]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Support routines for manipulating internal types for GDB. |
4f2aea11 | 2 | |
9b254dd1 | 3 | Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, |
7b6bb8da | 4 | 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 |
4c38e0a4 | 5 | Free Software Foundation, Inc. |
4f2aea11 | 6 | |
c906108c SS |
7 | Contributed by Cygnus Support, using pieces from other GDB modules. |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 13 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 14 | (at your option) any later version. |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b | 21 | You should have received a copy of the GNU General Public License |
a9762ec7 | 22 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "gdb_string.h" | |
26 | #include "bfd.h" | |
27 | #include "symtab.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "expression.h" | |
32 | #include "language.h" | |
33 | #include "target.h" | |
34 | #include "value.h" | |
35 | #include "demangle.h" | |
36 | #include "complaints.h" | |
37 | #include "gdbcmd.h" | |
c91ecb25 | 38 | #include "wrapper.h" |
015a42b4 | 39 | #include "cp-abi.h" |
a02fd225 | 40 | #include "gdb_assert.h" |
ae5a43e0 | 41 | #include "hashtab.h" |
c906108c | 42 | |
ac3aafc7 | 43 | |
6403aeea SW |
44 | /* Initialize BADNESS constants. */ |
45 | ||
a9d5ef47 | 46 | const struct rank LENGTH_MISMATCH_BADNESS = {100,0}; |
6403aeea | 47 | |
a9d5ef47 SW |
48 | const struct rank TOO_FEW_PARAMS_BADNESS = {100,0}; |
49 | const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0}; | |
6403aeea | 50 | |
a9d5ef47 | 51 | const struct rank EXACT_MATCH_BADNESS = {0,0}; |
6403aeea | 52 | |
a9d5ef47 SW |
53 | const struct rank INTEGER_PROMOTION_BADNESS = {1,0}; |
54 | const struct rank FLOAT_PROMOTION_BADNESS = {1,0}; | |
55 | const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0}; | |
56 | const struct rank INTEGER_CONVERSION_BADNESS = {2,0}; | |
57 | const struct rank FLOAT_CONVERSION_BADNESS = {2,0}; | |
58 | const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0}; | |
59 | const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0}; | |
60 | const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0}; | |
61 | const struct rank BASE_CONVERSION_BADNESS = {2,0}; | |
62 | const struct rank REFERENCE_CONVERSION_BADNESS = {2,0}; | |
6403aeea | 63 | |
a9d5ef47 | 64 | const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0}; |
6403aeea | 65 | |
8da61cc4 | 66 | /* Floatformat pairs. */ |
f9e9243a UW |
67 | const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { |
68 | &floatformat_ieee_half_big, | |
69 | &floatformat_ieee_half_little | |
70 | }; | |
8da61cc4 DJ |
71 | const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { |
72 | &floatformat_ieee_single_big, | |
73 | &floatformat_ieee_single_little | |
74 | }; | |
75 | const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { | |
76 | &floatformat_ieee_double_big, | |
77 | &floatformat_ieee_double_little | |
78 | }; | |
79 | const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { | |
80 | &floatformat_ieee_double_big, | |
81 | &floatformat_ieee_double_littlebyte_bigword | |
82 | }; | |
83 | const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { | |
84 | &floatformat_i387_ext, | |
85 | &floatformat_i387_ext | |
86 | }; | |
87 | const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { | |
88 | &floatformat_m68881_ext, | |
89 | &floatformat_m68881_ext | |
90 | }; | |
91 | const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { | |
92 | &floatformat_arm_ext_big, | |
93 | &floatformat_arm_ext_littlebyte_bigword | |
94 | }; | |
95 | const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { | |
96 | &floatformat_ia64_spill_big, | |
97 | &floatformat_ia64_spill_little | |
98 | }; | |
99 | const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = { | |
100 | &floatformat_ia64_quad_big, | |
101 | &floatformat_ia64_quad_little | |
102 | }; | |
103 | const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { | |
104 | &floatformat_vax_f, | |
105 | &floatformat_vax_f | |
106 | }; | |
107 | const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { | |
108 | &floatformat_vax_d, | |
109 | &floatformat_vax_d | |
110 | }; | |
b14d30e1 JM |
111 | const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { |
112 | &floatformat_ibm_long_double, | |
113 | &floatformat_ibm_long_double | |
114 | }; | |
8da61cc4 | 115 | |
8da61cc4 | 116 | |
c906108c | 117 | int opaque_type_resolution = 1; |
920d2a44 AC |
118 | static void |
119 | show_opaque_type_resolution (struct ui_file *file, int from_tty, | |
7ba81444 MS |
120 | struct cmd_list_element *c, |
121 | const char *value) | |
920d2a44 | 122 | { |
3e43a32a MS |
123 | fprintf_filtered (file, _("Resolution of opaque struct/class/union types " |
124 | "(if set before loading symbols) is %s.\n"), | |
920d2a44 AC |
125 | value); |
126 | } | |
127 | ||
5d161b24 | 128 | int overload_debug = 0; |
920d2a44 AC |
129 | static void |
130 | show_overload_debug (struct ui_file *file, int from_tty, | |
131 | struct cmd_list_element *c, const char *value) | |
132 | { | |
7ba81444 MS |
133 | fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), |
134 | value); | |
920d2a44 | 135 | } |
c906108c | 136 | |
c5aa993b JM |
137 | struct extra |
138 | { | |
139 | char str[128]; | |
140 | int len; | |
7ba81444 | 141 | }; /* Maximum extension is 128! FIXME */ |
c906108c | 142 | |
a14ed312 | 143 | static void print_bit_vector (B_TYPE *, int); |
ad2f7632 | 144 | static void print_arg_types (struct field *, int, int); |
a14ed312 KB |
145 | static void dump_fn_fieldlists (struct type *, int); |
146 | static void print_cplus_stuff (struct type *, int); | |
7a292a7a | 147 | |
c906108c | 148 | |
e9bb382b UW |
149 | /* Allocate a new OBJFILE-associated type structure and fill it |
150 | with some defaults. Space for the type structure is allocated | |
151 | on the objfile's objfile_obstack. */ | |
c906108c SS |
152 | |
153 | struct type * | |
fba45db2 | 154 | alloc_type (struct objfile *objfile) |
c906108c | 155 | { |
52f0bd74 | 156 | struct type *type; |
c906108c | 157 | |
e9bb382b UW |
158 | gdb_assert (objfile != NULL); |
159 | ||
7ba81444 | 160 | /* Alloc the structure and start off with all fields zeroed. */ |
e9bb382b UW |
161 | type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type); |
162 | TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
163 | struct main_type); | |
164 | OBJSTAT (objfile, n_types++); | |
c906108c | 165 | |
e9bb382b UW |
166 | TYPE_OBJFILE_OWNED (type) = 1; |
167 | TYPE_OWNER (type).objfile = objfile; | |
c906108c | 168 | |
7ba81444 | 169 | /* Initialize the fields that might not be zero. */ |
c906108c SS |
170 | |
171 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
c906108c | 172 | TYPE_VPTR_FIELDNO (type) = -1; |
2fdde8f8 | 173 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ |
c906108c | 174 | |
c16abbde | 175 | return type; |
c906108c SS |
176 | } |
177 | ||
e9bb382b UW |
178 | /* Allocate a new GDBARCH-associated type structure and fill it |
179 | with some defaults. Space for the type structure is allocated | |
180 | on the heap. */ | |
181 | ||
182 | struct type * | |
183 | alloc_type_arch (struct gdbarch *gdbarch) | |
184 | { | |
185 | struct type *type; | |
186 | ||
187 | gdb_assert (gdbarch != NULL); | |
188 | ||
189 | /* Alloc the structure and start off with all fields zeroed. */ | |
190 | ||
191 | type = XZALLOC (struct type); | |
192 | TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type); | |
193 | ||
194 | TYPE_OBJFILE_OWNED (type) = 0; | |
195 | TYPE_OWNER (type).gdbarch = gdbarch; | |
196 | ||
197 | /* Initialize the fields that might not be zero. */ | |
198 | ||
199 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
200 | TYPE_VPTR_FIELDNO (type) = -1; | |
201 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ | |
202 | ||
203 | return type; | |
204 | } | |
205 | ||
206 | /* If TYPE is objfile-associated, allocate a new type structure | |
207 | associated with the same objfile. If TYPE is gdbarch-associated, | |
208 | allocate a new type structure associated with the same gdbarch. */ | |
209 | ||
210 | struct type * | |
211 | alloc_type_copy (const struct type *type) | |
212 | { | |
213 | if (TYPE_OBJFILE_OWNED (type)) | |
214 | return alloc_type (TYPE_OWNER (type).objfile); | |
215 | else | |
216 | return alloc_type_arch (TYPE_OWNER (type).gdbarch); | |
217 | } | |
218 | ||
219 | /* If TYPE is gdbarch-associated, return that architecture. | |
220 | If TYPE is objfile-associated, return that objfile's architecture. */ | |
221 | ||
222 | struct gdbarch * | |
223 | get_type_arch (const struct type *type) | |
224 | { | |
225 | if (TYPE_OBJFILE_OWNED (type)) | |
226 | return get_objfile_arch (TYPE_OWNER (type).objfile); | |
227 | else | |
228 | return TYPE_OWNER (type).gdbarch; | |
229 | } | |
230 | ||
231 | ||
2fdde8f8 DJ |
232 | /* Alloc a new type instance structure, fill it with some defaults, |
233 | and point it at OLDTYPE. Allocate the new type instance from the | |
234 | same place as OLDTYPE. */ | |
235 | ||
236 | static struct type * | |
237 | alloc_type_instance (struct type *oldtype) | |
238 | { | |
239 | struct type *type; | |
240 | ||
241 | /* Allocate the structure. */ | |
242 | ||
e9bb382b | 243 | if (! TYPE_OBJFILE_OWNED (oldtype)) |
1deafd4e | 244 | type = XZALLOC (struct type); |
2fdde8f8 | 245 | else |
1deafd4e PA |
246 | type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack, |
247 | struct type); | |
248 | ||
2fdde8f8 DJ |
249 | TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); |
250 | ||
251 | TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ | |
252 | ||
c16abbde | 253 | return type; |
2fdde8f8 DJ |
254 | } |
255 | ||
256 | /* Clear all remnants of the previous type at TYPE, in preparation for | |
e9bb382b | 257 | replacing it with something else. Preserve owner information. */ |
2fdde8f8 DJ |
258 | static void |
259 | smash_type (struct type *type) | |
260 | { | |
e9bb382b UW |
261 | int objfile_owned = TYPE_OBJFILE_OWNED (type); |
262 | union type_owner owner = TYPE_OWNER (type); | |
263 | ||
2fdde8f8 DJ |
264 | memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); |
265 | ||
e9bb382b UW |
266 | /* Restore owner information. */ |
267 | TYPE_OBJFILE_OWNED (type) = objfile_owned; | |
268 | TYPE_OWNER (type) = owner; | |
269 | ||
2fdde8f8 DJ |
270 | /* For now, delete the rings. */ |
271 | TYPE_CHAIN (type) = type; | |
272 | ||
273 | /* For now, leave the pointer/reference types alone. */ | |
274 | } | |
275 | ||
c906108c SS |
276 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points |
277 | to a pointer to memory where the pointer type should be stored. | |
278 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
279 | We allocate new memory if needed. */ | |
280 | ||
281 | struct type * | |
fba45db2 | 282 | make_pointer_type (struct type *type, struct type **typeptr) |
c906108c | 283 | { |
52f0bd74 | 284 | struct type *ntype; /* New type */ |
053cb41b | 285 | struct type *chain; |
c906108c SS |
286 | |
287 | ntype = TYPE_POINTER_TYPE (type); | |
288 | ||
c5aa993b | 289 | if (ntype) |
c906108c | 290 | { |
c5aa993b | 291 | if (typeptr == 0) |
7ba81444 MS |
292 | return ntype; /* Don't care about alloc, |
293 | and have new type. */ | |
c906108c | 294 | else if (*typeptr == 0) |
c5aa993b | 295 | { |
7ba81444 | 296 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 297 | return ntype; |
c5aa993b | 298 | } |
c906108c SS |
299 | } |
300 | ||
301 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
302 | { | |
e9bb382b | 303 | ntype = alloc_type_copy (type); |
c906108c SS |
304 | if (typeptr) |
305 | *typeptr = ntype; | |
306 | } | |
7ba81444 | 307 | else /* We have storage, but need to reset it. */ |
c906108c SS |
308 | { |
309 | ntype = *typeptr; | |
053cb41b | 310 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 311 | smash_type (ntype); |
053cb41b | 312 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
313 | } |
314 | ||
315 | TYPE_TARGET_TYPE (ntype) = type; | |
316 | TYPE_POINTER_TYPE (type) = ntype; | |
317 | ||
7ba81444 MS |
318 | /* FIXME! Assume the machine has only one representation for |
319 | pointers! */ | |
c906108c | 320 | |
50810684 UW |
321 | TYPE_LENGTH (ntype) |
322 | = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; | |
c906108c SS |
323 | TYPE_CODE (ntype) = TYPE_CODE_PTR; |
324 | ||
67b2adb2 | 325 | /* Mark pointers as unsigned. The target converts between pointers |
76e71323 | 326 | and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and |
7ba81444 | 327 | gdbarch_address_to_pointer. */ |
876cecd0 | 328 | TYPE_UNSIGNED (ntype) = 1; |
c5aa993b | 329 | |
c906108c SS |
330 | if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */ |
331 | TYPE_POINTER_TYPE (type) = ntype; | |
332 | ||
053cb41b JB |
333 | /* Update the length of all the other variants of this type. */ |
334 | chain = TYPE_CHAIN (ntype); | |
335 | while (chain != ntype) | |
336 | { | |
337 | TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); | |
338 | chain = TYPE_CHAIN (chain); | |
339 | } | |
340 | ||
c906108c SS |
341 | return ntype; |
342 | } | |
343 | ||
344 | /* Given a type TYPE, return a type of pointers to that type. | |
345 | May need to construct such a type if this is the first use. */ | |
346 | ||
347 | struct type * | |
fba45db2 | 348 | lookup_pointer_type (struct type *type) |
c906108c | 349 | { |
c5aa993b | 350 | return make_pointer_type (type, (struct type **) 0); |
c906108c SS |
351 | } |
352 | ||
7ba81444 MS |
353 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, |
354 | points to a pointer to memory where the reference type should be | |
355 | stored. If *TYPEPTR is zero, update it to point to the reference | |
356 | type we return. We allocate new memory if needed. */ | |
c906108c SS |
357 | |
358 | struct type * | |
fba45db2 | 359 | make_reference_type (struct type *type, struct type **typeptr) |
c906108c | 360 | { |
52f0bd74 | 361 | struct type *ntype; /* New type */ |
1e98b326 | 362 | struct type *chain; |
c906108c SS |
363 | |
364 | ntype = TYPE_REFERENCE_TYPE (type); | |
365 | ||
c5aa993b | 366 | if (ntype) |
c906108c | 367 | { |
c5aa993b | 368 | if (typeptr == 0) |
7ba81444 MS |
369 | return ntype; /* Don't care about alloc, |
370 | and have new type. */ | |
c906108c | 371 | else if (*typeptr == 0) |
c5aa993b | 372 | { |
7ba81444 | 373 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 374 | return ntype; |
c5aa993b | 375 | } |
c906108c SS |
376 | } |
377 | ||
378 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
379 | { | |
e9bb382b | 380 | ntype = alloc_type_copy (type); |
c906108c SS |
381 | if (typeptr) |
382 | *typeptr = ntype; | |
383 | } | |
7ba81444 | 384 | else /* We have storage, but need to reset it. */ |
c906108c SS |
385 | { |
386 | ntype = *typeptr; | |
1e98b326 | 387 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 388 | smash_type (ntype); |
1e98b326 | 389 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
390 | } |
391 | ||
392 | TYPE_TARGET_TYPE (ntype) = type; | |
393 | TYPE_REFERENCE_TYPE (type) = ntype; | |
394 | ||
7ba81444 MS |
395 | /* FIXME! Assume the machine has only one representation for |
396 | references, and that it matches the (only) representation for | |
397 | pointers! */ | |
c906108c | 398 | |
50810684 UW |
399 | TYPE_LENGTH (ntype) = |
400 | gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT; | |
c906108c | 401 | TYPE_CODE (ntype) = TYPE_CODE_REF; |
c5aa993b | 402 | |
c906108c SS |
403 | if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */ |
404 | TYPE_REFERENCE_TYPE (type) = ntype; | |
405 | ||
1e98b326 JB |
406 | /* Update the length of all the other variants of this type. */ |
407 | chain = TYPE_CHAIN (ntype); | |
408 | while (chain != ntype) | |
409 | { | |
410 | TYPE_LENGTH (chain) = TYPE_LENGTH (ntype); | |
411 | chain = TYPE_CHAIN (chain); | |
412 | } | |
413 | ||
c906108c SS |
414 | return ntype; |
415 | } | |
416 | ||
7ba81444 MS |
417 | /* Same as above, but caller doesn't care about memory allocation |
418 | details. */ | |
c906108c SS |
419 | |
420 | struct type * | |
fba45db2 | 421 | lookup_reference_type (struct type *type) |
c906108c | 422 | { |
c5aa993b | 423 | return make_reference_type (type, (struct type **) 0); |
c906108c SS |
424 | } |
425 | ||
7ba81444 MS |
426 | /* Lookup a function type that returns type TYPE. TYPEPTR, if |
427 | nonzero, points to a pointer to memory where the function type | |
428 | should be stored. If *TYPEPTR is zero, update it to point to the | |
0c8b41f1 | 429 | function type we return. We allocate new memory if needed. */ |
c906108c SS |
430 | |
431 | struct type * | |
0c8b41f1 | 432 | make_function_type (struct type *type, struct type **typeptr) |
c906108c | 433 | { |
52f0bd74 | 434 | struct type *ntype; /* New type */ |
c906108c SS |
435 | |
436 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
437 | { | |
e9bb382b | 438 | ntype = alloc_type_copy (type); |
c906108c SS |
439 | if (typeptr) |
440 | *typeptr = ntype; | |
441 | } | |
7ba81444 | 442 | else /* We have storage, but need to reset it. */ |
c906108c SS |
443 | { |
444 | ntype = *typeptr; | |
2fdde8f8 | 445 | smash_type (ntype); |
c906108c SS |
446 | } |
447 | ||
448 | TYPE_TARGET_TYPE (ntype) = type; | |
449 | ||
450 | TYPE_LENGTH (ntype) = 1; | |
451 | TYPE_CODE (ntype) = TYPE_CODE_FUNC; | |
c5aa993b | 452 | |
c906108c SS |
453 | return ntype; |
454 | } | |
455 | ||
456 | ||
457 | /* Given a type TYPE, return a type of functions that return that type. | |
458 | May need to construct such a type if this is the first use. */ | |
459 | ||
460 | struct type * | |
fba45db2 | 461 | lookup_function_type (struct type *type) |
c906108c | 462 | { |
0c8b41f1 | 463 | return make_function_type (type, (struct type **) 0); |
c906108c SS |
464 | } |
465 | ||
47663de5 MS |
466 | /* Identify address space identifier by name -- |
467 | return the integer flag defined in gdbtypes.h. */ | |
468 | extern int | |
50810684 | 469 | address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier) |
47663de5 | 470 | { |
8b2dbe47 | 471 | int type_flags; |
d8734c88 | 472 | |
7ba81444 | 473 | /* Check for known address space delimiters. */ |
47663de5 | 474 | if (!strcmp (space_identifier, "code")) |
876cecd0 | 475 | return TYPE_INSTANCE_FLAG_CODE_SPACE; |
47663de5 | 476 | else if (!strcmp (space_identifier, "data")) |
876cecd0 | 477 | return TYPE_INSTANCE_FLAG_DATA_SPACE; |
5f11f355 AC |
478 | else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) |
479 | && gdbarch_address_class_name_to_type_flags (gdbarch, | |
480 | space_identifier, | |
481 | &type_flags)) | |
8b2dbe47 | 482 | return type_flags; |
47663de5 | 483 | else |
8a3fe4f8 | 484 | error (_("Unknown address space specifier: \"%s\""), space_identifier); |
47663de5 MS |
485 | } |
486 | ||
487 | /* Identify address space identifier by integer flag as defined in | |
7ba81444 | 488 | gdbtypes.h -- return the string version of the adress space name. */ |
47663de5 | 489 | |
321432c0 | 490 | const char * |
50810684 | 491 | address_space_int_to_name (struct gdbarch *gdbarch, int space_flag) |
47663de5 | 492 | { |
876cecd0 | 493 | if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) |
47663de5 | 494 | return "code"; |
876cecd0 | 495 | else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) |
47663de5 | 496 | return "data"; |
876cecd0 | 497 | else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
5f11f355 AC |
498 | && gdbarch_address_class_type_flags_to_name_p (gdbarch)) |
499 | return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); | |
47663de5 MS |
500 | else |
501 | return NULL; | |
502 | } | |
503 | ||
2fdde8f8 | 504 | /* Create a new type with instance flags NEW_FLAGS, based on TYPE. |
ad766c0a JB |
505 | |
506 | If STORAGE is non-NULL, create the new type instance there. | |
507 | STORAGE must be in the same obstack as TYPE. */ | |
47663de5 | 508 | |
b9362cc7 | 509 | static struct type * |
2fdde8f8 DJ |
510 | make_qualified_type (struct type *type, int new_flags, |
511 | struct type *storage) | |
47663de5 MS |
512 | { |
513 | struct type *ntype; | |
514 | ||
515 | ntype = type; | |
5f61c20e JK |
516 | do |
517 | { | |
518 | if (TYPE_INSTANCE_FLAGS (ntype) == new_flags) | |
519 | return ntype; | |
520 | ntype = TYPE_CHAIN (ntype); | |
521 | } | |
522 | while (ntype != type); | |
47663de5 | 523 | |
2fdde8f8 DJ |
524 | /* Create a new type instance. */ |
525 | if (storage == NULL) | |
526 | ntype = alloc_type_instance (type); | |
527 | else | |
528 | { | |
7ba81444 MS |
529 | /* If STORAGE was provided, it had better be in the same objfile |
530 | as TYPE. Otherwise, we can't link it into TYPE's cv chain: | |
531 | if one objfile is freed and the other kept, we'd have | |
532 | dangling pointers. */ | |
ad766c0a JB |
533 | gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage)); |
534 | ||
2fdde8f8 DJ |
535 | ntype = storage; |
536 | TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); | |
537 | TYPE_CHAIN (ntype) = ntype; | |
538 | } | |
47663de5 MS |
539 | |
540 | /* Pointers or references to the original type are not relevant to | |
2fdde8f8 | 541 | the new type. */ |
47663de5 MS |
542 | TYPE_POINTER_TYPE (ntype) = (struct type *) 0; |
543 | TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; | |
47663de5 | 544 | |
2fdde8f8 DJ |
545 | /* Chain the new qualified type to the old type. */ |
546 | TYPE_CHAIN (ntype) = TYPE_CHAIN (type); | |
547 | TYPE_CHAIN (type) = ntype; | |
548 | ||
549 | /* Now set the instance flags and return the new type. */ | |
550 | TYPE_INSTANCE_FLAGS (ntype) = new_flags; | |
47663de5 | 551 | |
ab5d3da6 KB |
552 | /* Set length of new type to that of the original type. */ |
553 | TYPE_LENGTH (ntype) = TYPE_LENGTH (type); | |
554 | ||
47663de5 MS |
555 | return ntype; |
556 | } | |
557 | ||
2fdde8f8 DJ |
558 | /* Make an address-space-delimited variant of a type -- a type that |
559 | is identical to the one supplied except that it has an address | |
560 | space attribute attached to it (such as "code" or "data"). | |
561 | ||
7ba81444 MS |
562 | The space attributes "code" and "data" are for Harvard |
563 | architectures. The address space attributes are for architectures | |
564 | which have alternately sized pointers or pointers with alternate | |
565 | representations. */ | |
2fdde8f8 DJ |
566 | |
567 | struct type * | |
568 | make_type_with_address_space (struct type *type, int space_flag) | |
569 | { | |
2fdde8f8 | 570 | int new_flags = ((TYPE_INSTANCE_FLAGS (type) |
876cecd0 TT |
571 | & ~(TYPE_INSTANCE_FLAG_CODE_SPACE |
572 | | TYPE_INSTANCE_FLAG_DATA_SPACE | |
573 | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) | |
2fdde8f8 DJ |
574 | | space_flag); |
575 | ||
576 | return make_qualified_type (type, new_flags, NULL); | |
577 | } | |
c906108c SS |
578 | |
579 | /* Make a "c-v" variant of a type -- a type that is identical to the | |
580 | one supplied except that it may have const or volatile attributes | |
581 | CNST is a flag for setting the const attribute | |
582 | VOLTL is a flag for setting the volatile attribute | |
583 | TYPE is the base type whose variant we are creating. | |
c906108c | 584 | |
ad766c0a JB |
585 | If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to |
586 | storage to hold the new qualified type; *TYPEPTR and TYPE must be | |
587 | in the same objfile. Otherwise, allocate fresh memory for the new | |
588 | type whereever TYPE lives. If TYPEPTR is non-zero, set it to the | |
589 | new type we construct. */ | |
c906108c | 590 | struct type * |
7ba81444 MS |
591 | make_cv_type (int cnst, int voltl, |
592 | struct type *type, | |
593 | struct type **typeptr) | |
c906108c | 594 | { |
52f0bd74 | 595 | struct type *ntype; /* New type */ |
c906108c | 596 | |
2fdde8f8 | 597 | int new_flags = (TYPE_INSTANCE_FLAGS (type) |
308d96ed MS |
598 | & ~(TYPE_INSTANCE_FLAG_CONST |
599 | | TYPE_INSTANCE_FLAG_VOLATILE)); | |
c906108c | 600 | |
c906108c | 601 | if (cnst) |
876cecd0 | 602 | new_flags |= TYPE_INSTANCE_FLAG_CONST; |
c906108c SS |
603 | |
604 | if (voltl) | |
876cecd0 | 605 | new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; |
a02fd225 | 606 | |
2fdde8f8 | 607 | if (typeptr && *typeptr != NULL) |
a02fd225 | 608 | { |
ad766c0a JB |
609 | /* TYPE and *TYPEPTR must be in the same objfile. We can't have |
610 | a C-V variant chain that threads across objfiles: if one | |
611 | objfile gets freed, then the other has a broken C-V chain. | |
612 | ||
613 | This code used to try to copy over the main type from TYPE to | |
614 | *TYPEPTR if they were in different objfiles, but that's | |
615 | wrong, too: TYPE may have a field list or member function | |
616 | lists, which refer to types of their own, etc. etc. The | |
617 | whole shebang would need to be copied over recursively; you | |
618 | can't have inter-objfile pointers. The only thing to do is | |
619 | to leave stub types as stub types, and look them up afresh by | |
620 | name each time you encounter them. */ | |
621 | gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)); | |
2fdde8f8 DJ |
622 | } |
623 | ||
7ba81444 MS |
624 | ntype = make_qualified_type (type, new_flags, |
625 | typeptr ? *typeptr : NULL); | |
c906108c | 626 | |
2fdde8f8 DJ |
627 | if (typeptr != NULL) |
628 | *typeptr = ntype; | |
a02fd225 | 629 | |
2fdde8f8 | 630 | return ntype; |
a02fd225 | 631 | } |
c906108c | 632 | |
2fdde8f8 DJ |
633 | /* Replace the contents of ntype with the type *type. This changes the |
634 | contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus | |
635 | the changes are propogated to all types in the TYPE_CHAIN. | |
dd6bda65 | 636 | |
cda6c68a JB |
637 | In order to build recursive types, it's inevitable that we'll need |
638 | to update types in place --- but this sort of indiscriminate | |
639 | smashing is ugly, and needs to be replaced with something more | |
2fdde8f8 DJ |
640 | controlled. TYPE_MAIN_TYPE is a step in this direction; it's not |
641 | clear if more steps are needed. */ | |
dd6bda65 DJ |
642 | void |
643 | replace_type (struct type *ntype, struct type *type) | |
644 | { | |
ab5d3da6 | 645 | struct type *chain; |
dd6bda65 | 646 | |
ad766c0a JB |
647 | /* These two types had better be in the same objfile. Otherwise, |
648 | the assignment of one type's main type structure to the other | |
649 | will produce a type with references to objects (names; field | |
650 | lists; etc.) allocated on an objfile other than its own. */ | |
651 | gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype)); | |
652 | ||
2fdde8f8 | 653 | *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); |
dd6bda65 | 654 | |
7ba81444 MS |
655 | /* The type length is not a part of the main type. Update it for |
656 | each type on the variant chain. */ | |
ab5d3da6 | 657 | chain = ntype; |
5f61c20e JK |
658 | do |
659 | { | |
660 | /* Assert that this element of the chain has no address-class bits | |
661 | set in its flags. Such type variants might have type lengths | |
662 | which are supposed to be different from the non-address-class | |
663 | variants. This assertion shouldn't ever be triggered because | |
664 | symbol readers which do construct address-class variants don't | |
665 | call replace_type(). */ | |
666 | gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); | |
667 | ||
668 | TYPE_LENGTH (chain) = TYPE_LENGTH (type); | |
669 | chain = TYPE_CHAIN (chain); | |
670 | } | |
671 | while (ntype != chain); | |
ab5d3da6 | 672 | |
2fdde8f8 DJ |
673 | /* Assert that the two types have equivalent instance qualifiers. |
674 | This should be true for at least all of our debug readers. */ | |
675 | gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type)); | |
dd6bda65 DJ |
676 | } |
677 | ||
c906108c SS |
678 | /* Implement direct support for MEMBER_TYPE in GNU C++. |
679 | May need to construct such a type if this is the first use. | |
680 | The TYPE is the type of the member. The DOMAIN is the type | |
681 | of the aggregate that the member belongs to. */ | |
682 | ||
683 | struct type * | |
0d5de010 | 684 | lookup_memberptr_type (struct type *type, struct type *domain) |
c906108c | 685 | { |
52f0bd74 | 686 | struct type *mtype; |
c906108c | 687 | |
e9bb382b | 688 | mtype = alloc_type_copy (type); |
0d5de010 | 689 | smash_to_memberptr_type (mtype, domain, type); |
c16abbde | 690 | return mtype; |
c906108c SS |
691 | } |
692 | ||
0d5de010 DJ |
693 | /* Return a pointer-to-method type, for a method of type TO_TYPE. */ |
694 | ||
695 | struct type * | |
696 | lookup_methodptr_type (struct type *to_type) | |
697 | { | |
698 | struct type *mtype; | |
699 | ||
e9bb382b | 700 | mtype = alloc_type_copy (to_type); |
0b92b5bb | 701 | smash_to_methodptr_type (mtype, to_type); |
0d5de010 DJ |
702 | return mtype; |
703 | } | |
704 | ||
7ba81444 MS |
705 | /* Allocate a stub method whose return type is TYPE. This apparently |
706 | happens for speed of symbol reading, since parsing out the | |
707 | arguments to the method is cpu-intensive, the way we are doing it. | |
708 | So, we will fill in arguments later. This always returns a fresh | |
709 | type. */ | |
c906108c SS |
710 | |
711 | struct type * | |
fba45db2 | 712 | allocate_stub_method (struct type *type) |
c906108c SS |
713 | { |
714 | struct type *mtype; | |
715 | ||
e9bb382b UW |
716 | mtype = alloc_type_copy (type); |
717 | TYPE_CODE (mtype) = TYPE_CODE_METHOD; | |
718 | TYPE_LENGTH (mtype) = 1; | |
719 | TYPE_STUB (mtype) = 1; | |
c906108c SS |
720 | TYPE_TARGET_TYPE (mtype) = type; |
721 | /* _DOMAIN_TYPE (mtype) = unknown yet */ | |
c16abbde | 722 | return mtype; |
c906108c SS |
723 | } |
724 | ||
7ba81444 MS |
725 | /* Create a range type using either a blank type supplied in |
726 | RESULT_TYPE, or creating a new type, inheriting the objfile from | |
727 | INDEX_TYPE. | |
c906108c | 728 | |
7ba81444 MS |
729 | Indices will be of type INDEX_TYPE, and will range from LOW_BOUND |
730 | to HIGH_BOUND, inclusive. | |
c906108c | 731 | |
7ba81444 MS |
732 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make |
733 | sure it is TYPE_CODE_UNDEF before we bash it into a range type? */ | |
c906108c SS |
734 | |
735 | struct type * | |
fba45db2 | 736 | create_range_type (struct type *result_type, struct type *index_type, |
43bbcdc2 | 737 | LONGEST low_bound, LONGEST high_bound) |
c906108c SS |
738 | { |
739 | if (result_type == NULL) | |
e9bb382b | 740 | result_type = alloc_type_copy (index_type); |
c906108c SS |
741 | TYPE_CODE (result_type) = TYPE_CODE_RANGE; |
742 | TYPE_TARGET_TYPE (result_type) = index_type; | |
74a9bb82 | 743 | if (TYPE_STUB (index_type)) |
876cecd0 | 744 | TYPE_TARGET_STUB (result_type) = 1; |
c906108c SS |
745 | else |
746 | TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type)); | |
43bbcdc2 PH |
747 | TYPE_RANGE_DATA (result_type) = (struct range_bounds *) |
748 | TYPE_ZALLOC (result_type, sizeof (struct range_bounds)); | |
262452ec JK |
749 | TYPE_LOW_BOUND (result_type) = low_bound; |
750 | TYPE_HIGH_BOUND (result_type) = high_bound; | |
c906108c | 751 | |
c5aa993b | 752 | if (low_bound >= 0) |
876cecd0 | 753 | TYPE_UNSIGNED (result_type) = 1; |
c906108c | 754 | |
262452ec | 755 | return result_type; |
c906108c SS |
756 | } |
757 | ||
7ba81444 MS |
758 | /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type |
759 | TYPE. Return 1 if type is a range type, 0 if it is discrete (and | |
760 | bounds will fit in LONGEST), or -1 otherwise. */ | |
c906108c SS |
761 | |
762 | int | |
fba45db2 | 763 | get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) |
c906108c SS |
764 | { |
765 | CHECK_TYPEDEF (type); | |
766 | switch (TYPE_CODE (type)) | |
767 | { | |
768 | case TYPE_CODE_RANGE: | |
769 | *lowp = TYPE_LOW_BOUND (type); | |
770 | *highp = TYPE_HIGH_BOUND (type); | |
771 | return 1; | |
772 | case TYPE_CODE_ENUM: | |
773 | if (TYPE_NFIELDS (type) > 0) | |
774 | { | |
775 | /* The enums may not be sorted by value, so search all | |
0963b4bd | 776 | entries. */ |
c906108c SS |
777 | int i; |
778 | ||
779 | *lowp = *highp = TYPE_FIELD_BITPOS (type, 0); | |
780 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
781 | { | |
782 | if (TYPE_FIELD_BITPOS (type, i) < *lowp) | |
783 | *lowp = TYPE_FIELD_BITPOS (type, i); | |
784 | if (TYPE_FIELD_BITPOS (type, i) > *highp) | |
785 | *highp = TYPE_FIELD_BITPOS (type, i); | |
786 | } | |
787 | ||
7ba81444 | 788 | /* Set unsigned indicator if warranted. */ |
c5aa993b | 789 | if (*lowp >= 0) |
c906108c | 790 | { |
876cecd0 | 791 | TYPE_UNSIGNED (type) = 1; |
c906108c SS |
792 | } |
793 | } | |
794 | else | |
795 | { | |
796 | *lowp = 0; | |
797 | *highp = -1; | |
798 | } | |
799 | return 0; | |
800 | case TYPE_CODE_BOOL: | |
801 | *lowp = 0; | |
802 | *highp = 1; | |
803 | return 0; | |
804 | case TYPE_CODE_INT: | |
c5aa993b | 805 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */ |
c906108c SS |
806 | return -1; |
807 | if (!TYPE_UNSIGNED (type)) | |
808 | { | |
c5aa993b | 809 | *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1)); |
c906108c SS |
810 | *highp = -*lowp - 1; |
811 | return 0; | |
812 | } | |
7ba81444 | 813 | /* ... fall through for unsigned ints ... */ |
c906108c SS |
814 | case TYPE_CODE_CHAR: |
815 | *lowp = 0; | |
816 | /* This round-about calculation is to avoid shifting by | |
7b83ea04 | 817 | TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work |
7ba81444 | 818 | if TYPE_LENGTH (type) == sizeof (LONGEST). */ |
c906108c SS |
819 | *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1); |
820 | *highp = (*highp - 1) | *highp; | |
821 | return 0; | |
822 | default: | |
823 | return -1; | |
824 | } | |
825 | } | |
826 | ||
dbc98a8b KW |
827 | /* Assuming TYPE is a simple, non-empty array type, compute its upper |
828 | and lower bound. Save the low bound into LOW_BOUND if not NULL. | |
829 | Save the high bound into HIGH_BOUND if not NULL. | |
830 | ||
0963b4bd | 831 | Return 1 if the operation was successful. Return zero otherwise, |
dbc98a8b KW |
832 | in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. |
833 | ||
834 | We now simply use get_discrete_bounds call to get the values | |
835 | of the low and high bounds. | |
836 | get_discrete_bounds can return three values: | |
837 | 1, meaning that index is a range, | |
838 | 0, meaning that index is a discrete type, | |
839 | or -1 for failure. */ | |
840 | ||
841 | int | |
842 | get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) | |
843 | { | |
844 | struct type *index = TYPE_INDEX_TYPE (type); | |
845 | LONGEST low = 0; | |
846 | LONGEST high = 0; | |
847 | int res; | |
848 | ||
849 | if (index == NULL) | |
850 | return 0; | |
851 | ||
852 | res = get_discrete_bounds (index, &low, &high); | |
853 | if (res == -1) | |
854 | return 0; | |
855 | ||
856 | /* Check if the array bounds are undefined. */ | |
857 | if (res == 1 | |
858 | && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type)) | |
859 | || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)))) | |
860 | return 0; | |
861 | ||
862 | if (low_bound) | |
863 | *low_bound = low; | |
864 | ||
865 | if (high_bound) | |
866 | *high_bound = high; | |
867 | ||
868 | return 1; | |
869 | } | |
870 | ||
7ba81444 MS |
871 | /* Create an array type using either a blank type supplied in |
872 | RESULT_TYPE, or creating a new type, inheriting the objfile from | |
873 | RANGE_TYPE. | |
c906108c SS |
874 | |
875 | Elements will be of type ELEMENT_TYPE, the indices will be of type | |
876 | RANGE_TYPE. | |
877 | ||
7ba81444 MS |
878 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make |
879 | sure it is TYPE_CODE_UNDEF before we bash it into an array | |
880 | type? */ | |
c906108c SS |
881 | |
882 | struct type * | |
7ba81444 MS |
883 | create_array_type (struct type *result_type, |
884 | struct type *element_type, | |
fba45db2 | 885 | struct type *range_type) |
c906108c SS |
886 | { |
887 | LONGEST low_bound, high_bound; | |
888 | ||
889 | if (result_type == NULL) | |
e9bb382b UW |
890 | result_type = alloc_type_copy (range_type); |
891 | ||
c906108c SS |
892 | TYPE_CODE (result_type) = TYPE_CODE_ARRAY; |
893 | TYPE_TARGET_TYPE (result_type) = element_type; | |
894 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
895 | low_bound = high_bound = 0; | |
896 | CHECK_TYPEDEF (element_type); | |
ab0d6e0d JB |
897 | /* Be careful when setting the array length. Ada arrays can be |
898 | empty arrays with the high_bound being smaller than the low_bound. | |
899 | In such cases, the array length should be zero. */ | |
900 | if (high_bound < low_bound) | |
901 | TYPE_LENGTH (result_type) = 0; | |
902 | else | |
903 | TYPE_LENGTH (result_type) = | |
904 | TYPE_LENGTH (element_type) * (high_bound - low_bound + 1); | |
c906108c SS |
905 | TYPE_NFIELDS (result_type) = 1; |
906 | TYPE_FIELDS (result_type) = | |
1deafd4e | 907 | (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)); |
262452ec | 908 | TYPE_INDEX_TYPE (result_type) = range_type; |
c906108c SS |
909 | TYPE_VPTR_FIELDNO (result_type) = -1; |
910 | ||
0963b4bd | 911 | /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */ |
c906108c | 912 | if (TYPE_LENGTH (result_type) == 0) |
876cecd0 | 913 | TYPE_TARGET_STUB (result_type) = 1; |
c906108c | 914 | |
c16abbde | 915 | return result_type; |
c906108c SS |
916 | } |
917 | ||
e3506a9f UW |
918 | struct type * |
919 | lookup_array_range_type (struct type *element_type, | |
920 | int low_bound, int high_bound) | |
921 | { | |
50810684 | 922 | struct gdbarch *gdbarch = get_type_arch (element_type); |
e3506a9f UW |
923 | struct type *index_type = builtin_type (gdbarch)->builtin_int; |
924 | struct type *range_type | |
925 | = create_range_type (NULL, index_type, low_bound, high_bound); | |
d8734c88 | 926 | |
e3506a9f UW |
927 | return create_array_type (NULL, element_type, range_type); |
928 | } | |
929 | ||
7ba81444 MS |
930 | /* Create a string type using either a blank type supplied in |
931 | RESULT_TYPE, or creating a new type. String types are similar | |
932 | enough to array of char types that we can use create_array_type to | |
933 | build the basic type and then bash it into a string type. | |
c906108c SS |
934 | |
935 | For fixed length strings, the range type contains 0 as the lower | |
936 | bound and the length of the string minus one as the upper bound. | |
937 | ||
7ba81444 MS |
938 | FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make |
939 | sure it is TYPE_CODE_UNDEF before we bash it into a string | |
940 | type? */ | |
c906108c SS |
941 | |
942 | struct type * | |
3b7538c0 UW |
943 | create_string_type (struct type *result_type, |
944 | struct type *string_char_type, | |
7ba81444 | 945 | struct type *range_type) |
c906108c SS |
946 | { |
947 | result_type = create_array_type (result_type, | |
f290d38e | 948 | string_char_type, |
c906108c SS |
949 | range_type); |
950 | TYPE_CODE (result_type) = TYPE_CODE_STRING; | |
c16abbde | 951 | return result_type; |
c906108c SS |
952 | } |
953 | ||
e3506a9f UW |
954 | struct type * |
955 | lookup_string_range_type (struct type *string_char_type, | |
956 | int low_bound, int high_bound) | |
957 | { | |
958 | struct type *result_type; | |
d8734c88 | 959 | |
e3506a9f UW |
960 | result_type = lookup_array_range_type (string_char_type, |
961 | low_bound, high_bound); | |
962 | TYPE_CODE (result_type) = TYPE_CODE_STRING; | |
963 | return result_type; | |
964 | } | |
965 | ||
c906108c | 966 | struct type * |
fba45db2 | 967 | create_set_type (struct type *result_type, struct type *domain_type) |
c906108c | 968 | { |
c906108c | 969 | if (result_type == NULL) |
e9bb382b UW |
970 | result_type = alloc_type_copy (domain_type); |
971 | ||
c906108c SS |
972 | TYPE_CODE (result_type) = TYPE_CODE_SET; |
973 | TYPE_NFIELDS (result_type) = 1; | |
1deafd4e | 974 | TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field)); |
c906108c | 975 | |
74a9bb82 | 976 | if (!TYPE_STUB (domain_type)) |
c906108c | 977 | { |
f9780d5b | 978 | LONGEST low_bound, high_bound, bit_length; |
d8734c88 | 979 | |
c906108c SS |
980 | if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0) |
981 | low_bound = high_bound = 0; | |
982 | bit_length = high_bound - low_bound + 1; | |
983 | TYPE_LENGTH (result_type) | |
984 | = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT; | |
f9780d5b | 985 | if (low_bound >= 0) |
876cecd0 | 986 | TYPE_UNSIGNED (result_type) = 1; |
c906108c SS |
987 | } |
988 | TYPE_FIELD_TYPE (result_type, 0) = domain_type; | |
989 | ||
c16abbde | 990 | return result_type; |
c906108c SS |
991 | } |
992 | ||
ea37ba09 DJ |
993 | /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE |
994 | and any array types nested inside it. */ | |
995 | ||
996 | void | |
997 | make_vector_type (struct type *array_type) | |
998 | { | |
999 | struct type *inner_array, *elt_type; | |
1000 | int flags; | |
1001 | ||
1002 | /* Find the innermost array type, in case the array is | |
1003 | multi-dimensional. */ | |
1004 | inner_array = array_type; | |
1005 | while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY) | |
1006 | inner_array = TYPE_TARGET_TYPE (inner_array); | |
1007 | ||
1008 | elt_type = TYPE_TARGET_TYPE (inner_array); | |
1009 | if (TYPE_CODE (elt_type) == TYPE_CODE_INT) | |
1010 | { | |
2844d6b5 | 1011 | flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT; |
ea37ba09 DJ |
1012 | elt_type = make_qualified_type (elt_type, flags, NULL); |
1013 | TYPE_TARGET_TYPE (inner_array) = elt_type; | |
1014 | } | |
1015 | ||
876cecd0 | 1016 | TYPE_VECTOR (array_type) = 1; |
ea37ba09 DJ |
1017 | } |
1018 | ||
794ac428 | 1019 | struct type * |
ac3aafc7 EZ |
1020 | init_vector_type (struct type *elt_type, int n) |
1021 | { | |
1022 | struct type *array_type; | |
d8734c88 | 1023 | |
e3506a9f | 1024 | array_type = lookup_array_range_type (elt_type, 0, n - 1); |
ea37ba09 | 1025 | make_vector_type (array_type); |
ac3aafc7 EZ |
1026 | return array_type; |
1027 | } | |
1028 | ||
0d5de010 DJ |
1029 | /* Smash TYPE to be a type of pointers to members of DOMAIN with type |
1030 | TO_TYPE. A member pointer is a wierd thing -- it amounts to a | |
1031 | typed offset into a struct, e.g. "an int at offset 8". A MEMBER | |
1032 | TYPE doesn't include the offset (that's the value of the MEMBER | |
1033 | itself), but does include the structure type into which it points | |
1034 | (for some reason). | |
c906108c | 1035 | |
7ba81444 MS |
1036 | When "smashing" the type, we preserve the objfile that the old type |
1037 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1038 | allocated. */ |
1039 | ||
1040 | void | |
0d5de010 DJ |
1041 | smash_to_memberptr_type (struct type *type, struct type *domain, |
1042 | struct type *to_type) | |
c906108c | 1043 | { |
2fdde8f8 | 1044 | smash_type (type); |
c906108c SS |
1045 | TYPE_TARGET_TYPE (type) = to_type; |
1046 | TYPE_DOMAIN_TYPE (type) = domain; | |
0d5de010 DJ |
1047 | /* Assume that a data member pointer is the same size as a normal |
1048 | pointer. */ | |
50810684 UW |
1049 | TYPE_LENGTH (type) |
1050 | = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT; | |
0d5de010 | 1051 | TYPE_CODE (type) = TYPE_CODE_MEMBERPTR; |
c906108c SS |
1052 | } |
1053 | ||
0b92b5bb TT |
1054 | /* Smash TYPE to be a type of pointer to methods type TO_TYPE. |
1055 | ||
1056 | When "smashing" the type, we preserve the objfile that the old type | |
1057 | pointed to, since we aren't changing where the type is actually | |
1058 | allocated. */ | |
1059 | ||
1060 | void | |
1061 | smash_to_methodptr_type (struct type *type, struct type *to_type) | |
1062 | { | |
1063 | smash_type (type); | |
1064 | TYPE_TARGET_TYPE (type) = to_type; | |
1065 | TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type); | |
1066 | TYPE_LENGTH (type) = cplus_method_ptr_size (to_type); | |
1067 | TYPE_CODE (type) = TYPE_CODE_METHODPTR; | |
1068 | } | |
1069 | ||
c906108c SS |
1070 | /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE. |
1071 | METHOD just means `function that gets an extra "this" argument'. | |
1072 | ||
7ba81444 MS |
1073 | When "smashing" the type, we preserve the objfile that the old type |
1074 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1075 | allocated. */ |
1076 | ||
1077 | void | |
fba45db2 | 1078 | smash_to_method_type (struct type *type, struct type *domain, |
ad2f7632 DJ |
1079 | struct type *to_type, struct field *args, |
1080 | int nargs, int varargs) | |
c906108c | 1081 | { |
2fdde8f8 | 1082 | smash_type (type); |
c906108c SS |
1083 | TYPE_TARGET_TYPE (type) = to_type; |
1084 | TYPE_DOMAIN_TYPE (type) = domain; | |
ad2f7632 DJ |
1085 | TYPE_FIELDS (type) = args; |
1086 | TYPE_NFIELDS (type) = nargs; | |
1087 | if (varargs) | |
876cecd0 | 1088 | TYPE_VARARGS (type) = 1; |
c906108c SS |
1089 | TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */ |
1090 | TYPE_CODE (type) = TYPE_CODE_METHOD; | |
1091 | } | |
1092 | ||
1093 | /* Return a typename for a struct/union/enum type without "struct ", | |
1094 | "union ", or "enum ". If the type has a NULL name, return NULL. */ | |
1095 | ||
1096 | char * | |
aa1ee363 | 1097 | type_name_no_tag (const struct type *type) |
c906108c SS |
1098 | { |
1099 | if (TYPE_TAG_NAME (type) != NULL) | |
1100 | return TYPE_TAG_NAME (type); | |
1101 | ||
7ba81444 MS |
1102 | /* Is there code which expects this to return the name if there is |
1103 | no tag name? My guess is that this is mainly used for C++ in | |
1104 | cases where the two will always be the same. */ | |
c906108c SS |
1105 | return TYPE_NAME (type); |
1106 | } | |
1107 | ||
7ba81444 MS |
1108 | /* Lookup a typedef or primitive type named NAME, visible in lexical |
1109 | block BLOCK. If NOERR is nonzero, return zero if NAME is not | |
1110 | suitably defined. */ | |
c906108c SS |
1111 | |
1112 | struct type * | |
e6c014f2 UW |
1113 | lookup_typename (const struct language_defn *language, |
1114 | struct gdbarch *gdbarch, char *name, | |
34eaf542 | 1115 | const struct block *block, int noerr) |
c906108c | 1116 | { |
52f0bd74 AC |
1117 | struct symbol *sym; |
1118 | struct type *tmp; | |
c906108c | 1119 | |
774b6a14 | 1120 | sym = lookup_symbol (name, block, VAR_DOMAIN, 0); |
c906108c SS |
1121 | if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
1122 | { | |
e6c014f2 | 1123 | tmp = language_lookup_primitive_type_by_name (language, gdbarch, name); |
c906108c SS |
1124 | if (tmp) |
1125 | { | |
c16abbde | 1126 | return tmp; |
c906108c SS |
1127 | } |
1128 | else if (!tmp && noerr) | |
1129 | { | |
c16abbde | 1130 | return NULL; |
c906108c SS |
1131 | } |
1132 | else | |
1133 | { | |
8a3fe4f8 | 1134 | error (_("No type named %s."), name); |
c906108c SS |
1135 | } |
1136 | } | |
1137 | return (SYMBOL_TYPE (sym)); | |
1138 | } | |
1139 | ||
1140 | struct type * | |
e6c014f2 UW |
1141 | lookup_unsigned_typename (const struct language_defn *language, |
1142 | struct gdbarch *gdbarch, char *name) | |
c906108c SS |
1143 | { |
1144 | char *uns = alloca (strlen (name) + 10); | |
1145 | ||
1146 | strcpy (uns, "unsigned "); | |
1147 | strcpy (uns + 9, name); | |
e6c014f2 | 1148 | return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0); |
c906108c SS |
1149 | } |
1150 | ||
1151 | struct type * | |
e6c014f2 UW |
1152 | lookup_signed_typename (const struct language_defn *language, |
1153 | struct gdbarch *gdbarch, char *name) | |
c906108c SS |
1154 | { |
1155 | struct type *t; | |
1156 | char *uns = alloca (strlen (name) + 8); | |
1157 | ||
1158 | strcpy (uns, "signed "); | |
1159 | strcpy (uns + 7, name); | |
e6c014f2 | 1160 | t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1); |
7ba81444 | 1161 | /* If we don't find "signed FOO" just try again with plain "FOO". */ |
c906108c SS |
1162 | if (t != NULL) |
1163 | return t; | |
e6c014f2 | 1164 | return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0); |
c906108c SS |
1165 | } |
1166 | ||
1167 | /* Lookup a structure type named "struct NAME", | |
1168 | visible in lexical block BLOCK. */ | |
1169 | ||
1170 | struct type * | |
fba45db2 | 1171 | lookup_struct (char *name, struct block *block) |
c906108c | 1172 | { |
52f0bd74 | 1173 | struct symbol *sym; |
c906108c | 1174 | |
2570f2b7 | 1175 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); |
c906108c SS |
1176 | |
1177 | if (sym == NULL) | |
1178 | { | |
8a3fe4f8 | 1179 | error (_("No struct type named %s."), name); |
c906108c SS |
1180 | } |
1181 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) | |
1182 | { | |
7ba81444 MS |
1183 | error (_("This context has class, union or enum %s, not a struct."), |
1184 | name); | |
c906108c SS |
1185 | } |
1186 | return (SYMBOL_TYPE (sym)); | |
1187 | } | |
1188 | ||
1189 | /* Lookup a union type named "union NAME", | |
1190 | visible in lexical block BLOCK. */ | |
1191 | ||
1192 | struct type * | |
fba45db2 | 1193 | lookup_union (char *name, struct block *block) |
c906108c | 1194 | { |
52f0bd74 | 1195 | struct symbol *sym; |
c5aa993b | 1196 | struct type *t; |
c906108c | 1197 | |
2570f2b7 | 1198 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); |
c906108c SS |
1199 | |
1200 | if (sym == NULL) | |
8a3fe4f8 | 1201 | error (_("No union type named %s."), name); |
c906108c | 1202 | |
c5aa993b | 1203 | t = SYMBOL_TYPE (sym); |
c906108c SS |
1204 | |
1205 | if (TYPE_CODE (t) == TYPE_CODE_UNION) | |
c16abbde | 1206 | return t; |
c906108c | 1207 | |
7ba81444 MS |
1208 | /* If we get here, it's not a union. */ |
1209 | error (_("This context has class, struct or enum %s, not a union."), | |
1210 | name); | |
c906108c SS |
1211 | } |
1212 | ||
1213 | ||
1214 | /* Lookup an enum type named "enum NAME", | |
1215 | visible in lexical block BLOCK. */ | |
1216 | ||
1217 | struct type * | |
fba45db2 | 1218 | lookup_enum (char *name, struct block *block) |
c906108c | 1219 | { |
52f0bd74 | 1220 | struct symbol *sym; |
c906108c | 1221 | |
2570f2b7 | 1222 | sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0); |
c906108c SS |
1223 | if (sym == NULL) |
1224 | { | |
8a3fe4f8 | 1225 | error (_("No enum type named %s."), name); |
c906108c SS |
1226 | } |
1227 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM) | |
1228 | { | |
7ba81444 MS |
1229 | error (_("This context has class, struct or union %s, not an enum."), |
1230 | name); | |
c906108c SS |
1231 | } |
1232 | return (SYMBOL_TYPE (sym)); | |
1233 | } | |
1234 | ||
1235 | /* Lookup a template type named "template NAME<TYPE>", | |
1236 | visible in lexical block BLOCK. */ | |
1237 | ||
1238 | struct type * | |
7ba81444 MS |
1239 | lookup_template_type (char *name, struct type *type, |
1240 | struct block *block) | |
c906108c SS |
1241 | { |
1242 | struct symbol *sym; | |
7ba81444 MS |
1243 | char *nam = (char *) |
1244 | alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4); | |
d8734c88 | 1245 | |
c906108c SS |
1246 | strcpy (nam, name); |
1247 | strcat (nam, "<"); | |
0004e5a2 | 1248 | strcat (nam, TYPE_NAME (type)); |
0963b4bd | 1249 | strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */ |
c906108c | 1250 | |
2570f2b7 | 1251 | sym = lookup_symbol (nam, block, VAR_DOMAIN, 0); |
c906108c SS |
1252 | |
1253 | if (sym == NULL) | |
1254 | { | |
8a3fe4f8 | 1255 | error (_("No template type named %s."), name); |
c906108c SS |
1256 | } |
1257 | if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT) | |
1258 | { | |
7ba81444 MS |
1259 | error (_("This context has class, union or enum %s, not a struct."), |
1260 | name); | |
c906108c SS |
1261 | } |
1262 | return (SYMBOL_TYPE (sym)); | |
1263 | } | |
1264 | ||
7ba81444 MS |
1265 | /* Given a type TYPE, lookup the type of the component of type named |
1266 | NAME. | |
c906108c | 1267 | |
7ba81444 MS |
1268 | TYPE can be either a struct or union, or a pointer or reference to |
1269 | a struct or union. If it is a pointer or reference, its target | |
1270 | type is automatically used. Thus '.' and '->' are interchangable, | |
1271 | as specified for the definitions of the expression element types | |
1272 | STRUCTOP_STRUCT and STRUCTOP_PTR. | |
c906108c SS |
1273 | |
1274 | If NOERR is nonzero, return zero if NAME is not suitably defined. | |
1275 | If NAME is the name of a baseclass type, return that type. */ | |
1276 | ||
1277 | struct type * | |
fba45db2 | 1278 | lookup_struct_elt_type (struct type *type, char *name, int noerr) |
c906108c SS |
1279 | { |
1280 | int i; | |
c92817ce | 1281 | char *typename; |
c906108c SS |
1282 | |
1283 | for (;;) | |
1284 | { | |
1285 | CHECK_TYPEDEF (type); | |
1286 | if (TYPE_CODE (type) != TYPE_CODE_PTR | |
1287 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
1288 | break; | |
1289 | type = TYPE_TARGET_TYPE (type); | |
1290 | } | |
1291 | ||
687d6395 MS |
1292 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT |
1293 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
c906108c | 1294 | { |
c92817ce TT |
1295 | typename = type_to_string (type); |
1296 | make_cleanup (xfree, typename); | |
1297 | error (_("Type %s is not a structure or union type."), typename); | |
c906108c SS |
1298 | } |
1299 | ||
1300 | #if 0 | |
7ba81444 MS |
1301 | /* FIXME: This change put in by Michael seems incorrect for the case |
1302 | where the structure tag name is the same as the member name. | |
0963b4bd | 1303 | I.e. when doing "ptype bell->bar" for "struct foo { int bar; int |
7ba81444 | 1304 | foo; } bell;" Disabled by fnf. */ |
c906108c SS |
1305 | { |
1306 | char *typename; | |
1307 | ||
1308 | typename = type_name_no_tag (type); | |
762f08a3 | 1309 | if (typename != NULL && strcmp (typename, name) == 0) |
c906108c SS |
1310 | return type; |
1311 | } | |
1312 | #endif | |
1313 | ||
1314 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1315 | { | |
1316 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1317 | ||
db577aea | 1318 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1319 | { |
1320 | return TYPE_FIELD_TYPE (type, i); | |
1321 | } | |
f5a010c0 PM |
1322 | else if (!t_field_name || *t_field_name == '\0') |
1323 | { | |
d8734c88 MS |
1324 | struct type *subtype |
1325 | = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1); | |
1326 | ||
f5a010c0 PM |
1327 | if (subtype != NULL) |
1328 | return subtype; | |
1329 | } | |
c906108c SS |
1330 | } |
1331 | ||
1332 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
1333 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1334 | { | |
1335 | struct type *t; | |
1336 | ||
9733fc94 | 1337 | t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1); |
c906108c SS |
1338 | if (t != NULL) |
1339 | { | |
1340 | return t; | |
1341 | } | |
1342 | } | |
1343 | ||
1344 | if (noerr) | |
1345 | { | |
1346 | return NULL; | |
1347 | } | |
c5aa993b | 1348 | |
c92817ce TT |
1349 | typename = type_to_string (type); |
1350 | make_cleanup (xfree, typename); | |
1351 | error (_("Type %s has no component named %s."), typename, name); | |
c906108c SS |
1352 | } |
1353 | ||
81fe8080 DE |
1354 | /* Lookup the vptr basetype/fieldno values for TYPE. |
1355 | If found store vptr_basetype in *BASETYPEP if non-NULL, and return | |
1356 | vptr_fieldno. Also, if found and basetype is from the same objfile, | |
1357 | cache the results. | |
1358 | If not found, return -1 and ignore BASETYPEP. | |
1359 | Callers should be aware that in some cases (for example, | |
c906108c | 1360 | the type or one of its baseclasses is a stub type and we are |
d48cc9dd DJ |
1361 | debugging a .o file, or the compiler uses DWARF-2 and is not GCC), |
1362 | this function will not be able to find the | |
7ba81444 | 1363 | virtual function table pointer, and vptr_fieldno will remain -1 and |
81fe8080 | 1364 | vptr_basetype will remain NULL or incomplete. */ |
c906108c | 1365 | |
81fe8080 DE |
1366 | int |
1367 | get_vptr_fieldno (struct type *type, struct type **basetypep) | |
c906108c SS |
1368 | { |
1369 | CHECK_TYPEDEF (type); | |
1370 | ||
1371 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1372 | { | |
1373 | int i; | |
1374 | ||
7ba81444 MS |
1375 | /* We must start at zero in case the first (and only) baseclass |
1376 | is virtual (and hence we cannot share the table pointer). */ | |
c906108c SS |
1377 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) |
1378 | { | |
81fe8080 DE |
1379 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
1380 | int fieldno; | |
1381 | struct type *basetype; | |
1382 | ||
1383 | fieldno = get_vptr_fieldno (baseclass, &basetype); | |
1384 | if (fieldno >= 0) | |
c906108c | 1385 | { |
81fe8080 | 1386 | /* If the type comes from a different objfile we can't cache |
0963b4bd | 1387 | it, it may have a different lifetime. PR 2384 */ |
5ef73790 | 1388 | if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype)) |
81fe8080 DE |
1389 | { |
1390 | TYPE_VPTR_FIELDNO (type) = fieldno; | |
1391 | TYPE_VPTR_BASETYPE (type) = basetype; | |
1392 | } | |
1393 | if (basetypep) | |
1394 | *basetypep = basetype; | |
1395 | return fieldno; | |
c906108c SS |
1396 | } |
1397 | } | |
81fe8080 DE |
1398 | |
1399 | /* Not found. */ | |
1400 | return -1; | |
1401 | } | |
1402 | else | |
1403 | { | |
1404 | if (basetypep) | |
1405 | *basetypep = TYPE_VPTR_BASETYPE (type); | |
1406 | return TYPE_VPTR_FIELDNO (type); | |
c906108c SS |
1407 | } |
1408 | } | |
1409 | ||
44e1a9eb DJ |
1410 | static void |
1411 | stub_noname_complaint (void) | |
1412 | { | |
e2e0b3e5 | 1413 | complaint (&symfile_complaints, _("stub type has NULL name")); |
44e1a9eb DJ |
1414 | } |
1415 | ||
92163a10 JK |
1416 | /* Find the real type of TYPE. This function returns the real type, |
1417 | after removing all layers of typedefs, and completing opaque or stub | |
1418 | types. Completion changes the TYPE argument, but stripping of | |
1419 | typedefs does not. | |
1420 | ||
1421 | Instance flags (e.g. const/volatile) are preserved as typedefs are | |
1422 | stripped. If necessary a new qualified form of the underlying type | |
1423 | is created. | |
1424 | ||
1425 | NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has | |
1426 | not been computed and we're either in the middle of reading symbols, or | |
1427 | there was no name for the typedef in the debug info. | |
1428 | ||
1429 | If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of | |
1430 | the target type. | |
c906108c SS |
1431 | |
1432 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
0963b4bd | 1433 | we can find a full definition in some other file. If so, copy this |
7ba81444 MS |
1434 | definition, so we can use it in future. There used to be a comment |
1435 | (but not any code) that if we don't find a full definition, we'd | |
1436 | set a flag so we don't spend time in the future checking the same | |
1437 | type. That would be a mistake, though--we might load in more | |
92163a10 | 1438 | symbols which contain a full definition for the type. */ |
c906108c SS |
1439 | |
1440 | struct type * | |
a02fd225 | 1441 | check_typedef (struct type *type) |
c906108c SS |
1442 | { |
1443 | struct type *orig_type = type; | |
92163a10 JK |
1444 | /* While we're removing typedefs, we don't want to lose qualifiers. |
1445 | E.g., const/volatile. */ | |
1446 | int instance_flags = TYPE_INSTANCE_FLAGS (type); | |
a02fd225 | 1447 | |
423c0af8 MS |
1448 | gdb_assert (type); |
1449 | ||
c906108c SS |
1450 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1451 | { | |
1452 | if (!TYPE_TARGET_TYPE (type)) | |
1453 | { | |
c5aa993b | 1454 | char *name; |
c906108c SS |
1455 | struct symbol *sym; |
1456 | ||
1457 | /* It is dangerous to call lookup_symbol if we are currently | |
7ba81444 | 1458 | reading a symtab. Infinite recursion is one danger. */ |
c906108c | 1459 | if (currently_reading_symtab) |
92163a10 | 1460 | return make_qualified_type (type, instance_flags, NULL); |
c906108c SS |
1461 | |
1462 | name = type_name_no_tag (type); | |
7ba81444 MS |
1463 | /* FIXME: shouldn't we separately check the TYPE_NAME and |
1464 | the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or | |
1465 | VAR_DOMAIN as appropriate? (this code was written before | |
1466 | TYPE_NAME and TYPE_TAG_NAME were separate). */ | |
c906108c SS |
1467 | if (name == NULL) |
1468 | { | |
23136709 | 1469 | stub_noname_complaint (); |
92163a10 | 1470 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 1471 | } |
2570f2b7 | 1472 | sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0); |
c906108c SS |
1473 | if (sym) |
1474 | TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym); | |
7ba81444 | 1475 | else /* TYPE_CODE_UNDEF */ |
e9bb382b | 1476 | TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type)); |
c906108c SS |
1477 | } |
1478 | type = TYPE_TARGET_TYPE (type); | |
c906108c | 1479 | |
92163a10 JK |
1480 | /* Preserve the instance flags as we traverse down the typedef chain. |
1481 | ||
1482 | Handling address spaces/classes is nasty, what do we do if there's a | |
1483 | conflict? | |
1484 | E.g., what if an outer typedef marks the type as class_1 and an inner | |
1485 | typedef marks the type as class_2? | |
1486 | This is the wrong place to do such error checking. We leave it to | |
1487 | the code that created the typedef in the first place to flag the | |
1488 | error. We just pick the outer address space (akin to letting the | |
1489 | outer cast in a chain of casting win), instead of assuming | |
1490 | "it can't happen". */ | |
1491 | { | |
1492 | const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE | |
1493 | | TYPE_INSTANCE_FLAG_DATA_SPACE); | |
1494 | const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL; | |
1495 | int new_instance_flags = TYPE_INSTANCE_FLAGS (type); | |
1496 | ||
1497 | /* Treat code vs data spaces and address classes separately. */ | |
1498 | if ((instance_flags & ALL_SPACES) != 0) | |
1499 | new_instance_flags &= ~ALL_SPACES; | |
1500 | if ((instance_flags & ALL_CLASSES) != 0) | |
1501 | new_instance_flags &= ~ALL_CLASSES; | |
1502 | ||
1503 | instance_flags |= new_instance_flags; | |
1504 | } | |
1505 | } | |
a02fd225 | 1506 | |
7ba81444 MS |
1507 | /* If this is a struct/class/union with no fields, then check |
1508 | whether a full definition exists somewhere else. This is for | |
1509 | systems where a type definition with no fields is issued for such | |
1510 | types, instead of identifying them as stub types in the first | |
1511 | place. */ | |
c5aa993b | 1512 | |
7ba81444 MS |
1513 | if (TYPE_IS_OPAQUE (type) |
1514 | && opaque_type_resolution | |
1515 | && !currently_reading_symtab) | |
c906108c | 1516 | { |
c5aa993b JM |
1517 | char *name = type_name_no_tag (type); |
1518 | struct type *newtype; | |
d8734c88 | 1519 | |
c906108c SS |
1520 | if (name == NULL) |
1521 | { | |
23136709 | 1522 | stub_noname_complaint (); |
92163a10 | 1523 | return make_qualified_type (type, instance_flags, NULL); |
c906108c SS |
1524 | } |
1525 | newtype = lookup_transparent_type (name); | |
ad766c0a | 1526 | |
c906108c | 1527 | if (newtype) |
ad766c0a | 1528 | { |
7ba81444 MS |
1529 | /* If the resolved type and the stub are in the same |
1530 | objfile, then replace the stub type with the real deal. | |
1531 | But if they're in separate objfiles, leave the stub | |
1532 | alone; we'll just look up the transparent type every time | |
1533 | we call check_typedef. We can't create pointers between | |
1534 | types allocated to different objfiles, since they may | |
1535 | have different lifetimes. Trying to copy NEWTYPE over to | |
1536 | TYPE's objfile is pointless, too, since you'll have to | |
1537 | move over any other types NEWTYPE refers to, which could | |
1538 | be an unbounded amount of stuff. */ | |
ad766c0a | 1539 | if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type)) |
92163a10 JK |
1540 | type = make_qualified_type (newtype, |
1541 | TYPE_INSTANCE_FLAGS (type), | |
1542 | type); | |
ad766c0a JB |
1543 | else |
1544 | type = newtype; | |
1545 | } | |
c906108c | 1546 | } |
7ba81444 MS |
1547 | /* Otherwise, rely on the stub flag being set for opaque/stubbed |
1548 | types. */ | |
74a9bb82 | 1549 | else if (TYPE_STUB (type) && !currently_reading_symtab) |
c906108c | 1550 | { |
c5aa993b | 1551 | char *name = type_name_no_tag (type); |
c906108c | 1552 | /* FIXME: shouldn't we separately check the TYPE_NAME and the |
176620f1 | 1553 | TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN |
7b83ea04 AC |
1554 | as appropriate? (this code was written before TYPE_NAME and |
1555 | TYPE_TAG_NAME were separate). */ | |
c906108c | 1556 | struct symbol *sym; |
d8734c88 | 1557 | |
c906108c SS |
1558 | if (name == NULL) |
1559 | { | |
23136709 | 1560 | stub_noname_complaint (); |
92163a10 | 1561 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 1562 | } |
2570f2b7 | 1563 | sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0); |
c906108c | 1564 | if (sym) |
c26f2453 JB |
1565 | { |
1566 | /* Same as above for opaque types, we can replace the stub | |
92163a10 | 1567 | with the complete type only if they are in the same |
c26f2453 JB |
1568 | objfile. */ |
1569 | if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type)) | |
92163a10 JK |
1570 | type = make_qualified_type (SYMBOL_TYPE (sym), |
1571 | TYPE_INSTANCE_FLAGS (type), | |
1572 | type); | |
c26f2453 JB |
1573 | else |
1574 | type = SYMBOL_TYPE (sym); | |
1575 | } | |
c906108c SS |
1576 | } |
1577 | ||
74a9bb82 | 1578 | if (TYPE_TARGET_STUB (type)) |
c906108c SS |
1579 | { |
1580 | struct type *range_type; | |
1581 | struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1582 | ||
74a9bb82 | 1583 | if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type)) |
c5aa993b | 1584 | { |
73e2eb35 | 1585 | /* Nothing we can do. */ |
c5aa993b | 1586 | } |
c906108c SS |
1587 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY |
1588 | && TYPE_NFIELDS (type) == 1 | |
262452ec | 1589 | && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type)) |
c906108c SS |
1590 | == TYPE_CODE_RANGE)) |
1591 | { | |
1592 | /* Now recompute the length of the array type, based on its | |
ab0d6e0d JB |
1593 | number of elements and the target type's length. |
1594 | Watch out for Ada null Ada arrays where the high bound | |
0963b4bd | 1595 | is smaller than the low bound. */ |
43bbcdc2 PH |
1596 | const LONGEST low_bound = TYPE_LOW_BOUND (range_type); |
1597 | const LONGEST high_bound = TYPE_HIGH_BOUND (range_type); | |
1598 | ULONGEST len; | |
1599 | ||
ab0d6e0d | 1600 | if (high_bound < low_bound) |
43bbcdc2 | 1601 | len = 0; |
d8734c88 MS |
1602 | else |
1603 | { | |
1604 | /* For now, we conservatively take the array length to be 0 | |
1605 | if its length exceeds UINT_MAX. The code below assumes | |
1606 | that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1, | |
1607 | which is technically not guaranteed by C, but is usually true | |
1608 | (because it would be true if x were unsigned with its | |
0963b4bd | 1609 | high-order bit on). It uses the fact that |
d8734c88 MS |
1610 | high_bound-low_bound is always representable in |
1611 | ULONGEST and that if high_bound-low_bound+1 overflows, | |
1612 | it overflows to 0. We must change these tests if we | |
1613 | decide to increase the representation of TYPE_LENGTH | |
0963b4bd | 1614 | from unsigned int to ULONGEST. */ |
d8734c88 MS |
1615 | ULONGEST ulow = low_bound, uhigh = high_bound; |
1616 | ULONGEST tlen = TYPE_LENGTH (target_type); | |
1617 | ||
1618 | len = tlen * (uhigh - ulow + 1); | |
1619 | if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh | |
1620 | || len > UINT_MAX) | |
1621 | len = 0; | |
1622 | } | |
43bbcdc2 | 1623 | TYPE_LENGTH (type) = len; |
876cecd0 | 1624 | TYPE_TARGET_STUB (type) = 0; |
c906108c SS |
1625 | } |
1626 | else if (TYPE_CODE (type) == TYPE_CODE_RANGE) | |
1627 | { | |
1628 | TYPE_LENGTH (type) = TYPE_LENGTH (target_type); | |
876cecd0 | 1629 | TYPE_TARGET_STUB (type) = 0; |
c906108c SS |
1630 | } |
1631 | } | |
92163a10 JK |
1632 | |
1633 | type = make_qualified_type (type, instance_flags, NULL); | |
1634 | ||
7ba81444 | 1635 | /* Cache TYPE_LENGTH for future use. */ |
c906108c | 1636 | TYPE_LENGTH (orig_type) = TYPE_LENGTH (type); |
92163a10 | 1637 | |
c906108c SS |
1638 | return type; |
1639 | } | |
1640 | ||
7ba81444 | 1641 | /* Parse a type expression in the string [P..P+LENGTH). If an error |
48319d1f | 1642 | occurs, silently return a void type. */ |
c91ecb25 | 1643 | |
b9362cc7 | 1644 | static struct type * |
48319d1f | 1645 | safe_parse_type (struct gdbarch *gdbarch, char *p, int length) |
c91ecb25 ND |
1646 | { |
1647 | struct ui_file *saved_gdb_stderr; | |
1648 | struct type *type; | |
1649 | ||
7ba81444 | 1650 | /* Suppress error messages. */ |
c91ecb25 ND |
1651 | saved_gdb_stderr = gdb_stderr; |
1652 | gdb_stderr = ui_file_new (); | |
1653 | ||
7ba81444 | 1654 | /* Call parse_and_eval_type() without fear of longjmp()s. */ |
c91ecb25 | 1655 | if (!gdb_parse_and_eval_type (p, length, &type)) |
48319d1f | 1656 | type = builtin_type (gdbarch)->builtin_void; |
c91ecb25 | 1657 | |
7ba81444 | 1658 | /* Stop suppressing error messages. */ |
c91ecb25 ND |
1659 | ui_file_delete (gdb_stderr); |
1660 | gdb_stderr = saved_gdb_stderr; | |
1661 | ||
1662 | return type; | |
1663 | } | |
1664 | ||
c906108c SS |
1665 | /* Ugly hack to convert method stubs into method types. |
1666 | ||
7ba81444 MS |
1667 | He ain't kiddin'. This demangles the name of the method into a |
1668 | string including argument types, parses out each argument type, | |
1669 | generates a string casting a zero to that type, evaluates the | |
1670 | string, and stuffs the resulting type into an argtype vector!!! | |
1671 | Then it knows the type of the whole function (including argument | |
1672 | types for overloading), which info used to be in the stab's but was | |
1673 | removed to hack back the space required for them. */ | |
c906108c | 1674 | |
de17c821 | 1675 | static void |
fba45db2 | 1676 | check_stub_method (struct type *type, int method_id, int signature_id) |
c906108c | 1677 | { |
50810684 | 1678 | struct gdbarch *gdbarch = get_type_arch (type); |
c906108c SS |
1679 | struct fn_field *f; |
1680 | char *mangled_name = gdb_mangle_name (type, method_id, signature_id); | |
1681 | char *demangled_name = cplus_demangle (mangled_name, | |
1682 | DMGL_PARAMS | DMGL_ANSI); | |
1683 | char *argtypetext, *p; | |
1684 | int depth = 0, argcount = 1; | |
ad2f7632 | 1685 | struct field *argtypes; |
c906108c SS |
1686 | struct type *mtype; |
1687 | ||
1688 | /* Make sure we got back a function string that we can use. */ | |
1689 | if (demangled_name) | |
1690 | p = strchr (demangled_name, '('); | |
502dcf4e AC |
1691 | else |
1692 | p = NULL; | |
c906108c SS |
1693 | |
1694 | if (demangled_name == NULL || p == NULL) | |
7ba81444 MS |
1695 | error (_("Internal: Cannot demangle mangled name `%s'."), |
1696 | mangled_name); | |
c906108c SS |
1697 | |
1698 | /* Now, read in the parameters that define this type. */ | |
1699 | p += 1; | |
1700 | argtypetext = p; | |
1701 | while (*p) | |
1702 | { | |
070ad9f0 | 1703 | if (*p == '(' || *p == '<') |
c906108c SS |
1704 | { |
1705 | depth += 1; | |
1706 | } | |
070ad9f0 | 1707 | else if (*p == ')' || *p == '>') |
c906108c SS |
1708 | { |
1709 | depth -= 1; | |
1710 | } | |
1711 | else if (*p == ',' && depth == 0) | |
1712 | { | |
1713 | argcount += 1; | |
1714 | } | |
1715 | ||
1716 | p += 1; | |
1717 | } | |
1718 | ||
ad2f7632 DJ |
1719 | /* If we read one argument and it was ``void'', don't count it. */ |
1720 | if (strncmp (argtypetext, "(void)", 6) == 0) | |
1721 | argcount -= 1; | |
c906108c | 1722 | |
ad2f7632 DJ |
1723 | /* We need one extra slot, for the THIS pointer. */ |
1724 | ||
1725 | argtypes = (struct field *) | |
1726 | TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field)); | |
c906108c | 1727 | p = argtypetext; |
4a1970e4 DJ |
1728 | |
1729 | /* Add THIS pointer for non-static methods. */ | |
1730 | f = TYPE_FN_FIELDLIST1 (type, method_id); | |
1731 | if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) | |
1732 | argcount = 0; | |
1733 | else | |
1734 | { | |
ad2f7632 | 1735 | argtypes[0].type = lookup_pointer_type (type); |
4a1970e4 DJ |
1736 | argcount = 1; |
1737 | } | |
c906108c | 1738 | |
0963b4bd | 1739 | if (*p != ')') /* () means no args, skip while. */ |
c906108c SS |
1740 | { |
1741 | depth = 0; | |
1742 | while (*p) | |
1743 | { | |
1744 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
1745 | { | |
ad2f7632 DJ |
1746 | /* Avoid parsing of ellipsis, they will be handled below. |
1747 | Also avoid ``void'' as above. */ | |
1748 | if (strncmp (argtypetext, "...", p - argtypetext) != 0 | |
1749 | && strncmp (argtypetext, "void", p - argtypetext) != 0) | |
c906108c | 1750 | { |
ad2f7632 | 1751 | argtypes[argcount].type = |
48319d1f | 1752 | safe_parse_type (gdbarch, argtypetext, p - argtypetext); |
c906108c SS |
1753 | argcount += 1; |
1754 | } | |
1755 | argtypetext = p + 1; | |
1756 | } | |
1757 | ||
070ad9f0 | 1758 | if (*p == '(' || *p == '<') |
c906108c SS |
1759 | { |
1760 | depth += 1; | |
1761 | } | |
070ad9f0 | 1762 | else if (*p == ')' || *p == '>') |
c906108c SS |
1763 | { |
1764 | depth -= 1; | |
1765 | } | |
1766 | ||
1767 | p += 1; | |
1768 | } | |
1769 | } | |
1770 | ||
c906108c SS |
1771 | TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; |
1772 | ||
1773 | /* Now update the old "stub" type into a real type. */ | |
1774 | mtype = TYPE_FN_FIELD_TYPE (f, signature_id); | |
1775 | TYPE_DOMAIN_TYPE (mtype) = type; | |
ad2f7632 DJ |
1776 | TYPE_FIELDS (mtype) = argtypes; |
1777 | TYPE_NFIELDS (mtype) = argcount; | |
876cecd0 | 1778 | TYPE_STUB (mtype) = 0; |
c906108c | 1779 | TYPE_FN_FIELD_STUB (f, signature_id) = 0; |
ad2f7632 | 1780 | if (p[-2] == '.') |
876cecd0 | 1781 | TYPE_VARARGS (mtype) = 1; |
ad2f7632 DJ |
1782 | |
1783 | xfree (demangled_name); | |
c906108c SS |
1784 | } |
1785 | ||
7ba81444 MS |
1786 | /* This is the external interface to check_stub_method, above. This |
1787 | function unstubs all of the signatures for TYPE's METHOD_ID method | |
1788 | name. After calling this function TYPE_FN_FIELD_STUB will be | |
1789 | cleared for each signature and TYPE_FN_FIELDLIST_NAME will be | |
1790 | correct. | |
de17c821 DJ |
1791 | |
1792 | This function unfortunately can not die until stabs do. */ | |
1793 | ||
1794 | void | |
1795 | check_stub_method_group (struct type *type, int method_id) | |
1796 | { | |
1797 | int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); | |
1798 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
f710f4fc | 1799 | int j, found_stub = 0; |
de17c821 DJ |
1800 | |
1801 | for (j = 0; j < len; j++) | |
1802 | if (TYPE_FN_FIELD_STUB (f, j)) | |
1803 | { | |
1804 | found_stub = 1; | |
1805 | check_stub_method (type, method_id, j); | |
1806 | } | |
1807 | ||
7ba81444 MS |
1808 | /* GNU v3 methods with incorrect names were corrected when we read |
1809 | in type information, because it was cheaper to do it then. The | |
1810 | only GNU v2 methods with incorrect method names are operators and | |
1811 | destructors; destructors were also corrected when we read in type | |
1812 | information. | |
de17c821 DJ |
1813 | |
1814 | Therefore the only thing we need to handle here are v2 operator | |
1815 | names. */ | |
1816 | if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0) | |
1817 | { | |
1818 | int ret; | |
1819 | char dem_opname[256]; | |
1820 | ||
7ba81444 MS |
1821 | ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, |
1822 | method_id), | |
de17c821 DJ |
1823 | dem_opname, DMGL_ANSI); |
1824 | if (!ret) | |
7ba81444 MS |
1825 | ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, |
1826 | method_id), | |
de17c821 DJ |
1827 | dem_opname, 0); |
1828 | if (ret) | |
1829 | TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname); | |
1830 | } | |
1831 | } | |
1832 | ||
9655fd1a JK |
1833 | /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */ |
1834 | const struct cplus_struct_type cplus_struct_default = { }; | |
c906108c SS |
1835 | |
1836 | void | |
fba45db2 | 1837 | allocate_cplus_struct_type (struct type *type) |
c906108c | 1838 | { |
b4ba55a1 JB |
1839 | if (HAVE_CPLUS_STRUCT (type)) |
1840 | /* Structure was already allocated. Nothing more to do. */ | |
1841 | return; | |
1842 | ||
1843 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; | |
1844 | TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
1845 | TYPE_ALLOC (type, sizeof (struct cplus_struct_type)); | |
1846 | *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; | |
c906108c SS |
1847 | } |
1848 | ||
b4ba55a1 JB |
1849 | const struct gnat_aux_type gnat_aux_default = |
1850 | { NULL }; | |
1851 | ||
1852 | /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, | |
1853 | and allocate the associated gnat-specific data. The gnat-specific | |
1854 | data is also initialized to gnat_aux_default. */ | |
1855 | void | |
1856 | allocate_gnat_aux_type (struct type *type) | |
1857 | { | |
1858 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; | |
1859 | TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) | |
1860 | TYPE_ALLOC (type, sizeof (struct gnat_aux_type)); | |
1861 | *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; | |
1862 | } | |
1863 | ||
1864 | ||
c906108c SS |
1865 | /* Helper function to initialize the standard scalar types. |
1866 | ||
e9bb382b UW |
1867 | If NAME is non-NULL, then we make a copy of the string pointed |
1868 | to by name in the objfile_obstack for that objfile, and initialize | |
1869 | the type name to that copy. There are places (mipsread.c in particular), | |
1870 | where init_type is called with a NULL value for NAME). */ | |
c906108c SS |
1871 | |
1872 | struct type * | |
7ba81444 MS |
1873 | init_type (enum type_code code, int length, int flags, |
1874 | char *name, struct objfile *objfile) | |
c906108c | 1875 | { |
52f0bd74 | 1876 | struct type *type; |
c906108c SS |
1877 | |
1878 | type = alloc_type (objfile); | |
1879 | TYPE_CODE (type) = code; | |
1880 | TYPE_LENGTH (type) = length; | |
876cecd0 TT |
1881 | |
1882 | gdb_assert (!(flags & (TYPE_FLAG_MIN - 1))); | |
1883 | if (flags & TYPE_FLAG_UNSIGNED) | |
1884 | TYPE_UNSIGNED (type) = 1; | |
1885 | if (flags & TYPE_FLAG_NOSIGN) | |
1886 | TYPE_NOSIGN (type) = 1; | |
1887 | if (flags & TYPE_FLAG_STUB) | |
1888 | TYPE_STUB (type) = 1; | |
1889 | if (flags & TYPE_FLAG_TARGET_STUB) | |
1890 | TYPE_TARGET_STUB (type) = 1; | |
1891 | if (flags & TYPE_FLAG_STATIC) | |
1892 | TYPE_STATIC (type) = 1; | |
1893 | if (flags & TYPE_FLAG_PROTOTYPED) | |
1894 | TYPE_PROTOTYPED (type) = 1; | |
1895 | if (flags & TYPE_FLAG_INCOMPLETE) | |
1896 | TYPE_INCOMPLETE (type) = 1; | |
1897 | if (flags & TYPE_FLAG_VARARGS) | |
1898 | TYPE_VARARGS (type) = 1; | |
1899 | if (flags & TYPE_FLAG_VECTOR) | |
1900 | TYPE_VECTOR (type) = 1; | |
1901 | if (flags & TYPE_FLAG_STUB_SUPPORTED) | |
1902 | TYPE_STUB_SUPPORTED (type) = 1; | |
876cecd0 TT |
1903 | if (flags & TYPE_FLAG_FIXED_INSTANCE) |
1904 | TYPE_FIXED_INSTANCE (type) = 1; | |
1905 | ||
e9bb382b UW |
1906 | if (name) |
1907 | TYPE_NAME (type) = obsavestring (name, strlen (name), | |
1908 | &objfile->objfile_obstack); | |
c906108c SS |
1909 | |
1910 | /* C++ fancies. */ | |
1911 | ||
973ccf8b | 1912 | if (name && strcmp (name, "char") == 0) |
876cecd0 | 1913 | TYPE_NOSIGN (type) = 1; |
973ccf8b | 1914 | |
b4ba55a1 | 1915 | switch (code) |
c906108c | 1916 | { |
b4ba55a1 JB |
1917 | case TYPE_CODE_STRUCT: |
1918 | case TYPE_CODE_UNION: | |
1919 | case TYPE_CODE_NAMESPACE: | |
1920 | INIT_CPLUS_SPECIFIC (type); | |
1921 | break; | |
1922 | case TYPE_CODE_FLT: | |
1923 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; | |
1924 | break; | |
1925 | case TYPE_CODE_FUNC: | |
1926 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION; | |
1927 | break; | |
c906108c | 1928 | } |
c16abbde | 1929 | return type; |
c906108c SS |
1930 | } |
1931 | ||
c906108c | 1932 | int |
fba45db2 | 1933 | can_dereference (struct type *t) |
c906108c | 1934 | { |
7ba81444 MS |
1935 | /* FIXME: Should we return true for references as well as |
1936 | pointers? */ | |
c906108c SS |
1937 | CHECK_TYPEDEF (t); |
1938 | return | |
1939 | (t != NULL | |
1940 | && TYPE_CODE (t) == TYPE_CODE_PTR | |
1941 | && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID); | |
1942 | } | |
1943 | ||
adf40b2e | 1944 | int |
fba45db2 | 1945 | is_integral_type (struct type *t) |
adf40b2e JM |
1946 | { |
1947 | CHECK_TYPEDEF (t); | |
1948 | return | |
1949 | ((t != NULL) | |
d4f3574e SS |
1950 | && ((TYPE_CODE (t) == TYPE_CODE_INT) |
1951 | || (TYPE_CODE (t) == TYPE_CODE_ENUM) | |
4f2aea11 | 1952 | || (TYPE_CODE (t) == TYPE_CODE_FLAGS) |
d4f3574e SS |
1953 | || (TYPE_CODE (t) == TYPE_CODE_CHAR) |
1954 | || (TYPE_CODE (t) == TYPE_CODE_RANGE) | |
1955 | || (TYPE_CODE (t) == TYPE_CODE_BOOL))); | |
adf40b2e JM |
1956 | } |
1957 | ||
e09342b5 TJB |
1958 | /* Return true if TYPE is scalar. */ |
1959 | ||
1960 | static int | |
1961 | is_scalar_type (struct type *type) | |
1962 | { | |
1963 | CHECK_TYPEDEF (type); | |
1964 | ||
1965 | switch (TYPE_CODE (type)) | |
1966 | { | |
1967 | case TYPE_CODE_ARRAY: | |
1968 | case TYPE_CODE_STRUCT: | |
1969 | case TYPE_CODE_UNION: | |
1970 | case TYPE_CODE_SET: | |
1971 | case TYPE_CODE_STRING: | |
1972 | case TYPE_CODE_BITSTRING: | |
1973 | return 0; | |
1974 | default: | |
1975 | return 1; | |
1976 | } | |
1977 | } | |
1978 | ||
1979 | /* Return true if T is scalar, or a composite type which in practice has | |
90e4670f TJB |
1980 | the memory layout of a scalar type. E.g., an array or struct with only |
1981 | one scalar element inside it, or a union with only scalar elements. */ | |
e09342b5 TJB |
1982 | |
1983 | int | |
1984 | is_scalar_type_recursive (struct type *t) | |
1985 | { | |
1986 | CHECK_TYPEDEF (t); | |
1987 | ||
1988 | if (is_scalar_type (t)) | |
1989 | return 1; | |
1990 | /* Are we dealing with an array or string of known dimensions? */ | |
1991 | else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY | |
1992 | || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1 | |
1993 | && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE) | |
1994 | { | |
1995 | LONGEST low_bound, high_bound; | |
1996 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t)); | |
1997 | ||
1998 | get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound); | |
1999 | ||
2000 | return high_bound == low_bound && is_scalar_type_recursive (elt_type); | |
2001 | } | |
2002 | /* Are we dealing with a struct with one element? */ | |
2003 | else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1) | |
2004 | return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0)); | |
2005 | else if (TYPE_CODE (t) == TYPE_CODE_UNION) | |
2006 | { | |
2007 | int i, n = TYPE_NFIELDS (t); | |
2008 | ||
2009 | /* If all elements of the union are scalar, then the union is scalar. */ | |
2010 | for (i = 0; i < n; i++) | |
2011 | if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i))) | |
2012 | return 0; | |
2013 | ||
2014 | return 1; | |
2015 | } | |
2016 | ||
2017 | return 0; | |
2018 | } | |
2019 | ||
4e8f195d TT |
2020 | /* A helper function which returns true if types A and B represent the |
2021 | "same" class type. This is true if the types have the same main | |
2022 | type, or the same name. */ | |
2023 | ||
2024 | int | |
2025 | class_types_same_p (const struct type *a, const struct type *b) | |
2026 | { | |
2027 | return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) | |
2028 | || (TYPE_NAME (a) && TYPE_NAME (b) | |
2029 | && !strcmp (TYPE_NAME (a), TYPE_NAME (b)))); | |
2030 | } | |
2031 | ||
a9d5ef47 SW |
2032 | /* If BASE is an ancestor of DCLASS return the distance between them. |
2033 | otherwise return -1; | |
2034 | eg: | |
2035 | ||
2036 | class A {}; | |
2037 | class B: public A {}; | |
2038 | class C: public B {}; | |
2039 | class D: C {}; | |
2040 | ||
2041 | distance_to_ancestor (A, A, 0) = 0 | |
2042 | distance_to_ancestor (A, B, 0) = 1 | |
2043 | distance_to_ancestor (A, C, 0) = 2 | |
2044 | distance_to_ancestor (A, D, 0) = 3 | |
2045 | ||
2046 | If PUBLIC is 1 then only public ancestors are considered, | |
2047 | and the function returns the distance only if BASE is a public ancestor | |
2048 | of DCLASS. | |
2049 | Eg: | |
2050 | ||
0963b4bd | 2051 | distance_to_ancestor (A, D, 1) = -1. */ |
c906108c | 2052 | |
0526b37a | 2053 | static int |
a9d5ef47 | 2054 | distance_to_ancestor (struct type *base, struct type *dclass, int public) |
c906108c SS |
2055 | { |
2056 | int i; | |
a9d5ef47 | 2057 | int d; |
c5aa993b | 2058 | |
c906108c SS |
2059 | CHECK_TYPEDEF (base); |
2060 | CHECK_TYPEDEF (dclass); | |
2061 | ||
4e8f195d | 2062 | if (class_types_same_p (base, dclass)) |
a9d5ef47 | 2063 | return 0; |
c906108c SS |
2064 | |
2065 | for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) | |
4e8f195d | 2066 | { |
0526b37a SW |
2067 | if (public && ! BASETYPE_VIA_PUBLIC (dclass, i)) |
2068 | continue; | |
2069 | ||
a9d5ef47 SW |
2070 | d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public); |
2071 | if (d >= 0) | |
2072 | return 1 + d; | |
4e8f195d | 2073 | } |
c906108c | 2074 | |
a9d5ef47 | 2075 | return -1; |
c906108c | 2076 | } |
4e8f195d | 2077 | |
0526b37a SW |
2078 | /* Check whether BASE is an ancestor or base class or DCLASS |
2079 | Return 1 if so, and 0 if not. | |
2080 | Note: If BASE and DCLASS are of the same type, this function | |
2081 | will return 1. So for some class A, is_ancestor (A, A) will | |
2082 | return 1. */ | |
2083 | ||
2084 | int | |
2085 | is_ancestor (struct type *base, struct type *dclass) | |
2086 | { | |
a9d5ef47 | 2087 | return distance_to_ancestor (base, dclass, 0) >= 0; |
0526b37a SW |
2088 | } |
2089 | ||
4e8f195d TT |
2090 | /* Like is_ancestor, but only returns true when BASE is a public |
2091 | ancestor of DCLASS. */ | |
2092 | ||
2093 | int | |
2094 | is_public_ancestor (struct type *base, struct type *dclass) | |
2095 | { | |
a9d5ef47 | 2096 | return distance_to_ancestor (base, dclass, 1) >= 0; |
4e8f195d TT |
2097 | } |
2098 | ||
2099 | /* A helper function for is_unique_ancestor. */ | |
2100 | ||
2101 | static int | |
2102 | is_unique_ancestor_worker (struct type *base, struct type *dclass, | |
2103 | int *offset, | |
2104 | const bfd_byte *contents, CORE_ADDR address) | |
2105 | { | |
2106 | int i, count = 0; | |
2107 | ||
2108 | CHECK_TYPEDEF (base); | |
2109 | CHECK_TYPEDEF (dclass); | |
2110 | ||
2111 | for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) | |
2112 | { | |
2113 | struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i)); | |
2114 | int this_offset = baseclass_offset (dclass, i, contents, address); | |
2115 | ||
2116 | if (this_offset == -1) | |
2117 | error (_("virtual baseclass botch")); | |
2118 | ||
2119 | if (class_types_same_p (base, iter)) | |
2120 | { | |
2121 | /* If this is the first subclass, set *OFFSET and set count | |
2122 | to 1. Otherwise, if this is at the same offset as | |
2123 | previous instances, do nothing. Otherwise, increment | |
2124 | count. */ | |
2125 | if (*offset == -1) | |
2126 | { | |
2127 | *offset = this_offset; | |
2128 | count = 1; | |
2129 | } | |
2130 | else if (this_offset == *offset) | |
2131 | { | |
2132 | /* Nothing. */ | |
2133 | } | |
2134 | else | |
2135 | ++count; | |
2136 | } | |
2137 | else | |
2138 | count += is_unique_ancestor_worker (base, iter, offset, | |
2139 | contents + this_offset, | |
2140 | address + this_offset); | |
2141 | } | |
2142 | ||
2143 | return count; | |
2144 | } | |
2145 | ||
2146 | /* Like is_ancestor, but only returns true if BASE is a unique base | |
2147 | class of the type of VAL. */ | |
2148 | ||
2149 | int | |
2150 | is_unique_ancestor (struct type *base, struct value *val) | |
2151 | { | |
2152 | int offset = -1; | |
2153 | ||
2154 | return is_unique_ancestor_worker (base, value_type (val), &offset, | |
2155 | value_contents (val), | |
2156 | value_address (val)) == 1; | |
2157 | } | |
2158 | ||
c906108c SS |
2159 | \f |
2160 | ||
6403aeea SW |
2161 | /* Return the sum of the rank of A with the rank of B. */ |
2162 | ||
2163 | struct rank | |
2164 | sum_ranks (struct rank a, struct rank b) | |
2165 | { | |
2166 | struct rank c; | |
2167 | c.rank = a.rank + b.rank; | |
a9d5ef47 | 2168 | c.subrank = a.subrank + b.subrank; |
6403aeea SW |
2169 | return c; |
2170 | } | |
2171 | ||
2172 | /* Compare rank A and B and return: | |
2173 | 0 if a = b | |
2174 | 1 if a is better than b | |
2175 | -1 if b is better than a. */ | |
2176 | ||
2177 | int | |
2178 | compare_ranks (struct rank a, struct rank b) | |
2179 | { | |
2180 | if (a.rank == b.rank) | |
a9d5ef47 SW |
2181 | { |
2182 | if (a.subrank == b.subrank) | |
2183 | return 0; | |
2184 | if (a.subrank < b.subrank) | |
2185 | return 1; | |
2186 | if (a.subrank > b.subrank) | |
2187 | return -1; | |
2188 | } | |
6403aeea SW |
2189 | |
2190 | if (a.rank < b.rank) | |
2191 | return 1; | |
2192 | ||
0963b4bd | 2193 | /* a.rank > b.rank */ |
6403aeea SW |
2194 | return -1; |
2195 | } | |
c5aa993b | 2196 | |
0963b4bd | 2197 | /* Functions for overload resolution begin here. */ |
c906108c SS |
2198 | |
2199 | /* Compare two badness vectors A and B and return the result. | |
7ba81444 MS |
2200 | 0 => A and B are identical |
2201 | 1 => A and B are incomparable | |
2202 | 2 => A is better than B | |
2203 | 3 => A is worse than B */ | |
c906108c SS |
2204 | |
2205 | int | |
fba45db2 | 2206 | compare_badness (struct badness_vector *a, struct badness_vector *b) |
c906108c SS |
2207 | { |
2208 | int i; | |
2209 | int tmp; | |
c5aa993b JM |
2210 | short found_pos = 0; /* any positives in c? */ |
2211 | short found_neg = 0; /* any negatives in c? */ | |
2212 | ||
2213 | /* differing lengths => incomparable */ | |
c906108c SS |
2214 | if (a->length != b->length) |
2215 | return 1; | |
2216 | ||
c5aa993b JM |
2217 | /* Subtract b from a */ |
2218 | for (i = 0; i < a->length; i++) | |
c906108c | 2219 | { |
6403aeea | 2220 | tmp = compare_ranks (b->rank[i], a->rank[i]); |
c906108c | 2221 | if (tmp > 0) |
c5aa993b | 2222 | found_pos = 1; |
c906108c | 2223 | else if (tmp < 0) |
c5aa993b | 2224 | found_neg = 1; |
c906108c SS |
2225 | } |
2226 | ||
2227 | if (found_pos) | |
2228 | { | |
2229 | if (found_neg) | |
c5aa993b | 2230 | return 1; /* incomparable */ |
c906108c | 2231 | else |
c5aa993b | 2232 | return 3; /* A > B */ |
c906108c | 2233 | } |
c5aa993b JM |
2234 | else |
2235 | /* no positives */ | |
c906108c SS |
2236 | { |
2237 | if (found_neg) | |
c5aa993b | 2238 | return 2; /* A < B */ |
c906108c | 2239 | else |
c5aa993b | 2240 | return 0; /* A == B */ |
c906108c SS |
2241 | } |
2242 | } | |
2243 | ||
7ba81444 MS |
2244 | /* Rank a function by comparing its parameter types (PARMS, length |
2245 | NPARMS), to the types of an argument list (ARGS, length NARGS). | |
2246 | Return a pointer to a badness vector. This has NARGS + 1 | |
2247 | entries. */ | |
c906108c SS |
2248 | |
2249 | struct badness_vector * | |
7ba81444 MS |
2250 | rank_function (struct type **parms, int nparms, |
2251 | struct type **args, int nargs) | |
c906108c SS |
2252 | { |
2253 | int i; | |
c5aa993b | 2254 | struct badness_vector *bv; |
c906108c SS |
2255 | int min_len = nparms < nargs ? nparms : nargs; |
2256 | ||
2257 | bv = xmalloc (sizeof (struct badness_vector)); | |
0963b4bd | 2258 | bv->length = nargs + 1; /* add 1 for the length-match rank. */ |
c906108c SS |
2259 | bv->rank = xmalloc ((nargs + 1) * sizeof (int)); |
2260 | ||
2261 | /* First compare the lengths of the supplied lists. | |
7ba81444 | 2262 | If there is a mismatch, set it to a high value. */ |
c5aa993b | 2263 | |
c906108c | 2264 | /* pai/1997-06-03 FIXME: when we have debug info about default |
7ba81444 MS |
2265 | arguments and ellipsis parameter lists, we should consider those |
2266 | and rank the length-match more finely. */ | |
c906108c | 2267 | |
6403aeea SW |
2268 | LENGTH_MATCH (bv) = (nargs != nparms) |
2269 | ? LENGTH_MISMATCH_BADNESS | |
2270 | : EXACT_MATCH_BADNESS; | |
c906108c | 2271 | |
0963b4bd | 2272 | /* Now rank all the parameters of the candidate function. */ |
74cc24b0 DB |
2273 | for (i = 1; i <= min_len; i++) |
2274 | bv->rank[i] = rank_one_type (parms[i-1], args[i-1]); | |
c906108c | 2275 | |
0963b4bd | 2276 | /* If more arguments than parameters, add dummy entries. */ |
c5aa993b | 2277 | for (i = min_len + 1; i <= nargs; i++) |
c906108c SS |
2278 | bv->rank[i] = TOO_FEW_PARAMS_BADNESS; |
2279 | ||
2280 | return bv; | |
2281 | } | |
2282 | ||
973ccf8b DJ |
2283 | /* Compare the names of two integer types, assuming that any sign |
2284 | qualifiers have been checked already. We do it this way because | |
2285 | there may be an "int" in the name of one of the types. */ | |
2286 | ||
2287 | static int | |
2288 | integer_types_same_name_p (const char *first, const char *second) | |
2289 | { | |
2290 | int first_p, second_p; | |
2291 | ||
7ba81444 MS |
2292 | /* If both are shorts, return 1; if neither is a short, keep |
2293 | checking. */ | |
973ccf8b DJ |
2294 | first_p = (strstr (first, "short") != NULL); |
2295 | second_p = (strstr (second, "short") != NULL); | |
2296 | if (first_p && second_p) | |
2297 | return 1; | |
2298 | if (first_p || second_p) | |
2299 | return 0; | |
2300 | ||
2301 | /* Likewise for long. */ | |
2302 | first_p = (strstr (first, "long") != NULL); | |
2303 | second_p = (strstr (second, "long") != NULL); | |
2304 | if (first_p && second_p) | |
2305 | return 1; | |
2306 | if (first_p || second_p) | |
2307 | return 0; | |
2308 | ||
2309 | /* Likewise for char. */ | |
2310 | first_p = (strstr (first, "char") != NULL); | |
2311 | second_p = (strstr (second, "char") != NULL); | |
2312 | if (first_p && second_p) | |
2313 | return 1; | |
2314 | if (first_p || second_p) | |
2315 | return 0; | |
2316 | ||
2317 | /* They must both be ints. */ | |
2318 | return 1; | |
2319 | } | |
2320 | ||
7062b0a0 SW |
2321 | /* Compares type A to type B returns 1 if the represent the same type |
2322 | 0 otherwise. */ | |
2323 | ||
2324 | static int | |
2325 | types_equal (struct type *a, struct type *b) | |
2326 | { | |
2327 | /* Identical type pointers. */ | |
2328 | /* However, this still doesn't catch all cases of same type for b | |
2329 | and a. The reason is that builtin types are different from | |
2330 | the same ones constructed from the object. */ | |
2331 | if (a == b) | |
2332 | return 1; | |
2333 | ||
2334 | /* Resolve typedefs */ | |
2335 | if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF) | |
2336 | a = check_typedef (a); | |
2337 | if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF) | |
2338 | b = check_typedef (b); | |
2339 | ||
2340 | /* If after resolving typedefs a and b are not of the same type | |
2341 | code then they are not equal. */ | |
2342 | if (TYPE_CODE (a) != TYPE_CODE (b)) | |
2343 | return 0; | |
2344 | ||
2345 | /* If a and b are both pointers types or both reference types then | |
2346 | they are equal of the same type iff the objects they refer to are | |
2347 | of the same type. */ | |
2348 | if (TYPE_CODE (a) == TYPE_CODE_PTR | |
2349 | || TYPE_CODE (a) == TYPE_CODE_REF) | |
2350 | return types_equal (TYPE_TARGET_TYPE (a), | |
2351 | TYPE_TARGET_TYPE (b)); | |
2352 | ||
0963b4bd | 2353 | /* Well, damnit, if the names are exactly the same, I'll say they |
7062b0a0 SW |
2354 | are exactly the same. This happens when we generate method |
2355 | stubs. The types won't point to the same address, but they | |
0963b4bd | 2356 | really are the same. */ |
7062b0a0 SW |
2357 | |
2358 | if (TYPE_NAME (a) && TYPE_NAME (b) | |
2359 | && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0) | |
2360 | return 1; | |
2361 | ||
2362 | /* Check if identical after resolving typedefs. */ | |
2363 | if (a == b) | |
2364 | return 1; | |
2365 | ||
2366 | return 0; | |
2367 | } | |
2368 | ||
c906108c SS |
2369 | /* Compare one type (PARM) for compatibility with another (ARG). |
2370 | * PARM is intended to be the parameter type of a function; and | |
2371 | * ARG is the supplied argument's type. This function tests if | |
2372 | * the latter can be converted to the former. | |
2373 | * | |
2374 | * Return 0 if they are identical types; | |
2375 | * Otherwise, return an integer which corresponds to how compatible | |
7ba81444 MS |
2376 | * PARM is to ARG. The higher the return value, the worse the match. |
2377 | * Generally the "bad" conversions are all uniformly assigned a 100. */ | |
c906108c | 2378 | |
6403aeea | 2379 | struct rank |
fba45db2 | 2380 | rank_one_type (struct type *parm, struct type *arg) |
c906108c | 2381 | { |
a9d5ef47 | 2382 | struct rank rank = {0,0}; |
7062b0a0 SW |
2383 | |
2384 | if (types_equal (parm, arg)) | |
6403aeea | 2385 | return EXACT_MATCH_BADNESS; |
c906108c SS |
2386 | |
2387 | /* Resolve typedefs */ | |
2388 | if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF) | |
2389 | parm = check_typedef (parm); | |
2390 | if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF) | |
2391 | arg = check_typedef (arg); | |
2392 | ||
db577aea | 2393 | /* See through references, since we can almost make non-references |
7ba81444 | 2394 | references. */ |
db577aea | 2395 | if (TYPE_CODE (arg) == TYPE_CODE_REF) |
6403aeea SW |
2396 | return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)), |
2397 | REFERENCE_CONVERSION_BADNESS)); | |
db577aea | 2398 | if (TYPE_CODE (parm) == TYPE_CODE_REF) |
6403aeea SW |
2399 | return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg), |
2400 | REFERENCE_CONVERSION_BADNESS)); | |
5d161b24 | 2401 | if (overload_debug) |
7ba81444 MS |
2402 | /* Debugging only. */ |
2403 | fprintf_filtered (gdb_stderr, | |
2404 | "------ Arg is %s [%d], parm is %s [%d]\n", | |
2405 | TYPE_NAME (arg), TYPE_CODE (arg), | |
2406 | TYPE_NAME (parm), TYPE_CODE (parm)); | |
c906108c | 2407 | |
0963b4bd | 2408 | /* x -> y means arg of type x being supplied for parameter of type y. */ |
c906108c SS |
2409 | |
2410 | switch (TYPE_CODE (parm)) | |
2411 | { | |
c5aa993b JM |
2412 | case TYPE_CODE_PTR: |
2413 | switch (TYPE_CODE (arg)) | |
2414 | { | |
2415 | case TYPE_CODE_PTR: | |
7062b0a0 SW |
2416 | |
2417 | /* Allowed pointer conversions are: | |
2418 | (a) pointer to void-pointer conversion. */ | |
2419 | if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID) | |
c5aa993b | 2420 | return VOID_PTR_CONVERSION_BADNESS; |
7062b0a0 SW |
2421 | |
2422 | /* (b) pointer to ancestor-pointer conversion. */ | |
a9d5ef47 SW |
2423 | rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm), |
2424 | TYPE_TARGET_TYPE (arg), | |
2425 | 0); | |
2426 | if (rank.subrank >= 0) | |
2427 | return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank); | |
7062b0a0 SW |
2428 | |
2429 | return INCOMPATIBLE_TYPE_BADNESS; | |
c5aa993b | 2430 | case TYPE_CODE_ARRAY: |
7062b0a0 SW |
2431 | if (types_equal (TYPE_TARGET_TYPE (parm), |
2432 | TYPE_TARGET_TYPE (arg))) | |
6403aeea | 2433 | return EXACT_MATCH_BADNESS; |
7062b0a0 | 2434 | return INCOMPATIBLE_TYPE_BADNESS; |
c5aa993b JM |
2435 | case TYPE_CODE_FUNC: |
2436 | return rank_one_type (TYPE_TARGET_TYPE (parm), arg); | |
2437 | case TYPE_CODE_INT: | |
2438 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2439 | case TYPE_CODE_FLAGS: |
c5aa993b JM |
2440 | case TYPE_CODE_CHAR: |
2441 | case TYPE_CODE_RANGE: | |
2442 | case TYPE_CODE_BOOL: | |
c5aa993b JM |
2443 | default: |
2444 | return INCOMPATIBLE_TYPE_BADNESS; | |
2445 | } | |
2446 | case TYPE_CODE_ARRAY: | |
2447 | switch (TYPE_CODE (arg)) | |
2448 | { | |
2449 | case TYPE_CODE_PTR: | |
2450 | case TYPE_CODE_ARRAY: | |
7ba81444 MS |
2451 | return rank_one_type (TYPE_TARGET_TYPE (parm), |
2452 | TYPE_TARGET_TYPE (arg)); | |
c5aa993b JM |
2453 | default: |
2454 | return INCOMPATIBLE_TYPE_BADNESS; | |
2455 | } | |
2456 | case TYPE_CODE_FUNC: | |
2457 | switch (TYPE_CODE (arg)) | |
2458 | { | |
2459 | case TYPE_CODE_PTR: /* funcptr -> func */ | |
2460 | return rank_one_type (parm, TYPE_TARGET_TYPE (arg)); | |
2461 | default: | |
2462 | return INCOMPATIBLE_TYPE_BADNESS; | |
2463 | } | |
2464 | case TYPE_CODE_INT: | |
2465 | switch (TYPE_CODE (arg)) | |
2466 | { | |
2467 | case TYPE_CODE_INT: | |
2468 | if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) | |
2469 | { | |
2470 | /* Deal with signed, unsigned, and plain chars and | |
7ba81444 | 2471 | signed and unsigned ints. */ |
c5aa993b JM |
2472 | if (TYPE_NOSIGN (parm)) |
2473 | { | |
0963b4bd | 2474 | /* This case only for character types. */ |
7ba81444 | 2475 | if (TYPE_NOSIGN (arg)) |
6403aeea | 2476 | return EXACT_MATCH_BADNESS; /* plain char -> plain char */ |
7ba81444 MS |
2477 | else /* signed/unsigned char -> plain char */ |
2478 | return INTEGER_CONVERSION_BADNESS; | |
c5aa993b JM |
2479 | } |
2480 | else if (TYPE_UNSIGNED (parm)) | |
2481 | { | |
2482 | if (TYPE_UNSIGNED (arg)) | |
2483 | { | |
7ba81444 MS |
2484 | /* unsigned int -> unsigned int, or |
2485 | unsigned long -> unsigned long */ | |
2486 | if (integer_types_same_name_p (TYPE_NAME (parm), | |
2487 | TYPE_NAME (arg))) | |
6403aeea | 2488 | return EXACT_MATCH_BADNESS; |
7ba81444 MS |
2489 | else if (integer_types_same_name_p (TYPE_NAME (arg), |
2490 | "int") | |
2491 | && integer_types_same_name_p (TYPE_NAME (parm), | |
2492 | "long")) | |
3e43a32a MS |
2493 | /* unsigned int -> unsigned long */ |
2494 | return INTEGER_PROMOTION_BADNESS; | |
c5aa993b | 2495 | else |
3e43a32a MS |
2496 | /* unsigned long -> unsigned int */ |
2497 | return INTEGER_CONVERSION_BADNESS; | |
c5aa993b JM |
2498 | } |
2499 | else | |
2500 | { | |
7ba81444 MS |
2501 | if (integer_types_same_name_p (TYPE_NAME (arg), |
2502 | "long") | |
2503 | && integer_types_same_name_p (TYPE_NAME (parm), | |
2504 | "int")) | |
3e43a32a MS |
2505 | /* signed long -> unsigned int */ |
2506 | return INTEGER_CONVERSION_BADNESS; | |
c5aa993b | 2507 | else |
3e43a32a MS |
2508 | /* signed int/long -> unsigned int/long */ |
2509 | return INTEGER_CONVERSION_BADNESS; | |
c5aa993b JM |
2510 | } |
2511 | } | |
2512 | else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg)) | |
2513 | { | |
7ba81444 MS |
2514 | if (integer_types_same_name_p (TYPE_NAME (parm), |
2515 | TYPE_NAME (arg))) | |
6403aeea | 2516 | return EXACT_MATCH_BADNESS; |
7ba81444 MS |
2517 | else if (integer_types_same_name_p (TYPE_NAME (arg), |
2518 | "int") | |
2519 | && integer_types_same_name_p (TYPE_NAME (parm), | |
2520 | "long")) | |
c5aa993b JM |
2521 | return INTEGER_PROMOTION_BADNESS; |
2522 | else | |
1c5cb38e | 2523 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2524 | } |
2525 | else | |
1c5cb38e | 2526 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2527 | } |
2528 | else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) | |
2529 | return INTEGER_PROMOTION_BADNESS; | |
2530 | else | |
1c5cb38e | 2531 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b | 2532 | case TYPE_CODE_ENUM: |
4f2aea11 | 2533 | case TYPE_CODE_FLAGS: |
c5aa993b JM |
2534 | case TYPE_CODE_CHAR: |
2535 | case TYPE_CODE_RANGE: | |
2536 | case TYPE_CODE_BOOL: | |
2537 | return INTEGER_PROMOTION_BADNESS; | |
2538 | case TYPE_CODE_FLT: | |
2539 | return INT_FLOAT_CONVERSION_BADNESS; | |
2540 | case TYPE_CODE_PTR: | |
2541 | return NS_POINTER_CONVERSION_BADNESS; | |
2542 | default: | |
2543 | return INCOMPATIBLE_TYPE_BADNESS; | |
2544 | } | |
2545 | break; | |
2546 | case TYPE_CODE_ENUM: | |
2547 | switch (TYPE_CODE (arg)) | |
2548 | { | |
2549 | case TYPE_CODE_INT: | |
2550 | case TYPE_CODE_CHAR: | |
2551 | case TYPE_CODE_RANGE: | |
2552 | case TYPE_CODE_BOOL: | |
2553 | case TYPE_CODE_ENUM: | |
1c5cb38e | 2554 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2555 | case TYPE_CODE_FLT: |
2556 | return INT_FLOAT_CONVERSION_BADNESS; | |
2557 | default: | |
2558 | return INCOMPATIBLE_TYPE_BADNESS; | |
2559 | } | |
2560 | break; | |
2561 | case TYPE_CODE_CHAR: | |
2562 | switch (TYPE_CODE (arg)) | |
2563 | { | |
2564 | case TYPE_CODE_RANGE: | |
2565 | case TYPE_CODE_BOOL: | |
2566 | case TYPE_CODE_ENUM: | |
1c5cb38e | 2567 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2568 | case TYPE_CODE_FLT: |
2569 | return INT_FLOAT_CONVERSION_BADNESS; | |
2570 | case TYPE_CODE_INT: | |
2571 | if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm)) | |
1c5cb38e | 2572 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2573 | else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) |
2574 | return INTEGER_PROMOTION_BADNESS; | |
2575 | /* >>> !! else fall through !! <<< */ | |
2576 | case TYPE_CODE_CHAR: | |
7ba81444 MS |
2577 | /* Deal with signed, unsigned, and plain chars for C++ and |
2578 | with int cases falling through from previous case. */ | |
c5aa993b JM |
2579 | if (TYPE_NOSIGN (parm)) |
2580 | { | |
2581 | if (TYPE_NOSIGN (arg)) | |
6403aeea | 2582 | return EXACT_MATCH_BADNESS; |
c5aa993b | 2583 | else |
1c5cb38e | 2584 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2585 | } |
2586 | else if (TYPE_UNSIGNED (parm)) | |
2587 | { | |
2588 | if (TYPE_UNSIGNED (arg)) | |
6403aeea | 2589 | return EXACT_MATCH_BADNESS; |
c5aa993b JM |
2590 | else |
2591 | return INTEGER_PROMOTION_BADNESS; | |
2592 | } | |
2593 | else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg)) | |
6403aeea | 2594 | return EXACT_MATCH_BADNESS; |
c5aa993b | 2595 | else |
1c5cb38e | 2596 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2597 | default: |
2598 | return INCOMPATIBLE_TYPE_BADNESS; | |
2599 | } | |
2600 | break; | |
2601 | case TYPE_CODE_RANGE: | |
2602 | switch (TYPE_CODE (arg)) | |
2603 | { | |
2604 | case TYPE_CODE_INT: | |
2605 | case TYPE_CODE_CHAR: | |
2606 | case TYPE_CODE_RANGE: | |
2607 | case TYPE_CODE_BOOL: | |
2608 | case TYPE_CODE_ENUM: | |
1c5cb38e | 2609 | return INTEGER_CONVERSION_BADNESS; |
c5aa993b JM |
2610 | case TYPE_CODE_FLT: |
2611 | return INT_FLOAT_CONVERSION_BADNESS; | |
2612 | default: | |
2613 | return INCOMPATIBLE_TYPE_BADNESS; | |
2614 | } | |
2615 | break; | |
2616 | case TYPE_CODE_BOOL: | |
2617 | switch (TYPE_CODE (arg)) | |
2618 | { | |
2619 | case TYPE_CODE_INT: | |
2620 | case TYPE_CODE_CHAR: | |
2621 | case TYPE_CODE_RANGE: | |
2622 | case TYPE_CODE_ENUM: | |
2623 | case TYPE_CODE_FLT: | |
026ffab7 | 2624 | return INCOMPATIBLE_TYPE_BADNESS; |
c5aa993b | 2625 | case TYPE_CODE_PTR: |
026ffab7 | 2626 | return BOOL_PTR_CONVERSION_BADNESS; |
c5aa993b | 2627 | case TYPE_CODE_BOOL: |
6403aeea | 2628 | return EXACT_MATCH_BADNESS; |
c5aa993b JM |
2629 | default: |
2630 | return INCOMPATIBLE_TYPE_BADNESS; | |
2631 | } | |
2632 | break; | |
2633 | case TYPE_CODE_FLT: | |
2634 | switch (TYPE_CODE (arg)) | |
2635 | { | |
2636 | case TYPE_CODE_FLT: | |
2637 | if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm)) | |
2638 | return FLOAT_PROMOTION_BADNESS; | |
2639 | else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm)) | |
6403aeea | 2640 | return EXACT_MATCH_BADNESS; |
c5aa993b JM |
2641 | else |
2642 | return FLOAT_CONVERSION_BADNESS; | |
2643 | case TYPE_CODE_INT: | |
2644 | case TYPE_CODE_BOOL: | |
2645 | case TYPE_CODE_ENUM: | |
2646 | case TYPE_CODE_RANGE: | |
2647 | case TYPE_CODE_CHAR: | |
2648 | return INT_FLOAT_CONVERSION_BADNESS; | |
2649 | default: | |
2650 | return INCOMPATIBLE_TYPE_BADNESS; | |
2651 | } | |
2652 | break; | |
2653 | case TYPE_CODE_COMPLEX: | |
2654 | switch (TYPE_CODE (arg)) | |
7ba81444 | 2655 | { /* Strictly not needed for C++, but... */ |
c5aa993b JM |
2656 | case TYPE_CODE_FLT: |
2657 | return FLOAT_PROMOTION_BADNESS; | |
2658 | case TYPE_CODE_COMPLEX: | |
6403aeea | 2659 | return EXACT_MATCH_BADNESS; |
c5aa993b JM |
2660 | default: |
2661 | return INCOMPATIBLE_TYPE_BADNESS; | |
2662 | } | |
2663 | break; | |
2664 | case TYPE_CODE_STRUCT: | |
0963b4bd | 2665 | /* currently same as TYPE_CODE_CLASS. */ |
c5aa993b JM |
2666 | switch (TYPE_CODE (arg)) |
2667 | { | |
2668 | case TYPE_CODE_STRUCT: | |
2669 | /* Check for derivation */ | |
a9d5ef47 SW |
2670 | rank.subrank = distance_to_ancestor (parm, arg, 0); |
2671 | if (rank.subrank >= 0) | |
2672 | return sum_ranks (BASE_CONVERSION_BADNESS, rank); | |
c5aa993b JM |
2673 | /* else fall through */ |
2674 | default: | |
2675 | return INCOMPATIBLE_TYPE_BADNESS; | |
2676 | } | |
2677 | break; | |
2678 | case TYPE_CODE_UNION: | |
2679 | switch (TYPE_CODE (arg)) | |
2680 | { | |
2681 | case TYPE_CODE_UNION: | |
2682 | default: | |
2683 | return INCOMPATIBLE_TYPE_BADNESS; | |
2684 | } | |
2685 | break; | |
0d5de010 | 2686 | case TYPE_CODE_MEMBERPTR: |
c5aa993b JM |
2687 | switch (TYPE_CODE (arg)) |
2688 | { | |
2689 | default: | |
2690 | return INCOMPATIBLE_TYPE_BADNESS; | |
2691 | } | |
2692 | break; | |
2693 | case TYPE_CODE_METHOD: | |
2694 | switch (TYPE_CODE (arg)) | |
2695 | { | |
2696 | ||
2697 | default: | |
2698 | return INCOMPATIBLE_TYPE_BADNESS; | |
2699 | } | |
2700 | break; | |
2701 | case TYPE_CODE_REF: | |
2702 | switch (TYPE_CODE (arg)) | |
2703 | { | |
2704 | ||
2705 | default: | |
2706 | return INCOMPATIBLE_TYPE_BADNESS; | |
2707 | } | |
2708 | ||
2709 | break; | |
2710 | case TYPE_CODE_SET: | |
2711 | switch (TYPE_CODE (arg)) | |
2712 | { | |
2713 | /* Not in C++ */ | |
2714 | case TYPE_CODE_SET: | |
7ba81444 MS |
2715 | return rank_one_type (TYPE_FIELD_TYPE (parm, 0), |
2716 | TYPE_FIELD_TYPE (arg, 0)); | |
c5aa993b JM |
2717 | default: |
2718 | return INCOMPATIBLE_TYPE_BADNESS; | |
2719 | } | |
2720 | break; | |
2721 | case TYPE_CODE_VOID: | |
2722 | default: | |
2723 | return INCOMPATIBLE_TYPE_BADNESS; | |
2724 | } /* switch (TYPE_CODE (arg)) */ | |
c906108c SS |
2725 | } |
2726 | ||
c5aa993b | 2727 | |
0963b4bd | 2728 | /* End of functions for overload resolution. */ |
c906108c | 2729 | |
c906108c | 2730 | static void |
fba45db2 | 2731 | print_bit_vector (B_TYPE *bits, int nbits) |
c906108c SS |
2732 | { |
2733 | int bitno; | |
2734 | ||
2735 | for (bitno = 0; bitno < nbits; bitno++) | |
2736 | { | |
2737 | if ((bitno % 8) == 0) | |
2738 | { | |
2739 | puts_filtered (" "); | |
2740 | } | |
2741 | if (B_TST (bits, bitno)) | |
a3f17187 | 2742 | printf_filtered (("1")); |
c906108c | 2743 | else |
a3f17187 | 2744 | printf_filtered (("0")); |
c906108c SS |
2745 | } |
2746 | } | |
2747 | ||
ad2f7632 | 2748 | /* Note the first arg should be the "this" pointer, we may not want to |
7ba81444 MS |
2749 | include it since we may get into a infinitely recursive |
2750 | situation. */ | |
c906108c SS |
2751 | |
2752 | static void | |
ad2f7632 | 2753 | print_arg_types (struct field *args, int nargs, int spaces) |
c906108c SS |
2754 | { |
2755 | if (args != NULL) | |
2756 | { | |
ad2f7632 DJ |
2757 | int i; |
2758 | ||
2759 | for (i = 0; i < nargs; i++) | |
2760 | recursive_dump_type (args[i].type, spaces + 2); | |
c906108c SS |
2761 | } |
2762 | } | |
2763 | ||
d6a843b5 JK |
2764 | int |
2765 | field_is_static (struct field *f) | |
2766 | { | |
2767 | /* "static" fields are the fields whose location is not relative | |
2768 | to the address of the enclosing struct. It would be nice to | |
2769 | have a dedicated flag that would be set for static fields when | |
2770 | the type is being created. But in practice, checking the field | |
254e6b9e | 2771 | loc_kind should give us an accurate answer. */ |
d6a843b5 JK |
2772 | return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME |
2773 | || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR); | |
2774 | } | |
2775 | ||
c906108c | 2776 | static void |
fba45db2 | 2777 | dump_fn_fieldlists (struct type *type, int spaces) |
c906108c SS |
2778 | { |
2779 | int method_idx; | |
2780 | int overload_idx; | |
2781 | struct fn_field *f; | |
2782 | ||
2783 | printfi_filtered (spaces, "fn_fieldlists "); | |
d4f3574e | 2784 | gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout); |
c906108c SS |
2785 | printf_filtered ("\n"); |
2786 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) | |
2787 | { | |
2788 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
2789 | printfi_filtered (spaces + 2, "[%d] name '%s' (", | |
2790 | method_idx, | |
2791 | TYPE_FN_FIELDLIST_NAME (type, method_idx)); | |
d4f3574e SS |
2792 | gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx), |
2793 | gdb_stdout); | |
a3f17187 | 2794 | printf_filtered (_(") length %d\n"), |
c906108c SS |
2795 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); |
2796 | for (overload_idx = 0; | |
2797 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
2798 | overload_idx++) | |
2799 | { | |
2800 | printfi_filtered (spaces + 4, "[%d] physname '%s' (", | |
2801 | overload_idx, | |
2802 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx)); | |
d4f3574e SS |
2803 | gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx), |
2804 | gdb_stdout); | |
c906108c SS |
2805 | printf_filtered (")\n"); |
2806 | printfi_filtered (spaces + 8, "type "); | |
7ba81444 MS |
2807 | gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), |
2808 | gdb_stdout); | |
c906108c SS |
2809 | printf_filtered ("\n"); |
2810 | ||
2811 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
2812 | spaces + 8 + 2); | |
2813 | ||
2814 | printfi_filtered (spaces + 8, "args "); | |
7ba81444 MS |
2815 | gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), |
2816 | gdb_stdout); | |
c906108c SS |
2817 | printf_filtered ("\n"); |
2818 | ||
ad2f7632 | 2819 | print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), |
7ba81444 MS |
2820 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, |
2821 | overload_idx)), | |
ad2f7632 | 2822 | spaces); |
c906108c | 2823 | printfi_filtered (spaces + 8, "fcontext "); |
d4f3574e SS |
2824 | gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx), |
2825 | gdb_stdout); | |
c906108c SS |
2826 | printf_filtered ("\n"); |
2827 | ||
2828 | printfi_filtered (spaces + 8, "is_const %d\n", | |
2829 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
2830 | printfi_filtered (spaces + 8, "is_volatile %d\n", | |
2831 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
2832 | printfi_filtered (spaces + 8, "is_private %d\n", | |
2833 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
2834 | printfi_filtered (spaces + 8, "is_protected %d\n", | |
2835 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
2836 | printfi_filtered (spaces + 8, "is_stub %d\n", | |
2837 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
2838 | printfi_filtered (spaces + 8, "voffset %u\n", | |
2839 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
2840 | } | |
2841 | } | |
2842 | } | |
2843 | ||
2844 | static void | |
fba45db2 | 2845 | print_cplus_stuff (struct type *type, int spaces) |
c906108c SS |
2846 | { |
2847 | printfi_filtered (spaces, "n_baseclasses %d\n", | |
2848 | TYPE_N_BASECLASSES (type)); | |
2849 | printfi_filtered (spaces, "nfn_fields %d\n", | |
2850 | TYPE_NFN_FIELDS (type)); | |
2851 | printfi_filtered (spaces, "nfn_fields_total %d\n", | |
2852 | TYPE_NFN_FIELDS_TOTAL (type)); | |
2853 | if (TYPE_N_BASECLASSES (type) > 0) | |
2854 | { | |
2855 | printfi_filtered (spaces, "virtual_field_bits (%d bits at *", | |
2856 | TYPE_N_BASECLASSES (type)); | |
7ba81444 MS |
2857 | gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), |
2858 | gdb_stdout); | |
c906108c SS |
2859 | printf_filtered (")"); |
2860 | ||
2861 | print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type), | |
2862 | TYPE_N_BASECLASSES (type)); | |
2863 | puts_filtered ("\n"); | |
2864 | } | |
2865 | if (TYPE_NFIELDS (type) > 0) | |
2866 | { | |
2867 | if (TYPE_FIELD_PRIVATE_BITS (type) != NULL) | |
2868 | { | |
7ba81444 MS |
2869 | printfi_filtered (spaces, |
2870 | "private_field_bits (%d bits at *", | |
c906108c | 2871 | TYPE_NFIELDS (type)); |
7ba81444 MS |
2872 | gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), |
2873 | gdb_stdout); | |
c906108c SS |
2874 | printf_filtered (")"); |
2875 | print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type), | |
2876 | TYPE_NFIELDS (type)); | |
2877 | puts_filtered ("\n"); | |
2878 | } | |
2879 | if (TYPE_FIELD_PROTECTED_BITS (type) != NULL) | |
2880 | { | |
7ba81444 MS |
2881 | printfi_filtered (spaces, |
2882 | "protected_field_bits (%d bits at *", | |
c906108c | 2883 | TYPE_NFIELDS (type)); |
7ba81444 MS |
2884 | gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), |
2885 | gdb_stdout); | |
c906108c SS |
2886 | printf_filtered (")"); |
2887 | print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type), | |
2888 | TYPE_NFIELDS (type)); | |
2889 | puts_filtered ("\n"); | |
2890 | } | |
2891 | } | |
2892 | if (TYPE_NFN_FIELDS (type) > 0) | |
2893 | { | |
2894 | dump_fn_fieldlists (type, spaces); | |
2895 | } | |
2896 | } | |
2897 | ||
b4ba55a1 JB |
2898 | /* Print the contents of the TYPE's type_specific union, assuming that |
2899 | its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ | |
2900 | ||
2901 | static void | |
2902 | print_gnat_stuff (struct type *type, int spaces) | |
2903 | { | |
2904 | struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); | |
2905 | ||
2906 | recursive_dump_type (descriptive_type, spaces + 2); | |
2907 | } | |
2908 | ||
c906108c SS |
2909 | static struct obstack dont_print_type_obstack; |
2910 | ||
2911 | void | |
fba45db2 | 2912 | recursive_dump_type (struct type *type, int spaces) |
c906108c SS |
2913 | { |
2914 | int idx; | |
2915 | ||
2916 | if (spaces == 0) | |
2917 | obstack_begin (&dont_print_type_obstack, 0); | |
2918 | ||
2919 | if (TYPE_NFIELDS (type) > 0 | |
b4ba55a1 | 2920 | || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) |
c906108c SS |
2921 | { |
2922 | struct type **first_dont_print | |
7ba81444 | 2923 | = (struct type **) obstack_base (&dont_print_type_obstack); |
c906108c | 2924 | |
7ba81444 MS |
2925 | int i = (struct type **) |
2926 | obstack_next_free (&dont_print_type_obstack) - first_dont_print; | |
c906108c SS |
2927 | |
2928 | while (--i >= 0) | |
2929 | { | |
2930 | if (type == first_dont_print[i]) | |
2931 | { | |
2932 | printfi_filtered (spaces, "type node "); | |
d4f3574e | 2933 | gdb_print_host_address (type, gdb_stdout); |
a3f17187 | 2934 | printf_filtered (_(" <same as already seen type>\n")); |
c906108c SS |
2935 | return; |
2936 | } | |
2937 | } | |
2938 | ||
2939 | obstack_ptr_grow (&dont_print_type_obstack, type); | |
2940 | } | |
2941 | ||
2942 | printfi_filtered (spaces, "type node "); | |
d4f3574e | 2943 | gdb_print_host_address (type, gdb_stdout); |
c906108c SS |
2944 | printf_filtered ("\n"); |
2945 | printfi_filtered (spaces, "name '%s' (", | |
2946 | TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>"); | |
d4f3574e | 2947 | gdb_print_host_address (TYPE_NAME (type), gdb_stdout); |
c906108c | 2948 | printf_filtered (")\n"); |
e9e79dd9 FF |
2949 | printfi_filtered (spaces, "tagname '%s' (", |
2950 | TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>"); | |
2951 | gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout); | |
2952 | printf_filtered (")\n"); | |
c906108c SS |
2953 | printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type)); |
2954 | switch (TYPE_CODE (type)) | |
2955 | { | |
c5aa993b JM |
2956 | case TYPE_CODE_UNDEF: |
2957 | printf_filtered ("(TYPE_CODE_UNDEF)"); | |
2958 | break; | |
2959 | case TYPE_CODE_PTR: | |
2960 | printf_filtered ("(TYPE_CODE_PTR)"); | |
2961 | break; | |
2962 | case TYPE_CODE_ARRAY: | |
2963 | printf_filtered ("(TYPE_CODE_ARRAY)"); | |
2964 | break; | |
2965 | case TYPE_CODE_STRUCT: | |
2966 | printf_filtered ("(TYPE_CODE_STRUCT)"); | |
2967 | break; | |
2968 | case TYPE_CODE_UNION: | |
2969 | printf_filtered ("(TYPE_CODE_UNION)"); | |
2970 | break; | |
2971 | case TYPE_CODE_ENUM: | |
2972 | printf_filtered ("(TYPE_CODE_ENUM)"); | |
2973 | break; | |
4f2aea11 MK |
2974 | case TYPE_CODE_FLAGS: |
2975 | printf_filtered ("(TYPE_CODE_FLAGS)"); | |
2976 | break; | |
c5aa993b JM |
2977 | case TYPE_CODE_FUNC: |
2978 | printf_filtered ("(TYPE_CODE_FUNC)"); | |
2979 | break; | |
2980 | case TYPE_CODE_INT: | |
2981 | printf_filtered ("(TYPE_CODE_INT)"); | |
2982 | break; | |
2983 | case TYPE_CODE_FLT: | |
2984 | printf_filtered ("(TYPE_CODE_FLT)"); | |
2985 | break; | |
2986 | case TYPE_CODE_VOID: | |
2987 | printf_filtered ("(TYPE_CODE_VOID)"); | |
2988 | break; | |
2989 | case TYPE_CODE_SET: | |
2990 | printf_filtered ("(TYPE_CODE_SET)"); | |
2991 | break; | |
2992 | case TYPE_CODE_RANGE: | |
2993 | printf_filtered ("(TYPE_CODE_RANGE)"); | |
2994 | break; | |
2995 | case TYPE_CODE_STRING: | |
2996 | printf_filtered ("(TYPE_CODE_STRING)"); | |
2997 | break; | |
e9e79dd9 FF |
2998 | case TYPE_CODE_BITSTRING: |
2999 | printf_filtered ("(TYPE_CODE_BITSTRING)"); | |
3000 | break; | |
c5aa993b JM |
3001 | case TYPE_CODE_ERROR: |
3002 | printf_filtered ("(TYPE_CODE_ERROR)"); | |
3003 | break; | |
0d5de010 DJ |
3004 | case TYPE_CODE_MEMBERPTR: |
3005 | printf_filtered ("(TYPE_CODE_MEMBERPTR)"); | |
3006 | break; | |
3007 | case TYPE_CODE_METHODPTR: | |
3008 | printf_filtered ("(TYPE_CODE_METHODPTR)"); | |
c5aa993b JM |
3009 | break; |
3010 | case TYPE_CODE_METHOD: | |
3011 | printf_filtered ("(TYPE_CODE_METHOD)"); | |
3012 | break; | |
3013 | case TYPE_CODE_REF: | |
3014 | printf_filtered ("(TYPE_CODE_REF)"); | |
3015 | break; | |
3016 | case TYPE_CODE_CHAR: | |
3017 | printf_filtered ("(TYPE_CODE_CHAR)"); | |
3018 | break; | |
3019 | case TYPE_CODE_BOOL: | |
3020 | printf_filtered ("(TYPE_CODE_BOOL)"); | |
3021 | break; | |
e9e79dd9 FF |
3022 | case TYPE_CODE_COMPLEX: |
3023 | printf_filtered ("(TYPE_CODE_COMPLEX)"); | |
3024 | break; | |
c5aa993b JM |
3025 | case TYPE_CODE_TYPEDEF: |
3026 | printf_filtered ("(TYPE_CODE_TYPEDEF)"); | |
3027 | break; | |
5c4e30ca DC |
3028 | case TYPE_CODE_NAMESPACE: |
3029 | printf_filtered ("(TYPE_CODE_NAMESPACE)"); | |
3030 | break; | |
c5aa993b JM |
3031 | default: |
3032 | printf_filtered ("(UNKNOWN TYPE CODE)"); | |
3033 | break; | |
c906108c SS |
3034 | } |
3035 | puts_filtered ("\n"); | |
3036 | printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type)); | |
e9bb382b UW |
3037 | if (TYPE_OBJFILE_OWNED (type)) |
3038 | { | |
3039 | printfi_filtered (spaces, "objfile "); | |
3040 | gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout); | |
3041 | } | |
3042 | else | |
3043 | { | |
3044 | printfi_filtered (spaces, "gdbarch "); | |
3045 | gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout); | |
3046 | } | |
c906108c SS |
3047 | printf_filtered ("\n"); |
3048 | printfi_filtered (spaces, "target_type "); | |
d4f3574e | 3049 | gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout); |
c906108c SS |
3050 | printf_filtered ("\n"); |
3051 | if (TYPE_TARGET_TYPE (type) != NULL) | |
3052 | { | |
3053 | recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2); | |
3054 | } | |
3055 | printfi_filtered (spaces, "pointer_type "); | |
d4f3574e | 3056 | gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout); |
c906108c SS |
3057 | printf_filtered ("\n"); |
3058 | printfi_filtered (spaces, "reference_type "); | |
d4f3574e | 3059 | gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout); |
c906108c | 3060 | printf_filtered ("\n"); |
2fdde8f8 DJ |
3061 | printfi_filtered (spaces, "type_chain "); |
3062 | gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout); | |
e9e79dd9 | 3063 | printf_filtered ("\n"); |
7ba81444 MS |
3064 | printfi_filtered (spaces, "instance_flags 0x%x", |
3065 | TYPE_INSTANCE_FLAGS (type)); | |
2fdde8f8 DJ |
3066 | if (TYPE_CONST (type)) |
3067 | { | |
3068 | puts_filtered (" TYPE_FLAG_CONST"); | |
3069 | } | |
3070 | if (TYPE_VOLATILE (type)) | |
3071 | { | |
3072 | puts_filtered (" TYPE_FLAG_VOLATILE"); | |
3073 | } | |
3074 | if (TYPE_CODE_SPACE (type)) | |
3075 | { | |
3076 | puts_filtered (" TYPE_FLAG_CODE_SPACE"); | |
3077 | } | |
3078 | if (TYPE_DATA_SPACE (type)) | |
3079 | { | |
3080 | puts_filtered (" TYPE_FLAG_DATA_SPACE"); | |
3081 | } | |
8b2dbe47 KB |
3082 | if (TYPE_ADDRESS_CLASS_1 (type)) |
3083 | { | |
3084 | puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1"); | |
3085 | } | |
3086 | if (TYPE_ADDRESS_CLASS_2 (type)) | |
3087 | { | |
3088 | puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2"); | |
3089 | } | |
2fdde8f8 | 3090 | puts_filtered ("\n"); |
876cecd0 TT |
3091 | |
3092 | printfi_filtered (spaces, "flags"); | |
762a036f | 3093 | if (TYPE_UNSIGNED (type)) |
c906108c SS |
3094 | { |
3095 | puts_filtered (" TYPE_FLAG_UNSIGNED"); | |
3096 | } | |
762a036f FF |
3097 | if (TYPE_NOSIGN (type)) |
3098 | { | |
3099 | puts_filtered (" TYPE_FLAG_NOSIGN"); | |
3100 | } | |
3101 | if (TYPE_STUB (type)) | |
c906108c SS |
3102 | { |
3103 | puts_filtered (" TYPE_FLAG_STUB"); | |
3104 | } | |
762a036f FF |
3105 | if (TYPE_TARGET_STUB (type)) |
3106 | { | |
3107 | puts_filtered (" TYPE_FLAG_TARGET_STUB"); | |
3108 | } | |
3109 | if (TYPE_STATIC (type)) | |
3110 | { | |
3111 | puts_filtered (" TYPE_FLAG_STATIC"); | |
3112 | } | |
762a036f FF |
3113 | if (TYPE_PROTOTYPED (type)) |
3114 | { | |
3115 | puts_filtered (" TYPE_FLAG_PROTOTYPED"); | |
3116 | } | |
3117 | if (TYPE_INCOMPLETE (type)) | |
3118 | { | |
3119 | puts_filtered (" TYPE_FLAG_INCOMPLETE"); | |
3120 | } | |
762a036f FF |
3121 | if (TYPE_VARARGS (type)) |
3122 | { | |
3123 | puts_filtered (" TYPE_FLAG_VARARGS"); | |
3124 | } | |
f5f8a009 EZ |
3125 | /* This is used for things like AltiVec registers on ppc. Gcc emits |
3126 | an attribute for the array type, which tells whether or not we | |
3127 | have a vector, instead of a regular array. */ | |
3128 | if (TYPE_VECTOR (type)) | |
3129 | { | |
3130 | puts_filtered (" TYPE_FLAG_VECTOR"); | |
3131 | } | |
876cecd0 TT |
3132 | if (TYPE_FIXED_INSTANCE (type)) |
3133 | { | |
3134 | puts_filtered (" TYPE_FIXED_INSTANCE"); | |
3135 | } | |
3136 | if (TYPE_STUB_SUPPORTED (type)) | |
3137 | { | |
3138 | puts_filtered (" TYPE_STUB_SUPPORTED"); | |
3139 | } | |
3140 | if (TYPE_NOTTEXT (type)) | |
3141 | { | |
3142 | puts_filtered (" TYPE_NOTTEXT"); | |
3143 | } | |
c906108c SS |
3144 | puts_filtered ("\n"); |
3145 | printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type)); | |
d4f3574e | 3146 | gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout); |
c906108c SS |
3147 | puts_filtered ("\n"); |
3148 | for (idx = 0; idx < TYPE_NFIELDS (type); idx++) | |
3149 | { | |
3150 | printfi_filtered (spaces + 2, | |
3151 | "[%d] bitpos %d bitsize %d type ", | |
3152 | idx, TYPE_FIELD_BITPOS (type, idx), | |
3153 | TYPE_FIELD_BITSIZE (type, idx)); | |
d4f3574e | 3154 | gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout); |
c906108c SS |
3155 | printf_filtered (" name '%s' (", |
3156 | TYPE_FIELD_NAME (type, idx) != NULL | |
3157 | ? TYPE_FIELD_NAME (type, idx) | |
3158 | : "<NULL>"); | |
d4f3574e | 3159 | gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout); |
c906108c SS |
3160 | printf_filtered (")\n"); |
3161 | if (TYPE_FIELD_TYPE (type, idx) != NULL) | |
3162 | { | |
3163 | recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4); | |
3164 | } | |
3165 | } | |
43bbcdc2 PH |
3166 | if (TYPE_CODE (type) == TYPE_CODE_RANGE) |
3167 | { | |
3168 | printfi_filtered (spaces, "low %s%s high %s%s\n", | |
3169 | plongest (TYPE_LOW_BOUND (type)), | |
3170 | TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "", | |
3171 | plongest (TYPE_HIGH_BOUND (type)), | |
3e43a32a MS |
3172 | TYPE_HIGH_BOUND_UNDEFINED (type) |
3173 | ? " (undefined)" : ""); | |
43bbcdc2 | 3174 | } |
c906108c | 3175 | printfi_filtered (spaces, "vptr_basetype "); |
d4f3574e | 3176 | gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout); |
c906108c SS |
3177 | puts_filtered ("\n"); |
3178 | if (TYPE_VPTR_BASETYPE (type) != NULL) | |
3179 | { | |
3180 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
3181 | } | |
7ba81444 MS |
3182 | printfi_filtered (spaces, "vptr_fieldno %d\n", |
3183 | TYPE_VPTR_FIELDNO (type)); | |
c906108c | 3184 | |
b4ba55a1 JB |
3185 | switch (TYPE_SPECIFIC_FIELD (type)) |
3186 | { | |
3187 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
3188 | printfi_filtered (spaces, "cplus_stuff "); | |
3189 | gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), | |
3190 | gdb_stdout); | |
3191 | puts_filtered ("\n"); | |
3192 | print_cplus_stuff (type, spaces); | |
3193 | break; | |
8da61cc4 | 3194 | |
b4ba55a1 JB |
3195 | case TYPE_SPECIFIC_GNAT_STUFF: |
3196 | printfi_filtered (spaces, "gnat_stuff "); | |
3197 | gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout); | |
3198 | puts_filtered ("\n"); | |
3199 | print_gnat_stuff (type, spaces); | |
3200 | break; | |
701c159d | 3201 | |
b4ba55a1 JB |
3202 | case TYPE_SPECIFIC_FLOATFORMAT: |
3203 | printfi_filtered (spaces, "floatformat "); | |
3204 | if (TYPE_FLOATFORMAT (type) == NULL) | |
3205 | puts_filtered ("(null)"); | |
3206 | else | |
3207 | { | |
3208 | puts_filtered ("{ "); | |
3209 | if (TYPE_FLOATFORMAT (type)[0] == NULL | |
3210 | || TYPE_FLOATFORMAT (type)[0]->name == NULL) | |
3211 | puts_filtered ("(null)"); | |
3212 | else | |
3213 | puts_filtered (TYPE_FLOATFORMAT (type)[0]->name); | |
3214 | ||
3215 | puts_filtered (", "); | |
3216 | if (TYPE_FLOATFORMAT (type)[1] == NULL | |
3217 | || TYPE_FLOATFORMAT (type)[1]->name == NULL) | |
3218 | puts_filtered ("(null)"); | |
3219 | else | |
3220 | puts_filtered (TYPE_FLOATFORMAT (type)[1]->name); | |
3221 | ||
3222 | puts_filtered (" }"); | |
3223 | } | |
3224 | puts_filtered ("\n"); | |
3225 | break; | |
c906108c | 3226 | |
b4ba55a1 JB |
3227 | case TYPE_SPECIFIC_CALLING_CONVENTION: |
3228 | printfi_filtered (spaces, "calling_convention %d\n", | |
3229 | TYPE_CALLING_CONVENTION (type)); | |
3230 | break; | |
c906108c | 3231 | } |
b4ba55a1 | 3232 | |
c906108c SS |
3233 | if (spaces == 0) |
3234 | obstack_free (&dont_print_type_obstack, NULL); | |
3235 | } | |
3236 | ||
ae5a43e0 DJ |
3237 | /* Trivial helpers for the libiberty hash table, for mapping one |
3238 | type to another. */ | |
3239 | ||
3240 | struct type_pair | |
3241 | { | |
3242 | struct type *old, *new; | |
3243 | }; | |
3244 | ||
3245 | static hashval_t | |
3246 | type_pair_hash (const void *item) | |
3247 | { | |
3248 | const struct type_pair *pair = item; | |
d8734c88 | 3249 | |
ae5a43e0 DJ |
3250 | return htab_hash_pointer (pair->old); |
3251 | } | |
3252 | ||
3253 | static int | |
3254 | type_pair_eq (const void *item_lhs, const void *item_rhs) | |
3255 | { | |
3256 | const struct type_pair *lhs = item_lhs, *rhs = item_rhs; | |
d8734c88 | 3257 | |
ae5a43e0 DJ |
3258 | return lhs->old == rhs->old; |
3259 | } | |
3260 | ||
3261 | /* Allocate the hash table used by copy_type_recursive to walk | |
3262 | types without duplicates. We use OBJFILE's obstack, because | |
3263 | OBJFILE is about to be deleted. */ | |
3264 | ||
3265 | htab_t | |
3266 | create_copied_types_hash (struct objfile *objfile) | |
3267 | { | |
3268 | return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq, | |
3269 | NULL, &objfile->objfile_obstack, | |
3270 | hashtab_obstack_allocate, | |
3271 | dummy_obstack_deallocate); | |
3272 | } | |
3273 | ||
7ba81444 MS |
3274 | /* Recursively copy (deep copy) TYPE, if it is associated with |
3275 | OBJFILE. Return a new type allocated using malloc, a saved type if | |
3276 | we have already visited TYPE (using COPIED_TYPES), or TYPE if it is | |
3277 | not associated with OBJFILE. */ | |
ae5a43e0 DJ |
3278 | |
3279 | struct type * | |
7ba81444 MS |
3280 | copy_type_recursive (struct objfile *objfile, |
3281 | struct type *type, | |
ae5a43e0 DJ |
3282 | htab_t copied_types) |
3283 | { | |
3284 | struct type_pair *stored, pair; | |
3285 | void **slot; | |
3286 | struct type *new_type; | |
3287 | ||
e9bb382b | 3288 | if (! TYPE_OBJFILE_OWNED (type)) |
ae5a43e0 DJ |
3289 | return type; |
3290 | ||
7ba81444 MS |
3291 | /* This type shouldn't be pointing to any types in other objfiles; |
3292 | if it did, the type might disappear unexpectedly. */ | |
ae5a43e0 DJ |
3293 | gdb_assert (TYPE_OBJFILE (type) == objfile); |
3294 | ||
3295 | pair.old = type; | |
3296 | slot = htab_find_slot (copied_types, &pair, INSERT); | |
3297 | if (*slot != NULL) | |
3298 | return ((struct type_pair *) *slot)->new; | |
3299 | ||
e9bb382b | 3300 | new_type = alloc_type_arch (get_type_arch (type)); |
ae5a43e0 DJ |
3301 | |
3302 | /* We must add the new type to the hash table immediately, in case | |
3303 | we encounter this type again during a recursive call below. */ | |
3e43a32a MS |
3304 | stored |
3305 | = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair)); | |
ae5a43e0 DJ |
3306 | stored->old = type; |
3307 | stored->new = new_type; | |
3308 | *slot = stored; | |
3309 | ||
876cecd0 TT |
3310 | /* Copy the common fields of types. For the main type, we simply |
3311 | copy the entire thing and then update specific fields as needed. */ | |
3312 | *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); | |
e9bb382b UW |
3313 | TYPE_OBJFILE_OWNED (new_type) = 0; |
3314 | TYPE_OWNER (new_type).gdbarch = get_type_arch (type); | |
876cecd0 | 3315 | |
ae5a43e0 DJ |
3316 | if (TYPE_NAME (type)) |
3317 | TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type)); | |
3318 | if (TYPE_TAG_NAME (type)) | |
3319 | TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type)); | |
ae5a43e0 DJ |
3320 | |
3321 | TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type); | |
3322 | TYPE_LENGTH (new_type) = TYPE_LENGTH (type); | |
3323 | ||
3324 | /* Copy the fields. */ | |
ae5a43e0 DJ |
3325 | if (TYPE_NFIELDS (type)) |
3326 | { | |
3327 | int i, nfields; | |
3328 | ||
3329 | nfields = TYPE_NFIELDS (type); | |
1deafd4e | 3330 | TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field); |
ae5a43e0 DJ |
3331 | for (i = 0; i < nfields; i++) |
3332 | { | |
7ba81444 MS |
3333 | TYPE_FIELD_ARTIFICIAL (new_type, i) = |
3334 | TYPE_FIELD_ARTIFICIAL (type, i); | |
ae5a43e0 DJ |
3335 | TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i); |
3336 | if (TYPE_FIELD_TYPE (type, i)) | |
3337 | TYPE_FIELD_TYPE (new_type, i) | |
3338 | = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i), | |
3339 | copied_types); | |
3340 | if (TYPE_FIELD_NAME (type, i)) | |
7ba81444 MS |
3341 | TYPE_FIELD_NAME (new_type, i) = |
3342 | xstrdup (TYPE_FIELD_NAME (type, i)); | |
d6a843b5 | 3343 | switch (TYPE_FIELD_LOC_KIND (type, i)) |
ae5a43e0 | 3344 | { |
d6a843b5 JK |
3345 | case FIELD_LOC_KIND_BITPOS: |
3346 | SET_FIELD_BITPOS (TYPE_FIELD (new_type, i), | |
3347 | TYPE_FIELD_BITPOS (type, i)); | |
3348 | break; | |
3349 | case FIELD_LOC_KIND_PHYSADDR: | |
3350 | SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i), | |
3351 | TYPE_FIELD_STATIC_PHYSADDR (type, i)); | |
3352 | break; | |
3353 | case FIELD_LOC_KIND_PHYSNAME: | |
3354 | SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i), | |
3355 | xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type, | |
3356 | i))); | |
3357 | break; | |
3358 | default: | |
3359 | internal_error (__FILE__, __LINE__, | |
3360 | _("Unexpected type field location kind: %d"), | |
3361 | TYPE_FIELD_LOC_KIND (type, i)); | |
ae5a43e0 DJ |
3362 | } |
3363 | } | |
3364 | } | |
3365 | ||
0963b4bd | 3366 | /* For range types, copy the bounds information. */ |
43bbcdc2 PH |
3367 | if (TYPE_CODE (type) == TYPE_CODE_RANGE) |
3368 | { | |
3369 | TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds)); | |
3370 | *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type); | |
3371 | } | |
3372 | ||
ae5a43e0 DJ |
3373 | /* Copy pointers to other types. */ |
3374 | if (TYPE_TARGET_TYPE (type)) | |
7ba81444 MS |
3375 | TYPE_TARGET_TYPE (new_type) = |
3376 | copy_type_recursive (objfile, | |
3377 | TYPE_TARGET_TYPE (type), | |
3378 | copied_types); | |
ae5a43e0 | 3379 | if (TYPE_VPTR_BASETYPE (type)) |
7ba81444 MS |
3380 | TYPE_VPTR_BASETYPE (new_type) = |
3381 | copy_type_recursive (objfile, | |
3382 | TYPE_VPTR_BASETYPE (type), | |
3383 | copied_types); | |
ae5a43e0 DJ |
3384 | /* Maybe copy the type_specific bits. |
3385 | ||
3386 | NOTE drow/2005-12-09: We do not copy the C++-specific bits like | |
3387 | base classes and methods. There's no fundamental reason why we | |
3388 | can't, but at the moment it is not needed. */ | |
3389 | ||
3390 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
d5d6fca5 | 3391 | TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); |
ae5a43e0 DJ |
3392 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
3393 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
ae5a43e0 DJ |
3394 | || TYPE_CODE (type) == TYPE_CODE_NAMESPACE) |
3395 | INIT_CPLUS_SPECIFIC (new_type); | |
3396 | ||
3397 | return new_type; | |
3398 | } | |
3399 | ||
4af88198 JB |
3400 | /* Make a copy of the given TYPE, except that the pointer & reference |
3401 | types are not preserved. | |
3402 | ||
3403 | This function assumes that the given type has an associated objfile. | |
3404 | This objfile is used to allocate the new type. */ | |
3405 | ||
3406 | struct type * | |
3407 | copy_type (const struct type *type) | |
3408 | { | |
3409 | struct type *new_type; | |
3410 | ||
e9bb382b | 3411 | gdb_assert (TYPE_OBJFILE_OWNED (type)); |
4af88198 | 3412 | |
e9bb382b | 3413 | new_type = alloc_type_copy (type); |
4af88198 JB |
3414 | TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type); |
3415 | TYPE_LENGTH (new_type) = TYPE_LENGTH (type); | |
3416 | memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), | |
3417 | sizeof (struct main_type)); | |
3418 | ||
3419 | return new_type; | |
3420 | } | |
3421 | ||
e9bb382b UW |
3422 | |
3423 | /* Helper functions to initialize architecture-specific types. */ | |
3424 | ||
3425 | /* Allocate a type structure associated with GDBARCH and set its | |
3426 | CODE, LENGTH, and NAME fields. */ | |
3427 | struct type * | |
3428 | arch_type (struct gdbarch *gdbarch, | |
3429 | enum type_code code, int length, char *name) | |
3430 | { | |
3431 | struct type *type; | |
3432 | ||
3433 | type = alloc_type_arch (gdbarch); | |
3434 | TYPE_CODE (type) = code; | |
3435 | TYPE_LENGTH (type) = length; | |
3436 | ||
3437 | if (name) | |
3438 | TYPE_NAME (type) = xstrdup (name); | |
3439 | ||
3440 | return type; | |
3441 | } | |
3442 | ||
3443 | /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH. | |
3444 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3445 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3446 | struct type * | |
3447 | arch_integer_type (struct gdbarch *gdbarch, | |
3448 | int bit, int unsigned_p, char *name) | |
3449 | { | |
3450 | struct type *t; | |
3451 | ||
3452 | t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name); | |
3453 | if (unsigned_p) | |
3454 | TYPE_UNSIGNED (t) = 1; | |
3455 | if (name && strcmp (name, "char") == 0) | |
3456 | TYPE_NOSIGN (t) = 1; | |
3457 | ||
3458 | return t; | |
3459 | } | |
3460 | ||
3461 | /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH. | |
3462 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3463 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3464 | struct type * | |
3465 | arch_character_type (struct gdbarch *gdbarch, | |
3466 | int bit, int unsigned_p, char *name) | |
3467 | { | |
3468 | struct type *t; | |
3469 | ||
3470 | t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name); | |
3471 | if (unsigned_p) | |
3472 | TYPE_UNSIGNED (t) = 1; | |
3473 | ||
3474 | return t; | |
3475 | } | |
3476 | ||
3477 | /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH. | |
3478 | BIT is the type size in bits. If UNSIGNED_P is non-zero, set | |
3479 | the type's TYPE_UNSIGNED flag. NAME is the type name. */ | |
3480 | struct type * | |
3481 | arch_boolean_type (struct gdbarch *gdbarch, | |
3482 | int bit, int unsigned_p, char *name) | |
3483 | { | |
3484 | struct type *t; | |
3485 | ||
3486 | t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name); | |
3487 | if (unsigned_p) | |
3488 | TYPE_UNSIGNED (t) = 1; | |
3489 | ||
3490 | return t; | |
3491 | } | |
3492 | ||
3493 | /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH. | |
3494 | BIT is the type size in bits; if BIT equals -1, the size is | |
3495 | determined by the floatformat. NAME is the type name. Set the | |
3496 | TYPE_FLOATFORMAT from FLOATFORMATS. */ | |
27067745 | 3497 | struct type * |
e9bb382b UW |
3498 | arch_float_type (struct gdbarch *gdbarch, |
3499 | int bit, char *name, const struct floatformat **floatformats) | |
8da61cc4 DJ |
3500 | { |
3501 | struct type *t; | |
3502 | ||
3503 | if (bit == -1) | |
3504 | { | |
3505 | gdb_assert (floatformats != NULL); | |
3506 | gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL); | |
3507 | bit = floatformats[0]->totalsize; | |
3508 | } | |
3509 | gdb_assert (bit >= 0); | |
3510 | ||
e9bb382b | 3511 | t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name); |
8da61cc4 DJ |
3512 | TYPE_FLOATFORMAT (t) = floatformats; |
3513 | return t; | |
3514 | } | |
3515 | ||
e9bb382b UW |
3516 | /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH. |
3517 | NAME is the type name. TARGET_TYPE is the component float type. */ | |
27067745 | 3518 | struct type * |
e9bb382b UW |
3519 | arch_complex_type (struct gdbarch *gdbarch, |
3520 | char *name, struct type *target_type) | |
27067745 UW |
3521 | { |
3522 | struct type *t; | |
d8734c88 | 3523 | |
e9bb382b UW |
3524 | t = arch_type (gdbarch, TYPE_CODE_COMPLEX, |
3525 | 2 * TYPE_LENGTH (target_type), name); | |
27067745 UW |
3526 | TYPE_TARGET_TYPE (t) = target_type; |
3527 | return t; | |
3528 | } | |
3529 | ||
e9bb382b | 3530 | /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. |
eb90ce83 | 3531 | NAME is the type name. LENGTH is the size of the flag word in bytes. */ |
e9bb382b UW |
3532 | struct type * |
3533 | arch_flags_type (struct gdbarch *gdbarch, char *name, int length) | |
3534 | { | |
3535 | int nfields = length * TARGET_CHAR_BIT; | |
3536 | struct type *type; | |
3537 | ||
3538 | type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name); | |
3539 | TYPE_UNSIGNED (type) = 1; | |
3540 | TYPE_NFIELDS (type) = nfields; | |
3541 | TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field)); | |
3542 | ||
3543 | return type; | |
3544 | } | |
3545 | ||
3546 | /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
3547 | position BITPOS is called NAME. */ | |
3548 | void | |
3549 | append_flags_type_flag (struct type *type, int bitpos, char *name) | |
3550 | { | |
3551 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS); | |
3552 | gdb_assert (bitpos < TYPE_NFIELDS (type)); | |
3553 | gdb_assert (bitpos >= 0); | |
3554 | ||
3555 | if (name) | |
3556 | { | |
3557 | TYPE_FIELD_NAME (type, bitpos) = xstrdup (name); | |
3558 | TYPE_FIELD_BITPOS (type, bitpos) = bitpos; | |
3559 | } | |
3560 | else | |
3561 | { | |
3562 | /* Don't show this field to the user. */ | |
3563 | TYPE_FIELD_BITPOS (type, bitpos) = -1; | |
3564 | } | |
3565 | } | |
3566 | ||
3567 | /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as | |
3568 | specified by CODE) associated with GDBARCH. NAME is the type name. */ | |
3569 | struct type * | |
3570 | arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code) | |
3571 | { | |
3572 | struct type *t; | |
d8734c88 | 3573 | |
e9bb382b UW |
3574 | gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); |
3575 | t = arch_type (gdbarch, code, 0, NULL); | |
3576 | TYPE_TAG_NAME (t) = name; | |
3577 | INIT_CPLUS_SPECIFIC (t); | |
3578 | return t; | |
3579 | } | |
3580 | ||
3581 | /* Add new field with name NAME and type FIELD to composite type T. | |
f5dff777 DJ |
3582 | Do not set the field's position or adjust the type's length; |
3583 | the caller should do so. Return the new field. */ | |
3584 | struct field * | |
3585 | append_composite_type_field_raw (struct type *t, char *name, | |
3586 | struct type *field) | |
e9bb382b UW |
3587 | { |
3588 | struct field *f; | |
d8734c88 | 3589 | |
e9bb382b UW |
3590 | TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1; |
3591 | TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t), | |
3592 | sizeof (struct field) * TYPE_NFIELDS (t)); | |
3593 | f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]); | |
3594 | memset (f, 0, sizeof f[0]); | |
3595 | FIELD_TYPE (f[0]) = field; | |
3596 | FIELD_NAME (f[0]) = name; | |
f5dff777 DJ |
3597 | return f; |
3598 | } | |
3599 | ||
3600 | /* Add new field with name NAME and type FIELD to composite type T. | |
3601 | ALIGNMENT (if non-zero) specifies the minimum field alignment. */ | |
3602 | void | |
3603 | append_composite_type_field_aligned (struct type *t, char *name, | |
3604 | struct type *field, int alignment) | |
3605 | { | |
3606 | struct field *f = append_composite_type_field_raw (t, name, field); | |
d8734c88 | 3607 | |
e9bb382b UW |
3608 | if (TYPE_CODE (t) == TYPE_CODE_UNION) |
3609 | { | |
3610 | if (TYPE_LENGTH (t) < TYPE_LENGTH (field)) | |
3611 | TYPE_LENGTH (t) = TYPE_LENGTH (field); | |
3612 | } | |
3613 | else if (TYPE_CODE (t) == TYPE_CODE_STRUCT) | |
3614 | { | |
3615 | TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field); | |
3616 | if (TYPE_NFIELDS (t) > 1) | |
3617 | { | |
3618 | FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1]) | |
3619 | + (TYPE_LENGTH (FIELD_TYPE (f[-1])) | |
3620 | * TARGET_CHAR_BIT)); | |
3621 | ||
3622 | if (alignment) | |
3623 | { | |
3624 | int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT); | |
d8734c88 | 3625 | |
e9bb382b UW |
3626 | if (left) |
3627 | { | |
3628 | FIELD_BITPOS (f[0]) += left; | |
3629 | TYPE_LENGTH (t) += left / TARGET_CHAR_BIT; | |
3630 | } | |
3631 | } | |
3632 | } | |
3633 | } | |
3634 | } | |
3635 | ||
3636 | /* Add new field with name NAME and type FIELD to composite type T. */ | |
3637 | void | |
3638 | append_composite_type_field (struct type *t, char *name, | |
3639 | struct type *field) | |
3640 | { | |
3641 | append_composite_type_field_aligned (t, name, field, 0); | |
3642 | } | |
3643 | ||
3644 | ||
000177f0 AC |
3645 | static struct gdbarch_data *gdbtypes_data; |
3646 | ||
3647 | const struct builtin_type * | |
3648 | builtin_type (struct gdbarch *gdbarch) | |
3649 | { | |
3650 | return gdbarch_data (gdbarch, gdbtypes_data); | |
3651 | } | |
3652 | ||
3653 | static void * | |
3654 | gdbtypes_post_init (struct gdbarch *gdbarch) | |
3655 | { | |
3656 | struct builtin_type *builtin_type | |
3657 | = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type); | |
3658 | ||
46bf5051 | 3659 | /* Basic types. */ |
e9bb382b UW |
3660 | builtin_type->builtin_void |
3661 | = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); | |
3662 | builtin_type->builtin_char | |
3663 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
3664 | !gdbarch_char_signed (gdbarch), "char"); | |
3665 | builtin_type->builtin_signed_char | |
3666 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
3667 | 0, "signed char"); | |
3668 | builtin_type->builtin_unsigned_char | |
3669 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, | |
3670 | 1, "unsigned char"); | |
3671 | builtin_type->builtin_short | |
3672 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
3673 | 0, "short"); | |
3674 | builtin_type->builtin_unsigned_short | |
3675 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
3676 | 1, "unsigned short"); | |
3677 | builtin_type->builtin_int | |
3678 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
3679 | 0, "int"); | |
3680 | builtin_type->builtin_unsigned_int | |
3681 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
3682 | 1, "unsigned int"); | |
3683 | builtin_type->builtin_long | |
3684 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
3685 | 0, "long"); | |
3686 | builtin_type->builtin_unsigned_long | |
3687 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
3688 | 1, "unsigned long"); | |
3689 | builtin_type->builtin_long_long | |
3690 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
3691 | 0, "long long"); | |
3692 | builtin_type->builtin_unsigned_long_long | |
3693 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
3694 | 1, "unsigned long long"); | |
70bd8e24 | 3695 | builtin_type->builtin_float |
e9bb382b | 3696 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), |
27067745 | 3697 | "float", gdbarch_float_format (gdbarch)); |
70bd8e24 | 3698 | builtin_type->builtin_double |
e9bb382b | 3699 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), |
27067745 | 3700 | "double", gdbarch_double_format (gdbarch)); |
70bd8e24 | 3701 | builtin_type->builtin_long_double |
e9bb382b | 3702 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
27067745 | 3703 | "long double", gdbarch_long_double_format (gdbarch)); |
70bd8e24 | 3704 | builtin_type->builtin_complex |
e9bb382b UW |
3705 | = arch_complex_type (gdbarch, "complex", |
3706 | builtin_type->builtin_float); | |
70bd8e24 | 3707 | builtin_type->builtin_double_complex |
e9bb382b UW |
3708 | = arch_complex_type (gdbarch, "double complex", |
3709 | builtin_type->builtin_double); | |
3710 | builtin_type->builtin_string | |
3711 | = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string"); | |
3712 | builtin_type->builtin_bool | |
3713 | = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool"); | |
000177f0 | 3714 | |
7678ef8f TJB |
3715 | /* The following three are about decimal floating point types, which |
3716 | are 32-bits, 64-bits and 128-bits respectively. */ | |
3717 | builtin_type->builtin_decfloat | |
e9bb382b | 3718 | = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32"); |
7678ef8f | 3719 | builtin_type->builtin_decdouble |
e9bb382b | 3720 | = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64"); |
7678ef8f | 3721 | builtin_type->builtin_declong |
e9bb382b | 3722 | = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128"); |
7678ef8f | 3723 | |
69feb676 | 3724 | /* "True" character types. */ |
e9bb382b UW |
3725 | builtin_type->builtin_true_char |
3726 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character"); | |
3727 | builtin_type->builtin_true_unsigned_char | |
3728 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character"); | |
69feb676 | 3729 | |
df4df182 | 3730 | /* Fixed-size integer types. */ |
e9bb382b UW |
3731 | builtin_type->builtin_int0 |
3732 | = arch_integer_type (gdbarch, 0, 0, "int0_t"); | |
3733 | builtin_type->builtin_int8 | |
3734 | = arch_integer_type (gdbarch, 8, 0, "int8_t"); | |
3735 | builtin_type->builtin_uint8 | |
3736 | = arch_integer_type (gdbarch, 8, 1, "uint8_t"); | |
3737 | builtin_type->builtin_int16 | |
3738 | = arch_integer_type (gdbarch, 16, 0, "int16_t"); | |
3739 | builtin_type->builtin_uint16 | |
3740 | = arch_integer_type (gdbarch, 16, 1, "uint16_t"); | |
3741 | builtin_type->builtin_int32 | |
3742 | = arch_integer_type (gdbarch, 32, 0, "int32_t"); | |
3743 | builtin_type->builtin_uint32 | |
3744 | = arch_integer_type (gdbarch, 32, 1, "uint32_t"); | |
3745 | builtin_type->builtin_int64 | |
3746 | = arch_integer_type (gdbarch, 64, 0, "int64_t"); | |
3747 | builtin_type->builtin_uint64 | |
3748 | = arch_integer_type (gdbarch, 64, 1, "uint64_t"); | |
3749 | builtin_type->builtin_int128 | |
3750 | = arch_integer_type (gdbarch, 128, 0, "int128_t"); | |
3751 | builtin_type->builtin_uint128 | |
3752 | = arch_integer_type (gdbarch, 128, 1, "uint128_t"); | |
2844d6b5 KW |
3753 | TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |= |
3754 | TYPE_INSTANCE_FLAG_NOTTEXT; | |
3755 | TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |= | |
3756 | TYPE_INSTANCE_FLAG_NOTTEXT; | |
df4df182 | 3757 | |
9a22f0d0 PM |
3758 | /* Wide character types. */ |
3759 | builtin_type->builtin_char16 | |
3760 | = arch_integer_type (gdbarch, 16, 0, "char16_t"); | |
3761 | builtin_type->builtin_char32 | |
3762 | = arch_integer_type (gdbarch, 32, 0, "char32_t"); | |
3763 | ||
3764 | ||
46bf5051 | 3765 | /* Default data/code pointer types. */ |
e9bb382b UW |
3766 | builtin_type->builtin_data_ptr |
3767 | = lookup_pointer_type (builtin_type->builtin_void); | |
3768 | builtin_type->builtin_func_ptr | |
3769 | = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); | |
46bf5051 | 3770 | |
78267919 | 3771 | /* This type represents a GDB internal function. */ |
e9bb382b UW |
3772 | builtin_type->internal_fn |
3773 | = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0, | |
3774 | "<internal function>"); | |
78267919 | 3775 | |
46bf5051 UW |
3776 | return builtin_type; |
3777 | } | |
3778 | ||
3779 | ||
3780 | /* This set of objfile-based types is intended to be used by symbol | |
3781 | readers as basic types. */ | |
3782 | ||
3783 | static const struct objfile_data *objfile_type_data; | |
3784 | ||
3785 | const struct objfile_type * | |
3786 | objfile_type (struct objfile *objfile) | |
3787 | { | |
3788 | struct gdbarch *gdbarch; | |
3789 | struct objfile_type *objfile_type | |
3790 | = objfile_data (objfile, objfile_type_data); | |
3791 | ||
3792 | if (objfile_type) | |
3793 | return objfile_type; | |
3794 | ||
3795 | objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
3796 | 1, struct objfile_type); | |
3797 | ||
3798 | /* Use the objfile architecture to determine basic type properties. */ | |
3799 | gdbarch = get_objfile_arch (objfile); | |
3800 | ||
3801 | /* Basic types. */ | |
3802 | objfile_type->builtin_void | |
3803 | = init_type (TYPE_CODE_VOID, 1, | |
3804 | 0, | |
3805 | "void", objfile); | |
3806 | ||
3807 | objfile_type->builtin_char | |
3808 | = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
3809 | (TYPE_FLAG_NOSIGN | |
3810 | | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)), | |
3811 | "char", objfile); | |
3812 | objfile_type->builtin_signed_char | |
3813 | = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
3814 | 0, | |
3815 | "signed char", objfile); | |
3816 | objfile_type->builtin_unsigned_char | |
3817 | = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
3818 | TYPE_FLAG_UNSIGNED, | |
3819 | "unsigned char", objfile); | |
3820 | objfile_type->builtin_short | |
3821 | = init_type (TYPE_CODE_INT, | |
3822 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, | |
3823 | 0, "short", objfile); | |
3824 | objfile_type->builtin_unsigned_short | |
3825 | = init_type (TYPE_CODE_INT, | |
3826 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, | |
3827 | TYPE_FLAG_UNSIGNED, "unsigned short", objfile); | |
3828 | objfile_type->builtin_int | |
3829 | = init_type (TYPE_CODE_INT, | |
3830 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, | |
3831 | 0, "int", objfile); | |
3832 | objfile_type->builtin_unsigned_int | |
3833 | = init_type (TYPE_CODE_INT, | |
3834 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, | |
3835 | TYPE_FLAG_UNSIGNED, "unsigned int", objfile); | |
3836 | objfile_type->builtin_long | |
3837 | = init_type (TYPE_CODE_INT, | |
3838 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, | |
3839 | 0, "long", objfile); | |
3840 | objfile_type->builtin_unsigned_long | |
3841 | = init_type (TYPE_CODE_INT, | |
3842 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, | |
3843 | TYPE_FLAG_UNSIGNED, "unsigned long", objfile); | |
3844 | objfile_type->builtin_long_long | |
3845 | = init_type (TYPE_CODE_INT, | |
3846 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, | |
3847 | 0, "long long", objfile); | |
3848 | objfile_type->builtin_unsigned_long_long | |
3849 | = init_type (TYPE_CODE_INT, | |
3850 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, | |
3851 | TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); | |
3852 | ||
3853 | objfile_type->builtin_float | |
3854 | = init_type (TYPE_CODE_FLT, | |
3855 | gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT, | |
3856 | 0, "float", objfile); | |
3857 | TYPE_FLOATFORMAT (objfile_type->builtin_float) | |
3858 | = gdbarch_float_format (gdbarch); | |
3859 | objfile_type->builtin_double | |
3860 | = init_type (TYPE_CODE_FLT, | |
3861 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, | |
3862 | 0, "double", objfile); | |
3863 | TYPE_FLOATFORMAT (objfile_type->builtin_double) | |
3864 | = gdbarch_double_format (gdbarch); | |
3865 | objfile_type->builtin_long_double | |
3866 | = init_type (TYPE_CODE_FLT, | |
3867 | gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT, | |
3868 | 0, "long double", objfile); | |
3869 | TYPE_FLOATFORMAT (objfile_type->builtin_long_double) | |
3870 | = gdbarch_long_double_format (gdbarch); | |
3871 | ||
3872 | /* This type represents a type that was unrecognized in symbol read-in. */ | |
3873 | objfile_type->builtin_error | |
3874 | = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile); | |
3875 | ||
3876 | /* The following set of types is used for symbols with no | |
3877 | debug information. */ | |
3878 | objfile_type->nodebug_text_symbol | |
3879 | = init_type (TYPE_CODE_FUNC, 1, 0, | |
3880 | "<text variable, no debug info>", objfile); | |
3881 | TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol) | |
3882 | = objfile_type->builtin_int; | |
3883 | objfile_type->nodebug_data_symbol | |
3884 | = init_type (TYPE_CODE_INT, | |
3885 | gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0, | |
3886 | "<data variable, no debug info>", objfile); | |
3887 | objfile_type->nodebug_unknown_symbol | |
3888 | = init_type (TYPE_CODE_INT, 1, 0, | |
3889 | "<variable (not text or data), no debug info>", objfile); | |
3890 | objfile_type->nodebug_tls_symbol | |
3891 | = init_type (TYPE_CODE_INT, | |
3892 | gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0, | |
3893 | "<thread local variable, no debug info>", objfile); | |
000177f0 AC |
3894 | |
3895 | /* NOTE: on some targets, addresses and pointers are not necessarily | |
3896 | the same --- for example, on the D10V, pointers are 16 bits long, | |
3897 | but addresses are 32 bits long. See doc/gdbint.texinfo, | |
3898 | ``Pointers Are Not Always Addresses''. | |
3899 | ||
3900 | The upshot is: | |
3901 | - gdb's `struct type' always describes the target's | |
3902 | representation. | |
3903 | - gdb's `struct value' objects should always hold values in | |
3904 | target form. | |
3905 | - gdb's CORE_ADDR values are addresses in the unified virtual | |
3906 | address space that the assembler and linker work with. Thus, | |
3907 | since target_read_memory takes a CORE_ADDR as an argument, it | |
3908 | can access any memory on the target, even if the processor has | |
3909 | separate code and data address spaces. | |
3910 | ||
3911 | So, for example: | |
3912 | - If v is a value holding a D10V code pointer, its contents are | |
3913 | in target form: a big-endian address left-shifted two bits. | |
3914 | - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as | |
3915 | sizeof (void *) == 2 on the target. | |
3916 | ||
46bf5051 UW |
3917 | In this context, objfile_type->builtin_core_addr is a bit odd: |
3918 | it's a target type for a value the target will never see. It's | |
3919 | only used to hold the values of (typeless) linker symbols, which | |
3920 | are indeed in the unified virtual address space. */ | |
000177f0 | 3921 | |
46bf5051 UW |
3922 | objfile_type->builtin_core_addr |
3923 | = init_type (TYPE_CODE_INT, | |
3924 | gdbarch_addr_bit (gdbarch) / 8, | |
3925 | TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile); | |
64c50499 | 3926 | |
46bf5051 UW |
3927 | set_objfile_data (objfile, objfile_type_data, objfile_type); |
3928 | return objfile_type; | |
000177f0 AC |
3929 | } |
3930 | ||
46bf5051 | 3931 | |
a14ed312 | 3932 | extern void _initialize_gdbtypes (void); |
c906108c | 3933 | void |
fba45db2 | 3934 | _initialize_gdbtypes (void) |
c906108c | 3935 | { |
5674de60 | 3936 | gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init); |
46bf5051 | 3937 | objfile_type_data = register_objfile_data (); |
5674de60 | 3938 | |
3e43a32a MS |
3939 | add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, |
3940 | _("Set debugging of C++ overloading."), | |
3941 | _("Show debugging of C++ overloading."), | |
3942 | _("When enabled, ranking of the " | |
3943 | "functions is displayed."), | |
85c07804 | 3944 | NULL, |
920d2a44 | 3945 | show_overload_debug, |
85c07804 | 3946 | &setdebuglist, &showdebuglist); |
5674de60 | 3947 | |
7ba81444 | 3948 | /* Add user knob for controlling resolution of opaque types. */ |
5674de60 | 3949 | add_setshow_boolean_cmd ("opaque-type-resolution", class_support, |
3e43a32a MS |
3950 | &opaque_type_resolution, |
3951 | _("Set resolution of opaque struct/class/union" | |
3952 | " types (if set before loading symbols)."), | |
3953 | _("Show resolution of opaque struct/class/union" | |
3954 | " types (if set before loading symbols)."), | |
3955 | NULL, NULL, | |
5674de60 UW |
3956 | show_opaque_type_resolution, |
3957 | &setlist, &showlist); | |
c906108c | 3958 | } |