972 | for (p = symbols; p != NULL; p = p->next) | |
3973 | { | |
3974 | QUIT; | |
3975 | ||
3976 | if (p->msymbol != NULL) | |
c5aa993b JM |
3977 | { |
3978 | if (first) | |
3979 | { | |
3980 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3981 | first = 0; | |
3982 | } | |
3983 | print_msymbol_info (p->msymbol); | |
3984 | } | |
c906108c | 3985 | else |
c5aa993b JM |
3986 | { |
3987 | print_symbol_info (kind, | |
3988 | p->symtab, | |
3989 | p->symbol, | |
3990 | p->block, | |
3991 | last_filename); | |
3992 | last_filename = p->symtab->filename; | |
3993 | } | |
c906108c SS |
3994 | } |
3995 | ||
3996 | do_cleanups (old_chain); | |
3997 | } | |
3998 | ||
3999 | static void | |
4000 | variables_info (regexp, from_tty) | |
4001 | char *regexp; | |
4002 | int from_tty; | |
4003 | { | |
4004 | symtab_symbol_info (regexp, VARIABLES_NAMESPACE, from_tty); | |
4005 | } | |
4006 | ||
4007 | static void | |
4008 | functions_info (regexp, from_tty) | |
4009 | char *regexp; | |
4010 | int from_tty; | |
4011 | { | |
4012 | symtab_symbol_info (regexp, FUNCTIONS_NAMESPACE, from_tty); | |
4013 | } | |
4014 | ||
4015 | static void | |
4016 | types_info (regexp, from_tty) | |
4017 | char *regexp; | |
4018 | int from_tty; | |
4019 | { | |
4020 | symtab_symbol_info (regexp, TYPES_NAMESPACE, from_tty); | |
4021 | } | |
4022 | ||
4023 | #if 0 | |
4024 | /* Tiemann says: "info methods was never implemented." */ | |
4025 | static void | |
4026 | methods_info (regexp) | |
4027 | char *regexp; | |
4028 | { | |
4029 | symtab_symbol_info (regexp, METHODS_NAMESPACE, 0, from_tty); | |
4030 | } | |
4031 | #endif /* 0 */ | |
4032 | ||
4033 | /* Breakpoint all functions matching regular expression. */ | |
8b93c638 JM |
4034 | #ifdef UI_OUT |
4035 | void | |
4036 | rbreak_command_wrapper (regexp, from_tty) | |
4037 | char *regexp; | |
4038 | int from_tty; | |
4039 | { | |
4040 | rbreak_command (regexp, from_tty); | |
4041 | } | |
4042 | #endif | |
c906108c SS |
4043 | static void |
4044 | rbreak_command (regexp, from_tty) | |
4045 | char *regexp; | |
4046 | int from_tty; | |
4047 | { | |
4048 | struct symbol_search *ss; | |
4049 | struct symbol_search *p; | |
4050 | struct cleanup *old_chain; | |
4051 | ||
4052 | search_symbols (regexp, FUNCTIONS_NAMESPACE, 0, (char **) NULL, &ss); | |
4053 | old_chain = make_cleanup ((make_cleanup_func) free_search_symbols, ss); | |
4054 | ||
4055 | for (p = ss; p != NULL; p = p->next) | |
4056 | { | |
4057 | if (p->msymbol == NULL) | |
c5aa993b JM |
4058 | { |
4059 | char *string = (char *) alloca (strlen (p->symtab->filename) | |
4060 | + strlen (SYMBOL_NAME (p->symbol)) | |
4061 | + 4); | |
4062 | strcpy (string, p->symtab->filename); | |
4063 | strcat (string, ":'"); | |
4064 | strcat (string, SYMBOL_NAME (p->symbol)); | |
4065 | strcat (string, "'"); | |
4066 | break_command (string, from_tty); | |
4067 | print_symbol_info (FUNCTIONS_NAMESPACE, | |
4068 | p->symtab, | |
4069 | p->symbol, | |
4070 | p->block, | |
4071 | p->symtab->filename); | |
4072 | } | |
c906108c | 4073 | else |
c5aa993b JM |
4074 | { |
4075 | break_command (SYMBOL_NAME (p->msymbol), from_tty); | |
4076 | printf_filtered ("<function, no debug info> %s;\n", | |
4077 | SYMBOL_SOURCE_NAME (p->msymbol)); | |
4078 | } | |
c906108c SS |
4079 | } |
4080 | ||
4081 | do_cleanups (old_chain); | |
4082 | } | |
c906108c | 4083 | \f |
c5aa993b | 4084 | |
c906108c SS |
4085 | /* Return Nonzero if block a is lexically nested within block b, |
4086 | or if a and b have the same pc range. | |
4087 | Return zero otherwise. */ | |
4088 | int | |
4089 | contained_in (a, b) | |
4090 | struct block *a, *b; | |
4091 | { | |
4092 | if (!a || !b) | |
4093 | return 0; | |
4094 | return BLOCK_START (a) >= BLOCK_START (b) | |
c5aa993b | 4095 | && BLOCK_END (a) <= BLOCK_END (b); |
c906108c | 4096 | } |
c906108c | 4097 | \f |
c5aa993b | 4098 | |
c906108c SS |
4099 | /* Helper routine for make_symbol_completion_list. */ |
4100 | ||
4101 | static int return_val_size; | |
4102 | static int return_val_index; | |
4103 | static char **return_val; | |
4104 | ||
4105 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
4106 | do { \ | |
4107 | if (SYMBOL_DEMANGLED_NAME (symbol) != NULL) \ | |
4108 | /* Put only the mangled name on the list. */ \ | |
4109 | /* Advantage: "b foo<TAB>" completes to "b foo(int, int)" */ \ | |
4110 | /* Disadvantage: "b foo__i<TAB>" doesn't complete. */ \ | |
4111 | completion_list_add_name \ | |
4112 | (SYMBOL_DEMANGLED_NAME (symbol), (sym_text), (len), (text), (word)); \ | |
4113 | else \ | |
4114 | completion_list_add_name \ | |
4115 | (SYMBOL_NAME (symbol), (sym_text), (len), (text), (word)); \ | |
4116 | } while (0) | |
4117 | ||
4118 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
4119 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
4120 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
4121 | |
4122 | static void | |
4123 | completion_list_add_name (symname, sym_text, sym_text_len, text, word) | |
4124 | char *symname; | |
4125 | char *sym_text; | |
4126 | int sym_text_len; | |
4127 | char *text; | |
4128 | char *word; | |
4129 | { | |
4130 | int newsize; | |
4131 | int i; | |
4132 | ||
4133 | /* clip symbols that cannot match */ | |
4134 | ||
4135 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
4136 | { | |
4137 | return; | |
4138 | } | |
4139 | ||
4140 | /* Clip any symbol names that we've already considered. (This is a | |
4141 | time optimization) */ | |
4142 | ||
4143 | for (i = 0; i < return_val_index; ++i) | |
4144 | { | |
4145 | if (STREQ (symname, return_val[i])) | |
4146 | { | |
4147 | return; | |
4148 | } | |
4149 | } | |
c5aa993b | 4150 | |
c906108c SS |
4151 | /* We have a match for a completion, so add SYMNAME to the current list |
4152 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
4153 | ||
4154 | { | |
4155 | char *new; | |
4156 | if (word == sym_text) | |
4157 | { | |
4158 | new = xmalloc (strlen (symname) + 5); | |
4159 | strcpy (new, symname); | |
4160 | } | |
4161 | else if (word > sym_text) | |
4162 | { | |
4163 | /* Return some portion of symname. */ | |
4164 | new = xmalloc (strlen (symname) + 5); | |
4165 | strcpy (new, symname + (word - sym_text)); | |
4166 | } | |
4167 | else | |
4168 | { | |
4169 | /* Return some of SYM_TEXT plus symname. */ | |
4170 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
4171 | strncpy (new, word, sym_text - word); | |
4172 | new[sym_text - word] = '\0'; | |
4173 | strcat (new, symname); | |
4174 | } | |
4175 | ||
4176 | /* Recheck for duplicates if we intend to add a modified symbol. */ | |
4177 | if (word != sym_text) | |
4178 | { | |
4179 | for (i = 0; i < return_val_index; ++i) | |
4180 | { | |
4181 | if (STREQ (new, return_val[i])) | |
4182 | { | |
4183 | free (new); | |
4184 | return; | |
4185 | } | |
4186 | } | |
4187 | } | |
4188 | ||
4189 | if (return_val_index + 3 > return_val_size) | |
4190 | { | |
4191 | newsize = (return_val_size *= 2) * sizeof (char *); | |
4192 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
4193 | } | |
4194 | return_val[return_val_index++] = new; | |
4195 | return_val[return_val_index] = NULL; | |
4196 | } | |
4197 | } | |
4198 | ||
4199 | /* Return a NULL terminated array of all symbols (regardless of class) which | |
4200 | begin by matching TEXT. If the answer is no symbols, then the return value | |
4201 | is an array which contains only a NULL pointer. | |
4202 | ||
4203 | Problem: All of the symbols have to be copied because readline frees them. | |
4204 | I'm not going to worry about this; hopefully there won't be that many. */ | |
4205 | ||
4206 | char ** | |
4207 | make_symbol_completion_list (text, word) | |
4208 | char *text; | |
4209 | char *word; | |
4210 | { | |
4211 | register struct symbol *sym; | |
4212 | register struct symtab *s; | |
4213 | register struct partial_symtab *ps; | |
4214 | register struct minimal_symbol *msymbol; | |
4215 | register struct objfile *objfile; | |
4216 | register struct block *b, *surrounding_static_block = 0; | |
4217 | register int i, j; | |
4218 | struct partial_symbol **psym; | |
4219 | /* The symbol we are completing on. Points in same buffer as text. */ | |
4220 | char *sym_text; | |
4221 | /* Length of sym_text. */ | |
4222 | int sym_text_len; | |
4223 | ||
4224 | /* Now look for the symbol we are supposed to complete on. | |
4225 | FIXME: This should be language-specific. */ | |
4226 | { | |
4227 | char *p; | |
4228 | char quote_found; | |
4229 | char *quote_pos = NULL; | |
4230 | ||
4231 | /* First see if this is a quoted string. */ | |
4232 | quote_found = '\0'; | |
4233 | for (p = text; *p != '\0'; ++p) | |
4234 | { | |
4235 | if (quote_found != '\0') | |
4236 | { | |
4237 | if (*p == quote_found) | |
4238 | /* Found close quote. */ | |
4239 | quote_found = '\0'; | |
4240 | else if (*p == '\\' && p[1] == quote_found) | |
4241 | /* A backslash followed by the quote character | |
c5aa993b | 4242 | doesn't end the string. */ |
c906108c SS |
4243 | ++p; |
4244 | } | |
4245 | else if (*p == '\'' || *p == '"') | |
4246 | { | |
4247 | quote_found = *p; | |
4248 | quote_pos = p; | |
4249 | } | |
4250 | } | |
4251 | if (quote_found == '\'') | |
4252 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4253 | sym_text = quote_pos + 1; | |
4254 | else if (quote_found == '"') | |
4255 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 4256 | to complete it any other way. */ |
c906108c SS |
4257 | return NULL; |
4258 | else | |
4259 | { | |
4260 | /* It is not a quoted string. Break it based on the characters | |
4261 | which are in symbols. */ | |
4262 | while (p > text) | |
4263 | { | |
4264 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
4265 | --p; | |
4266 | else | |
4267 | break; | |
4268 | } | |
4269 | sym_text = p; | |
4270 | } | |
4271 | } | |
4272 | ||
4273 | sym_text_len = strlen (sym_text); | |
4274 | ||
4275 | return_val_size = 100; | |
4276 | return_val_index = 0; | |
4277 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
4278 | return_val[0] = NULL; | |
4279 | ||
4280 | /* Look through the partial symtabs for all symbols which begin | |
4281 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
4282 | ||
4283 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
4284 | { |
4285 | /* If the psymtab's been read in we'll get it when we search | |
4286 | through the blockvector. */ | |
4287 | if (ps->readin) | |
4288 | continue; | |
4289 | ||
4290 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
4291 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
4292 | + ps->n_global_syms); | |
4293 | psym++) | |
4294 | { | |
4295 | /* If interrupted, then quit. */ | |
4296 | QUIT; | |
4297 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
4298 | } | |
4299 | ||
4300 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
4301 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
4302 | + ps->n_static_syms); | |
4303 | psym++) | |
4304 | { | |
4305 | QUIT; | |
4306 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
4307 | } | |
4308 | } | |
c906108c SS |
4309 | |
4310 | /* At this point scan through the misc symbol vectors and add each | |
4311 | symbol you find to the list. Eventually we want to ignore | |
4312 | anything that isn't a text symbol (everything else will be | |
4313 | handled by the psymtab code above). */ | |
4314 | ||
4315 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
4316 | { |
4317 | QUIT; | |
4318 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
4319 | } | |
c906108c SS |
4320 | |
4321 | /* Search upwards from currently selected frame (so that we can | |
4322 | complete on local vars. */ | |
4323 | ||
4324 | for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
4325 | { | |
4326 | if (!BLOCK_SUPERBLOCK (b)) | |
4327 | { | |
c5aa993b | 4328 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 4329 | } |
c5aa993b | 4330 | |
c906108c | 4331 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 4332 | text string. Only complete on types visible from current context. */ |
c906108c SS |
4333 | |
4334 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4335 | { | |
4336 | sym = BLOCK_SYM (b, i); | |
4337 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); | |
4338 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4339 | { | |
4340 | struct type *t = SYMBOL_TYPE (sym); | |
4341 | enum type_code c = TYPE_CODE (t); | |
4342 | ||
4343 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
4344 | { | |
4345 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
4346 | { | |
4347 | if (TYPE_FIELD_NAME (t, j)) | |
4348 | { | |
4349 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 4350 | sym_text, sym_text_len, text, word); |
c906108c SS |
4351 | } |
4352 | } | |
4353 | } | |
4354 | } | |
4355 | } | |
4356 | } | |
4357 | ||
4358 | /* Go through the symtabs and check the externs and statics for | |
4359 | symbols which match. */ | |
4360 | ||
4361 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
4362 | { |
4363 | QUIT; | |
4364 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
4365 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4366 | { | |
4367 | sym = BLOCK_SYM (b, i); | |
4368 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); | |
4369 | } | |
4370 | } | |
c906108c SS |
4371 | |
4372 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
4373 | { |
4374 | QUIT; | |
4375 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
4376 | /* Don't do this block twice. */ | |
4377 | if (b == surrounding_static_block) | |
4378 | continue; | |
4379 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4380 | { | |
4381 | sym = BLOCK_SYM (b, i); | |
4382 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); | |
4383 | } | |
4384 | } | |
c906108c SS |
4385 | |
4386 | return (return_val); | |
4387 | } | |
4388 | ||
4389 | /* Determine if PC is in the prologue of a function. The prologue is the area | |
4390 | between the first instruction of a function, and the first executable line. | |
4391 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4392 | ||
4393 | If non-zero, func_start is where we think the prologue starts, possibly | |
4394 | by previous examination of symbol table information. | |
4395 | */ | |
4396 | ||
4397 | int | |
4398 | in_prologue (pc, func_start) | |
4399 | CORE_ADDR pc; | |
4400 | CORE_ADDR func_start; | |
4401 | { | |
4402 | struct symtab_and_line sal; | |
4403 | CORE_ADDR func_addr, func_end; | |
4404 | ||
4405 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4406 | goto nosyms; /* Might be in prologue */ | |
4407 | ||
4408 | sal = find_pc_line (func_addr, 0); | |
4409 | ||
4410 | if (sal.line == 0) | |
4411 | goto nosyms; | |
4412 | ||
4413 | /* sal.end is the address of the first instruction past sal.line. */ | |
4414 | if (sal.end > func_addr | |
4415 | && sal.end <= func_end) /* Is prologue in function? */ | |
4416 | return pc < sal.end; /* Yes, is pc in prologue? */ | |
4417 | ||
4418 | /* The line after the prologue seems to be outside the function. In this | |
4419 | case, tell the caller to find the prologue the hard way. */ | |
4420 | ||
4421 | return 1; | |
4422 | ||
4423 | /* Come here when symtabs don't contain line # info. In this case, it is | |
4424 | likely that the user has stepped into a library function w/o symbols, or | |
4425 | is doing a stepi/nexti through code without symbols. */ | |
4426 | ||
c5aa993b | 4427 | nosyms: |
c906108c SS |
4428 | |
4429 | /* If func_start is zero (meaning unknown) then we don't know whether pc is | |
4430 | in the prologue or not. I.E. it might be. */ | |
4431 | ||
c5aa993b JM |
4432 | if (!func_start) |
4433 | return 1; | |
c906108c SS |
4434 | |
4435 | /* We need to call the target-specific prologue skipping functions with the | |
4436 | function's start address because PC may be pointing at an instruction that | |
4437 | could be mistakenly considered part of the prologue. */ | |
4438 | ||
b83266a0 | 4439 | func_start = SKIP_PROLOGUE (func_start); |
c906108c SS |
4440 | |
4441 | return pc < func_start; | |
4442 | } | |
4443 | ||
4444 | ||
4445 | /* Begin overload resolution functions */ | |
4446 | /* Helper routine for make_symbol_completion_list. */ | |
4447 | ||
4448 | static int sym_return_val_size; | |
4449 | static int sym_return_val_index; | |
4450 | static struct symbol **sym_return_val; | |
4451 | ||
4452 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
4453 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
4454 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
4455 | |
4456 | static void | |
4457 | overload_list_add_symbol (sym, oload_name) | |
c5aa993b JM |
4458 | struct symbol *sym; |
4459 | char *oload_name; | |
c906108c SS |
4460 | { |
4461 | int newsize; | |
4462 | int i; | |
4463 | ||
4464 | /* Get the demangled name without parameters */ | |
c5aa993b | 4465 | char *sym_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ARM | DMGL_ANSI); |
c906108c SS |
4466 | if (!sym_name) |
4467 | { | |
4468 | sym_name = (char *) xmalloc (strlen (SYMBOL_NAME (sym)) + 1); | |
4469 | strcpy (sym_name, SYMBOL_NAME (sym)); | |
4470 | } | |
4471 | ||
4472 | /* skip symbols that cannot match */ | |
4473 | if (strcmp (sym_name, oload_name) != 0) | |
917317f4 JM |
4474 | { |
4475 | free (sym_name); | |
4476 | return; | |
4477 | } | |
c906108c SS |
4478 | |
4479 | /* If there is no type information, we can't do anything, so skip */ | |
4480 | if (SYMBOL_TYPE (sym) == NULL) | |
4481 | return; | |
4482 | ||
4483 | /* skip any symbols that we've already considered. */ | |
4484 | for (i = 0; i < sym_return_val_index; ++i) | |
4485 | if (!strcmp (SYMBOL_NAME (sym), SYMBOL_NAME (sym_return_val[i]))) | |
4486 | return; | |
4487 | ||
4488 | /* We have a match for an overload instance, so add SYM to the current list | |
4489 | * of overload instances */ | |
4490 | if (sym_return_val_index + 3 > sym_return_val_size) | |
4491 | { | |
4492 | newsize = (sym_return_val_size *= 2) * sizeof (struct symbol *); | |
4493 | sym_return_val = (struct symbol **) xrealloc ((char *) sym_return_val, newsize); | |
4494 | } | |
4495 | sym_return_val[sym_return_val_index++] = sym; | |
4496 | sym_return_val[sym_return_val_index] = NULL; | |
c5aa993b | 4497 | |
c906108c SS |
4498 | free (sym_name); |
4499 | } | |
4500 | ||
4501 | /* Return a null-terminated list of pointers to function symbols that | |
4502 | * match name of the supplied symbol FSYM. | |
4503 | * This is used in finding all overloaded instances of a function name. | |
4504 | * This has been modified from make_symbol_completion_list. */ | |
4505 | ||
4506 | ||
4507 | struct symbol ** | |
4508 | make_symbol_overload_list (fsym) | |
c5aa993b | 4509 | struct symbol *fsym; |
c906108c SS |
4510 | { |
4511 | register struct symbol *sym; | |
4512 | register struct symtab *s; | |
4513 | register struct partial_symtab *ps; | |
c906108c SS |
4514 | register struct objfile *objfile; |
4515 | register struct block *b, *surrounding_static_block = 0; | |
d4f3574e | 4516 | register int i; |
c906108c SS |
4517 | /* The name we are completing on. */ |
4518 | char *oload_name = NULL; | |
4519 | /* Length of name. */ | |
4520 | int oload_name_len = 0; | |
4521 | ||
4522 | /* Look for the symbol we are supposed to complete on. | |
4523 | * FIXME: This should be language-specific. */ | |
4524 | ||
4525 | oload_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_ARM | DMGL_ANSI); | |
4526 | if (!oload_name) | |
4527 | { | |
4528 | oload_name = (char *) xmalloc (strlen (SYMBOL_NAME (fsym)) + 1); | |
4529 | strcpy (oload_name, SYMBOL_NAME (fsym)); | |
4530 | } | |
4531 | oload_name_len = strlen (oload_name); | |
4532 | ||
4533 | sym_return_val_size = 100; | |
4534 | sym_return_val_index = 0; | |
4535 | sym_return_val = (struct symbol **) xmalloc ((sym_return_val_size + 1) * sizeof (struct symbol *)); | |
4536 | sym_return_val[0] = NULL; | |
4537 | ||
4538 | /* Look through the partial symtabs for all symbols which begin | |
917317f4 | 4539 | by matching OLOAD_NAME. Make sure we read that symbol table in. */ |
c906108c SS |
4540 | |
4541 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 4542 | { |
d4f3574e SS |
4543 | struct partial_symbol **psym; |
4544 | ||
c5aa993b JM |
4545 | /* If the psymtab's been read in we'll get it when we search |
4546 | through the blockvector. */ | |
4547 | if (ps->readin) | |
4548 | continue; | |
4549 | ||
4550 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
4551 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
4552 | + ps->n_global_syms); | |
4553 | psym++) | |
4554 | { | |
4555 | /* If interrupted, then quit. */ | |
4556 | QUIT; | |
917317f4 JM |
4557 | /* This will cause the symbol table to be read if it has not yet been */ |
4558 | s = PSYMTAB_TO_SYMTAB (ps); | |
c5aa993b JM |
4559 | } |
4560 | ||
4561 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
4562 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
4563 | + ps->n_static_syms); | |
4564 | psym++) | |
4565 | { | |
4566 | QUIT; | |
917317f4 JM |
4567 | /* This will cause the symbol table to be read if it has not yet been */ |
4568 | s = PSYMTAB_TO_SYMTAB (ps); | |
c5aa993b JM |
4569 | } |
4570 | } | |
c906108c | 4571 | |
c906108c SS |
4572 | /* Search upwards from currently selected frame (so that we can |
4573 | complete on local vars. */ | |
4574 | ||
4575 | for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
4576 | { | |
4577 | if (!BLOCK_SUPERBLOCK (b)) | |
4578 | { | |
c5aa993b | 4579 | surrounding_static_block = b; /* For elimination of dups */ |
c906108c | 4580 | } |
c5aa993b | 4581 | |
c906108c | 4582 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 4583 | text string. Only complete on types visible from current context. */ |
c906108c SS |
4584 | |
4585 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4586 | { | |
4587 | sym = BLOCK_SYM (b, i); | |
4588 | overload_list_add_symbol (sym, oload_name); | |
4589 | } | |
4590 | } | |
4591 | ||
4592 | /* Go through the symtabs and check the externs and statics for | |
4593 | symbols which match. */ | |
4594 | ||
4595 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
4596 | { |
4597 | QUIT; | |
4598 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
4599 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4600 | { | |
4601 | sym = BLOCK_SYM (b, i); | |
4602 | overload_list_add_symbol (sym, oload_name); | |
4603 | } | |
4604 | } | |
c906108c SS |
4605 | |
4606 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
4607 | { |
4608 | QUIT; | |
4609 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
4610 | /* Don't do this block twice. */ | |
4611 | if (b == surrounding_static_block) | |
4612 | continue; | |
4613 | for (i = 0; i < BLOCK_NSYMS (b); i++) | |
4614 | { | |
4615 | sym = BLOCK_SYM (b, i); | |
4616 | overload_list_add_symbol (sym, oload_name); | |
4617 | } | |
4618 | } | |
c906108c SS |
4619 | |
4620 | free (oload_name); | |
4621 | ||
4622 | return (sym_return_val); | |
4623 | } | |
4624 | ||
4625 | /* End of overload resolution functions */ | |
c906108c | 4626 | \f |
c5aa993b | 4627 | |
c906108c SS |
4628 | void |
4629 | _initialize_symtab () | |
4630 | { | |
4631 | add_info ("variables", variables_info, | |
c5aa993b | 4632 | "All global and static variable names, or those matching REGEXP."); |
c906108c | 4633 | if (dbx_commands) |
c5aa993b JM |
4634 | add_com ("whereis", class_info, variables_info, |
4635 | "All global and static variable names, or those matching REGEXP."); | |
c906108c SS |
4636 | |
4637 | add_info ("functions", functions_info, | |
4638 | "All function names, or those matching REGEXP."); | |
4639 | ||
4640 | /* FIXME: This command has at least the following problems: | |
4641 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4642 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4643 | typedef struct foo *FOO |
4644 | type_print prints "FOO" when we want to make it (in this situation) | |
4645 | print "struct foo *". | |
c906108c SS |
4646 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4647 | there is much disagreement "info types" can be fixed). */ | |
4648 | add_info ("types", types_info, | |
4649 | "All type names, or those matching REGEXP."); | |
4650 | ||
4651 | #if 0 | |
4652 | add_info ("methods", methods_info, | |
4653 | "All method names, or those matching REGEXP::REGEXP.\n\ | |
4654 | If the class qualifier is omitted, it is assumed to be the current scope.\n\ | |
4655 | If the first REGEXP is omitted, then all methods matching the second REGEXP\n\ | |
4656 | are listed."); | |
4657 | #endif | |
4658 | add_info ("sources", sources_info, | |
4659 | "Source files in the program."); | |
4660 | ||
4661 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
c5aa993b | 4662 | "Set a breakpoint for all functions matching REGEXP."); |
c906108c SS |
4663 | |
4664 | if (xdb_commands) | |
4665 | { | |
4666 | add_com ("lf", class_info, sources_info, "Source files in the program"); | |
4667 | add_com ("lg", class_info, variables_info, | |
c5aa993b | 4668 | "All global and static variable names, or those matching REGEXP."); |
c906108c SS |
4669 | } |
4670 | ||
4671 | /* Initialize the one built-in type that isn't language dependent... */ | |
4672 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4673 | "<unknown type>", (struct objfile *) NULL); | |
4674 | } |