]>
Commit | Line | Data |
---|---|---|
a91a6192 SS |
1 | /* YACC parser for Fortran expressions, for GDB. |
2 | Copyright 1986, 1989, 1990, 1991, 1993, 1994 | |
3 | Free Software Foundation, Inc. | |
4 | Contributed by Motorola. Adapted from the C parser by Farooq Butt | |
5 | ([email protected]). | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
22 | ||
23 | /* This was blantantly ripped off the C expression parser, please | |
24 | be aware of that as you look at its basic structure -FMB */ | |
25 | ||
26 | /* Parse a F77 expression from text in a string, | |
27 | and return the result as a struct expression pointer. | |
28 | That structure contains arithmetic operations in reverse polish, | |
29 | with constants represented by operations that are followed by special data. | |
30 | See expression.h for the details of the format. | |
31 | What is important here is that it can be built up sequentially | |
32 | during the process of parsing; the lower levels of the tree always | |
33 | come first in the result. | |
34 | ||
35 | Note that malloc's and realloc's in this file are transformed to | |
36 | xmalloc and xrealloc respectively by the same sed command in the | |
37 | makefile that remaps any other malloc/realloc inserted by the parser | |
38 | generator. Doing this with #defines and trying to control the interaction | |
39 | with include files (<malloc.h> and <stdlib.h> for example) just became | |
40 | too messy, particularly when such includes can be inserted at random | |
41 | times by the parser generator. */ | |
42 | ||
43 | %{ | |
44 | ||
45 | #include "defs.h" | |
46 | #include "expression.h" | |
47 | #include "parser-defs.h" | |
48 | #include "value.h" | |
49 | #include "language.h" | |
50 | #include "f-lang.h" | |
51 | #include "bfd.h" /* Required by objfiles.h. */ | |
52 | #include "symfile.h" /* Required by objfiles.h. */ | |
53 | #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */ | |
54 | ||
55 | /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), | |
56 | as well as gratuitiously global symbol names, so we can have multiple | |
57 | yacc generated parsers in gdb. Note that these are only the variables | |
58 | produced by yacc. If other parser generators (bison, byacc, etc) produce | |
59 | additional global names that conflict at link time, then those parser | |
60 | generators need to be fixed instead of adding those names to this list. */ | |
61 | ||
62 | #define yymaxdepth f_maxdepth | |
63 | #define yyparse f_parse | |
64 | #define yylex f_lex | |
65 | #define yyerror f_error | |
66 | #define yylval f_lval | |
67 | #define yychar f_char | |
68 | #define yydebug f_debug | |
69 | #define yypact f_pact | |
70 | #define yyr1 f_r1 | |
71 | #define yyr2 f_r2 | |
72 | #define yydef f_def | |
73 | #define yychk f_chk | |
74 | #define yypgo f_pgo | |
75 | #define yyact f_act | |
76 | #define yyexca f_exca | |
77 | #define yyerrflag f_errflag | |
78 | #define yynerrs f_nerrs | |
79 | #define yyps f_ps | |
80 | #define yypv f_pv | |
81 | #define yys f_s | |
82 | #define yy_yys f_yys | |
83 | #define yystate f_state | |
84 | #define yytmp f_tmp | |
85 | #define yyv f_v | |
86 | #define yy_yyv f_yyv | |
87 | #define yyval f_val | |
88 | #define yylloc f_lloc | |
89 | #define yyreds f_reds /* With YYDEBUG defined */ | |
90 | #define yytoks f_toks /* With YYDEBUG defined */ | |
91 | ||
92 | #ifndef YYDEBUG | |
93 | #define YYDEBUG 1 /* Default to no yydebug support */ | |
94 | #endif | |
95 | ||
96 | int yyparse PARAMS ((void)); | |
97 | ||
98 | static int yylex PARAMS ((void)); | |
99 | ||
100 | void yyerror PARAMS ((char *)); | |
101 | ||
102 | %} | |
103 | ||
104 | /* Although the yacc "value" of an expression is not used, | |
105 | since the result is stored in the structure being created, | |
106 | other node types do have values. */ | |
107 | ||
108 | %union | |
109 | { | |
110 | LONGEST lval; | |
111 | struct { | |
112 | LONGEST val; | |
113 | struct type *type; | |
114 | } typed_val; | |
115 | double dval; | |
116 | struct symbol *sym; | |
117 | struct type *tval; | |
118 | struct stoken sval; | |
119 | struct ttype tsym; | |
120 | struct symtoken ssym; | |
121 | int voidval; | |
122 | struct block *bval; | |
123 | enum exp_opcode opcode; | |
124 | struct internalvar *ivar; | |
125 | ||
126 | struct type **tvec; | |
127 | int *ivec; | |
128 | } | |
129 | ||
130 | %{ | |
131 | /* YYSTYPE gets defined by %union */ | |
132 | static int parse_number PARAMS ((char *, int, int, YYSTYPE *)); | |
133 | %} | |
134 | ||
135 | %type <voidval> exp type_exp start variable | |
136 | %type <tval> type typebase | |
137 | %type <tvec> nonempty_typelist | |
138 | /* %type <bval> block */ | |
139 | ||
140 | /* Fancy type parsing. */ | |
141 | %type <voidval> func_mod direct_abs_decl abs_decl | |
142 | %type <tval> ptype | |
143 | ||
144 | %token <typed_val> INT | |
145 | %token <dval> FLOAT | |
146 | ||
147 | /* Both NAME and TYPENAME tokens represent symbols in the input, | |
148 | and both convey their data as strings. | |
149 | But a TYPENAME is a string that happens to be defined as a typedef | |
150 | or builtin type name (such as int or char) | |
151 | and a NAME is any other symbol. | |
152 | Contexts where this distinction is not important can use the | |
153 | nonterminal "name", which matches either NAME or TYPENAME. */ | |
154 | ||
155 | %token <sval> STRING_LITERAL | |
156 | %token <lval> BOOLEAN_LITERAL | |
157 | %token <ssym> NAME | |
158 | %token <tsym> TYPENAME | |
159 | %type <sval> name | |
160 | %type <ssym> name_not_typename | |
161 | %type <tsym> typename | |
162 | ||
163 | /* A NAME_OR_INT is a symbol which is not known in the symbol table, | |
164 | but which would parse as a valid number in the current input radix. | |
165 | E.g. "c" when input_radix==16. Depending on the parse, it will be | |
166 | turned into a name or into a number. */ | |
167 | ||
168 | %token <ssym> NAME_OR_INT | |
169 | ||
170 | %token SIZEOF | |
171 | %token ERROR | |
172 | ||
173 | /* Special type cases, put in to allow the parser to distinguish different | |
174 | legal basetypes. */ | |
175 | %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD | |
176 | %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD | |
177 | %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD | |
178 | %token BOOL_AND BOOL_OR BOOL_NOT | |
179 | %token <lval> LAST REGNAME CHARACTER | |
180 | ||
181 | %token <ivar> VARIABLE | |
182 | ||
183 | %token <opcode> ASSIGN_MODIFY | |
184 | ||
185 | %left ',' | |
186 | %left ABOVE_COMMA | |
187 | %right '=' ASSIGN_MODIFY | |
188 | %right '?' | |
189 | %left BOOL_OR | |
190 | %right BOOL_NOT | |
191 | %left BOOL_AND | |
192 | %left '|' | |
193 | %left '^' | |
194 | %left '&' | |
195 | %left EQUAL NOTEQUAL | |
196 | %left LESSTHAN GREATERTHAN LEQ GEQ | |
197 | %left LSH RSH | |
198 | %left '@' | |
199 | %left '+' '-' | |
200 | %left '*' '/' '%' | |
201 | %right UNARY | |
202 | %right '(' | |
203 | ||
204 | \f | |
205 | %% | |
206 | ||
207 | start : exp | |
208 | | type_exp | |
209 | ; | |
210 | ||
211 | type_exp: type | |
212 | { write_exp_elt_opcode(OP_TYPE); | |
213 | write_exp_elt_type($1); | |
214 | write_exp_elt_opcode(OP_TYPE); } | |
215 | ; | |
216 | ||
217 | ||
218 | exp : '(' exp ')' | |
219 | { } | |
220 | ; | |
221 | ||
222 | /* Expressions, not including the comma operator. */ | |
223 | exp : '*' exp %prec UNARY | |
224 | { write_exp_elt_opcode (UNOP_IND); } | |
225 | ||
226 | exp : '&' exp %prec UNARY | |
227 | { write_exp_elt_opcode (UNOP_ADDR); } | |
228 | ||
229 | exp : '-' exp %prec UNARY | |
230 | { write_exp_elt_opcode (UNOP_NEG); } | |
231 | ; | |
232 | ||
233 | exp : BOOL_NOT exp %prec UNARY | |
234 | { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } | |
235 | ; | |
236 | ||
237 | exp : '~' exp %prec UNARY | |
238 | { write_exp_elt_opcode (UNOP_COMPLEMENT); } | |
239 | ; | |
240 | ||
241 | exp : SIZEOF exp %prec UNARY | |
242 | { write_exp_elt_opcode (UNOP_SIZEOF); } | |
243 | ; | |
244 | ||
245 | /* No more explicit array operators, we treat everything in F77 as | |
246 | a function call. The disambiguation as to whether we are | |
247 | doing a subscript operation or a function call is done | |
248 | later in eval.c. */ | |
249 | ||
250 | exp : exp '(' | |
251 | { start_arglist (); } | |
252 | arglist ')' | |
253 | { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); | |
254 | write_exp_elt_longcst ((LONGEST) end_arglist ()); | |
255 | write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); } | |
256 | ; | |
257 | ||
258 | arglist : | |
259 | ; | |
260 | ||
261 | arglist : exp | |
262 | { arglist_len = 1; } | |
263 | ; | |
264 | ||
265 | arglist : substring | |
266 | { arglist_len = 2;} | |
267 | ||
268 | arglist : arglist ',' exp %prec ABOVE_COMMA | |
269 | { arglist_len++; } | |
270 | ; | |
271 | ||
272 | substring: exp ':' exp %prec ABOVE_COMMA | |
273 | { } | |
274 | ; | |
275 | ||
276 | ||
277 | complexnum: exp ',' exp | |
278 | { } | |
279 | ; | |
280 | ||
281 | exp : '(' complexnum ')' | |
282 | { write_exp_elt_opcode(OP_F77_LITERAL_COMPLEX); } | |
283 | ; | |
284 | ||
285 | exp : '(' type ')' exp %prec UNARY | |
286 | { write_exp_elt_opcode (UNOP_CAST); | |
287 | write_exp_elt_type ($2); | |
288 | write_exp_elt_opcode (UNOP_CAST); } | |
289 | ; | |
290 | ||
291 | /* Binary operators in order of decreasing precedence. */ | |
292 | ||
293 | exp : exp '@' exp | |
294 | { write_exp_elt_opcode (BINOP_REPEAT); } | |
295 | ; | |
296 | ||
297 | exp : exp '*' exp | |
298 | { write_exp_elt_opcode (BINOP_MUL); } | |
299 | ; | |
300 | ||
301 | exp : exp '/' exp | |
302 | { write_exp_elt_opcode (BINOP_DIV); } | |
303 | ; | |
304 | ||
305 | exp : exp '%' exp | |
306 | { write_exp_elt_opcode (BINOP_REM); } | |
307 | ; | |
308 | ||
309 | exp : exp '+' exp | |
310 | { write_exp_elt_opcode (BINOP_ADD); } | |
311 | ; | |
312 | ||
313 | exp : exp '-' exp | |
314 | { write_exp_elt_opcode (BINOP_SUB); } | |
315 | ; | |
316 | ||
317 | exp : exp LSH exp | |
318 | { write_exp_elt_opcode (BINOP_LSH); } | |
319 | ; | |
320 | ||
321 | exp : exp RSH exp | |
322 | { write_exp_elt_opcode (BINOP_RSH); } | |
323 | ; | |
324 | ||
325 | exp : exp EQUAL exp | |
326 | { write_exp_elt_opcode (BINOP_EQUAL); } | |
327 | ; | |
328 | ||
329 | exp : exp NOTEQUAL exp | |
330 | { write_exp_elt_opcode (BINOP_NOTEQUAL); } | |
331 | ; | |
332 | ||
333 | exp : exp LEQ exp | |
334 | { write_exp_elt_opcode (BINOP_LEQ); } | |
335 | ; | |
336 | ||
337 | exp : exp GEQ exp | |
338 | { write_exp_elt_opcode (BINOP_GEQ); } | |
339 | ; | |
340 | ||
341 | exp : exp LESSTHAN exp | |
342 | { write_exp_elt_opcode (BINOP_LESS); } | |
343 | ; | |
344 | ||
345 | exp : exp GREATERTHAN exp | |
346 | { write_exp_elt_opcode (BINOP_GTR); } | |
347 | ; | |
348 | ||
349 | exp : exp '&' exp | |
350 | { write_exp_elt_opcode (BINOP_BITWISE_AND); } | |
351 | ; | |
352 | ||
353 | exp : exp '^' exp | |
354 | { write_exp_elt_opcode (BINOP_BITWISE_XOR); } | |
355 | ; | |
356 | ||
357 | exp : exp '|' exp | |
358 | { write_exp_elt_opcode (BINOP_BITWISE_IOR); } | |
359 | ; | |
360 | ||
361 | exp : exp BOOL_AND exp | |
362 | { write_exp_elt_opcode (BINOP_LOGICAL_AND); } | |
363 | ; | |
364 | ||
365 | ||
366 | exp : exp BOOL_OR exp | |
367 | { write_exp_elt_opcode (BINOP_LOGICAL_OR); } | |
368 | ; | |
369 | ||
370 | exp : exp '=' exp | |
371 | { write_exp_elt_opcode (BINOP_ASSIGN); } | |
372 | ; | |
373 | ||
374 | exp : exp ASSIGN_MODIFY exp | |
375 | { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); | |
376 | write_exp_elt_opcode ($2); | |
377 | write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); } | |
378 | ; | |
379 | ||
380 | exp : INT | |
381 | { write_exp_elt_opcode (OP_LONG); | |
382 | write_exp_elt_type ($1.type); | |
383 | write_exp_elt_longcst ((LONGEST)($1.val)); | |
384 | write_exp_elt_opcode (OP_LONG); } | |
385 | ; | |
386 | ||
387 | exp : NAME_OR_INT | |
388 | { YYSTYPE val; | |
389 | parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val); | |
390 | write_exp_elt_opcode (OP_LONG); | |
391 | write_exp_elt_type (val.typed_val.type); | |
392 | write_exp_elt_longcst ((LONGEST)val.typed_val.val); | |
393 | write_exp_elt_opcode (OP_LONG); | |
394 | } | |
395 | ; | |
396 | ||
397 | exp : FLOAT | |
398 | { write_exp_elt_opcode (OP_DOUBLE); | |
399 | write_exp_elt_type (builtin_type_f_real_s8); | |
400 | write_exp_elt_dblcst ($1); | |
401 | write_exp_elt_opcode (OP_DOUBLE); } | |
402 | ; | |
403 | ||
404 | exp : variable | |
405 | ; | |
406 | ||
407 | exp : LAST | |
408 | { write_exp_elt_opcode (OP_LAST); | |
409 | write_exp_elt_longcst ((LONGEST) $1); | |
410 | write_exp_elt_opcode (OP_LAST); } | |
411 | ; | |
412 | ||
413 | exp : REGNAME | |
414 | { write_exp_elt_opcode (OP_REGISTER); | |
415 | write_exp_elt_longcst ((LONGEST) $1); | |
416 | write_exp_elt_opcode (OP_REGISTER); } | |
417 | ; | |
418 | ||
419 | exp : VARIABLE | |
420 | { write_exp_elt_opcode (OP_INTERNALVAR); | |
421 | write_exp_elt_intern ($1); | |
422 | write_exp_elt_opcode (OP_INTERNALVAR); } | |
423 | ; | |
424 | ||
425 | exp : SIZEOF '(' type ')' %prec UNARY | |
426 | { write_exp_elt_opcode (OP_LONG); | |
427 | write_exp_elt_type (builtin_type_f_integer); | |
428 | write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); | |
429 | write_exp_elt_opcode (OP_LONG); } | |
430 | ; | |
431 | ||
432 | exp : BOOLEAN_LITERAL | |
433 | { write_exp_elt_opcode (OP_BOOL); | |
434 | write_exp_elt_longcst ((LONGEST) $1); | |
435 | write_exp_elt_opcode (OP_BOOL); | |
436 | } | |
437 | ; | |
438 | ||
439 | exp : STRING_LITERAL | |
440 | { /* In F77, we encounter string literals | |
441 | basically in only one place: | |
442 | when we are setting up manual parameter | |
443 | lists to functions we call by hand or | |
444 | when setting string vars to manual values. | |
445 | These are character*N type variables. | |
446 | They are treated specially behind the | |
447 | scenes. Remember that the literal strings's | |
448 | OPs are being emitted in reverse order, thus | |
449 | we first have the elements and then | |
450 | the array descriptor itself. */ | |
451 | char *sp = $1.ptr; int count = $1.length; | |
452 | ||
453 | while (count-- > 0) | |
454 | { | |
455 | write_exp_elt_opcode (OP_LONG); | |
456 | write_exp_elt_type (builtin_type_f_character); | |
457 | write_exp_elt_longcst ((LONGEST)(*sp++)); | |
458 | write_exp_elt_opcode (OP_LONG); | |
459 | } | |
460 | write_exp_elt_opcode (OP_ARRAY); | |
461 | write_exp_elt_longcst ((LONGEST) 1); | |
462 | write_exp_elt_longcst ((LONGEST) ($1.length)); | |
463 | write_exp_elt_opcode (OP_ARRAY); | |
464 | } | |
465 | ||
466 | ; | |
467 | ||
468 | variable: name_not_typename | |
469 | { struct symbol *sym = $1.sym; | |
470 | ||
471 | if (sym) | |
472 | { | |
473 | if (symbol_read_needs_frame (sym)) | |
474 | { | |
475 | if (innermost_block == 0 || | |
476 | contained_in (block_found, | |
477 | innermost_block)) | |
478 | innermost_block = block_found; | |
479 | } | |
480 | write_exp_elt_opcode (OP_VAR_VALUE); | |
481 | write_exp_elt_sym (sym); | |
482 | write_exp_elt_opcode (OP_VAR_VALUE); | |
483 | break; | |
484 | } | |
485 | else | |
486 | { | |
487 | struct minimal_symbol *msymbol; | |
488 | register char *arg = copy_name ($1.stoken); | |
489 | ||
490 | msymbol = lookup_minimal_symbol (arg, NULL); | |
491 | if (msymbol != NULL) | |
492 | { | |
493 | write_exp_msymbol (msymbol, | |
494 | lookup_function_type (builtin_type_int), | |
495 | builtin_type_int); | |
496 | } | |
497 | else if (!have_full_symbols () && !have_partial_symbols ()) | |
498 | error ("No symbol table is loaded. Use the \"file\" command."); | |
499 | else | |
500 | error ("No symbol \"%s\" in current context.", | |
501 | copy_name ($1.stoken)); | |
502 | } | |
503 | } | |
504 | ; | |
505 | ||
506 | ||
507 | type : ptype | |
508 | ; | |
509 | ||
510 | ptype : typebase | |
511 | | typebase abs_decl | |
512 | { | |
513 | /* This is where the interesting stuff happens. */ | |
514 | int done = 0; | |
515 | int array_size; | |
516 | struct type *follow_type = $1; | |
517 | struct type *range_type; | |
518 | ||
519 | while (!done) | |
520 | switch (pop_type ()) | |
521 | { | |
522 | case tp_end: | |
523 | done = 1; | |
524 | break; | |
525 | case tp_pointer: | |
526 | follow_type = lookup_pointer_type (follow_type); | |
527 | break; | |
528 | case tp_reference: | |
529 | follow_type = lookup_reference_type (follow_type); | |
530 | break; | |
531 | case tp_array: | |
532 | array_size = pop_type_int (); | |
533 | if (array_size != -1) | |
534 | { | |
535 | range_type = | |
536 | create_range_type ((struct type *) NULL, | |
537 | builtin_type_f_integer, 0, | |
538 | array_size - 1); | |
539 | follow_type = | |
540 | create_array_type ((struct type *) NULL, | |
541 | follow_type, range_type); | |
542 | } | |
543 | else | |
544 | follow_type = lookup_pointer_type (follow_type); | |
545 | break; | |
546 | case tp_function: | |
547 | follow_type = lookup_function_type (follow_type); | |
548 | break; | |
549 | } | |
550 | $$ = follow_type; | |
551 | } | |
552 | ; | |
553 | ||
554 | abs_decl: '*' | |
555 | { push_type (tp_pointer); $$ = 0; } | |
556 | | '*' abs_decl | |
557 | { push_type (tp_pointer); $$ = $2; } | |
558 | | '&' | |
559 | { push_type (tp_reference); $$ = 0; } | |
560 | | '&' abs_decl | |
561 | { push_type (tp_reference); $$ = $2; } | |
562 | | direct_abs_decl | |
563 | ; | |
564 | ||
565 | direct_abs_decl: '(' abs_decl ')' | |
566 | { $$ = $2; } | |
567 | | direct_abs_decl func_mod | |
568 | { push_type (tp_function); } | |
569 | | func_mod | |
570 | { push_type (tp_function); } | |
571 | ; | |
572 | ||
573 | func_mod: '(' ')' | |
574 | { $$ = 0; } | |
575 | | '(' nonempty_typelist ')' | |
576 | { free ((PTR)$2); $$ = 0; } | |
577 | ; | |
578 | ||
579 | typebase /* Implements (approximately): (type-qualifier)* type-specifier */ | |
580 | : TYPENAME | |
581 | { $$ = $1.type; } | |
582 | | INT_KEYWORD | |
583 | { $$ = builtin_type_f_integer; } | |
584 | | INT_S2_KEYWORD | |
585 | { $$ = builtin_type_f_integer_s2; } | |
586 | | CHARACTER | |
587 | { $$ = builtin_type_f_character; } | |
588 | | LOGICAL_KEYWORD | |
589 | { $$ = builtin_type_f_logical;} | |
590 | | LOGICAL_S2_KEYWORD | |
591 | { $$ = builtin_type_f_logical_s2;} | |
592 | | LOGICAL_S1_KEYWORD | |
593 | { $$ = builtin_type_f_logical_s1;} | |
594 | | REAL_KEYWORD | |
595 | { $$ = builtin_type_f_real;} | |
596 | | REAL_S8_KEYWORD | |
597 | { $$ = builtin_type_f_real_s8;} | |
598 | | REAL_S16_KEYWORD | |
599 | { $$ = builtin_type_f_real_s16;} | |
600 | | COMPLEX_S8_KEYWORD | |
601 | { $$ = builtin_type_f_complex_s8;} | |
602 | | COMPLEX_S16_KEYWORD | |
603 | { $$ = builtin_type_f_complex_s16;} | |
604 | | COMPLEX_S32_KEYWORD | |
605 | { $$ = builtin_type_f_complex_s32;} | |
606 | ; | |
607 | ||
608 | typename: TYPENAME | |
609 | ; | |
610 | ||
611 | nonempty_typelist | |
612 | : type | |
613 | { $$ = (struct type **) malloc (sizeof (struct type *) * 2); | |
614 | $<ivec>$[0] = 1; /* Number of types in vector */ | |
615 | $$[1] = $1; | |
616 | } | |
617 | | nonempty_typelist ',' type | |
618 | { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1); | |
619 | $$ = (struct type **) realloc ((char *) $1, len); | |
620 | $$[$<ivec>$[0]] = $3; | |
621 | } | |
622 | ; | |
623 | ||
624 | name : NAME | |
625 | { $$ = $1.stoken; } | |
626 | | TYPENAME | |
627 | { $$ = $1.stoken; } | |
628 | | NAME_OR_INT | |
629 | { $$ = $1.stoken; } | |
630 | ; | |
631 | ||
632 | name_not_typename : NAME | |
633 | /* These would be useful if name_not_typename was useful, but it is just | |
634 | a fake for "variable", so these cause reduce/reduce conflicts because | |
635 | the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, | |
636 | =exp) or just an exp. If name_not_typename was ever used in an lvalue | |
637 | context where only a name could occur, this might be useful. | |
638 | | NAME_OR_INT | |
639 | */ | |
640 | ; | |
641 | ||
642 | %% | |
643 | ||
644 | /* Take care of parsing a number (anything that starts with a digit). | |
645 | Set yylval and return the token type; update lexptr. | |
646 | LEN is the number of characters in it. */ | |
647 | ||
648 | /*** Needs some error checking for the float case ***/ | |
649 | ||
650 | static int | |
651 | parse_number (p, len, parsed_float, putithere) | |
652 | register char *p; | |
653 | register int len; | |
654 | int parsed_float; | |
655 | YYSTYPE *putithere; | |
656 | { | |
657 | register LONGEST n = 0; | |
658 | register LONGEST prevn = 0; | |
659 | register int i; | |
660 | register int c; | |
661 | register int base = input_radix; | |
662 | int unsigned_p = 0; | |
663 | int long_p = 0; | |
664 | unsigned LONGEST high_bit; | |
665 | struct type *signed_type; | |
666 | struct type *unsigned_type; | |
667 | ||
668 | if (parsed_float) | |
669 | { | |
670 | /* It's a float since it contains a point or an exponent. */ | |
671 | putithere->dval = atof (p); | |
672 | return FLOAT; | |
673 | } | |
674 | ||
675 | /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ | |
676 | if (p[0] == '0') | |
677 | switch (p[1]) | |
678 | { | |
679 | case 'x': | |
680 | case 'X': | |
681 | if (len >= 3) | |
682 | { | |
683 | p += 2; | |
684 | base = 16; | |
685 | len -= 2; | |
686 | } | |
687 | break; | |
688 | ||
689 | case 't': | |
690 | case 'T': | |
691 | case 'd': | |
692 | case 'D': | |
693 | if (len >= 3) | |
694 | { | |
695 | p += 2; | |
696 | base = 10; | |
697 | len -= 2; | |
698 | } | |
699 | break; | |
700 | ||
701 | default: | |
702 | base = 8; | |
703 | break; | |
704 | } | |
705 | ||
706 | while (len-- > 0) | |
707 | { | |
708 | c = *p++; | |
709 | if (c >= 'A' && c <= 'Z') | |
710 | c += 'a' - 'A'; | |
711 | if (c != 'l' && c != 'u') | |
712 | n *= base; | |
713 | if (c >= '0' && c <= '9') | |
714 | n += i = c - '0'; | |
715 | else | |
716 | { | |
717 | if (base > 10 && c >= 'a' && c <= 'f') | |
718 | n += i = c - 'a' + 10; | |
719 | else if (len == 0 && c == 'l') | |
720 | long_p = 1; | |
721 | else if (len == 0 && c == 'u') | |
722 | unsigned_p = 1; | |
723 | else | |
724 | return ERROR; /* Char not a digit */ | |
725 | } | |
726 | if (i >= base) | |
727 | return ERROR; /* Invalid digit in this base */ | |
728 | ||
729 | /* Portably test for overflow (only works for nonzero values, so make | |
730 | a second check for zero). */ | |
731 | if ((prevn >= n) && n != 0) | |
732 | unsigned_p=1; /* Try something unsigned */ | |
733 | /* If range checking enabled, portably test for unsigned overflow. */ | |
734 | if (RANGE_CHECK && n != 0) | |
735 | { | |
736 | if ((unsigned_p && (unsigned)prevn >= (unsigned)n)) | |
737 | range_error("Overflow on numeric constant."); | |
738 | } | |
739 | prevn = n; | |
740 | } | |
741 | ||
742 | /* If the number is too big to be an int, or it's got an l suffix | |
743 | then it's a long. Work out if this has to be a long by | |
744 | shifting right and and seeing if anything remains, and the | |
745 | target int size is different to the target long size. | |
746 | ||
747 | In the expression below, we could have tested | |
748 | (n >> TARGET_INT_BIT) | |
749 | to see if it was zero, | |
750 | but too many compilers warn about that, when ints and longs | |
751 | are the same size. So we shift it twice, with fewer bits | |
752 | each time, for the same result. */ | |
753 | ||
754 | if ((TARGET_INT_BIT != TARGET_LONG_BIT | |
755 | && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */ | |
756 | || long_p) | |
757 | { | |
758 | high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1); | |
759 | unsigned_type = builtin_type_unsigned_long; | |
760 | signed_type = builtin_type_long; | |
761 | } | |
762 | else | |
763 | { | |
764 | high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1); | |
765 | unsigned_type = builtin_type_unsigned_int; | |
766 | signed_type = builtin_type_int; | |
767 | } | |
768 | ||
769 | putithere->typed_val.val = n; | |
770 | ||
771 | /* If the high bit of the worked out type is set then this number | |
772 | has to be unsigned. */ | |
773 | ||
774 | if (unsigned_p || (n & high_bit)) | |
775 | putithere->typed_val.type = unsigned_type; | |
776 | else | |
777 | putithere->typed_val.type = signed_type; | |
778 | ||
779 | return INT; | |
780 | } | |
781 | ||
782 | struct token | |
783 | { | |
784 | char *operator; | |
785 | int token; | |
786 | enum exp_opcode opcode; | |
787 | }; | |
788 | ||
789 | static const struct token dot_ops[] = | |
790 | { | |
791 | { ".and.", BOOL_AND, BINOP_END }, | |
792 | { ".AND.", BOOL_AND, BINOP_END }, | |
793 | { ".or.", BOOL_OR, BINOP_END }, | |
794 | { ".OR.", BOOL_OR, BINOP_END }, | |
795 | { ".not.", BOOL_NOT, BINOP_END }, | |
796 | { ".NOT.", BOOL_NOT, BINOP_END }, | |
797 | { ".eq.", EQUAL, BINOP_END }, | |
798 | { ".EQ.", EQUAL, BINOP_END }, | |
799 | { ".eqv.", EQUAL, BINOP_END }, | |
800 | { ".NEQV.", NOTEQUAL, BINOP_END }, | |
801 | { ".neqv.", NOTEQUAL, BINOP_END }, | |
802 | { ".EQV.", EQUAL, BINOP_END }, | |
803 | { ".ne.", NOTEQUAL, BINOP_END }, | |
804 | { ".NE.", NOTEQUAL, BINOP_END }, | |
805 | { ".le.", LEQ, BINOP_END }, | |
806 | { ".LE.", LEQ, BINOP_END }, | |
807 | { ".ge.", GEQ, BINOP_END }, | |
808 | { ".GE.", GEQ, BINOP_END }, | |
809 | { ".gt.", GREATERTHAN, BINOP_END }, | |
810 | { ".GT.", GREATERTHAN, BINOP_END }, | |
811 | { ".lt.", LESSTHAN, BINOP_END }, | |
812 | { ".LT.", LESSTHAN, BINOP_END }, | |
813 | { NULL, 0, 0 } | |
814 | }; | |
815 | ||
816 | struct f77_boolean_val | |
817 | { | |
818 | char *name; | |
819 | int value; | |
820 | }; | |
821 | ||
822 | static const struct f77_boolean_val boolean_values[] = | |
823 | { | |
824 | { ".true.", 1 }, | |
825 | { ".TRUE.", 1 }, | |
826 | { ".false.", 0 }, | |
827 | { ".FALSE.", 0 }, | |
828 | { NULL, 0 } | |
829 | }; | |
830 | ||
831 | static const struct token f77_keywords[] = | |
832 | { | |
833 | { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END }, | |
834 | { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END }, | |
835 | { "character", CHARACTER, BINOP_END }, | |
836 | { "integer_2", INT_S2_KEYWORD, BINOP_END }, | |
837 | { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END }, | |
838 | { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END }, | |
839 | { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END }, | |
840 | { "integer", INT_KEYWORD, BINOP_END }, | |
841 | { "logical", LOGICAL_KEYWORD, BINOP_END }, | |
842 | { "real_16", REAL_S16_KEYWORD, BINOP_END }, | |
843 | { "complex", COMPLEX_S8_KEYWORD, BINOP_END }, | |
844 | { "sizeof", SIZEOF, BINOP_END }, | |
845 | { "real_8", REAL_S8_KEYWORD, BINOP_END }, | |
846 | { "real", REAL_KEYWORD, BINOP_END }, | |
847 | { NULL, 0, 0 } | |
848 | }; | |
849 | ||
850 | /* Implementation of a dynamically expandable buffer for processing input | |
851 | characters acquired through lexptr and building a value to return in | |
852 | yylval. Ripped off from ch-exp.y */ | |
853 | ||
854 | static char *tempbuf; /* Current buffer contents */ | |
855 | static int tempbufsize; /* Size of allocated buffer */ | |
856 | static int tempbufindex; /* Current index into buffer */ | |
857 | ||
858 | #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */ | |
859 | ||
860 | #define CHECKBUF(size) \ | |
861 | do { \ | |
862 | if (tempbufindex + (size) >= tempbufsize) \ | |
863 | { \ | |
864 | growbuf_by_size (size); \ | |
865 | } \ | |
866 | } while (0); | |
867 | ||
868 | ||
869 | /* Grow the static temp buffer if necessary, including allocating the first one | |
870 | on demand. */ | |
871 | ||
872 | static void | |
873 | growbuf_by_size (count) | |
874 | int count; | |
875 | { | |
876 | int growby; | |
877 | ||
878 | growby = max (count, GROWBY_MIN_SIZE); | |
879 | tempbufsize += growby; | |
880 | if (tempbuf == NULL) | |
881 | tempbuf = (char *) malloc (tempbufsize); | |
882 | else | |
883 | tempbuf = (char *) realloc (tempbuf, tempbufsize); | |
884 | } | |
885 | ||
886 | /* Blatantly ripped off from ch-exp.y. This routine recognizes F77 | |
887 | string-literals. | |
888 | ||
889 | Recognize a string literal. A string literal is a nonzero sequence | |
890 | of characters enclosed in matching single quotes, except that | |
891 | a single character inside single quotes is a character literal, which | |
892 | we reject as a string literal. To embed the terminator character inside | |
893 | a string, it is simply doubled (I.E. 'this''is''one''string') */ | |
894 | ||
895 | static int | |
896 | match_string_literal () | |
897 | { | |
898 | char *tokptr = lexptr; | |
899 | ||
900 | for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++) | |
901 | { | |
902 | CHECKBUF (1); | |
903 | if (*tokptr == *lexptr) | |
904 | { | |
905 | if (*(tokptr + 1) == *lexptr) | |
906 | tokptr++; | |
907 | else | |
908 | break; | |
909 | } | |
910 | tempbuf[tempbufindex++] = *tokptr; | |
911 | } | |
912 | if (*tokptr == '\0' /* no terminator */ | |
913 | || tempbufindex == 0) /* no string */ | |
914 | return 0; | |
915 | else | |
916 | { | |
917 | tempbuf[tempbufindex] = '\0'; | |
918 | yylval.sval.ptr = tempbuf; | |
919 | yylval.sval.length = tempbufindex; | |
920 | lexptr = ++tokptr; | |
921 | return STRING_LITERAL; | |
922 | } | |
923 | } | |
924 | ||
925 | /* Read one token, getting characters through lexptr. */ | |
926 | ||
927 | static int | |
928 | yylex () | |
929 | { | |
930 | int c; | |
931 | int namelen; | |
932 | unsigned int i,token; | |
933 | char *tokstart; | |
934 | char *tokptr; | |
935 | int tempbufindex; | |
936 | static char *tempbuf; | |
937 | static int tempbufsize; | |
938 | ||
939 | retry: | |
940 | ||
941 | tokstart = lexptr; | |
942 | ||
943 | /* First of all, let us make sure we are not dealing with the | |
944 | special tokens .true. and .false. which evaluate to 1 and 0. */ | |
945 | ||
946 | if (*lexptr == '.') | |
947 | { | |
948 | for (i=0;boolean_values[i].name != NULL;i++) | |
949 | { | |
950 | if STREQN(tokstart,boolean_values[i].name, | |
951 | strlen(boolean_values[i].name)) | |
952 | { | |
953 | lexptr += strlen(boolean_values[i].name); | |
954 | yylval.lval = boolean_values[i].value; | |
955 | return (BOOLEAN_LITERAL); | |
956 | } | |
957 | } | |
958 | } | |
959 | ||
960 | /* See if it is a special .foo. operator */ | |
961 | ||
962 | for (i = 0; dot_ops[i].operator != NULL; i++) | |
963 | if (STREQN(tokstart, dot_ops[i].operator, | |
964 | strlen(dot_ops[i].operator))) | |
965 | { | |
966 | lexptr += strlen(dot_ops[i].operator); | |
967 | yylval.opcode = dot_ops[i].opcode; | |
968 | return dot_ops[i].token; | |
969 | } | |
970 | ||
971 | switch (c = *tokstart) | |
972 | { | |
973 | case 0: | |
974 | return 0; | |
975 | ||
976 | case ' ': | |
977 | case '\t': | |
978 | case '\n': | |
979 | lexptr++; | |
980 | goto retry; | |
981 | ||
982 | case '\'': | |
983 | token = match_string_literal (); | |
984 | if (token != 0) | |
985 | return (token); | |
986 | break; | |
987 | ||
988 | case '(': | |
989 | paren_depth++; | |
990 | lexptr++; | |
991 | return c; | |
992 | ||
993 | case ')': | |
994 | if (paren_depth == 0) | |
995 | return 0; | |
996 | paren_depth--; | |
997 | lexptr++; | |
998 | return c; | |
999 | ||
1000 | case ',': | |
1001 | if (comma_terminates && paren_depth == 0) | |
1002 | return 0; | |
1003 | lexptr++; | |
1004 | return c; | |
1005 | ||
1006 | case '.': | |
1007 | /* Might be a floating point number. */ | |
1008 | if (lexptr[1] < '0' || lexptr[1] > '9') | |
1009 | goto symbol; /* Nope, must be a symbol. */ | |
1010 | /* FALL THRU into number case. */ | |
1011 | ||
1012 | case '0': | |
1013 | case '1': | |
1014 | case '2': | |
1015 | case '3': | |
1016 | case '4': | |
1017 | case '5': | |
1018 | case '6': | |
1019 | case '7': | |
1020 | case '8': | |
1021 | case '9': | |
1022 | { | |
1023 | /* It's a number. */ | |
1024 | int got_dot = 0, got_e = 0, got_d = 0, toktype; | |
1025 | register char *p = tokstart; | |
1026 | int hex = input_radix > 10; | |
1027 | ||
1028 | if (c == '0' && (p[1] == 'x' || p[1] == 'X')) | |
1029 | { | |
1030 | p += 2; | |
1031 | hex = 1; | |
1032 | } | |
1033 | else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) | |
1034 | { | |
1035 | p += 2; | |
1036 | hex = 0; | |
1037 | } | |
1038 | ||
1039 | for (;; ++p) | |
1040 | { | |
1041 | if (!hex && !got_e && (*p == 'e' || *p == 'E')) | |
1042 | got_dot = got_e = 1; | |
1043 | else if (!hex && !got_e && (*p == 'd' || *p == 'D')) | |
1044 | got_dot = got_d = 1; | |
1045 | else if (!hex && !got_dot && *p == '.') | |
1046 | got_dot = 1; | |
1047 | else if ((got_e && (p[-1] == 'e' || p[-1] == 'E') | |
1048 | || got_d && (p[-1] == 'd' || p[-1] == 'D')) | |
1049 | && (*p == '-' || *p == '+')) | |
1050 | /* This is the sign of the exponent, not the end of the | |
1051 | number. */ | |
1052 | continue; | |
1053 | /* We will take any letters or digits. parse_number will | |
1054 | complain if past the radix, or if L or U are not final. */ | |
1055 | else if ((*p < '0' || *p > '9') | |
1056 | && ((*p < 'a' || *p > 'z') | |
1057 | && (*p < 'A' || *p > 'Z'))) | |
1058 | break; | |
1059 | } | |
1060 | toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d, | |
1061 | &yylval); | |
1062 | if (toktype == ERROR) | |
1063 | { | |
1064 | char *err_copy = (char *) alloca (p - tokstart + 1); | |
1065 | ||
1066 | memcpy (err_copy, tokstart, p - tokstart); | |
1067 | err_copy[p - tokstart] = 0; | |
1068 | error ("Invalid number \"%s\".", err_copy); | |
1069 | } | |
1070 | lexptr = p; | |
1071 | return toktype; | |
1072 | } | |
1073 | ||
1074 | case '+': | |
1075 | case '-': | |
1076 | case '*': | |
1077 | case '/': | |
1078 | case '%': | |
1079 | case '|': | |
1080 | case '&': | |
1081 | case '^': | |
1082 | case '~': | |
1083 | case '!': | |
1084 | case '@': | |
1085 | case '<': | |
1086 | case '>': | |
1087 | case '[': | |
1088 | case ']': | |
1089 | case '?': | |
1090 | case ':': | |
1091 | case '=': | |
1092 | case '{': | |
1093 | case '}': | |
1094 | symbol: | |
1095 | lexptr++; | |
1096 | return c; | |
1097 | } | |
1098 | ||
1099 | if (!(c == '_' || c == '$' | |
1100 | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) | |
1101 | /* We must have come across a bad character (e.g. ';'). */ | |
1102 | error ("Invalid character '%c' in expression.", c); | |
1103 | ||
1104 | namelen = 0; | |
1105 | for (c = tokstart[namelen]; | |
1106 | (c == '_' || c == '$' || (c >= '0' && c <= '9') | |
1107 | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); | |
1108 | c = tokstart[++namelen]); | |
1109 | ||
1110 | /* The token "if" terminates the expression and is NOT | |
1111 | removed from the input stream. */ | |
1112 | ||
1113 | if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f') | |
1114 | return 0; | |
1115 | ||
1116 | lexptr += namelen; | |
1117 | ||
1118 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
1119 | and $$digits (equivalent to $<-digits> if you could type that). | |
1120 | Make token type LAST, and put the number (the digits) in yylval. */ | |
1121 | ||
1122 | tryname: | |
1123 | if (*tokstart == '$') | |
1124 | { | |
1125 | register int negate = 0; | |
1126 | ||
1127 | c = 1; | |
1128 | /* Double dollar means negate the number and add -1 as well. | |
1129 | Thus $$ alone means -1. */ | |
1130 | if (namelen >= 2 && tokstart[1] == '$') | |
1131 | { | |
1132 | negate = 1; | |
1133 | c = 2; | |
1134 | } | |
1135 | if (c == namelen) | |
1136 | { | |
1137 | /* Just dollars (one or two) */ | |
1138 | yylval.lval = - negate; | |
1139 | return LAST; | |
1140 | } | |
1141 | /* Is the rest of the token digits? */ | |
1142 | for (; c < namelen; c++) | |
1143 | if (!(tokstart[c] >= '0' && tokstart[c] <= '9')) | |
1144 | break; | |
1145 | if (c == namelen) | |
1146 | { | |
1147 | yylval.lval = atoi (tokstart + 1 + negate); | |
1148 | if (negate) | |
1149 | yylval.lval = - yylval.lval; | |
1150 | return LAST; | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | /* Handle tokens that refer to machine registers: | |
1155 | $ followed by a register name. */ | |
1156 | ||
1157 | if (*tokstart == '$') { | |
1158 | for (c = 0; c < NUM_REGS; c++) | |
1159 | if (namelen - 1 == strlen (reg_names[c]) | |
1160 | && STREQN (tokstart + 1, reg_names[c], namelen - 1)) | |
1161 | { | |
1162 | yylval.lval = c; | |
1163 | return REGNAME; | |
1164 | } | |
1165 | for (c = 0; c < num_std_regs; c++) | |
1166 | if (namelen - 1 == strlen (std_regs[c].name) | |
1167 | && STREQN (tokstart + 1, std_regs[c].name, namelen - 1)) | |
1168 | { | |
1169 | yylval.lval = std_regs[c].regnum; | |
1170 | return REGNAME; | |
1171 | } | |
1172 | } | |
1173 | /* Catch specific keywords. */ | |
1174 | ||
1175 | for (i = 0; f77_keywords[i].operator != NULL; i++) | |
1176 | if (STREQN(tokstart, f77_keywords[i].operator, | |
1177 | strlen(f77_keywords[i].operator))) | |
1178 | { | |
1179 | /* lexptr += strlen(f77_keywords[i].operator); */ | |
1180 | yylval.opcode = f77_keywords[i].opcode; | |
1181 | return f77_keywords[i].token; | |
1182 | } | |
1183 | ||
1184 | yylval.sval.ptr = tokstart; | |
1185 | yylval.sval.length = namelen; | |
1186 | ||
1187 | /* Any other names starting in $ are debugger internal variables. */ | |
1188 | ||
1189 | if (*tokstart == '$') | |
1190 | { | |
1191 | yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1); | |
1192 | return VARIABLE; | |
1193 | } | |
1194 | ||
1195 | /* Use token-type TYPENAME for symbols that happen to be defined | |
1196 | currently as names of types; NAME for other symbols. | |
1197 | The caller is not constrained to care about the distinction. */ | |
1198 | { | |
1199 | char *tmp = copy_name (yylval.sval); | |
1200 | struct symbol *sym; | |
1201 | int is_a_field_of_this = 0; | |
1202 | int hextype; | |
1203 | ||
1204 | sym = lookup_symbol (tmp, expression_context_block, | |
1205 | VAR_NAMESPACE, | |
1206 | current_language->la_language == language_cplus | |
1207 | ? &is_a_field_of_this : NULL, | |
1208 | NULL); | |
1209 | if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
1210 | { | |
1211 | yylval.tsym.type = SYMBOL_TYPE (sym); | |
1212 | return TYPENAME; | |
1213 | } | |
1214 | if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0) | |
1215 | return TYPENAME; | |
1216 | ||
1217 | /* Input names that aren't symbols but ARE valid hex numbers, | |
1218 | when the input radix permits them, can be names or numbers | |
1219 | depending on the parse. Note we support radixes > 16 here. */ | |
1220 | if (!sym | |
1221 | && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) | |
1222 | || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) | |
1223 | { | |
1224 | YYSTYPE newlval; /* Its value is ignored. */ | |
1225 | hextype = parse_number (tokstart, namelen, 0, &newlval); | |
1226 | if (hextype == INT) | |
1227 | { | |
1228 | yylval.ssym.sym = sym; | |
1229 | yylval.ssym.is_a_field_of_this = is_a_field_of_this; | |
1230 | return NAME_OR_INT; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* Any other kind of symbol */ | |
1235 | yylval.ssym.sym = sym; | |
1236 | yylval.ssym.is_a_field_of_this = is_a_field_of_this; | |
1237 | return NAME; | |
1238 | } | |
1239 | } | |
1240 | ||
1241 | void | |
1242 | yyerror (msg) | |
1243 | char *msg; | |
1244 | { | |
1245 | error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr); | |
1246 | } |