Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
81afee37 | 2 | Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996 |
8918bce0 | 3 | Free Software Foundation, Inc. |
dd3b648e RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
99a7de40 | 7 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 8 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e | 11 | |
99a7de40 | 12 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 | 18 | along with this program; if not, write to the Free Software |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
dd3b648e | 20 | |
dd3b648e | 21 | #include "defs.h" |
2b576293 | 22 | #include "gdb_string.h" |
dd3b648e | 23 | #include "symtab.h" |
1ab3bf1b | 24 | #include "gdbtypes.h" |
dd3b648e RP |
25 | #include "value.h" |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "command.h" | |
f266e564 | 29 | #include "gdbcmd.h" |
ac88ca20 | 30 | #include "target.h" |
acc4efde | 31 | #include "language.h" |
8050a57b | 32 | #include "demangle.h" |
dd3b648e | 33 | |
1ab3bf1b JG |
34 | /* Local function prototypes. */ |
35 | ||
849d0896 PS |
36 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
37 | struct type *)); | |
1ab3bf1b | 38 | |
82a2edfb | 39 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 40 | |
82a2edfb | 41 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
82a2edfb | 54 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
55 | }; |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
82a2edfb | 67 | static value_ptr all_values; |
dd3b648e RP |
68 | |
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
82a2edfb | 71 | value_ptr |
dd3b648e RP |
72 | allocate_value (type) |
73 | struct type *type; | |
74 | { | |
82a2edfb | 75 | register value_ptr val; |
5e548861 | 76 | struct type *atype = check_typedef (type); |
dd3b648e | 77 | |
5e548861 | 78 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
dd3b648e RP |
79 | VALUE_NEXT (val) = all_values; |
80 | all_values = val; | |
81 | VALUE_TYPE (val) = type; | |
82 | VALUE_LVAL (val) = not_lval; | |
83 | VALUE_ADDRESS (val) = 0; | |
84 | VALUE_FRAME (val) = 0; | |
85 | VALUE_OFFSET (val) = 0; | |
86 | VALUE_BITPOS (val) = 0; | |
87 | VALUE_BITSIZE (val) = 0; | |
dd3b648e RP |
88 | VALUE_REGNO (val) = -1; |
89 | VALUE_LAZY (val) = 0; | |
90 | VALUE_OPTIMIZED_OUT (val) = 0; | |
30974778 | 91 | val->modifiable = 1; |
dd3b648e RP |
92 | return val; |
93 | } | |
94 | ||
95 | /* Allocate a value that has the correct length | |
96 | for COUNT repetitions type TYPE. */ | |
97 | ||
82a2edfb | 98 | value_ptr |
dd3b648e RP |
99 | allocate_repeat_value (type, count) |
100 | struct type *type; | |
101 | int count; | |
102 | { | |
398f584f PB |
103 | struct type *element_type = type; |
104 | int low_bound = current_language->string_lower_bound; /* ??? */ | |
105 | /* FIXME-type-allocation: need a way to free this type when we are | |
106 | done with it. */ | |
107 | struct type *range_type | |
108 | = create_range_type ((struct type *) NULL, builtin_type_int, | |
109 | low_bound, count + low_bound - 1); | |
110 | /* FIXME-type-allocation: need a way to free this type when we are | |
111 | done with it. */ | |
112 | return allocate_value (create_array_type ((struct type *) NULL, | |
113 | type, range_type)); | |
dd3b648e RP |
114 | } |
115 | ||
fcb887ff JK |
116 | /* Return a mark in the value chain. All values allocated after the |
117 | mark is obtained (except for those released) are subject to being freed | |
118 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 119 | value_ptr |
fcb887ff JK |
120 | value_mark () |
121 | { | |
122 | return all_values; | |
123 | } | |
124 | ||
125 | /* Free all values allocated since MARK was obtained by value_mark | |
126 | (except for those released). */ | |
127 | void | |
128 | value_free_to_mark (mark) | |
82a2edfb | 129 | value_ptr mark; |
fcb887ff | 130 | { |
82a2edfb | 131 | value_ptr val, next; |
fcb887ff JK |
132 | |
133 | for (val = all_values; val && val != mark; val = next) | |
134 | { | |
135 | next = VALUE_NEXT (val); | |
136 | value_free (val); | |
137 | } | |
138 | all_values = val; | |
139 | } | |
140 | ||
dd3b648e RP |
141 | /* Free all the values that have been allocated (except for those released). |
142 | Called after each command, successful or not. */ | |
143 | ||
144 | void | |
145 | free_all_values () | |
146 | { | |
82a2edfb | 147 | register value_ptr val, next; |
dd3b648e RP |
148 | |
149 | for (val = all_values; val; val = next) | |
150 | { | |
151 | next = VALUE_NEXT (val); | |
152 | value_free (val); | |
153 | } | |
154 | ||
155 | all_values = 0; | |
156 | } | |
157 | ||
158 | /* Remove VAL from the chain all_values | |
159 | so it will not be freed automatically. */ | |
160 | ||
161 | void | |
162 | release_value (val) | |
82a2edfb | 163 | register value_ptr val; |
dd3b648e | 164 | { |
82a2edfb | 165 | register value_ptr v; |
dd3b648e RP |
166 | |
167 | if (all_values == val) | |
168 | { | |
169 | all_values = val->next; | |
170 | return; | |
171 | } | |
172 | ||
173 | for (v = all_values; v; v = v->next) | |
174 | { | |
175 | if (v->next == val) | |
176 | { | |
177 | v->next = val->next; | |
178 | break; | |
179 | } | |
180 | } | |
181 | } | |
182 | ||
999dd04b JL |
183 | /* Release all values up to mark */ |
184 | value_ptr | |
185 | value_release_to_mark (mark) | |
186 | value_ptr mark; | |
187 | { | |
188 | value_ptr val, next; | |
189 | ||
190 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
191 | if (VALUE_NEXT (next) == mark) | |
192 | { | |
193 | all_values = VALUE_NEXT (next); | |
194 | VALUE_NEXT (next) = 0; | |
195 | return val; | |
196 | } | |
197 | all_values = 0; | |
198 | return val; | |
199 | } | |
200 | ||
dd3b648e RP |
201 | /* Return a copy of the value ARG. |
202 | It contains the same contents, for same memory address, | |
203 | but it's a different block of storage. */ | |
204 | ||
82a2edfb | 205 | value_ptr |
dd3b648e | 206 | value_copy (arg) |
82a2edfb | 207 | value_ptr arg; |
dd3b648e | 208 | { |
dd3b648e | 209 | register struct type *type = VALUE_TYPE (arg); |
398f584f | 210 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
211 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
212 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
213 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
214 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
215 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
5e711e7f | 216 | VALUE_FRAME (val) = VALUE_FRAME (arg); |
dd3b648e RP |
217 | VALUE_REGNO (val) = VALUE_REGNO (arg); |
218 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
5e711e7f | 219 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); |
30974778 | 220 | val->modifiable = arg->modifiable; |
dd3b648e RP |
221 | if (!VALUE_LAZY (val)) |
222 | { | |
51b57ded | 223 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
398f584f | 224 | TYPE_LENGTH (VALUE_TYPE (arg))); |
dd3b648e RP |
225 | } |
226 | return val; | |
227 | } | |
228 | \f | |
229 | /* Access to the value history. */ | |
230 | ||
231 | /* Record a new value in the value history. | |
232 | Returns the absolute history index of the entry. | |
233 | Result of -1 indicates the value was not saved; otherwise it is the | |
234 | value history index of this new item. */ | |
235 | ||
236 | int | |
237 | record_latest_value (val) | |
82a2edfb | 238 | value_ptr val; |
dd3b648e RP |
239 | { |
240 | int i; | |
241 | ||
242 | /* Check error now if about to store an invalid float. We return -1 | |
243 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
244 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
245 | { | |
246 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
247 | if (i) return -1; /* Indicate value not saved in history */ | |
248 | } | |
dd3b648e | 249 | |
26a859ec PS |
250 | /* We don't want this value to have anything to do with the inferior anymore. |
251 | In particular, "set $1 = 50" should not affect the variable from which | |
252 | the value was taken, and fast watchpoints should be able to assume that | |
253 | a value on the value history never changes. */ | |
254 | if (VALUE_LAZY (val)) | |
255 | value_fetch_lazy (val); | |
256 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
257 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
258 | but the current contents of that location. c'est la vie... */ | |
259 | val->modifiable = 0; | |
260 | release_value (val); | |
261 | ||
dd3b648e RP |
262 | /* Here we treat value_history_count as origin-zero |
263 | and applying to the value being stored now. */ | |
264 | ||
265 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
266 | if (i == 0) | |
267 | { | |
268 | register struct value_history_chunk *new | |
269 | = (struct value_history_chunk *) | |
270 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 271 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
272 | new->next = value_history_chain; |
273 | value_history_chain = new; | |
274 | } | |
275 | ||
276 | value_history_chain->values[i] = val; | |
4abc83b9 | 277 | |
dd3b648e RP |
278 | /* Now we regard value_history_count as origin-one |
279 | and applying to the value just stored. */ | |
280 | ||
281 | return ++value_history_count; | |
282 | } | |
283 | ||
284 | /* Return a copy of the value in the history with sequence number NUM. */ | |
285 | ||
82a2edfb | 286 | value_ptr |
dd3b648e RP |
287 | access_value_history (num) |
288 | int num; | |
289 | { | |
290 | register struct value_history_chunk *chunk; | |
291 | register int i; | |
292 | register int absnum = num; | |
293 | ||
294 | if (absnum <= 0) | |
295 | absnum += value_history_count; | |
296 | ||
297 | if (absnum <= 0) | |
298 | { | |
299 | if (num == 0) | |
300 | error ("The history is empty."); | |
301 | else if (num == 1) | |
302 | error ("There is only one value in the history."); | |
303 | else | |
304 | error ("History does not go back to $$%d.", -num); | |
305 | } | |
306 | if (absnum > value_history_count) | |
307 | error ("History has not yet reached $%d.", absnum); | |
308 | ||
309 | absnum--; | |
310 | ||
311 | /* Now absnum is always absolute and origin zero. */ | |
312 | ||
313 | chunk = value_history_chain; | |
314 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
315 | i > 0; i--) | |
316 | chunk = chunk->next; | |
317 | ||
318 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
319 | } | |
320 | ||
321 | /* Clear the value history entirely. | |
322 | Must be done when new symbol tables are loaded, | |
323 | because the type pointers become invalid. */ | |
324 | ||
325 | void | |
326 | clear_value_history () | |
327 | { | |
328 | register struct value_history_chunk *next; | |
329 | register int i; | |
82a2edfb | 330 | register value_ptr val; |
dd3b648e RP |
331 | |
332 | while (value_history_chain) | |
333 | { | |
334 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 335 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 336 | free ((PTR)val); |
dd3b648e | 337 | next = value_history_chain->next; |
be772100 | 338 | free ((PTR)value_history_chain); |
dd3b648e RP |
339 | value_history_chain = next; |
340 | } | |
341 | value_history_count = 0; | |
342 | } | |
343 | ||
344 | static void | |
f266e564 | 345 | show_values (num_exp, from_tty) |
dd3b648e RP |
346 | char *num_exp; |
347 | int from_tty; | |
348 | { | |
349 | register int i; | |
82a2edfb | 350 | register value_ptr val; |
dd3b648e RP |
351 | static int num = 1; |
352 | ||
353 | if (num_exp) | |
354 | { | |
46c28185 RP |
355 | /* "info history +" should print from the stored position. |
356 | "info history <exp>" should print around value number <exp>. */ | |
357 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
358 | num = parse_and_eval_address (num_exp) - 5; |
359 | } | |
360 | else | |
361 | { | |
362 | /* "info history" means print the last 10 values. */ | |
363 | num = value_history_count - 9; | |
364 | } | |
365 | ||
366 | if (num <= 0) | |
367 | num = 1; | |
368 | ||
369 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
370 | { | |
371 | val = access_value_history (i); | |
372 | printf_filtered ("$%d = ", i); | |
199b2450 | 373 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
374 | printf_filtered ("\n"); |
375 | } | |
376 | ||
377 | /* The next "info history +" should start after what we just printed. */ | |
378 | num += 10; | |
379 | ||
380 | /* Hitting just return after this command should do the same thing as | |
381 | "info history +". If num_exp is null, this is unnecessary, since | |
382 | "info history +" is not useful after "info history". */ | |
383 | if (from_tty && num_exp) | |
384 | { | |
385 | num_exp[0] = '+'; | |
386 | num_exp[1] = '\0'; | |
387 | } | |
388 | } | |
389 | \f | |
390 | /* Internal variables. These are variables within the debugger | |
391 | that hold values assigned by debugger commands. | |
392 | The user refers to them with a '$' prefix | |
393 | that does not appear in the variable names stored internally. */ | |
394 | ||
395 | static struct internalvar *internalvars; | |
396 | ||
397 | /* Look up an internal variable with name NAME. NAME should not | |
398 | normally include a dollar sign. | |
399 | ||
400 | If the specified internal variable does not exist, | |
401 | one is created, with a void value. */ | |
402 | ||
403 | struct internalvar * | |
404 | lookup_internalvar (name) | |
405 | char *name; | |
406 | { | |
407 | register struct internalvar *var; | |
408 | ||
409 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 410 | if (STREQ (var->name, name)) |
dd3b648e RP |
411 | return var; |
412 | ||
413 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 414 | var->name = concat (name, NULL); |
dd3b648e RP |
415 | var->value = allocate_value (builtin_type_void); |
416 | release_value (var->value); | |
417 | var->next = internalvars; | |
418 | internalvars = var; | |
419 | return var; | |
420 | } | |
421 | ||
82a2edfb | 422 | value_ptr |
dd3b648e RP |
423 | value_of_internalvar (var) |
424 | struct internalvar *var; | |
425 | { | |
82a2edfb | 426 | register value_ptr val; |
dd3b648e RP |
427 | |
428 | #ifdef IS_TRAPPED_INTERNALVAR | |
429 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
430 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
431 | #endif | |
432 | ||
433 | val = value_copy (var->value); | |
434 | if (VALUE_LAZY (val)) | |
435 | value_fetch_lazy (val); | |
436 | VALUE_LVAL (val) = lval_internalvar; | |
437 | VALUE_INTERNALVAR (val) = var; | |
438 | return val; | |
439 | } | |
440 | ||
441 | void | |
442 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
443 | struct internalvar *var; | |
444 | int offset, bitpos, bitsize; | |
82a2edfb | 445 | value_ptr newval; |
dd3b648e RP |
446 | { |
447 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
448 | ||
449 | #ifdef IS_TRAPPED_INTERNALVAR | |
450 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
451 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
452 | #endif | |
453 | ||
454 | if (bitsize) | |
58e49e21 | 455 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
456 | bitpos, bitsize); |
457 | else | |
4ed3a9ea | 458 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
459 | } |
460 | ||
461 | void | |
462 | set_internalvar (var, val) | |
463 | struct internalvar *var; | |
82a2edfb | 464 | value_ptr val; |
dd3b648e | 465 | { |
51f83933 JK |
466 | value_ptr newval; |
467 | ||
dd3b648e RP |
468 | #ifdef IS_TRAPPED_INTERNALVAR |
469 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
470 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
471 | #endif | |
472 | ||
51f83933 | 473 | newval = value_copy (val); |
ade01652 | 474 | newval->modifiable = 1; |
51f83933 | 475 | |
6fab5bef JG |
476 | /* Force the value to be fetched from the target now, to avoid problems |
477 | later when this internalvar is referenced and the target is gone or | |
478 | has changed. */ | |
51f83933 JK |
479 | if (VALUE_LAZY (newval)) |
480 | value_fetch_lazy (newval); | |
481 | ||
482 | /* Begin code which must not call error(). If var->value points to | |
483 | something free'd, an error() obviously leaves a dangling pointer. | |
484 | But we also get a danling pointer if var->value points to | |
485 | something in the value chain (i.e., before release_value is | |
486 | called), because after the error free_all_values will get called before | |
487 | long. */ | |
488 | free ((PTR)var->value); | |
489 | var->value = newval; | |
490 | release_value (newval); | |
491 | /* End code which must not call error(). */ | |
dd3b648e RP |
492 | } |
493 | ||
494 | char * | |
495 | internalvar_name (var) | |
496 | struct internalvar *var; | |
497 | { | |
498 | return var->name; | |
499 | } | |
500 | ||
501 | /* Free all internalvars. Done when new symtabs are loaded, | |
502 | because that makes the values invalid. */ | |
503 | ||
504 | void | |
505 | clear_internalvars () | |
506 | { | |
507 | register struct internalvar *var; | |
508 | ||
509 | while (internalvars) | |
510 | { | |
511 | var = internalvars; | |
512 | internalvars = var->next; | |
be772100 JG |
513 | free ((PTR)var->name); |
514 | free ((PTR)var->value); | |
515 | free ((PTR)var); | |
dd3b648e RP |
516 | } |
517 | } | |
518 | ||
519 | static void | |
ac88ca20 JG |
520 | show_convenience (ignore, from_tty) |
521 | char *ignore; | |
522 | int from_tty; | |
dd3b648e RP |
523 | { |
524 | register struct internalvar *var; | |
525 | int varseen = 0; | |
526 | ||
527 | for (var = internalvars; var; var = var->next) | |
528 | { | |
529 | #ifdef IS_TRAPPED_INTERNALVAR | |
530 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
531 | continue; | |
532 | #endif | |
533 | if (!varseen) | |
534 | { | |
dd3b648e RP |
535 | varseen = 1; |
536 | } | |
afe4ca15 | 537 | printf_filtered ("$%s = ", var->name); |
199b2450 | 538 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 539 | printf_filtered ("\n"); |
dd3b648e RP |
540 | } |
541 | if (!varseen) | |
199b2450 | 542 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
543 | Convenience variables have names starting with \"$\";\n\ |
544 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
545 | } | |
546 | \f | |
547 | /* Extract a value as a C number (either long or double). | |
548 | Knows how to convert fixed values to double, or | |
549 | floating values to long. | |
550 | Does not deallocate the value. */ | |
551 | ||
552 | LONGEST | |
553 | value_as_long (val) | |
82a2edfb | 554 | register value_ptr val; |
dd3b648e RP |
555 | { |
556 | /* This coerces arrays and functions, which is necessary (e.g. | |
557 | in disassemble_command). It also dereferences references, which | |
558 | I suspect is the most logical thing to do. */ | |
533bda77 | 559 | COERCE_ARRAY (val); |
dd3b648e RP |
560 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); |
561 | } | |
562 | ||
563 | double | |
564 | value_as_double (val) | |
82a2edfb | 565 | register value_ptr val; |
dd3b648e RP |
566 | { |
567 | double foo; | |
568 | int inv; | |
569 | ||
570 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
571 | if (inv) | |
572 | error ("Invalid floating value found in program."); | |
573 | return foo; | |
574 | } | |
e1ce8aa5 JK |
575 | /* Extract a value as a C pointer. |
576 | Does not deallocate the value. */ | |
577 | CORE_ADDR | |
578 | value_as_pointer (val) | |
82a2edfb | 579 | value_ptr val; |
e1ce8aa5 | 580 | { |
2bff8e38 JK |
581 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
582 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
583 | #if 0 |
584 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
585 | non-address (e.g. argument to "signal", "info break", etc.), or | |
586 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 587 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
588 | #else |
589 | return value_as_long (val); | |
590 | #endif | |
e1ce8aa5 | 591 | } |
dd3b648e RP |
592 | \f |
593 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
594 | as a long, or as a double, assuming the raw data is described | |
595 | by type TYPE. Knows how to convert different sizes of values | |
596 | and can convert between fixed and floating point. We don't assume | |
597 | any alignment for the raw data. Return value is in host byte order. | |
598 | ||
599 | If you want functions and arrays to be coerced to pointers, and | |
600 | references to be dereferenced, call value_as_long() instead. | |
601 | ||
602 | C++: It is assumed that the front-end has taken care of | |
603 | all matters concerning pointers to members. A pointer | |
604 | to member which reaches here is considered to be equivalent | |
605 | to an INT (or some size). After all, it is only an offset. */ | |
606 | ||
607 | LONGEST | |
608 | unpack_long (type, valaddr) | |
609 | struct type *type; | |
610 | char *valaddr; | |
611 | { | |
612 | register enum type_code code = TYPE_CODE (type); | |
613 | register int len = TYPE_LENGTH (type); | |
614 | register int nosign = TYPE_UNSIGNED (type); | |
615 | ||
3c02944a PB |
616 | if (current_language->la_language == language_scm |
617 | && is_scmvalue_type (type)) | |
618 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
619 | ||
bf5c0d64 | 620 | switch (code) |
dd3b648e | 621 | { |
5e548861 PB |
622 | case TYPE_CODE_TYPEDEF: |
623 | return unpack_long (check_typedef (type), valaddr); | |
bf5c0d64 JK |
624 | case TYPE_CODE_ENUM: |
625 | case TYPE_CODE_BOOL: | |
626 | case TYPE_CODE_INT: | |
627 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 628 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
629 | if (nosign) |
630 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 631 | else |
bf5c0d64 JK |
632 | return extract_signed_integer (valaddr, len); |
633 | ||
634 | case TYPE_CODE_FLT: | |
635 | return extract_floating (valaddr, len); | |
636 | ||
637 | case TYPE_CODE_PTR: | |
638 | case TYPE_CODE_REF: | |
639 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
640 | whether we want this to be true eventually. */ | |
34df79fc | 641 | return extract_address (valaddr, len); |
dd3b648e | 642 | |
bf5c0d64 JK |
643 | case TYPE_CODE_MEMBER: |
644 | error ("not implemented: member types in unpack_long"); | |
645 | ||
646 | default: | |
ca0865db | 647 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
648 | } |
649 | return 0; /* Placate lint. */ | |
dd3b648e RP |
650 | } |
651 | ||
652 | /* Return a double value from the specified type and address. | |
653 | INVP points to an int which is set to 0 for valid value, | |
654 | 1 for invalid value (bad float format). In either case, | |
655 | the returned double is OK to use. Argument is in target | |
656 | format, result is in host format. */ | |
657 | ||
658 | double | |
659 | unpack_double (type, valaddr, invp) | |
660 | struct type *type; | |
661 | char *valaddr; | |
662 | int *invp; | |
663 | { | |
664 | register enum type_code code = TYPE_CODE (type); | |
665 | register int len = TYPE_LENGTH (type); | |
666 | register int nosign = TYPE_UNSIGNED (type); | |
667 | ||
668 | *invp = 0; /* Assume valid. */ | |
5e548861 | 669 | CHECK_TYPEDEF (type); |
dd3b648e RP |
670 | if (code == TYPE_CODE_FLT) |
671 | { | |
ac57e5ad | 672 | #ifdef INVALID_FLOAT |
dd3b648e RP |
673 | if (INVALID_FLOAT (valaddr, len)) |
674 | { | |
675 | *invp = 1; | |
676 | return 1.234567891011121314; | |
677 | } | |
ac57e5ad | 678 | #endif |
89ce0c8f JK |
679 | return extract_floating (valaddr, len); |
680 | } | |
681 | else if (nosign) | |
682 | { | |
683 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
684 | return (unsigned LONGEST) unpack_long (type, valaddr); | |
685 | } | |
686 | else | |
687 | { | |
688 | /* Signed -- we are OK with unpack_long. */ | |
689 | return unpack_long (type, valaddr); | |
dd3b648e | 690 | } |
dd3b648e | 691 | } |
e1ce8aa5 JK |
692 | |
693 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
694 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
695 | We don't assume any alignment for the raw data. Return value is in | |
696 | host byte order. | |
697 | ||
698 | If you want functions and arrays to be coerced to pointers, and | |
699 | references to be dereferenced, call value_as_pointer() instead. | |
700 | ||
701 | C++: It is assumed that the front-end has taken care of | |
702 | all matters concerning pointers to members. A pointer | |
703 | to member which reaches here is considered to be equivalent | |
704 | to an INT (or some size). After all, it is only an offset. */ | |
705 | ||
706 | CORE_ADDR | |
707 | unpack_pointer (type, valaddr) | |
708 | struct type *type; | |
709 | char *valaddr; | |
710 | { | |
2bff8e38 JK |
711 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
712 | whether we want this to be true eventually. */ | |
713 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 714 | } |
dd3b648e RP |
715 | \f |
716 | /* Given a value ARG1 (offset by OFFSET bytes) | |
717 | of a struct or union type ARG_TYPE, | |
718 | extract and return the value of one of its fields. | |
719 | FIELDNO says which field. | |
720 | ||
721 | For C++, must also be able to return values from static fields */ | |
722 | ||
82a2edfb | 723 | value_ptr |
dd3b648e | 724 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 725 | register value_ptr arg1; |
dd3b648e RP |
726 | int offset; |
727 | register int fieldno; | |
728 | register struct type *arg_type; | |
729 | { | |
82a2edfb | 730 | register value_ptr v; |
dd3b648e RP |
731 | register struct type *type; |
732 | ||
5e548861 | 733 | CHECK_TYPEDEF (arg_type); |
dd3b648e RP |
734 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
735 | ||
736 | /* Handle packed fields */ | |
737 | ||
738 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
739 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
740 | { | |
96b2f51c | 741 | v = value_from_longest (type, |
dd3b648e RP |
742 | unpack_field_as_long (arg_type, |
743 | VALUE_CONTENTS (arg1), | |
744 | fieldno)); | |
745 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
746 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
747 | } | |
748 | else | |
749 | { | |
750 | v = allocate_value (type); | |
751 | if (VALUE_LAZY (arg1)) | |
752 | VALUE_LAZY (v) = 1; | |
753 | else | |
4ed3a9ea FF |
754 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
755 | TYPE_LENGTH (type)); | |
dd3b648e RP |
756 | } |
757 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
758 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
759 | VALUE_LVAL (v) = lval_internalvar_component; | |
760 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
761 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
762 | return v; | |
763 | } | |
764 | ||
765 | /* Given a value ARG1 of a struct or union type, | |
766 | extract and return the value of one of its fields. | |
767 | FIELDNO says which field. | |
768 | ||
769 | For C++, must also be able to return values from static fields */ | |
770 | ||
82a2edfb | 771 | value_ptr |
dd3b648e | 772 | value_field (arg1, fieldno) |
82a2edfb | 773 | register value_ptr arg1; |
dd3b648e RP |
774 | register int fieldno; |
775 | { | |
776 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
777 | } | |
778 | ||
545af6ce PB |
779 | /* Return a non-virtual function as a value. |
780 | F is the list of member functions which contains the desired method. | |
781 | J is an index into F which provides the desired method. */ | |
782 | ||
82a2edfb | 783 | value_ptr |
94603999 | 784 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 785 | value_ptr *arg1p; |
545af6ce PB |
786 | struct fn_field *f; |
787 | int j; | |
94603999 JG |
788 | struct type *type; |
789 | int offset; | |
dd3b648e | 790 | { |
82a2edfb | 791 | register value_ptr v; |
94603999 | 792 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
793 | struct symbol *sym; |
794 | ||
545af6ce | 795 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 796 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 797 | if (! sym) |
82a2edfb | 798 | return NULL; |
f1c6dbf6 KH |
799 | /* |
800 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 801 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 802 | */ |
dd3b648e | 803 | |
94603999 | 804 | v = allocate_value (ftype); |
dd3b648e | 805 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
806 | VALUE_TYPE (v) = ftype; |
807 | ||
808 | if (arg1p) | |
809 | { | |
810 | if (type != VALUE_TYPE (*arg1p)) | |
811 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
812 | value_addr (*arg1p))); | |
813 | ||
dcd8fd8c | 814 | /* Move the `this' pointer according to the offset. |
94603999 | 815 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 816 | */ |
94603999 JG |
817 | } |
818 | ||
dd3b648e RP |
819 | return v; |
820 | } | |
821 | ||
822 | /* Return a virtual function as a value. | |
823 | ARG1 is the object which provides the virtual function | |
94603999 | 824 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
825 | F is the list of member functions which contains the desired virtual |
826 | function. | |
e532974c JK |
827 | J is an index into F which provides the desired virtual function. |
828 | ||
829 | TYPE is the type in which F is located. */ | |
82a2edfb | 830 | value_ptr |
94603999 | 831 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 832 | value_ptr *arg1p; |
dd3b648e RP |
833 | struct fn_field *f; |
834 | int j; | |
e532974c | 835 | struct type *type; |
94603999 | 836 | int offset; |
dd3b648e | 837 | { |
82a2edfb | 838 | value_ptr arg1 = *arg1p; |
5e548861 PB |
839 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); |
840 | struct type *entry_type; | |
dd3b648e RP |
841 | /* First, get the virtual function table pointer. That comes |
842 | with a strange type, so cast it to type `pointer to long' (which | |
843 | should serve just fine as a function type). Then, index into | |
844 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
845 | value_ptr entry, vfn, vtbl; |
846 | value_ptr vi = value_from_longest (builtin_type_int, | |
847 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
848 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
849 | struct type *context; | |
850 | if (fcontext == NULL) | |
851 | /* We don't have an fcontext (e.g. the program was compiled with | |
852 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
853 | This won't work right for multiple inheritance, but at least we | |
854 | should do as well as GDB 3.x did. */ | |
855 | fcontext = TYPE_VPTR_BASETYPE (type); | |
856 | context = lookup_pointer_type (fcontext); | |
857 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
5e548861 PB |
858 | if (TYPE_TARGET_TYPE (context) != type1) |
859 | { | |
860 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
861 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
862 | } | |
dd3b648e | 863 | |
5e548861 | 864 | context = type1; |
e532974c | 865 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
866 | |
867 | /* This type may have been defined before its virtual function table | |
868 | was. If so, fill in the virtual function table entry for the | |
869 | type now. */ | |
870 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 871 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
872 | |
873 | /* The virtual function table is now an array of structures | |
874 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
875 | vtbl = value_ind (value_primitive_field (arg1, 0, |
876 | TYPE_VPTR_FIELDNO (context), | |
877 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
878 | |
879 | /* Index into the virtual function table. This is hard-coded because | |
880 | looking up a field is not cheap, and it may be important to save | |
881 | time, e.g. if the user has set a conditional breakpoint calling | |
882 | a virtual function. */ | |
883 | entry = value_subscript (vtbl, vi); | |
5e548861 | 884 | entry_type = check_typedef (VALUE_TYPE (entry)); |
dd3b648e | 885 | |
5e548861 | 886 | if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT) |
dd3b648e | 887 | { |
36a2283d PB |
888 | /* Move the `this' pointer according to the virtual function table. */ |
889 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
890 | ||
891 | if (! VALUE_LAZY (arg1)) | |
892 | { | |
893 | VALUE_LAZY (arg1) = 1; | |
894 | value_fetch_lazy (arg1); | |
895 | } | |
dd3b648e | 896 | |
36a2283d PB |
897 | vfn = value_field (entry, 2); |
898 | } | |
5e548861 | 899 | else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR) |
36a2283d PB |
900 | vfn = entry; |
901 | else | |
902 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
903 | /* Reinstantiate the function pointer with the correct type. */ |
904 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
905 | ||
94603999 | 906 | *arg1p = arg1; |
dd3b648e RP |
907 | return vfn; |
908 | } | |
909 | ||
71b16efa JK |
910 | /* ARG is a pointer to an object we know to be at least |
911 | a DTYPE. BTYPE is the most derived basetype that has | |
912 | already been searched (and need not be searched again). | |
913 | After looking at the vtables between BTYPE and DTYPE, | |
914 | return the most derived type we find. The caller must | |
915 | be satisfied when the return value == DTYPE. | |
916 | ||
917 | FIXME-tiemann: should work with dossier entries as well. */ | |
918 | ||
82a2edfb | 919 | static value_ptr |
7cb0f870 | 920 | value_headof (in_arg, btype, dtype) |
82a2edfb | 921 | value_ptr in_arg; |
71b16efa JK |
922 | struct type *btype, *dtype; |
923 | { | |
924 | /* First collect the vtables we must look at for this object. */ | |
925 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 926 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
927 | int i, nelems; |
928 | int offset, best_offset = 0; | |
929 | struct symbol *sym; | |
930 | CORE_ADDR pc_for_sym; | |
931 | char *demangled_name; | |
1ab3bf1b JG |
932 | struct minimal_symbol *msymbol; |
933 | ||
aec4cb91 | 934 | btype = TYPE_VPTR_BASETYPE (dtype); |
5e548861 | 935 | CHECK_TYPEDEF (btype); |
7cb0f870 | 936 | arg = in_arg; |
aec4cb91 | 937 | if (btype != dtype) |
7cb0f870 MT |
938 | arg = value_cast (lookup_pointer_type (btype), arg); |
939 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
940 | |
941 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
942 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
943 | if (msymbol == NULL | |
36a2283d PB |
944 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
945 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
946 | { |
947 | /* If we expected to find a vtable, but did not, let the user | |
948 | know that we aren't happy, but don't throw an error. | |
949 | FIXME: there has to be a better way to do this. */ | |
950 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 951 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 952 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
953 | VALUE_TYPE (in_arg) = error_type; |
954 | return in_arg; | |
71b16efa JK |
955 | } |
956 | ||
957 | /* Now search through the virtual function table. */ | |
958 | entry = value_ind (vtbl); | |
e1ce8aa5 | 959 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
960 | for (i = 1; i <= nelems; i++) |
961 | { | |
96b2f51c JG |
962 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
963 | (LONGEST) i)); | |
36a2283d | 964 | /* This won't work if we're using thunks. */ |
5e548861 | 965 | if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT) |
36a2283d | 966 | break; |
e1ce8aa5 | 967 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
968 | /* If we use '<=' we can handle single inheritance |
969 | * where all offsets are zero - just use the first entry found. */ | |
970 | if (offset <= best_offset) | |
71b16efa JK |
971 | { |
972 | best_offset = offset; | |
973 | best_entry = entry; | |
974 | } | |
975 | } | |
71b16efa JK |
976 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
977 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
978 | if (best_entry == 0) |
979 | { | |
980 | /* An alternative method (which should no longer be necessary). | |
981 | * But we leave it in for future use, when we will hopefully | |
982 | * have optimizes the vtable to use thunks instead of offsets. */ | |
983 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 984 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
985 | } |
986 | else | |
987 | { | |
988 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
989 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 990 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
991 | *(strchr (demangled_name, ':')) = '\0'; |
992 | } | |
71b16efa | 993 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
994 | if (sym == NULL) |
995 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
996 | if (best_entry) |
997 | { | |
998 | free (demangled_name); | |
999 | arg = value_add (value_cast (builtin_type_int, arg), | |
1000 | value_field (best_entry, 0)); | |
1001 | } | |
7cb0f870 | 1002 | else arg = in_arg; |
71b16efa JK |
1003 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1004 | return arg; | |
1005 | } | |
1006 | ||
1007 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1008 | function tables, probe ARG's tables (including the vtables | |
1009 | of its baseclasses) to figure out the most derived type that ARG | |
1010 | could actually be a pointer to. */ | |
1011 | ||
82a2edfb | 1012 | value_ptr |
71b16efa | 1013 | value_from_vtable_info (arg, type) |
82a2edfb | 1014 | value_ptr arg; |
71b16efa JK |
1015 | struct type *type; |
1016 | { | |
1017 | /* Take care of preliminaries. */ | |
1018 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1019 | fill_in_vptr_fieldno (type); | |
398f584f | 1020 | if (TYPE_VPTR_FIELDNO (type) < 0) |
71b16efa JK |
1021 | return 0; |
1022 | ||
1023 | return value_headof (arg, 0, type); | |
1024 | } | |
1025 | ||
1410f5f1 JK |
1026 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1027 | pointer which is for the base class whose type is BASECLASS. */ | |
1028 | ||
1029 | static int | |
1030 | vb_match (type, index, basetype) | |
1031 | struct type *type; | |
1032 | int index; | |
1033 | struct type *basetype; | |
1034 | { | |
1035 | struct type *fieldtype; | |
1410f5f1 JK |
1036 | char *name = TYPE_FIELD_NAME (type, index); |
1037 | char *field_class_name = NULL; | |
1038 | ||
1039 | if (*name != '_') | |
1040 | return 0; | |
f1c6dbf6 | 1041 | /* gcc 2.4 uses _vb$. */ |
81afee37 | 1042 | if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3])) |
1410f5f1 | 1043 | field_class_name = name + 4; |
f1c6dbf6 | 1044 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1045 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1046 | field_class_name = name + 5; | |
1047 | ||
1048 | if (field_class_name == NULL) | |
1049 | /* This field is not a virtual base class pointer. */ | |
1050 | return 0; | |
1051 | ||
1052 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1053 | it is for this baseclass. */ | |
1054 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1055 | if (fieldtype == NULL | |
1056 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1057 | /* "Can't happen". */ | |
1058 | return 0; | |
1059 | ||
1060 | /* What we check for is that either the types are equal (needed for | |
1061 | nameless types) or have the same name. This is ugly, and a more | |
1062 | elegant solution should be devised (which would probably just push | |
1063 | the ugliness into symbol reading unless we change the stabs format). */ | |
1064 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1065 | return 1; | |
1066 | ||
1067 | if (TYPE_NAME (basetype) != NULL | |
1068 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1069 | && STREQ (TYPE_NAME (basetype), | |
1070 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1071 | return 1; | |
1072 | return 0; | |
1073 | } | |
1074 | ||
94603999 | 1075 | /* Compute the offset of the baseclass which is |
5e548861 PB |
1076 | the INDEXth baseclass of class TYPE, |
1077 | for value at VALADDR (in host) at ADDRESS (in target). | |
1078 | The result is the offset of the baseclass value relative | |
94603999 JG |
1079 | to (the address of)(ARG) + OFFSET. |
1080 | ||
1081 | -1 is returned on error. */ | |
1082 | ||
1083 | int | |
5e548861 | 1084 | baseclass_offset (type, index, valaddr, address) |
94603999 JG |
1085 | struct type *type; |
1086 | int index; | |
5e548861 PB |
1087 | char *valaddr; |
1088 | CORE_ADDR address; | |
94603999 JG |
1089 | { |
1090 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1091 | ||
1092 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1093 | { | |
1094 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1095 | register int i, len = TYPE_NFIELDS (type); | |
1096 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1097 | |
94603999 JG |
1098 | /* First look for the virtual baseclass pointer |
1099 | in the fields. */ | |
1100 | for (i = n_baseclasses; i < len; i++) | |
1101 | { | |
1410f5f1 | 1102 | if (vb_match (type, i, basetype)) |
94603999 JG |
1103 | { |
1104 | CORE_ADDR addr | |
1105 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
5e548861 | 1106 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
94603999 | 1107 | |
5e548861 | 1108 | return addr - (LONGEST) address; |
94603999 JG |
1109 | } |
1110 | } | |
1111 | /* Not in the fields, so try looking through the baseclasses. */ | |
1112 | for (i = index+1; i < n_baseclasses; i++) | |
1113 | { | |
1114 | int boffset = | |
5e548861 | 1115 | baseclass_offset (type, i, valaddr, address); |
94603999 JG |
1116 | if (boffset) |
1117 | return boffset; | |
1118 | } | |
1119 | /* Not found. */ | |
1120 | return -1; | |
1121 | } | |
1122 | ||
1123 | /* Baseclass is easily computed. */ | |
1124 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1125 | } | |
dd3b648e | 1126 | \f |
4db8e515 FF |
1127 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1128 | VALADDR. | |
1129 | ||
1130 | Extracting bits depends on endianness of the machine. Compute the | |
1131 | number of least significant bits to discard. For big endian machines, | |
1132 | we compute the total number of bits in the anonymous object, subtract | |
1133 | off the bit count from the MSB of the object to the MSB of the | |
1134 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1135 | count. For little endian machines, the discard count is simply the | |
1136 | number of bits from the LSB of the anonymous object to the LSB of the | |
1137 | bitfield. | |
1138 | ||
1139 | If the field is signed, we also do sign extension. */ | |
1140 | ||
1141 | LONGEST | |
dd3b648e RP |
1142 | unpack_field_as_long (type, valaddr, fieldno) |
1143 | struct type *type; | |
1144 | char *valaddr; | |
1145 | int fieldno; | |
1146 | { | |
4db8e515 FF |
1147 | unsigned LONGEST val; |
1148 | unsigned LONGEST valmask; | |
dd3b648e RP |
1149 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1150 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1151 | int lsbcount; |
dd3b648e | 1152 | |
34df79fc | 1153 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1154 | |
1155 | /* Extract bits. See comment above. */ | |
dd3b648e | 1156 | |
b8176214 ILT |
1157 | if (BITS_BIG_ENDIAN) |
1158 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1159 | else | |
1160 | lsbcount = (bitpos % 8); | |
4db8e515 | 1161 | val >>= lsbcount; |
dd3b648e | 1162 | |
4db8e515 FF |
1163 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1164 | If the field is signed, and is negative, then sign extend. */ | |
1165 | ||
1166 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1167 | { | |
1168 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1169 | val &= valmask; | |
1170 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1171 | { | |
1172 | if (val & (valmask ^ (valmask >> 1))) | |
1173 | { | |
1174 | val |= ~valmask; | |
1175 | } | |
1176 | } | |
1177 | } | |
1178 | return (val); | |
dd3b648e RP |
1179 | } |
1180 | ||
3f2e006b JG |
1181 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1182 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1183 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1184 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1185 | ||
dd3b648e RP |
1186 | void |
1187 | modify_field (addr, fieldval, bitpos, bitsize) | |
1188 | char *addr; | |
58e49e21 | 1189 | LONGEST fieldval; |
dd3b648e RP |
1190 | int bitpos, bitsize; |
1191 | { | |
58e49e21 | 1192 | LONGEST oword; |
dd3b648e | 1193 | |
080868b4 PS |
1194 | /* If a negative fieldval fits in the field in question, chop |
1195 | off the sign extension bits. */ | |
1196 | if (bitsize < (8 * sizeof (fieldval)) | |
1197 | && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) | |
1198 | fieldval = fieldval & ((1 << bitsize) - 1); | |
1199 | ||
1200 | /* Warn if value is too big to fit in the field in question. */ | |
61a7292f SG |
1201 | if (bitsize < (8 * sizeof (fieldval)) |
1202 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1203 | { |
1204 | /* FIXME: would like to include fieldval in the message, but | |
1205 | we don't have a sprintf_longest. */ | |
080868b4 PS |
1206 | warning ("Value does not fit in %d bits.", bitsize); |
1207 | ||
1208 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
1209 | fieldval = fieldval & ((1 << bitsize) - 1); | |
58e49e21 | 1210 | } |
34df79fc JK |
1211 | |
1212 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1213 | |
3f2e006b | 1214 | /* Shifting for bit field depends on endianness of the target machine. */ |
b8176214 ILT |
1215 | if (BITS_BIG_ENDIAN) |
1216 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
dd3b648e | 1217 | |
58e49e21 | 1218 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1219 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1220 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1221 | else |
58e49e21 | 1222 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1223 | oword |= fieldval << bitpos; |
3f2e006b | 1224 | |
34df79fc | 1225 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1226 | } |
1227 | \f | |
1228 | /* Convert C numbers into newly allocated values */ | |
1229 | ||
82a2edfb | 1230 | value_ptr |
96b2f51c | 1231 | value_from_longest (type, num) |
dd3b648e RP |
1232 | struct type *type; |
1233 | register LONGEST num; | |
1234 | { | |
82a2edfb | 1235 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1236 | register enum type_code code; |
1237 | register int len; | |
1238 | retry: | |
1239 | code = TYPE_CODE (type); | |
1240 | len = TYPE_LENGTH (type); | |
dd3b648e | 1241 | |
34df79fc | 1242 | switch (code) |
dd3b648e | 1243 | { |
5e548861 PB |
1244 | case TYPE_CODE_TYPEDEF: |
1245 | type = check_typedef (type); | |
1246 | goto retry; | |
34df79fc JK |
1247 | case TYPE_CODE_INT: |
1248 | case TYPE_CODE_CHAR: | |
1249 | case TYPE_CODE_ENUM: | |
1250 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1251 | case TYPE_CODE_RANGE: |
34df79fc JK |
1252 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1253 | break; | |
1254 | ||
1255 | case TYPE_CODE_REF: | |
1256 | case TYPE_CODE_PTR: | |
1257 | /* This assumes that all pointers of a given length | |
1258 | have the same form. */ | |
1259 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1260 | break; | |
1261 | ||
1262 | default: | |
1263 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1264 | } |
dd3b648e RP |
1265 | return val; |
1266 | } | |
1267 | ||
82a2edfb | 1268 | value_ptr |
dd3b648e RP |
1269 | value_from_double (type, num) |
1270 | struct type *type; | |
1271 | double num; | |
1272 | { | |
82a2edfb | 1273 | register value_ptr val = allocate_value (type); |
5e548861 PB |
1274 | struct type *base_type = check_typedef (type); |
1275 | register enum type_code code = TYPE_CODE (base_type); | |
1276 | register int len = TYPE_LENGTH (base_type); | |
dd3b648e RP |
1277 | |
1278 | if (code == TYPE_CODE_FLT) | |
1279 | { | |
bf5c0d64 | 1280 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1281 | } |
1282 | else | |
1283 | error ("Unexpected type encountered for floating constant."); | |
1284 | ||
dd3b648e RP |
1285 | return val; |
1286 | } | |
1287 | \f | |
1288 | /* Deal with the value that is "about to be returned". */ | |
1289 | ||
1290 | /* Return the value that a function returning now | |
1291 | would be returning to its caller, assuming its type is VALTYPE. | |
1292 | RETBUF is where we look for what ought to be the contents | |
1293 | of the registers (in raw form). This is because it is often | |
1294 | desirable to restore old values to those registers | |
1295 | after saving the contents of interest, and then call | |
1296 | this function using the saved values. | |
1297 | struct_return is non-zero when the function in question is | |
1298 | using the structure return conventions on the machine in question; | |
1299 | 0 when it is using the value returning conventions (this often | |
1300 | means returning pointer to where structure is vs. returning value). */ | |
1301 | ||
82a2edfb | 1302 | value_ptr |
dd3b648e RP |
1303 | value_being_returned (valtype, retbuf, struct_return) |
1304 | register struct type *valtype; | |
1305 | char retbuf[REGISTER_BYTES]; | |
1306 | int struct_return; | |
1307 | /*ARGSUSED*/ | |
1308 | { | |
82a2edfb | 1309 | register value_ptr val; |
dd3b648e RP |
1310 | CORE_ADDR addr; |
1311 | ||
1312 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1313 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1314 | if (struct_return) { | |
1315 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1316 | if (!addr) | |
1317 | error ("Function return value unknown"); | |
1318 | return value_at (valtype, addr); | |
1319 | } | |
1320 | #endif | |
1321 | ||
1322 | val = allocate_value (valtype); | |
5e548861 | 1323 | CHECK_TYPEDEF (valtype); |
dd3b648e RP |
1324 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); |
1325 | ||
1326 | return val; | |
1327 | } | |
1328 | ||
1329 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1330 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1331 | and TYPE is the type (which is known to be struct, union or array). | |
1332 | ||
1333 | On most machines, the struct convention is used unless we are | |
1334 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1335 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1336 | native compiler. GCC 2.3.3 was the last release that did it the | |
1337 | old way. Since gcc2_compiled was not changed, we have no | |
1338 | way to correctly win in all cases, so we just do the right thing | |
1339 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1340 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1341 | would cause more chaos than dealing with some struct returns being | |
1342 | handled wrong. */ | |
dd3b648e RP |
1343 | #if !defined (USE_STRUCT_CONVENTION) |
1344 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1345 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1346 | || TYPE_LENGTH (value_type) == 2 \ | |
1347 | || TYPE_LENGTH (value_type) == 4 \ | |
1348 | || TYPE_LENGTH (value_type) == 8 \ | |
1349 | ) \ | |
dd3b648e RP |
1350 | )) |
1351 | #endif | |
1352 | ||
1353 | /* Return true if the function specified is using the structure returning | |
1354 | convention on this machine to return arguments, or 0 if it is using | |
1355 | the value returning convention. FUNCTION is the value representing | |
1356 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1357 | is the type returned by the function. GCC_P is nonzero if compiled | |
1358 | with GCC. */ | |
1359 | ||
1360 | int | |
1361 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1362 | value_ptr function; |
dd3b648e RP |
1363 | CORE_ADDR funcaddr; |
1364 | struct type *value_type; | |
1365 | int gcc_p; | |
1366 | /*ARGSUSED*/ | |
1367 | { | |
1368 | register enum type_code code = TYPE_CODE (value_type); | |
1369 | ||
1370 | if (code == TYPE_CODE_ERROR) | |
1371 | error ("Function return type unknown."); | |
1372 | ||
1373 | if (code == TYPE_CODE_STRUCT || | |
1374 | code == TYPE_CODE_UNION || | |
1375 | code == TYPE_CODE_ARRAY) | |
1376 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1377 | ||
1378 | return 0; | |
1379 | } | |
1380 | ||
1381 | /* Store VAL so it will be returned if a function returns now. | |
1382 | Does not verify that VAL's type matches what the current | |
1383 | function wants to return. */ | |
1384 | ||
1385 | void | |
1386 | set_return_value (val) | |
82a2edfb | 1387 | value_ptr val; |
dd3b648e | 1388 | { |
5e548861 PB |
1389 | struct type *type = check_typedef (VALUE_TYPE (val)); |
1390 | register enum type_code code = TYPE_CODE (type); | |
dd3b648e RP |
1391 | |
1392 | if (code == TYPE_CODE_ERROR) | |
1393 | error ("Function return type unknown."); | |
1394 | ||
f1d77e90 JG |
1395 | if ( code == TYPE_CODE_STRUCT |
1396 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1397 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e | 1398 | |
5e548861 | 1399 | STORE_RETURN_VALUE (type, VALUE_CONTENTS (val)); |
dd3b648e RP |
1400 | } |
1401 | \f | |
1402 | void | |
1403 | _initialize_values () | |
1404 | { | |
f266e564 | 1405 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1406 | "Debugger convenience (\"$foo\") variables.\n\ |
1407 | These variables are created when you assign them values;\n\ | |
1408 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1409 | A few convenience variables are given values automatically:\n\ | |
1410 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1411 | \"$__\" holds the contents of the last address examined with \"x\".", |
1412 | &showlist); | |
dd3b648e | 1413 | |
f266e564 JK |
1414 | add_cmd ("values", no_class, show_values, |
1415 | "Elements of value history around item number IDX (or last ten).", | |
1416 | &showlist); | |
dd3b648e | 1417 | } |