]>
Commit | Line | Data |
---|---|---|
5ca28f79 | 1 | /* crc32.c -- compute the CRC-32 of a data stream |
de1ab01e | 2 | * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler |
5ca28f79 L |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | * | |
5 | * Thanks to Rodney Brown <[email protected]> for his contribution of faster | |
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
7 | * tables for updating the shift register in one step with three exclusive-ors | |
8 | * instead of four steps with four exclusive-ors. This results in about a | |
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
10 | */ | |
11 | ||
12 | /* @(#) $Id: crc32.c,v 1.1.1.2 2002/03/11 21:53:23 tromey Exp $ */ | |
13 | ||
14 | /* | |
15 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
16 | protection on the static variables used to control the first-use generation | |
17 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
18 | first call get_crc_table() to initialize the tables before allowing more than | |
19 | one thread to use crc32(). | |
20 | ||
21 | DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | |
22 | */ | |
23 | ||
24 | #ifdef MAKECRCH | |
25 | # include <stdio.h> | |
26 | # ifndef DYNAMIC_CRC_TABLE | |
27 | # define DYNAMIC_CRC_TABLE | |
28 | # endif /* !DYNAMIC_CRC_TABLE */ | |
29 | #endif /* MAKECRCH */ | |
30 | ||
31 | #include "zutil.h" /* for STDC and FAR definitions */ | |
32 | ||
5ca28f79 L |
33 | /* Definitions for doing the crc four data bytes at a time. */ |
34 | #if !defined(NOBYFOUR) && defined(Z_U4) | |
35 | # define BYFOUR | |
36 | #endif | |
37 | #ifdef BYFOUR | |
38 | local unsigned long crc32_little OF((unsigned long, | |
de1ab01e | 39 | const unsigned char FAR *, z_size_t)); |
5ca28f79 | 40 | local unsigned long crc32_big OF((unsigned long, |
de1ab01e | 41 | const unsigned char FAR *, z_size_t)); |
5ca28f79 L |
42 | # define TBLS 8 |
43 | #else | |
44 | # define TBLS 1 | |
45 | #endif /* BYFOUR */ | |
46 | ||
47 | /* Local functions for crc concatenation */ | |
48 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
49 | unsigned long vec)); | |
50 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
51 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | |
52 | ||
53 | ||
54 | #ifdef DYNAMIC_CRC_TABLE | |
55 | ||
56 | local volatile int crc_table_empty = 1; | |
57 | local z_crc_t FAR crc_table[TBLS][256]; | |
58 | local void make_crc_table OF((void)); | |
59 | #ifdef MAKECRCH | |
60 | local void write_table OF((FILE *, const z_crc_t FAR *)); | |
61 | #endif /* MAKECRCH */ | |
62 | /* | |
63 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
64 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
65 | ||
66 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
67 | with the lowest powers in the most significant bit. Then adding polynomials | |
68 | is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
69 | one. If we call the above polynomial p, and represent a byte as the | |
70 | polynomial q, also with the lowest power in the most significant bit (so the | |
71 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
72 | where a mod b means the remainder after dividing a by b. | |
73 | ||
74 | This calculation is done using the shift-register method of multiplying and | |
75 | taking the remainder. The register is initialized to zero, and for each | |
76 | incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
77 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
78 | x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
79 | out is a one). We start with the highest power (least significant bit) of | |
80 | q and repeat for all eight bits of q. | |
81 | ||
82 | The first table is simply the CRC of all possible eight bit values. This is | |
83 | all the information needed to generate CRCs on data a byte at a time for all | |
84 | combinations of CRC register values and incoming bytes. The remaining tables | |
85 | allow for word-at-a-time CRC calculation for both big-endian and little- | |
86 | endian machines, where a word is four bytes. | |
87 | */ | |
88 | local void make_crc_table() | |
89 | { | |
90 | z_crc_t c; | |
91 | int n, k; | |
92 | z_crc_t poly; /* polynomial exclusive-or pattern */ | |
93 | /* terms of polynomial defining this crc (except x^32): */ | |
94 | static volatile int first = 1; /* flag to limit concurrent making */ | |
95 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
96 | ||
97 | /* See if another task is already doing this (not thread-safe, but better | |
98 | than nothing -- significantly reduces duration of vulnerability in | |
99 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
100 | if (first) { | |
101 | first = 0; | |
102 | ||
103 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
104 | poly = 0; | |
105 | for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | |
106 | poly |= (z_crc_t)1 << (31 - p[n]); | |
107 | ||
108 | /* generate a crc for every 8-bit value */ | |
109 | for (n = 0; n < 256; n++) { | |
110 | c = (z_crc_t)n; | |
111 | for (k = 0; k < 8; k++) | |
112 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
113 | crc_table[0][n] = c; | |
114 | } | |
115 | ||
116 | #ifdef BYFOUR | |
117 | /* generate crc for each value followed by one, two, and three zeros, | |
118 | and then the byte reversal of those as well as the first table */ | |
119 | for (n = 0; n < 256; n++) { | |
120 | c = crc_table[0][n]; | |
121 | crc_table[4][n] = ZSWAP32(c); | |
122 | for (k = 1; k < 4; k++) { | |
123 | c = crc_table[0][c & 0xff] ^ (c >> 8); | |
124 | crc_table[k][n] = c; | |
125 | crc_table[k + 4][n] = ZSWAP32(c); | |
126 | } | |
127 | } | |
128 | #endif /* BYFOUR */ | |
129 | ||
130 | crc_table_empty = 0; | |
131 | } | |
132 | else { /* not first */ | |
133 | /* wait for the other guy to finish (not efficient, but rare) */ | |
134 | while (crc_table_empty) | |
135 | ; | |
136 | } | |
137 | ||
138 | #ifdef MAKECRCH | |
139 | /* write out CRC tables to crc32.h */ | |
140 | { | |
141 | FILE *out; | |
142 | ||
143 | out = fopen("crc32.h", "w"); | |
144 | if (out == NULL) return; | |
145 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
146 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
147 | fprintf(out, "local const z_crc_t FAR "); | |
148 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
149 | write_table(out, crc_table[0]); | |
150 | # ifdef BYFOUR | |
151 | fprintf(out, "#ifdef BYFOUR\n"); | |
152 | for (k = 1; k < 8; k++) { | |
153 | fprintf(out, " },\n {\n"); | |
154 | write_table(out, crc_table[k]); | |
155 | } | |
156 | fprintf(out, "#endif\n"); | |
157 | # endif /* BYFOUR */ | |
158 | fprintf(out, " }\n};\n"); | |
159 | fclose(out); | |
160 | } | |
161 | #endif /* MAKECRCH */ | |
162 | } | |
163 | ||
164 | #ifdef MAKECRCH | |
165 | local void write_table(out, table) | |
166 | FILE *out; | |
167 | const z_crc_t FAR *table; | |
168 | { | |
169 | int n; | |
170 | ||
171 | for (n = 0; n < 256; n++) | |
172 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", | |
173 | (unsigned long)(table[n]), | |
174 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
175 | } | |
176 | #endif /* MAKECRCH */ | |
177 | ||
178 | #else /* !DYNAMIC_CRC_TABLE */ | |
179 | /* ======================================================================== | |
180 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
181 | */ | |
182 | #include "crc32.h" | |
183 | #endif /* DYNAMIC_CRC_TABLE */ | |
184 | ||
185 | /* ========================================================================= | |
186 | * This function can be used by asm versions of crc32() | |
187 | */ | |
188 | const z_crc_t FAR * ZEXPORT get_crc_table() | |
189 | { | |
190 | #ifdef DYNAMIC_CRC_TABLE | |
191 | if (crc_table_empty) | |
192 | make_crc_table(); | |
193 | #endif /* DYNAMIC_CRC_TABLE */ | |
194 | return (const z_crc_t FAR *)crc_table; | |
195 | } | |
196 | ||
197 | /* ========================================================================= */ | |
198 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
199 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
200 | ||
201 | /* ========================================================================= */ | |
de1ab01e | 202 | unsigned long ZEXPORT crc32_z(crc, buf, len) |
5ca28f79 L |
203 | unsigned long crc; |
204 | const unsigned char FAR *buf; | |
de1ab01e | 205 | z_size_t len; |
5ca28f79 L |
206 | { |
207 | if (buf == Z_NULL) return 0UL; | |
208 | ||
209 | #ifdef DYNAMIC_CRC_TABLE | |
210 | if (crc_table_empty) | |
211 | make_crc_table(); | |
212 | #endif /* DYNAMIC_CRC_TABLE */ | |
213 | ||
214 | #ifdef BYFOUR | |
215 | if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
216 | z_crc_t endian; | |
217 | ||
218 | endian = 1; | |
219 | if (*((unsigned char *)(&endian))) | |
220 | return crc32_little(crc, buf, len); | |
221 | else | |
222 | return crc32_big(crc, buf, len); | |
223 | } | |
224 | #endif /* BYFOUR */ | |
225 | crc = crc ^ 0xffffffffUL; | |
226 | while (len >= 8) { | |
227 | DO8; | |
228 | len -= 8; | |
229 | } | |
230 | if (len) do { | |
231 | DO1; | |
232 | } while (--len); | |
233 | return crc ^ 0xffffffffUL; | |
234 | } | |
235 | ||
de1ab01e NC |
236 | /* ========================================================================= */ |
237 | unsigned long ZEXPORT crc32(crc, buf, len) | |
238 | unsigned long crc; | |
239 | const unsigned char FAR *buf; | |
240 | uInt len; | |
241 | { | |
242 | return crc32_z(crc, buf, len); | |
243 | } | |
244 | ||
5ca28f79 L |
245 | #ifdef BYFOUR |
246 | ||
de1ab01e NC |
247 | /* |
248 | This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit | |
249 | integer pointer type. This violates the strict aliasing rule, where a | |
250 | compiler can assume, for optimization purposes, that two pointers to | |
251 | fundamentally different types won't ever point to the same memory. This can | |
252 | manifest as a problem only if one of the pointers is written to. This code | |
253 | only reads from those pointers. So long as this code remains isolated in | |
254 | this compilation unit, there won't be a problem. For this reason, this code | |
255 | should not be copied and pasted into a compilation unit in which other code | |
256 | writes to the buffer that is passed to these routines. | |
257 | */ | |
258 | ||
5ca28f79 L |
259 | /* ========================================================================= */ |
260 | #define DOLIT4 c ^= *buf4++; \ | |
261 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
262 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
263 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
264 | ||
265 | /* ========================================================================= */ | |
266 | local unsigned long crc32_little(crc, buf, len) | |
267 | unsigned long crc; | |
268 | const unsigned char FAR *buf; | |
de1ab01e | 269 | z_size_t len; |
5ca28f79 L |
270 | { |
271 | register z_crc_t c; | |
272 | register const z_crc_t FAR *buf4; | |
273 | ||
274 | c = (z_crc_t)crc; | |
275 | c = ~c; | |
276 | while (len && ((ptrdiff_t)buf & 3)) { | |
277 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
278 | len--; | |
279 | } | |
280 | ||
281 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
282 | while (len >= 32) { | |
283 | DOLIT32; | |
284 | len -= 32; | |
285 | } | |
286 | while (len >= 4) { | |
287 | DOLIT4; | |
288 | len -= 4; | |
289 | } | |
290 | buf = (const unsigned char FAR *)buf4; | |
291 | ||
292 | if (len) do { | |
293 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
294 | } while (--len); | |
295 | c = ~c; | |
296 | return (unsigned long)c; | |
297 | } | |
298 | ||
299 | /* ========================================================================= */ | |
de1ab01e | 300 | #define DOBIG4 c ^= *buf4++; \ |
5ca28f79 L |
301 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
302 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
303 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
304 | ||
305 | /* ========================================================================= */ | |
306 | local unsigned long crc32_big(crc, buf, len) | |
307 | unsigned long crc; | |
308 | const unsigned char FAR *buf; | |
de1ab01e | 309 | z_size_t len; |
5ca28f79 L |
310 | { |
311 | register z_crc_t c; | |
312 | register const z_crc_t FAR *buf4; | |
313 | ||
314 | c = ZSWAP32((z_crc_t)crc); | |
315 | c = ~c; | |
316 | while (len && ((ptrdiff_t)buf & 3)) { | |
317 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
318 | len--; | |
319 | } | |
320 | ||
321 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
5ca28f79 L |
322 | while (len >= 32) { |
323 | DOBIG32; | |
324 | len -= 32; | |
325 | } | |
326 | while (len >= 4) { | |
327 | DOBIG4; | |
328 | len -= 4; | |
329 | } | |
5ca28f79 L |
330 | buf = (const unsigned char FAR *)buf4; |
331 | ||
332 | if (len) do { | |
333 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
334 | } while (--len); | |
335 | c = ~c; | |
336 | return (unsigned long)(ZSWAP32(c)); | |
337 | } | |
338 | ||
339 | #endif /* BYFOUR */ | |
340 | ||
341 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
342 | ||
343 | /* ========================================================================= */ | |
344 | local unsigned long gf2_matrix_times(mat, vec) | |
345 | unsigned long *mat; | |
346 | unsigned long vec; | |
347 | { | |
348 | unsigned long sum; | |
349 | ||
350 | sum = 0; | |
351 | while (vec) { | |
352 | if (vec & 1) | |
353 | sum ^= *mat; | |
354 | vec >>= 1; | |
355 | mat++; | |
356 | } | |
357 | return sum; | |
358 | } | |
359 | ||
360 | /* ========================================================================= */ | |
361 | local void gf2_matrix_square(square, mat) | |
362 | unsigned long *square; | |
363 | unsigned long *mat; | |
364 | { | |
365 | int n; | |
366 | ||
367 | for (n = 0; n < GF2_DIM; n++) | |
368 | square[n] = gf2_matrix_times(mat, mat[n]); | |
369 | } | |
370 | ||
371 | /* ========================================================================= */ | |
372 | local uLong crc32_combine_(crc1, crc2, len2) | |
373 | uLong crc1; | |
374 | uLong crc2; | |
375 | z_off64_t len2; | |
376 | { | |
377 | int n; | |
378 | unsigned long row; | |
379 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
380 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
381 | ||
382 | /* degenerate case (also disallow negative lengths) */ | |
383 | if (len2 <= 0) | |
384 | return crc1; | |
385 | ||
386 | /* put operator for one zero bit in odd */ | |
387 | odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ | |
388 | row = 1; | |
389 | for (n = 1; n < GF2_DIM; n++) { | |
390 | odd[n] = row; | |
391 | row <<= 1; | |
392 | } | |
393 | ||
394 | /* put operator for two zero bits in even */ | |
395 | gf2_matrix_square(even, odd); | |
396 | ||
397 | /* put operator for four zero bits in odd */ | |
398 | gf2_matrix_square(odd, even); | |
399 | ||
400 | /* apply len2 zeros to crc1 (first square will put the operator for one | |
401 | zero byte, eight zero bits, in even) */ | |
402 | do { | |
403 | /* apply zeros operator for this bit of len2 */ | |
404 | gf2_matrix_square(even, odd); | |
405 | if (len2 & 1) | |
406 | crc1 = gf2_matrix_times(even, crc1); | |
407 | len2 >>= 1; | |
408 | ||
409 | /* if no more bits set, then done */ | |
410 | if (len2 == 0) | |
411 | break; | |
412 | ||
413 | /* another iteration of the loop with odd and even swapped */ | |
414 | gf2_matrix_square(odd, even); | |
415 | if (len2 & 1) | |
416 | crc1 = gf2_matrix_times(odd, crc1); | |
417 | len2 >>= 1; | |
418 | ||
419 | /* if no more bits set, then done */ | |
420 | } while (len2 != 0); | |
421 | ||
422 | /* return combined crc */ | |
423 | crc1 ^= crc2; | |
424 | return crc1; | |
425 | } | |
426 | ||
427 | /* ========================================================================= */ | |
428 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | |
429 | uLong crc1; | |
430 | uLong crc2; | |
431 | z_off_t len2; | |
432 | { | |
433 | return crc32_combine_(crc1, crc2, len2); | |
434 | } | |
435 | ||
436 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | |
437 | uLong crc1; | |
438 | uLong crc2; | |
439 | z_off64_t len2; | |
440 | { | |
441 | return crc32_combine_(crc1, crc2, len2); | |
442 | } |