]>
Commit | Line | Data |
---|---|---|
41abdfbd | 1 | /* Target-dependent code for GDB, the GNU debugger. |
ecf4059f | 2 | Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc. |
41abdfbd JG |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
41abdfbd | 20 | #include "defs.h" |
41abdfbd JG |
21 | #include "frame.h" |
22 | #include "inferior.h" | |
23 | #include "symtab.h" | |
24 | #include "target.h" | |
030fb5cb | 25 | #include "gdbcore.h" |
41abdfbd | 26 | |
2aefe6e4 JK |
27 | #include "xcoffsolib.h" |
28 | ||
41abdfbd JG |
29 | #include <sys/param.h> |
30 | #include <sys/dir.h> | |
31 | #include <sys/user.h> | |
32 | #include <signal.h> | |
33 | #include <sys/ioctl.h> | |
34 | #include <fcntl.h> | |
35 | ||
41abdfbd JG |
36 | #include <a.out.h> |
37 | #include <sys/file.h> | |
38 | #include <sys/stat.h> | |
39 | #include <sys/core.h> | |
ecf4059f | 40 | #include <sys/ldr.h> |
41abdfbd | 41 | |
d6434f39 JG |
42 | |
43 | extern struct obstack frame_cache_obstack; | |
44 | ||
41abdfbd | 45 | extern int errno; |
41abdfbd JG |
46 | |
47 | /* Nonzero if we just simulated a single step break. */ | |
48 | int one_stepped; | |
49 | ||
41abdfbd JG |
50 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
51 | ||
52 | static struct sstep_breaks { | |
030fb5cb JK |
53 | /* Address, or 0 if this is not in use. */ |
54 | CORE_ADDR address; | |
55 | /* Shadow contents. */ | |
56 | char data[4]; | |
41abdfbd JG |
57 | } stepBreaks[2]; |
58 | ||
ecf4059f JG |
59 | /* Static function prototypes */ |
60 | ||
ecf4059f JG |
61 | static CORE_ADDR |
62 | find_toc_address PARAMS ((CORE_ADDR pc)); | |
63 | ||
64 | static CORE_ADDR | |
65 | branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)); | |
66 | ||
67 | static void | |
68 | frame_get_cache_fsr PARAMS ((struct frame_info *fi, | |
69 | struct aix_framedata *fdatap)); | |
41abdfbd JG |
70 | |
71 | /* | |
72 | * Calculate the destination of a branch/jump. Return -1 if not a branch. | |
73 | */ | |
ecf4059f | 74 | static CORE_ADDR |
41abdfbd | 75 | branch_dest (opcode, instr, pc, safety) |
ecf4059f JG |
76 | int opcode; |
77 | int instr; | |
78 | CORE_ADDR pc; | |
79 | CORE_ADDR safety; | |
41abdfbd JG |
80 | { |
81 | register long offset; | |
ecf4059f | 82 | CORE_ADDR dest; |
41abdfbd JG |
83 | int immediate; |
84 | int absolute; | |
85 | int ext_op; | |
86 | ||
87 | absolute = (int) ((instr >> 1) & 1); | |
88 | ||
89 | switch (opcode) { | |
90 | case 18 : | |
ecf4059f | 91 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ |
41abdfbd JG |
92 | |
93 | case 16 : | |
94 | if (opcode != 18) /* br conditional */ | |
95 | immediate = ((instr & ~3) << 16) >> 16; | |
96 | if (absolute) | |
97 | dest = immediate; | |
98 | else | |
99 | dest = pc + immediate; | |
100 | break; | |
101 | ||
102 | case 19 : | |
103 | ext_op = (instr>>1) & 0x3ff; | |
104 | ||
105 | if (ext_op == 16) /* br conditional register */ | |
106 | dest = read_register (LR_REGNUM) & ~3; | |
107 | ||
108 | else if (ext_op == 528) /* br cond to count reg */ | |
9aa31e91 JK |
109 | { |
110 | dest = read_register (CTR_REGNUM) & ~3; | |
111 | ||
112 | /* If we are about to execute a system call, dest is something | |
113 | like 0x22fc or 0x3b00. Upon completion the system call | |
114 | will return to the address in the link register. */ | |
115 | if (dest < TEXT_SEGMENT_BASE) | |
116 | dest = read_register (LR_REGNUM) & ~3; | |
117 | } | |
41abdfbd JG |
118 | else return -1; |
119 | break; | |
120 | ||
121 | default: return -1; | |
122 | } | |
818de002 | 123 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
41abdfbd JG |
124 | } |
125 | ||
126 | ||
127 | ||
128 | /* AIX does not support PT_STEP. Simulate it. */ | |
129 | ||
997cc2c0 | 130 | void |
41abdfbd | 131 | single_step (signal) |
997cc2c0 | 132 | int signal; |
41abdfbd JG |
133 | { |
134 | #define INSNLEN(OPCODE) 4 | |
135 | ||
136 | static char breakp[] = BREAKPOINT; | |
030fb5cb JK |
137 | int ii, insn; |
138 | CORE_ADDR loc; | |
139 | CORE_ADDR breaks[2]; | |
140 | int opcode; | |
41abdfbd JG |
141 | |
142 | if (!one_stepped) { | |
41abdfbd JG |
143 | loc = read_pc (); |
144 | ||
359a097f | 145 | read_memory (loc, (char *) &insn, 4); |
41abdfbd JG |
146 | |
147 | breaks[0] = loc + INSNLEN(insn); | |
148 | opcode = insn >> 26; | |
149 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
150 | ||
818de002 PB |
151 | /* Don't put two breakpoints on the same address. */ |
152 | if (breaks[1] == breaks[0]) | |
153 | breaks[1] = -1; | |
154 | ||
030fb5cb | 155 | stepBreaks[1].address = 0; |
41abdfbd JG |
156 | |
157 | for (ii=0; ii < 2; ++ii) { | |
158 | ||
159 | /* ignore invalid breakpoint. */ | |
160 | if ( breaks[ii] == -1) | |
161 | continue; | |
162 | ||
030fb5cb | 163 | read_memory (breaks[ii], stepBreaks[ii].data, 4); |
41abdfbd | 164 | |
030fb5cb | 165 | write_memory (breaks[ii], breakp, 4); |
41abdfbd JG |
166 | stepBreaks[ii].address = breaks[ii]; |
167 | } | |
168 | ||
169 | one_stepped = 1; | |
997cc2c0 | 170 | } else { |
41abdfbd JG |
171 | |
172 | /* remove step breakpoints. */ | |
173 | for (ii=0; ii < 2; ++ii) | |
030fb5cb | 174 | if (stepBreaks[ii].address != 0) |
41abdfbd | 175 | write_memory |
030fb5cb | 176 | (stepBreaks[ii].address, stepBreaks[ii].data, 4); |
41abdfbd JG |
177 | |
178 | one_stepped = 0; | |
179 | } | |
997cc2c0 | 180 | errno = 0; /* FIXME, don't ignore errors! */ |
030fb5cb | 181 | /* What errors? {read,write}_memory call error(). */ |
41abdfbd | 182 | } |
41abdfbd JG |
183 | |
184 | ||
185 | /* return pc value after skipping a function prologue. */ | |
186 | ||
187 | skip_prologue (pc) | |
ecf4059f | 188 | CORE_ADDR pc; |
41abdfbd JG |
189 | { |
190 | unsigned int tmp; | |
ecf4059f | 191 | unsigned int op; /* FIXME, assumes instruction size matches host int!!! */ |
41abdfbd JG |
192 | |
193 | if (target_read_memory (pc, (char *)&op, sizeof (op))) | |
194 | return pc; /* Can't access it -- assume no prologue. */ | |
195 | SWAP_TARGET_AND_HOST (&op, sizeof (op)); | |
196 | ||
197 | /* Assume that subsequent fetches can fail with low probability. */ | |
198 | ||
199 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
200 | pc += 4; | |
201 | op = read_memory_integer (pc, 4); | |
202 | } | |
41abdfbd JG |
203 | |
204 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
205 | pc += 4; | |
206 | op = read_memory_integer (pc, 4); | |
207 | } | |
208 | ||
209 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
210 | pc += 4; | |
211 | op = read_memory_integer (pc, 4); | |
1eeba686 PB |
212 | |
213 | /* At this point, make sure this is not a trampoline function | |
214 | (a function that simply calls another functions, and nothing else). | |
215 | If the next is not a nop, this branch was part of the function | |
216 | prologue. */ | |
217 | ||
218 | if (op == 0x4def7b82 || /* crorc 15, 15, 15 */ | |
219 | op == 0x0) | |
220 | return pc - 4; /* don't skip over this branch */ | |
41abdfbd JG |
221 | } |
222 | ||
cdb1cc92 ILT |
223 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ |
224 | pc += 4; /* store floating register double */ | |
225 | op = read_memory_integer (pc, 4); | |
226 | } | |
227 | ||
41abdfbd JG |
228 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ |
229 | pc += 4; | |
230 | op = read_memory_integer (pc, 4); | |
231 | } | |
232 | ||
233 | while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */ | |
234 | (tmp == 0x9421) || /* stu r1, NUM(r1) */ | |
cdb1cc92 | 235 | (tmp == 0x93e1)) /* st r31,NUM(r1) */ |
41abdfbd JG |
236 | { |
237 | pc += 4; | |
238 | op = read_memory_integer (pc, 4); | |
239 | } | |
240 | ||
241 | while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */ | |
242 | pc += 4; /* l r30, ... */ | |
243 | op = read_memory_integer (pc, 4); | |
244 | } | |
245 | ||
507e4004 | 246 | /* store parameters into stack */ |
818de002 PB |
247 | while( |
248 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ | |
249 | (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */ | |
250 | (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */ | |
251 | (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */ | |
252 | { | |
253 | pc += 4; /* store fpr double */ | |
254 | op = read_memory_integer (pc, 4); | |
255 | } | |
41abdfbd JG |
256 | |
257 | if (op == 0x603f0000) { /* oril r31, r1, 0x0 */ | |
258 | pc += 4; /* this happens if r31 is used as */ | |
259 | op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */ | |
260 | ||
818de002 PB |
261 | tmp = 0; |
262 | while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */ | |
263 | pc += 4; /* st r4, NUM(r31), ... */ | |
41abdfbd | 264 | op = read_memory_integer (pc, 4); |
818de002 | 265 | tmp += 0x20; |
41abdfbd JG |
266 | } |
267 | } | |
507e4004 PB |
268 | #if 0 |
269 | /* I have problems with skipping over __main() that I need to address | |
270 | * sometime. Previously, I used to use misc_function_vector which | |
271 | * didn't work as well as I wanted to be. -MGO */ | |
272 | ||
273 | /* If the first thing after skipping a prolog is a branch to a function, | |
274 | this might be a call to an initializer in main(), introduced by gcc2. | |
275 | We'd like to skip over it as well. Fortunately, xlc does some extra | |
276 | work before calling a function right after a prologue, thus we can | |
277 | single out such gcc2 behaviour. */ | |
278 | ||
279 | ||
280 | if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */ | |
281 | op = read_memory_integer (pc+4, 4); | |
282 | ||
283 | if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */ | |
284 | ||
285 | /* check and see if we are in main. If so, skip over this initializer | |
286 | function as well. */ | |
287 | ||
288 | tmp = find_pc_misc_function (pc); | |
2e4964ad | 289 | if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main")) |
507e4004 PB |
290 | return pc + 8; |
291 | } | |
292 | } | |
293 | #endif /* 0 */ | |
294 | ||
41abdfbd JG |
295 | return pc; |
296 | } | |
297 | ||
818de002 | 298 | |
41abdfbd JG |
299 | /************************************************************************* |
300 | Support for creating pushind a dummy frame into the stack, and popping | |
301 | frames, etc. | |
302 | *************************************************************************/ | |
303 | ||
818de002 PB |
304 | /* The total size of dummy frame is 436, which is; |
305 | ||
306 | 32 gpr's - 128 bytes | |
307 | 32 fpr's - 256 " | |
308 | 7 the rest - 28 " | |
309 | and 24 extra bytes for the callee's link area. The last 24 bytes | |
310 | for the link area might not be necessary, since it will be taken | |
311 | care of by push_arguments(). */ | |
312 | ||
313 | #define DUMMY_FRAME_SIZE 436 | |
314 | ||
41abdfbd JG |
315 | #define DUMMY_FRAME_ADDR_SIZE 10 |
316 | ||
317 | /* Make sure you initialize these in somewhere, in case gdb gives up what it | |
818de002 | 318 | was debugging and starts debugging something else. FIXMEibm */ |
41abdfbd JG |
319 | |
320 | static int dummy_frame_count = 0; | |
321 | static int dummy_frame_size = 0; | |
322 | static CORE_ADDR *dummy_frame_addr = 0; | |
323 | ||
324 | extern int stop_stack_dummy; | |
325 | ||
326 | /* push a dummy frame into stack, save all register. Currently we are saving | |
327 | only gpr's and fpr's, which is not good enough! FIXMEmgo */ | |
328 | ||
ecf4059f | 329 | void |
41abdfbd JG |
330 | push_dummy_frame () |
331 | { | |
359a097f JK |
332 | /* stack pointer. */ |
333 | CORE_ADDR sp; | |
334 | ||
335 | /* link register. */ | |
336 | CORE_ADDR pc; | |
337 | /* Same thing, target byte order. */ | |
338 | char pc_targ[4]; | |
339 | ||
41abdfbd JG |
340 | int ii; |
341 | ||
5f1c39ef | 342 | target_fetch_registers (-1); |
6c6afbb9 | 343 | |
41abdfbd JG |
344 | if (dummy_frame_count >= dummy_frame_size) { |
345 | dummy_frame_size += DUMMY_FRAME_ADDR_SIZE; | |
346 | if (dummy_frame_addr) | |
347 | dummy_frame_addr = (CORE_ADDR*) xrealloc | |
348 | (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size)); | |
349 | else | |
350 | dummy_frame_addr = (CORE_ADDR*) | |
351 | xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size)); | |
352 | } | |
353 | ||
354 | sp = read_register(SP_REGNUM); | |
359a097f JK |
355 | pc = read_register(PC_REGNUM); |
356 | memcpy (pc_targ, (char *) &pc, 4); | |
41abdfbd JG |
357 | |
358 | dummy_frame_addr [dummy_frame_count++] = sp; | |
359 | ||
360 | /* Be careful! If the stack pointer is not decremented first, then kernel | |
6c6afbb9 | 361 | thinks he is free to use the space underneath it. And kernel actually |
41abdfbd JG |
362 | uses that area for IPC purposes when executing ptrace(2) calls. So |
363 | before writing register values into the new frame, decrement and update | |
364 | %sp first in order to secure your frame. */ | |
365 | ||
818de002 | 366 | write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE); |
41abdfbd | 367 | |
41abdfbd JG |
368 | /* gdb relies on the state of current_frame. We'd better update it, |
369 | otherwise things like do_registers_info() wouldn't work properly! */ | |
370 | ||
371 | flush_cached_frames (); | |
818de002 | 372 | set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc)); |
41abdfbd JG |
373 | |
374 | /* save program counter in link register's space. */ | |
359a097f | 375 | write_memory (sp+8, pc_targ, 4); |
41abdfbd | 376 | |
6c6afbb9 | 377 | /* save all floating point and general purpose registers here. */ |
41abdfbd JG |
378 | |
379 | /* fpr's, f0..f31 */ | |
380 | for (ii = 0; ii < 32; ++ii) | |
381 | write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8); | |
382 | ||
383 | /* gpr's r0..r31 */ | |
384 | for (ii=1; ii <=32; ++ii) | |
385 | write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
386 | ||
818de002 PB |
387 | /* so far, 32*2 + 32 words = 384 bytes have been written. |
388 | 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */ | |
389 | ||
390 | for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) { | |
391 | write_memory (sp-384-(ii*4), | |
392 | ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); | |
393 | } | |
394 | ||
395 | /* Save sp or so called back chain right here. */ | |
396 | write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4); | |
397 | sp -= DUMMY_FRAME_SIZE; | |
41abdfbd JG |
398 | |
399 | /* And finally, this is the back chain. */ | |
359a097f | 400 | write_memory (sp+8, pc_targ, 4); |
41abdfbd JG |
401 | } |
402 | ||
403 | ||
404 | /* Pop a dummy frame. | |
405 | ||
406 | In rs6000 when we push a dummy frame, we save all of the registers. This | |
407 | is usually done before user calls a function explicitly. | |
408 | ||
818de002 PB |
409 | After a dummy frame is pushed, some instructions are copied into stack, |
410 | and stack pointer is decremented even more. Since we don't have a frame | |
411 | pointer to get back to the parent frame of the dummy, we start having | |
412 | trouble poping it. Therefore, we keep a dummy frame stack, keeping | |
413 | addresses of dummy frames as such. When poping happens and when we | |
414 | detect that was a dummy frame, we pop it back to its parent by using | |
415 | dummy frame stack (`dummy_frame_addr' array). | |
ecf4059f JG |
416 | |
417 | FIXME: This whole concept is broken. You should be able to detect | |
418 | a dummy stack frame *on the user's stack itself*. When you do, | |
419 | then you know the format of that stack frame -- including its | |
420 | saved SP register! There should *not* be a separate stack in the | |
d6434f39 | 421 | GDB process that keeps track of these dummy frames! -- [email protected] Aug92 |
41abdfbd JG |
422 | */ |
423 | ||
424 | pop_dummy_frame () | |
425 | { | |
426 | CORE_ADDR sp, pc; | |
427 | int ii; | |
428 | sp = dummy_frame_addr [--dummy_frame_count]; | |
429 | ||
430 | /* restore all fpr's. */ | |
431 | for (ii = 1; ii <= 32; ++ii) | |
432 | read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8); | |
433 | ||
434 | /* restore all gpr's */ | |
435 | for (ii=1; ii <= 32; ++ii) { | |
436 | read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
437 | } | |
438 | ||
818de002 PB |
439 | /* restore the rest of the registers. */ |
440 | for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) | |
441 | read_memory (sp-384-(ii*4), | |
442 | ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); | |
443 | ||
444 | read_memory (sp-(DUMMY_FRAME_SIZE-8), | |
445 | ®isters [REGISTER_BYTE(PC_REGNUM)], 4); | |
41abdfbd JG |
446 | |
447 | /* when a dummy frame was being pushed, we had to decrement %sp first, in | |
448 | order to secure astack space. Thus, saved %sp (or %r1) value, is not the | |
449 | one we should restore. Change it with the one we need. */ | |
450 | ||
451 | *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp; | |
452 | ||
453 | /* Now we can restore all registers. */ | |
454 | ||
5f1c39ef | 455 | target_store_registers (-1); |
41abdfbd JG |
456 | pc = read_pc (); |
457 | flush_cached_frames (); | |
458 | set_current_frame (create_new_frame (sp, pc)); | |
459 | } | |
460 | ||
461 | ||
462 | /* pop the innermost frame, go back to the caller. */ | |
463 | ||
ecf4059f | 464 | void |
41abdfbd JG |
465 | pop_frame () |
466 | { | |
359a097f | 467 | CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */ |
6c6afbb9 | 468 | struct aix_framedata fdata; |
41abdfbd | 469 | FRAME fr = get_current_frame (); |
41abdfbd | 470 | int addr, ii; |
41abdfbd JG |
471 | |
472 | pc = read_pc (); | |
473 | sp = FRAME_FP (fr); | |
474 | ||
475 | if (stop_stack_dummy && dummy_frame_count) { | |
476 | pop_dummy_frame (); | |
477 | return; | |
478 | } | |
479 | ||
480 | /* figure out previous %pc value. If the function is frameless, it is | |
481 | still in the link register, otherwise walk the frames and retrieve the | |
482 | saved %pc value in the previous frame. */ | |
483 | ||
484 | addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET; | |
6c6afbb9 | 485 | function_frame_info (addr, &fdata); |
41abdfbd | 486 | |
359a097f | 487 | prev_sp = read_memory_integer (sp, 4); |
6c6afbb9 | 488 | if (fdata.frameless) |
41abdfbd JG |
489 | lr = read_register (LR_REGNUM); |
490 | else | |
359a097f | 491 | lr = read_memory_integer (prev_sp+8, 4); |
41abdfbd JG |
492 | |
493 | /* reset %pc value. */ | |
494 | write_register (PC_REGNUM, lr); | |
495 | ||
496 | /* reset register values if any was saved earlier. */ | |
6c6afbb9 | 497 | addr = prev_sp - fdata.offset; |
41abdfbd | 498 | |
6c6afbb9 PB |
499 | if (fdata.saved_gpr != -1) |
500 | for (ii=fdata.saved_gpr; ii <= 31; ++ii) { | |
41abdfbd | 501 | read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4); |
cdb1cc92 | 502 | addr += 4; |
41abdfbd JG |
503 | } |
504 | ||
6c6afbb9 PB |
505 | if (fdata.saved_fpr != -1) |
506 | for (ii=fdata.saved_fpr; ii <= 31; ++ii) { | |
41abdfbd JG |
507 | read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8); |
508 | addr += 8; | |
509 | } | |
510 | ||
511 | write_register (SP_REGNUM, prev_sp); | |
5f1c39ef | 512 | target_store_registers (-1); |
41abdfbd JG |
513 | flush_cached_frames (); |
514 | set_current_frame (create_new_frame (prev_sp, lr)); | |
515 | } | |
516 | ||
517 | ||
518 | /* fixup the call sequence of a dummy function, with the real function address. | |
519 | its argumets will be passed by gdb. */ | |
520 | ||
ecf4059f | 521 | void |
41abdfbd JG |
522 | fix_call_dummy(dummyname, pc, fun, nargs, type) |
523 | char *dummyname; | |
ecf4059f JG |
524 | CORE_ADDR pc; |
525 | CORE_ADDR fun; | |
41abdfbd JG |
526 | int nargs; /* not used */ |
527 | int type; /* not used */ | |
41abdfbd JG |
528 | { |
529 | #define TOC_ADDR_OFFSET 20 | |
530 | #define TARGET_ADDR_OFFSET 28 | |
531 | ||
532 | int ii; | |
ecf4059f JG |
533 | CORE_ADDR target_addr; |
534 | CORE_ADDR tocvalue; | |
41abdfbd JG |
535 | |
536 | target_addr = fun; | |
537 | tocvalue = find_toc_address (target_addr); | |
538 | ||
539 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET); | |
540 | ii = (ii & 0xffff0000) | (tocvalue >> 16); | |
541 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii; | |
542 | ||
543 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4); | |
544 | ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff); | |
545 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii; | |
546 | ||
547 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET); | |
548 | ii = (ii & 0xffff0000) | (target_addr >> 16); | |
549 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii; | |
550 | ||
551 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4); | |
552 | ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff); | |
553 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii; | |
554 | } | |
555 | ||
556 | ||
41abdfbd | 557 | /* return information about a function frame. |
6c6afbb9 | 558 | in struct aix_frameinfo fdata: |
cdb1cc92 ILT |
559 | - frameless is TRUE, if function does not have a frame. |
560 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
41abdfbd JG |
561 | - offset is the number of bytes used in the frame to save registers. |
562 | - saved_gpr is the number of the first saved gpr. | |
563 | - saved_fpr is the number of the first saved fpr. | |
6c6afbb9 PB |
564 | - alloca_reg is the number of the register used for alloca() handling. |
565 | Otherwise -1. | |
41abdfbd | 566 | */ |
ecf4059f | 567 | void |
6c6afbb9 | 568 | function_frame_info (pc, fdata) |
d6434f39 | 569 | CORE_ADDR pc; |
6c6afbb9 | 570 | struct aix_framedata *fdata; |
41abdfbd JG |
571 | { |
572 | unsigned int tmp; | |
573 | register unsigned int op; | |
574 | ||
6c6afbb9 PB |
575 | fdata->offset = 0; |
576 | fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1; | |
cdb1cc92 | 577 | fdata->frameless = 1; |
41abdfbd | 578 | |
41abdfbd JG |
579 | op = read_memory_integer (pc, 4); |
580 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
581 | pc += 4; | |
582 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 583 | fdata->nosavedpc = 0; |
6c6afbb9 | 584 | fdata->frameless = 0; |
41abdfbd | 585 | } |
cdb1cc92 ILT |
586 | else /* else, pc is not saved */ |
587 | fdata->nosavedpc = 1; | |
41abdfbd JG |
588 | |
589 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
590 | pc += 4; | |
591 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 592 | fdata->frameless = 0; |
41abdfbd JG |
593 | } |
594 | ||
595 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
596 | pc += 4; | |
597 | op = read_memory_integer (pc, 4); | |
1eeba686 PB |
598 | /* At this point, make sure this is not a trampoline function |
599 | (a function that simply calls another functions, and nothing else). | |
600 | If the next is not a nop, this branch was part of the function | |
601 | prologue. */ | |
602 | ||
603 | if (op == 0x4def7b82 || /* crorc 15, 15, 15 */ | |
604 | op == 0x0) | |
605 | return; /* prologue is over */ | |
cdb1cc92 | 606 | fdata->frameless = 0; |
41abdfbd JG |
607 | } |
608 | ||
609 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ | |
610 | pc += 4; /* store floating register double */ | |
611 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 612 | fdata->frameless = 0; |
41abdfbd JG |
613 | } |
614 | ||
615 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ | |
616 | int tmp2; | |
6c6afbb9 | 617 | fdata->saved_gpr = (op >> 21) & 0x1f; |
41abdfbd JG |
618 | tmp2 = op & 0xffff; |
619 | if (tmp2 > 0x7fff) | |
cdb1cc92 | 620 | tmp2 = (~0 &~ 0xffff) | tmp2; |
41abdfbd JG |
621 | |
622 | if (tmp2 < 0) { | |
623 | tmp2 = tmp2 * -1; | |
6c6afbb9 PB |
624 | fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8; |
625 | if ( fdata->saved_fpr > 0) | |
626 | fdata->saved_fpr = 32 - fdata->saved_fpr; | |
41abdfbd | 627 | else |
6c6afbb9 | 628 | fdata->saved_fpr = -1; |
41abdfbd | 629 | } |
6c6afbb9 PB |
630 | fdata->offset = tmp2; |
631 | pc += 4; | |
632 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 633 | fdata->frameless = 0; |
41abdfbd | 634 | } |
6c6afbb9 PB |
635 | |
636 | while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */ | |
637 | (tmp == 0x9421) || /* stu r1, NUM(r1) */ | |
cdb1cc92 | 638 | (tmp == 0x93e1)) /* st r31, NUM(r1) */ |
6c6afbb9 | 639 | { |
cdb1cc92 ILT |
640 | int tmp2; |
641 | ||
6c6afbb9 PB |
642 | /* gcc takes a short cut and uses this instruction to save r31 only. */ |
643 | ||
cdb1cc92 | 644 | if (tmp == 0x93e1) { |
6c6afbb9 PB |
645 | if (fdata->offset) |
646 | /* fatal ("Unrecognized prolog."); */ | |
647 | printf ("Unrecognized prolog!\n"); | |
648 | ||
649 | fdata->saved_gpr = 31; | |
cdb1cc92 ILT |
650 | tmp2 = op & 0xffff; |
651 | if (tmp2 > 0x7fff) { | |
652 | tmp2 = - ((~0 &~ 0xffff) | tmp2); | |
653 | fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8; | |
654 | if ( fdata->saved_fpr > 0) | |
655 | fdata->saved_fpr = 32 - fdata->saved_fpr; | |
656 | else | |
657 | fdata->saved_fpr = -1; | |
658 | } | |
659 | fdata->offset = tmp2; | |
6c6afbb9 PB |
660 | } |
661 | pc += 4; | |
662 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 663 | fdata->frameless = 0; |
6c6afbb9 PB |
664 | } |
665 | ||
666 | while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */ | |
667 | pc += 4; /* l r30, ... */ | |
668 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 669 | fdata->frameless = 0; |
6c6afbb9 PB |
670 | } |
671 | ||
672 | /* store parameters into stack */ | |
673 | while( | |
674 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ | |
675 | (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */ | |
676 | (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */ | |
677 | (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */ | |
678 | { | |
679 | pc += 4; /* store fpr double */ | |
680 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 681 | fdata->frameless = 0; |
6c6afbb9 PB |
682 | } |
683 | ||
cdb1cc92 | 684 | if (op == 0x603f0000) { /* oril r31, r1, 0x0 */ |
6c6afbb9 | 685 | fdata->alloca_reg = 31; |
cdb1cc92 ILT |
686 | fdata->frameless = 0; |
687 | } | |
41abdfbd JG |
688 | } |
689 | ||
690 | ||
691 | /* Pass the arguments in either registers, or in the stack. In RS6000, the first | |
692 | eight words of the argument list (that might be less than eight parameters if | |
693 | some parameters occupy more than one word) are passed in r3..r11 registers. | |
694 | float and double parameters are passed in fpr's, in addition to that. Rest of | |
695 | the parameters if any are passed in user stack. There might be cases in which | |
696 | half of the parameter is copied into registers, the other half is pushed into | |
697 | stack. | |
698 | ||
699 | If the function is returning a structure, then the return address is passed | |
700 | in r3, then the first 7 words of the parametes can be passed in registers, | |
701 | starting from r4. */ | |
702 | ||
703 | CORE_ADDR | |
704 | push_arguments (nargs, args, sp, struct_return, struct_addr) | |
705 | int nargs; | |
706 | value *args; | |
707 | CORE_ADDR sp; | |
708 | int struct_return; | |
709 | CORE_ADDR struct_addr; | |
710 | { | |
711 | int ii, len; | |
712 | int argno; /* current argument number */ | |
713 | int argbytes; /* current argument byte */ | |
714 | char tmp_buffer [50]; | |
715 | value arg; | |
716 | int f_argno = 0; /* current floating point argno */ | |
717 | ||
718 | CORE_ADDR saved_sp, pc; | |
719 | ||
720 | if ( dummy_frame_count <= 0) | |
721 | printf ("FATAL ERROR -push_arguments()! frame not found!!\n"); | |
722 | ||
723 | /* The first eight words of ther arguments are passed in registers. Copy | |
724 | them appropriately. | |
725 | ||
726 | If the function is returning a `struct', then the first word (which | |
727 | will be passed in r3) is used for struct return address. In that | |
728 | case we should advance one word and start from r4 register to copy | |
729 | parameters. */ | |
730 | ||
731 | ii = struct_return ? 1 : 0; | |
732 | ||
733 | for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) { | |
734 | ||
735 | arg = value_arg_coerce (args[argno]); | |
736 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
737 | ||
738 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) { | |
739 | ||
740 | /* floating point arguments are passed in fpr's, as well as gpr's. | |
741 | There are 13 fpr's reserved for passing parameters. At this point | |
742 | there is no way we would run out of them. */ | |
743 | ||
744 | if (len > 8) | |
745 | printf ( | |
746 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
747 | ||
748 | bcopy (VALUE_CONTENTS (arg), | |
749 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
750 | ++f_argno; | |
751 | } | |
752 | ||
753 | if (len > 4) { | |
754 | ||
755 | /* Argument takes more than one register. */ | |
756 | while (argbytes < len) { | |
757 | ||
758 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
759 | bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes, | |
760 | ®isters[REGISTER_BYTE(ii+3)], | |
761 | (len - argbytes) > 4 ? 4 : len - argbytes); | |
762 | ++ii, argbytes += 4; | |
763 | ||
764 | if (ii >= 8) | |
765 | goto ran_out_of_registers_for_arguments; | |
766 | } | |
767 | argbytes = 0; | |
768 | --ii; | |
769 | } | |
770 | else { /* Argument can fit in one register. No problem. */ | |
771 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
772 | bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len); | |
773 | } | |
774 | ++argno; | |
775 | } | |
776 | ||
777 | ran_out_of_registers_for_arguments: | |
778 | ||
779 | /* location for 8 parameters are always reserved. */ | |
780 | sp -= 4 * 8; | |
781 | ||
782 | /* another six words for back chain, TOC register, link register, etc. */ | |
783 | sp -= 24; | |
784 | ||
785 | /* if there are more arguments, allocate space for them in | |
786 | the stack, then push them starting from the ninth one. */ | |
787 | ||
788 | if ((argno < nargs) || argbytes) { | |
789 | int space = 0, jj; | |
790 | value val; | |
791 | ||
792 | if (argbytes) { | |
793 | space += ((len - argbytes + 3) & -4); | |
794 | jj = argno + 1; | |
795 | } | |
796 | else | |
797 | jj = argno; | |
798 | ||
799 | for (; jj < nargs; ++jj) { | |
800 | val = value_arg_coerce (args[jj]); | |
801 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; | |
802 | } | |
803 | ||
804 | /* add location required for the rest of the parameters */ | |
805 | space = (space + 7) & -8; | |
806 | sp -= space; | |
807 | ||
808 | /* This is another instance we need to be concerned about securing our | |
809 | stack space. If we write anything underneath %sp (r1), we might conflict | |
810 | with the kernel who thinks he is free to use this area. So, update %sp | |
811 | first before doing anything else. */ | |
812 | ||
813 | write_register (SP_REGNUM, sp); | |
814 | ||
41abdfbd JG |
815 | /* if the last argument copied into the registers didn't fit there |
816 | completely, push the rest of it into stack. */ | |
817 | ||
818 | if (argbytes) { | |
819 | write_memory ( | |
820 | sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes); | |
821 | ++argno; | |
822 | ii += ((len - argbytes + 3) & -4) / 4; | |
823 | } | |
824 | ||
825 | /* push the rest of the arguments into stack. */ | |
826 | for (; argno < nargs; ++argno) { | |
827 | ||
828 | arg = value_arg_coerce (args[argno]); | |
829 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
830 | ||
831 | ||
832 | /* float types should be passed in fpr's, as well as in the stack. */ | |
833 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) { | |
834 | ||
835 | if (len > 8) | |
836 | printf ( | |
837 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
838 | ||
839 | bcopy (VALUE_CONTENTS (arg), | |
840 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
841 | ++f_argno; | |
842 | } | |
843 | ||
359a097f | 844 | write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len); |
41abdfbd JG |
845 | ii += ((len + 3) & -4) / 4; |
846 | } | |
847 | } | |
6c6afbb9 | 848 | else |
41abdfbd JG |
849 | /* Secure stack areas first, before doing anything else. */ |
850 | write_register (SP_REGNUM, sp); | |
851 | ||
41abdfbd JG |
852 | saved_sp = dummy_frame_addr [dummy_frame_count - 1]; |
853 | read_memory (saved_sp, tmp_buffer, 24); | |
854 | write_memory (sp, tmp_buffer, 24); | |
855 | ||
856 | write_memory (sp, &saved_sp, 4); /* set back chain properly */ | |
857 | ||
5f1c39ef | 858 | target_store_registers (-1); |
41abdfbd JG |
859 | return sp; |
860 | } | |
861 | ||
862 | /* a given return value in `regbuf' with a type `valtype', extract and copy its | |
863 | value into `valbuf' */ | |
864 | ||
ecf4059f | 865 | void |
41abdfbd JG |
866 | extract_return_value (valtype, regbuf, valbuf) |
867 | struct type *valtype; | |
868 | char regbuf[REGISTER_BYTES]; | |
869 | char *valbuf; | |
870 | { | |
871 | ||
872 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) { | |
873 | ||
874 | double dd; float ff; | |
875 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
876 | We need to truncate the return value into float size (4 byte) if | |
877 | necessary. */ | |
878 | ||
879 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ | |
880 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf, | |
881 | TYPE_LENGTH (valtype)); | |
882 | else { /* float */ | |
883 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8); | |
884 | ff = (float)dd; | |
885 | bcopy (&ff, valbuf, sizeof(float)); | |
886 | } | |
887 | } | |
888 | else | |
889 | /* return value is copied starting from r3. */ | |
890 | bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype)); | |
891 | } | |
892 | ||
893 | ||
ecf4059f JG |
894 | /* keep structure return address in this variable. |
895 | FIXME: This is a horrid kludge which should not be allowed to continue | |
896 | living. This only allows a single nested call to a structure-returning | |
897 | function. Come on, guys! -- [email protected], Aug 92 */ | |
41abdfbd JG |
898 | |
899 | CORE_ADDR rs6000_struct_return_address; | |
900 | ||
901 | ||
c2e4669f JG |
902 | /* Indirect function calls use a piece of trampoline code to do context |
903 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
904 | its first instruction (as when we have single-stepped to here). | |
905 | Result is desired PC to step until, or NULL if we are not in | |
906 | trampoline code. */ | |
41abdfbd | 907 | |
ecf4059f | 908 | CORE_ADDR |
41abdfbd | 909 | skip_trampoline_code (pc) |
ecf4059f | 910 | CORE_ADDR pc; |
41abdfbd JG |
911 | { |
912 | register unsigned int ii, op; | |
913 | ||
914 | static unsigned trampoline_code[] = { | |
915 | 0x800b0000, /* l r0,0x0(r11) */ | |
916 | 0x90410014, /* st r2,0x14(r1) */ | |
917 | 0x7c0903a6, /* mtctr r0 */ | |
918 | 0x804b0004, /* l r2,0x4(r11) */ | |
919 | 0x816b0008, /* l r11,0x8(r11) */ | |
920 | 0x4e800420, /* bctr */ | |
921 | 0x4e800020, /* br */ | |
922 | 0 | |
923 | }; | |
924 | ||
925 | for (ii=0; trampoline_code[ii]; ++ii) { | |
926 | op = read_memory_integer (pc + (ii*4), 4); | |
927 | if (op != trampoline_code [ii]) | |
359a097f | 928 | return 0; |
41abdfbd JG |
929 | } |
930 | ii = read_register (11); /* r11 holds destination addr */ | |
931 | pc = read_memory_integer (ii, 4); /* (r11) value */ | |
932 | return pc; | |
933 | } | |
934 | ||
ecf4059f JG |
935 | |
936 | /* Determines whether the function FI has a frame on the stack or not. | |
cdb1cc92 ILT |
937 | Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a |
938 | second argument of 0, and from the FRAME_SAVED_PC macro with a | |
939 | second argument of 1. */ | |
ecf4059f JG |
940 | |
941 | int | |
cdb1cc92 | 942 | frameless_function_invocation (fi, pcsaved) |
ecf4059f | 943 | struct frame_info *fi; |
cdb1cc92 | 944 | int pcsaved; |
ecf4059f JG |
945 | { |
946 | CORE_ADDR func_start; | |
947 | struct aix_framedata fdata; | |
948 | ||
b0e932ad JK |
949 | if (fi->next != NULL) |
950 | /* Don't even think about framelessness except on the innermost frame. */ | |
951 | return 0; | |
952 | ||
ecf4059f JG |
953 | func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET; |
954 | ||
955 | /* If we failed to find the start of the function, it is a mistake | |
956 | to inspect the instructions. */ | |
957 | ||
958 | if (!func_start) | |
959 | return 0; | |
960 | ||
961 | function_frame_info (func_start, &fdata); | |
cdb1cc92 | 962 | return pcsaved ? fdata.nosavedpc : fdata.frameless; |
ecf4059f JG |
963 | } |
964 | ||
965 | ||
966 | /* If saved registers of frame FI are not known yet, read and cache them. | |
967 | &FDATAP contains aix_framedata; TDATAP can be NULL, | |
968 | in which case the framedata are read. */ | |
969 | ||
970 | static void | |
971 | frame_get_cache_fsr (fi, fdatap) | |
972 | struct frame_info *fi; | |
973 | struct aix_framedata *fdatap; | |
974 | { | |
975 | int ii; | |
976 | CORE_ADDR frame_addr; | |
977 | struct aix_framedata work_fdata; | |
978 | ||
979 | if (fi->cache_fsr) | |
980 | return; | |
981 | ||
982 | if (fdatap == NULL) { | |
983 | fdatap = &work_fdata; | |
984 | function_frame_info (get_pc_function_start (fi->pc), fdatap); | |
985 | } | |
986 | ||
987 | fi->cache_fsr = (struct frame_saved_regs *) | |
988 | obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs)); | |
989 | bzero (fi->cache_fsr, sizeof (struct frame_saved_regs)); | |
990 | ||
991 | if (fi->prev && fi->prev->frame) | |
992 | frame_addr = fi->prev->frame; | |
993 | else | |
994 | frame_addr = read_memory_integer (fi->frame, 4); | |
995 | ||
996 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. | |
997 | All fpr's from saved_fpr to fp31 are saved right underneath caller | |
998 | stack pointer, starting from fp31 first. */ | |
999 | ||
1000 | if (fdatap->saved_fpr >= 0) { | |
1001 | for (ii=31; ii >= fdatap->saved_fpr; --ii) | |
1002 | fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); | |
1003 | frame_addr -= (32 - fdatap->saved_fpr) * 8; | |
1004 | } | |
1005 | ||
1006 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1007 | All gpr's from saved_gpr to gpr31 are saved right under saved fprs, | |
1008 | starting from r31 first. */ | |
1009 | ||
1010 | if (fdatap->saved_gpr >= 0) | |
1011 | for (ii=31; ii >= fdatap->saved_gpr; --ii) | |
1012 | fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4); | |
1013 | } | |
1014 | ||
1015 | /* Return the address of a frame. This is the inital %sp value when the frame | |
1016 | was first allocated. For functions calling alloca(), it might be saved in | |
1017 | an alloca register. */ | |
1018 | ||
1019 | CORE_ADDR | |
1020 | frame_initial_stack_address (fi) | |
1021 | struct frame_info *fi; | |
1022 | { | |
1023 | CORE_ADDR tmpaddr; | |
1024 | struct aix_framedata fdata; | |
1025 | struct frame_info *callee_fi; | |
1026 | ||
1027 | /* if the initial stack pointer (frame address) of this frame is known, | |
1028 | just return it. */ | |
1029 | ||
1030 | if (fi->initial_sp) | |
1031 | return fi->initial_sp; | |
1032 | ||
1033 | /* find out if this function is using an alloca register.. */ | |
1034 | ||
1035 | function_frame_info (get_pc_function_start (fi->pc), &fdata); | |
1036 | ||
1037 | /* if saved registers of this frame are not known yet, read and cache them. */ | |
1038 | ||
1039 | if (!fi->cache_fsr) | |
1040 | frame_get_cache_fsr (fi, &fdata); | |
1041 | ||
1042 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
1043 | this frame, and it is good enough. */ | |
1044 | ||
1045 | if (fdata.alloca_reg < 0) { | |
1046 | fi->initial_sp = fi->frame; | |
1047 | return fi->initial_sp; | |
1048 | } | |
1049 | ||
1050 | /* This function has an alloca register. If this is the top-most frame | |
1051 | (with the lowest address), the value in alloca register is good. */ | |
1052 | ||
1053 | if (!fi->next) | |
1054 | return fi->initial_sp = read_register (fdata.alloca_reg); | |
1055 | ||
1056 | /* Otherwise, this is a caller frame. Callee has usually already saved | |
1057 | registers, but there are exceptions (such as when the callee | |
1058 | has no parameters). Find the address in which caller's alloca | |
1059 | register is saved. */ | |
1060 | ||
1061 | for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) { | |
1062 | ||
1063 | if (!callee_fi->cache_fsr) | |
cdb1cc92 | 1064 | frame_get_cache_fsr (callee_fi, NULL); |
ecf4059f JG |
1065 | |
1066 | /* this is the address in which alloca register is saved. */ | |
1067 | ||
1068 | tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg]; | |
1069 | if (tmpaddr) { | |
1070 | fi->initial_sp = read_memory_integer (tmpaddr, 4); | |
1071 | return fi->initial_sp; | |
1072 | } | |
1073 | ||
1074 | /* Go look into deeper levels of the frame chain to see if any one of | |
1075 | the callees has saved alloca register. */ | |
1076 | } | |
1077 | ||
1078 | /* If alloca register was not saved, by the callee (or any of its callees) | |
1079 | then the value in the register is still good. */ | |
1080 | ||
1081 | return fi->initial_sp = read_register (fdata.alloca_reg); | |
1082 | } | |
1083 | ||
f3649227 JK |
1084 | FRAME_ADDR |
1085 | rs6000_frame_chain (thisframe) | |
1086 | struct frame_info *thisframe; | |
1087 | { | |
1088 | FRAME_ADDR fp; | |
1089 | if (inside_entry_file ((thisframe)->pc)) | |
1090 | return 0; | |
cee86be3 | 1091 | if (thisframe->signal_handler_caller) |
f3649227 | 1092 | { |
f3649227 JK |
1093 | /* This was determined by experimentation on AIX 3.2. Perhaps |
1094 | it corresponds to some offset in /usr/include/sys/user.h or | |
1095 | something like that. Using some system include file would | |
1096 | have the advantage of probably being more robust in the face | |
1097 | of OS upgrades, but the disadvantage of being wrong for | |
1098 | cross-debugging. */ | |
1099 | ||
1100 | #define SIG_FRAME_FP_OFFSET 284 | |
1101 | fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4); | |
1102 | } | |
cee86be3 JK |
1103 | else |
1104 | fp = read_memory_integer ((thisframe)->frame, 4); | |
1105 | ||
f3649227 JK |
1106 | return fp; |
1107 | } | |
1108 | ||
1109 | \f | |
ecf4059f JG |
1110 | /* xcoff_relocate_symtab - hook for symbol table relocation. |
1111 | also reads shared libraries.. */ | |
1112 | ||
1113 | xcoff_relocate_symtab (pid) | |
1114 | unsigned int pid; | |
1115 | { | |
1116 | #define MAX_LOAD_SEGS 64 /* maximum number of load segments */ | |
1117 | ||
1118 | struct ld_info *ldi; | |
1119 | int temp; | |
1120 | ||
1121 | ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi)); | |
1122 | ||
1123 | /* According to my humble theory, AIX has some timing problems and | |
1124 | when the user stack grows, kernel doesn't update stack info in time | |
1125 | and ptrace calls step on user stack. That is why we sleep here a little, | |
1126 | and give kernel to update its internals. */ | |
1127 | ||
1128 | usleep (36000); | |
1129 | ||
1130 | errno = 0; | |
1131 | ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi, | |
1132 | MAX_LOAD_SEGS * sizeof(*ldi), ldi); | |
1133 | if (errno) { | |
1134 | perror_with_name ("ptrace ldinfo"); | |
1135 | return 0; | |
1136 | } | |
1137 | ||
1138 | vmap_ldinfo(ldi); | |
1139 | ||
1140 | do { | |
359a097f JK |
1141 | /* We are allowed to assume CORE_ADDR == pointer. This code is |
1142 | native only. */ | |
1143 | add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg, | |
1144 | (CORE_ADDR) ldi->ldinfo_dataorg); | |
ecf4059f JG |
1145 | } while (ldi->ldinfo_next |
1146 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
1147 | ||
1148 | #if 0 | |
1149 | /* Now that we've jumbled things around, re-sort them. */ | |
1150 | sort_minimal_symbols (); | |
1151 | #endif | |
1152 | ||
1153 | /* relocate the exec and core sections as well. */ | |
1154 | vmap_exec (); | |
1155 | } | |
1156 | \f | |
1157 | /* Keep an array of load segment information and their TOC table addresses. | |
1158 | This info will be useful when calling a shared library function by hand. */ | |
1159 | ||
1160 | struct loadinfo { | |
1161 | CORE_ADDR textorg, dataorg; | |
1162 | unsigned long toc_offset; | |
1163 | }; | |
1164 | ||
1165 | #define LOADINFOLEN 10 | |
1166 | ||
ecf4059f JG |
1167 | static struct loadinfo *loadinfo = NULL; |
1168 | static int loadinfolen = 0; | |
1169 | static int loadinfotocindex = 0; | |
3c02636b | 1170 | static int loadinfotextindex = 0; |
ecf4059f JG |
1171 | |
1172 | ||
1173 | void | |
1174 | xcoff_init_loadinfo () | |
1175 | { | |
1176 | loadinfotocindex = 0; | |
1177 | loadinfotextindex = 0; | |
1178 | ||
1179 | if (loadinfolen == 0) { | |
1180 | loadinfo = (struct loadinfo *) | |
1181 | xmalloc (sizeof (struct loadinfo) * LOADINFOLEN); | |
1182 | loadinfolen = LOADINFOLEN; | |
1183 | } | |
1184 | } | |
1185 | ||
1186 | ||
1187 | /* FIXME -- this is never called! */ | |
1188 | void | |
1189 | free_loadinfo () | |
1190 | { | |
1191 | if (loadinfo) | |
1192 | free (loadinfo); | |
1193 | loadinfo = NULL; | |
1194 | loadinfolen = 0; | |
1195 | loadinfotocindex = 0; | |
1196 | loadinfotextindex = 0; | |
1197 | } | |
1198 | ||
1199 | /* this is called from xcoffread.c */ | |
1200 | ||
1201 | void | |
1202 | xcoff_add_toc_to_loadinfo (unsigned long tocoff) | |
1203 | { | |
1204 | while (loadinfotocindex >= loadinfolen) { | |
1205 | loadinfolen += LOADINFOLEN; | |
1206 | loadinfo = (struct loadinfo *) | |
1207 | xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen); | |
1208 | } | |
1209 | loadinfo [loadinfotocindex++].toc_offset = tocoff; | |
1210 | } | |
1211 | ||
1212 | ||
2aefe6e4 | 1213 | void |
ecf4059f JG |
1214 | add_text_to_loadinfo (textaddr, dataaddr) |
1215 | CORE_ADDR textaddr; | |
1216 | CORE_ADDR dataaddr; | |
1217 | { | |
1218 | while (loadinfotextindex >= loadinfolen) { | |
1219 | loadinfolen += LOADINFOLEN; | |
1220 | loadinfo = (struct loadinfo *) | |
1221 | xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen); | |
1222 | } | |
1223 | loadinfo [loadinfotextindex].textorg = textaddr; | |
1224 | loadinfo [loadinfotextindex].dataorg = dataaddr; | |
1225 | ++loadinfotextindex; | |
1226 | } | |
1227 | ||
1228 | ||
1229 | /* FIXME: This assumes that the "textorg" and "dataorg" elements | |
1230 | of a member of this array are correlated with the "toc_offset" | |
1231 | element of the same member. But they are sequentially assigned in wildly | |
1232 | different places, and probably there is no correlation. FIXME! */ | |
1233 | ||
1234 | static CORE_ADDR | |
1235 | find_toc_address (pc) | |
1236 | CORE_ADDR pc; | |
1237 | { | |
1238 | int ii, toc_entry, tocbase = 0; | |
1239 | ||
1240 | for (ii=0; ii < loadinfotextindex; ++ii) | |
1241 | if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) { | |
1242 | toc_entry = ii; | |
1243 | tocbase = loadinfo[ii].textorg; | |
1244 | } | |
1245 | ||
1246 | return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset; | |
1247 | } |