]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
72a5efb3 DJ |
2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
3 | 2002, 2003 | |
b6ba6518 | 4 | Free Software Foundation, Inc. |
c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | ||
25 | /* This file contains support routines for creating, manipulating, and | |
26 | destroying minimal symbol tables. | |
27 | ||
28 | Minimal symbol tables are used to hold some very basic information about | |
29 | all defined global symbols (text, data, bss, abs, etc). The only two | |
30 | required pieces of information are the symbol's name and the address | |
31 | associated with that symbol. | |
32 | ||
33 | In many cases, even if a file was compiled with no special options for | |
34 | debugging at all, as long as was not stripped it will contain sufficient | |
35 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 36 | |
c906108c SS |
37 | Even when a file contains enough debugging information to build a full |
38 | symbol table, these minimal symbols are still useful for quickly mapping | |
39 | between names and addresses, and vice versa. They are also sometimes used | |
40 | to figure out what full symbol table entries need to be read in. */ | |
41 | ||
42 | ||
43 | #include "defs.h" | |
9227b5eb | 44 | #include <ctype.h> |
c906108c SS |
45 | #include "gdb_string.h" |
46 | #include "symtab.h" | |
47 | #include "bfd.h" | |
48 | #include "symfile.h" | |
49 | #include "objfiles.h" | |
50 | #include "demangle.h" | |
7ed49443 JB |
51 | #include "value.h" |
52 | #include "cp-abi.h" | |
c906108c SS |
53 | |
54 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
55 | At the end, copy them all into one newly allocated location on an objfile's | |
56 | symbol obstack. */ | |
57 | ||
58 | #define BUNCH_SIZE 127 | |
59 | ||
60 | struct msym_bunch | |
c5aa993b JM |
61 | { |
62 | struct msym_bunch *next; | |
63 | struct minimal_symbol contents[BUNCH_SIZE]; | |
64 | }; | |
c906108c SS |
65 | |
66 | /* Bunch currently being filled up. | |
67 | The next field points to chain of filled bunches. */ | |
68 | ||
69 | static struct msym_bunch *msym_bunch; | |
70 | ||
71 | /* Number of slots filled in current bunch. */ | |
72 | ||
73 | static int msym_bunch_index; | |
74 | ||
75 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
76 | ||
77 | static int msym_count; | |
78 | ||
9227b5eb JB |
79 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
80 | ||
81 | unsigned int | |
82 | msymbol_hash_iw (const char *string) | |
83 | { | |
84 | unsigned int hash = 0; | |
85 | while (*string && *string != '(') | |
86 | { | |
87 | while (isspace (*string)) | |
88 | ++string; | |
89 | if (*string && *string != '(') | |
375f3d86 DJ |
90 | { |
91 | hash = hash * 67 + *string - 113; | |
92 | ++string; | |
93 | } | |
9227b5eb | 94 | } |
261397f8 | 95 | return hash; |
9227b5eb JB |
96 | } |
97 | ||
98 | /* Compute a hash code for a string. */ | |
99 | ||
100 | unsigned int | |
101 | msymbol_hash (const char *string) | |
102 | { | |
103 | unsigned int hash = 0; | |
104 | for (; *string; ++string) | |
375f3d86 | 105 | hash = hash * 67 + *string - 113; |
261397f8 | 106 | return hash; |
9227b5eb JB |
107 | } |
108 | ||
109 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
110 | void | |
111 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
112 | struct minimal_symbol **table) | |
113 | { | |
114 | if (sym->hash_next == NULL) | |
115 | { | |
f56f77c1 DC |
116 | unsigned int hash |
117 | = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb JB |
118 | sym->hash_next = table[hash]; |
119 | table[hash] = sym; | |
120 | } | |
121 | } | |
122 | ||
0729fd50 DB |
123 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
124 | TABLE. */ | |
125 | static void | |
126 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
127 | struct minimal_symbol **table) | |
128 | { | |
129 | if (sym->demangled_hash_next == NULL) | |
130 | { | |
261397f8 | 131 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE; |
0729fd50 DB |
132 | sym->demangled_hash_next = table[hash]; |
133 | table[hash] = sym; | |
134 | } | |
135 | } | |
136 | ||
c906108c SS |
137 | |
138 | /* Look through all the current minimal symbol tables and find the | |
139 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
72a5efb3 DJ |
140 | the search to that objfile. If SFILE is non-NULL, the only file-scope |
141 | symbols considered will be from that source file (global symbols are | |
142 | still preferred). Returns a pointer to the minimal symbol that | |
c906108c SS |
143 | matches, or NULL if no match is found. |
144 | ||
145 | Note: One instance where there may be duplicate minimal symbols with | |
146 | the same name is when the symbol tables for a shared library and the | |
147 | symbol tables for an executable contain global symbols with the same | |
72a5efb3 | 148 | names (the dynamic linker deals with the duplication). */ |
c906108c SS |
149 | |
150 | struct minimal_symbol * | |
fba45db2 KB |
151 | lookup_minimal_symbol (register const char *name, const char *sfile, |
152 | struct objfile *objf) | |
c906108c SS |
153 | { |
154 | struct objfile *objfile; | |
155 | struct minimal_symbol *msymbol; | |
156 | struct minimal_symbol *found_symbol = NULL; | |
157 | struct minimal_symbol *found_file_symbol = NULL; | |
158 | struct minimal_symbol *trampoline_symbol = NULL; | |
159 | ||
261397f8 DJ |
160 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
161 | unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE; | |
9227b5eb | 162 | |
c906108c SS |
163 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
164 | if (sfile != NULL) | |
165 | { | |
166 | char *p = strrchr (sfile, '/'); | |
167 | if (p != NULL) | |
168 | sfile = p + 1; | |
169 | } | |
170 | #endif | |
171 | ||
172 | for (objfile = object_files; | |
173 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 174 | objfile = objfile->next) |
c906108c SS |
175 | { |
176 | if (objf == NULL || objf == objfile) | |
177 | { | |
9227b5eb JB |
178 | /* Do two passes: the first over the ordinary hash table, |
179 | and the second over the demangled hash table. */ | |
0729fd50 | 180 | int pass; |
9227b5eb | 181 | |
0729fd50 | 182 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 183 | { |
0729fd50 DB |
184 | /* Select hash list according to pass. */ |
185 | if (pass == 1) | |
186 | msymbol = objfile->msymbol_hash[hash]; | |
187 | else | |
188 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
189 | ||
190 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 191 | { |
8e437497 | 192 | if (DEPRECATED_SYMBOL_MATCHES_NAME (msymbol, name)) |
c906108c | 193 | { |
0729fd50 DB |
194 | switch (MSYMBOL_TYPE (msymbol)) |
195 | { | |
196 | case mst_file_text: | |
197 | case mst_file_data: | |
198 | case mst_file_bss: | |
c906108c | 199 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
0729fd50 DB |
200 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) |
201 | found_file_symbol = msymbol; | |
c906108c | 202 | #else |
0729fd50 DB |
203 | /* We have neither the ability nor the need to |
204 | deal with the SFILE parameter. If we find | |
205 | more than one symbol, just return the latest | |
206 | one (the user can't expect useful behavior in | |
207 | that case). */ | |
208 | found_file_symbol = msymbol; | |
c906108c | 209 | #endif |
0729fd50 DB |
210 | break; |
211 | ||
212 | case mst_solib_trampoline: | |
213 | ||
214 | /* If a trampoline symbol is found, we prefer to | |
215 | keep looking for the *real* symbol. If the | |
216 | actual symbol is not found, then we'll use the | |
217 | trampoline entry. */ | |
218 | if (trampoline_symbol == NULL) | |
219 | trampoline_symbol = msymbol; | |
220 | break; | |
221 | ||
222 | case mst_unknown: | |
223 | default: | |
224 | found_symbol = msymbol; | |
225 | break; | |
226 | } | |
c906108c | 227 | } |
9227b5eb | 228 | |
0729fd50 DB |
229 | /* Find the next symbol on the hash chain. */ |
230 | if (pass == 1) | |
231 | msymbol = msymbol->hash_next; | |
232 | else | |
233 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 234 | } |
c906108c SS |
235 | } |
236 | } | |
237 | } | |
238 | /* External symbols are best. */ | |
239 | if (found_symbol) | |
240 | return found_symbol; | |
241 | ||
242 | /* File-local symbols are next best. */ | |
243 | if (found_file_symbol) | |
244 | return found_file_symbol; | |
245 | ||
246 | /* Symbols for shared library trampolines are next best. */ | |
247 | if (trampoline_symbol) | |
248 | return trampoline_symbol; | |
249 | ||
250 | return NULL; | |
251 | } | |
252 | ||
253 | /* Look through all the current minimal symbol tables and find the | |
72a5efb3 DJ |
254 | first minimal symbol that matches NAME and has text type. If OBJF |
255 | is non-NULL, limit the search to that objfile. If SFILE is non-NULL, | |
256 | the only file-scope symbols considered will be from that source file | |
257 | (global symbols are still preferred). Returns a pointer to the minimal | |
258 | symbol that matches, or NULL if no match is found. | |
259 | ||
260 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 261 | |
c906108c | 262 | struct minimal_symbol * |
fba45db2 KB |
263 | lookup_minimal_symbol_text (register const char *name, const char *sfile, |
264 | struct objfile *objf) | |
c906108c SS |
265 | { |
266 | struct objfile *objfile; | |
267 | struct minimal_symbol *msymbol; | |
268 | struct minimal_symbol *found_symbol = NULL; | |
269 | struct minimal_symbol *found_file_symbol = NULL; | |
270 | ||
72a5efb3 DJ |
271 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
272 | ||
c906108c SS |
273 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
274 | if (sfile != NULL) | |
275 | { | |
276 | char *p = strrchr (sfile, '/'); | |
277 | if (p != NULL) | |
278 | sfile = p + 1; | |
279 | } | |
280 | #endif | |
281 | ||
282 | for (objfile = object_files; | |
283 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 284 | objfile = objfile->next) |
c906108c SS |
285 | { |
286 | if (objf == NULL || objf == objfile) | |
287 | { | |
72a5efb3 DJ |
288 | for (msymbol = objfile->msymbol_hash[hash]; |
289 | msymbol != NULL && found_symbol == NULL; | |
290 | msymbol = msymbol->hash_next) | |
c906108c | 291 | { |
f56f77c1 | 292 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
293 | (MSYMBOL_TYPE (msymbol) == mst_text || |
294 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
295 | { | |
296 | switch (MSYMBOL_TYPE (msymbol)) | |
297 | { | |
298 | case mst_file_text: | |
299 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
300 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) | |
301 | found_file_symbol = msymbol; | |
302 | #else | |
303 | /* We have neither the ability nor the need to | |
c5aa993b JM |
304 | deal with the SFILE parameter. If we find |
305 | more than one symbol, just return the latest | |
306 | one (the user can't expect useful behavior in | |
307 | that case). */ | |
c906108c SS |
308 | found_file_symbol = msymbol; |
309 | #endif | |
310 | break; | |
311 | default: | |
312 | found_symbol = msymbol; | |
313 | break; | |
314 | } | |
315 | } | |
316 | } | |
317 | } | |
318 | } | |
319 | /* External symbols are best. */ | |
320 | if (found_symbol) | |
321 | return found_symbol; | |
322 | ||
323 | /* File-local symbols are next best. */ | |
324 | if (found_file_symbol) | |
325 | return found_file_symbol; | |
326 | ||
327 | return NULL; | |
328 | } | |
329 | ||
330 | /* Look through all the current minimal symbol tables and find the | |
72a5efb3 DJ |
331 | first minimal symbol that matches NAME and is a solib trampoline. If OBJF |
332 | is non-NULL, limit the search to that objfile. If SFILE is non-NULL, | |
333 | the only file-scope symbols considered will be from that source file | |
334 | (global symbols are still preferred). Returns a pointer to the minimal | |
335 | symbol that matches, or NULL if no match is found. | |
336 | ||
337 | This function only searches the mangled (linkage) names. */ | |
c5aa993b | 338 | |
c906108c | 339 | struct minimal_symbol * |
fba45db2 KB |
340 | lookup_minimal_symbol_solib_trampoline (register const char *name, |
341 | const char *sfile, struct objfile *objf) | |
c906108c SS |
342 | { |
343 | struct objfile *objfile; | |
344 | struct minimal_symbol *msymbol; | |
345 | struct minimal_symbol *found_symbol = NULL; | |
346 | ||
72a5efb3 DJ |
347 | unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE; |
348 | ||
c906108c SS |
349 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
350 | if (sfile != NULL) | |
351 | { | |
352 | char *p = strrchr (sfile, '/'); | |
353 | if (p != NULL) | |
354 | sfile = p + 1; | |
355 | } | |
356 | #endif | |
357 | ||
358 | for (objfile = object_files; | |
359 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 360 | objfile = objfile->next) |
c906108c SS |
361 | { |
362 | if (objf == NULL || objf == objfile) | |
363 | { | |
72a5efb3 DJ |
364 | for (msymbol = objfile->msymbol_hash[hash]; |
365 | msymbol != NULL && found_symbol == NULL; | |
366 | msymbol = msymbol->hash_next) | |
c906108c | 367 | { |
f56f77c1 | 368 | if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 && |
c906108c SS |
369 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
370 | return msymbol; | |
371 | } | |
372 | } | |
373 | } | |
374 | ||
375 | return NULL; | |
376 | } | |
377 | ||
378 | ||
379 | /* Search through the minimal symbol table for each objfile and find | |
380 | the symbol whose address is the largest address that is still less | |
381 | than or equal to PC, and matches SECTION (if non-null). Returns a | |
382 | pointer to the minimal symbol if such a symbol is found, or NULL if | |
383 | PC is not in a suitable range. Note that we need to look through | |
384 | ALL the minimal symbol tables before deciding on the symbol that | |
385 | comes closest to the specified PC. This is because objfiles can | |
386 | overlap, for example objfile A has .text at 0x100 and .data at | |
387 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
388 | ||
389 | struct minimal_symbol * | |
fba45db2 | 390 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
391 | { |
392 | int lo; | |
393 | int hi; | |
394 | int new; | |
395 | struct objfile *objfile; | |
396 | struct minimal_symbol *msymbol; | |
397 | struct minimal_symbol *best_symbol = NULL; | |
398 | ||
399 | /* pc has to be in a known section. This ensures that anything beyond | |
400 | the end of the last segment doesn't appear to be part of the last | |
401 | function in the last segment. */ | |
402 | if (find_pc_section (pc) == NULL) | |
403 | return NULL; | |
404 | ||
405 | for (objfile = object_files; | |
406 | objfile != NULL; | |
c5aa993b | 407 | objfile = objfile->next) |
c906108c SS |
408 | { |
409 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
410 | a binary search. Note that a minimal symbol table always consists |
411 | of at least two symbols, a "real" symbol and the terminating | |
412 | "null symbol". If there are no real symbols, then there is no | |
413 | minimal symbol table at all. */ | |
c906108c | 414 | |
15831452 | 415 | if (objfile->minimal_symbol_count > 0) |
c906108c | 416 | { |
15831452 | 417 | msymbol = objfile->msymbols; |
c906108c | 418 | lo = 0; |
c5aa993b | 419 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
420 | |
421 | /* This code assumes that the minimal symbols are sorted by | |
422 | ascending address values. If the pc value is greater than or | |
423 | equal to the first symbol's address, then some symbol in this | |
424 | minimal symbol table is a suitable candidate for being the | |
425 | "best" symbol. This includes the last real symbol, for cases | |
426 | where the pc value is larger than any address in this vector. | |
427 | ||
428 | By iterating until the address associated with the current | |
429 | hi index (the endpoint of the test interval) is less than | |
430 | or equal to the desired pc value, we accomplish two things: | |
431 | (1) the case where the pc value is larger than any minimal | |
432 | symbol address is trivially solved, (2) the address associated | |
433 | with the hi index is always the one we want when the interation | |
434 | terminates. In essence, we are iterating the test interval | |
435 | down until the pc value is pushed out of it from the high end. | |
436 | ||
437 | Warning: this code is trickier than it would appear at first. */ | |
438 | ||
439 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
440 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
441 | { | |
442 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
443 | { | |
444 | /* pc is still strictly less than highest address */ | |
445 | /* Note "new" will always be >= lo */ | |
446 | new = (lo + hi) / 2; | |
447 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
448 | (lo == new)) | |
449 | { | |
450 | hi = new; | |
451 | } | |
452 | else | |
453 | { | |
454 | lo = new; | |
455 | } | |
456 | } | |
457 | ||
458 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
459 | hi to point to the last one. That way we can find the |
460 | right symbol if it has an index greater than hi. */ | |
461 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 462 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 463 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
464 | hi++; |
465 | ||
466 | /* The minimal symbol indexed by hi now is the best one in this | |
c5aa993b JM |
467 | objfile's minimal symbol table. See if it is the best one |
468 | overall. */ | |
c906108c SS |
469 | |
470 | /* Skip any absolute symbols. This is apparently what adb | |
c5aa993b JM |
471 | and dbx do, and is needed for the CM-5. There are two |
472 | known possible problems: (1) on ELF, apparently end, edata, | |
473 | etc. are absolute. Not sure ignoring them here is a big | |
474 | deal, but if we want to use them, the fix would go in | |
475 | elfread.c. (2) I think shared library entry points on the | |
476 | NeXT are absolute. If we want special handling for this | |
477 | it probably should be triggered by a special | |
478 | mst_abs_or_lib or some such. */ | |
c906108c SS |
479 | while (hi >= 0 |
480 | && msymbol[hi].type == mst_abs) | |
481 | --hi; | |
482 | ||
483 | /* If "section" specified, skip any symbol from wrong section */ | |
484 | /* This is the new code that distinguishes it from the old function */ | |
485 | if (section) | |
486 | while (hi >= 0 | |
65d5a54a EZ |
487 | /* Some types of debug info, such as COFF, |
488 | don't fill the bfd_section member, so don't | |
489 | throw away symbols on those platforms. */ | |
490 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
c906108c SS |
491 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != section) |
492 | --hi; | |
493 | ||
494 | if (hi >= 0 | |
495 | && ((best_symbol == NULL) || | |
c5aa993b | 496 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
497 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
498 | { | |
499 | best_symbol = &msymbol[hi]; | |
500 | } | |
501 | } | |
502 | } | |
503 | } | |
504 | return (best_symbol); | |
505 | } | |
506 | ||
507 | /* Backward compatibility: search through the minimal symbol table | |
508 | for a matching PC (no section given) */ | |
509 | ||
510 | struct minimal_symbol * | |
fba45db2 | 511 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
512 | { |
513 | return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc)); | |
514 | } | |
c906108c | 515 | \f |
c5aa993b | 516 | |
c906108c SS |
517 | /* Return leading symbol character for a BFD. If BFD is NULL, |
518 | return the leading symbol character from the main objfile. */ | |
519 | ||
a14ed312 | 520 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
521 | |
522 | static int | |
fba45db2 | 523 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
524 | { |
525 | if (abfd != NULL) | |
526 | return bfd_get_symbol_leading_char (abfd); | |
527 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
528 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
529 | return 0; | |
530 | } | |
531 | ||
532 | /* Prepare to start collecting minimal symbols. Note that presetting | |
533 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
534 | symbol to allocate the memory for the first bunch. */ | |
535 | ||
536 | void | |
fba45db2 | 537 | init_minimal_symbol_collection (void) |
c906108c SS |
538 | { |
539 | msym_count = 0; | |
540 | msym_bunch = NULL; | |
541 | msym_bunch_index = BUNCH_SIZE; | |
542 | } | |
543 | ||
544 | void | |
fba45db2 KB |
545 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
546 | enum minimal_symbol_type ms_type, | |
547 | struct objfile *objfile) | |
c906108c SS |
548 | { |
549 | int section; | |
550 | ||
551 | switch (ms_type) | |
552 | { | |
553 | case mst_text: | |
554 | case mst_file_text: | |
555 | case mst_solib_trampoline: | |
b8fbeb18 | 556 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
557 | break; |
558 | case mst_data: | |
559 | case mst_file_data: | |
b8fbeb18 | 560 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
561 | break; |
562 | case mst_bss: | |
563 | case mst_file_bss: | |
b8fbeb18 | 564 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
565 | break; |
566 | default: | |
567 | section = -1; | |
568 | } | |
569 | ||
570 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
571 | NULL, section, NULL, objfile); | |
572 | } | |
573 | ||
574 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
575 | newly created. */ | |
576 | ||
577 | struct minimal_symbol * | |
fba45db2 KB |
578 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
579 | enum minimal_symbol_type ms_type, | |
580 | char *info, int section, | |
581 | asection *bfd_section, | |
582 | struct objfile *objfile) | |
c906108c SS |
583 | { |
584 | register struct msym_bunch *new; | |
585 | register struct minimal_symbol *msymbol; | |
586 | ||
587 | if (ms_type == mst_file_text) | |
588 | { | |
589 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into | |
c5aa993b JM |
590 | the minimal symbols, because if there is also another symbol |
591 | at the same address (e.g. the first function of the file), | |
592 | lookup_minimal_symbol_by_pc would have no way of getting the | |
593 | right one. */ | |
c906108c SS |
594 | if (name[0] == 'g' |
595 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
596 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
597 | return (NULL); | |
598 | ||
599 | { | |
600 | const char *tempstring = name; | |
601 | if (tempstring[0] == get_symbol_leading_char (objfile->obfd)) | |
602 | ++tempstring; | |
603 | if (STREQN (tempstring, "__gnu_compiled", 14)) | |
604 | return (NULL); | |
605 | } | |
606 | } | |
607 | ||
608 | if (msym_bunch_index == BUNCH_SIZE) | |
609 | { | |
610 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
611 | msym_bunch_index = 0; | |
c5aa993b | 612 | new->next = msym_bunch; |
c906108c SS |
613 | msym_bunch = new; |
614 | } | |
c5aa993b | 615 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c | 616 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); |
2de7ced7 DJ |
617 | SYMBOL_LANGUAGE (msymbol) = language_auto; |
618 | SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile); | |
619 | ||
c906108c SS |
620 | SYMBOL_VALUE_ADDRESS (msymbol) = address; |
621 | SYMBOL_SECTION (msymbol) = section; | |
622 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
623 | ||
624 | MSYMBOL_TYPE (msymbol) = ms_type; | |
625 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 626 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
9227b5eb | 627 | |
a79dea61 | 628 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 629 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
630 | msymbol->hash_next = NULL; |
631 | msymbol->demangled_hash_next = NULL; | |
632 | ||
c906108c SS |
633 | msym_bunch_index++; |
634 | msym_count++; | |
635 | OBJSTAT (objfile, n_minsyms++); | |
636 | return msymbol; | |
637 | } | |
638 | ||
639 | /* Compare two minimal symbols by address and return a signed result based | |
640 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
641 | Within groups with the same address, sort by name. */ | |
642 | ||
643 | static int | |
12b9c64f | 644 | compare_minimal_symbols (const void *fn1p, const void *fn2p) |
c906108c SS |
645 | { |
646 | register const struct minimal_symbol *fn1; | |
647 | register const struct minimal_symbol *fn2; | |
648 | ||
649 | fn1 = (const struct minimal_symbol *) fn1p; | |
650 | fn2 = (const struct minimal_symbol *) fn2p; | |
651 | ||
652 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
653 | { | |
c5aa993b | 654 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
655 | } |
656 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
657 | { | |
c5aa993b | 658 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 659 | } |
c5aa993b JM |
660 | else |
661 | /* addrs are equal: sort by name */ | |
c906108c | 662 | { |
f56f77c1 DC |
663 | char *name1 = SYMBOL_LINKAGE_NAME (fn1); |
664 | char *name2 = SYMBOL_LINKAGE_NAME (fn2); | |
c906108c SS |
665 | |
666 | if (name1 && name2) /* both have names */ | |
667 | return strcmp (name1, name2); | |
668 | else if (name2) | |
c5aa993b JM |
669 | return 1; /* fn1 has no name, so it is "less" */ |
670 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
671 | return -1; |
672 | else | |
c5aa993b | 673 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
674 | } |
675 | } | |
676 | ||
677 | /* Discard the currently collected minimal symbols, if any. If we wish | |
678 | to save them for later use, we must have already copied them somewhere | |
679 | else before calling this function. | |
680 | ||
681 | FIXME: We could allocate the minimal symbol bunches on their own | |
682 | obstack and then simply blow the obstack away when we are done with | |
683 | it. Is it worth the extra trouble though? */ | |
684 | ||
56e290f4 AC |
685 | static void |
686 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c SS |
687 | { |
688 | register struct msym_bunch *next; | |
689 | ||
690 | while (msym_bunch != NULL) | |
691 | { | |
c5aa993b | 692 | next = msym_bunch->next; |
b8c9b27d | 693 | xfree (msym_bunch); |
c906108c SS |
694 | msym_bunch = next; |
695 | } | |
696 | } | |
697 | ||
56e290f4 AC |
698 | struct cleanup * |
699 | make_cleanup_discard_minimal_symbols (void) | |
700 | { | |
701 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
702 | } | |
703 | ||
704 | ||
9227b5eb | 705 | |
c906108c SS |
706 | /* Compact duplicate entries out of a minimal symbol table by walking |
707 | through the table and compacting out entries with duplicate addresses | |
708 | and matching names. Return the number of entries remaining. | |
709 | ||
710 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
711 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
712 | ||
713 | When files contain multiple sources of symbol information, it is | |
714 | possible for the minimal symbol table to contain many duplicate entries. | |
715 | As an example, SVR4 systems use ELF formatted object files, which | |
716 | usually contain at least two different types of symbol tables (a | |
717 | standard ELF one and a smaller dynamic linking table), as well as | |
718 | DWARF debugging information for files compiled with -g. | |
719 | ||
720 | Without compacting, the minimal symbol table for gdb itself contains | |
721 | over a 1000 duplicates, about a third of the total table size. Aside | |
722 | from the potential trap of not noticing that two successive entries | |
723 | identify the same location, this duplication impacts the time required | |
724 | to linearly scan the table, which is done in a number of places. So we | |
725 | just do one linear scan here and toss out the duplicates. | |
726 | ||
727 | Note that we are not concerned here about recovering the space that | |
728 | is potentially freed up, because the strings themselves are allocated | |
729 | on the symbol_obstack, and will get automatically freed when the symbol | |
730 | table is freed. The caller can free up the unused minimal symbols at | |
731 | the end of the compacted region if their allocation strategy allows it. | |
732 | ||
733 | Also note we only go up to the next to last entry within the loop | |
734 | and then copy the last entry explicitly after the loop terminates. | |
735 | ||
736 | Since the different sources of information for each symbol may | |
737 | have different levels of "completeness", we may have duplicates | |
738 | that have one entry with type "mst_unknown" and the other with a | |
739 | known type. So if the one we are leaving alone has type mst_unknown, | |
740 | overwrite its type with the type from the one we are compacting out. */ | |
741 | ||
742 | static int | |
fba45db2 KB |
743 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
744 | struct objfile *objfile) | |
c906108c SS |
745 | { |
746 | struct minimal_symbol *copyfrom; | |
747 | struct minimal_symbol *copyto; | |
748 | ||
749 | if (mcount > 0) | |
750 | { | |
751 | copyfrom = copyto = msymbol; | |
752 | while (copyfrom < msymbol + mcount - 1) | |
753 | { | |
c5aa993b | 754 | if (SYMBOL_VALUE_ADDRESS (copyfrom) == |
c906108c | 755 | SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && |
f56f77c1 DC |
756 | (STREQ (SYMBOL_LINKAGE_NAME (copyfrom), |
757 | SYMBOL_LINKAGE_NAME ((copyfrom + 1))))) | |
c906108c | 758 | { |
c5aa993b | 759 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
760 | { |
761 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
762 | } | |
763 | copyfrom++; | |
764 | } | |
765 | else | |
afbb8d7a | 766 | *copyto++ = *copyfrom++; |
c906108c SS |
767 | } |
768 | *copyto++ = *copyfrom++; | |
769 | mcount = copyto - msymbol; | |
770 | } | |
771 | return (mcount); | |
772 | } | |
773 | ||
afbb8d7a KB |
774 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
775 | after compacting or sorting the table since the entries move around | |
776 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
777 | ||
778 | static void | |
779 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
780 | { | |
781 | int i; | |
782 | struct minimal_symbol *msym; | |
783 | ||
784 | /* Clear the hash tables. */ | |
785 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
786 | { | |
787 | objfile->msymbol_hash[i] = 0; | |
788 | objfile->msymbol_demangled_hash[i] = 0; | |
789 | } | |
790 | ||
791 | /* Now, (re)insert the actual entries. */ | |
792 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
793 | i > 0; | |
794 | i--, msym++) | |
795 | { | |
796 | msym->hash_next = 0; | |
797 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
798 | ||
799 | msym->demangled_hash_next = 0; | |
800 | if (SYMBOL_DEMANGLED_NAME (msym) != NULL) | |
801 | add_minsym_to_demangled_hash_table (msym, | |
802 | objfile->msymbol_demangled_hash); | |
803 | } | |
804 | } | |
805 | ||
c906108c SS |
806 | /* Add the minimal symbols in the existing bunches to the objfile's official |
807 | minimal symbol table. In most cases there is no minimal symbol table yet | |
808 | for this objfile, and the existing bunches are used to create one. Once | |
809 | in a while (for shared libraries for example), we add symbols (e.g. common | |
810 | symbols) to an existing objfile. | |
811 | ||
812 | Because of the way minimal symbols are collected, we generally have no way | |
813 | of knowing what source language applies to any particular minimal symbol. | |
814 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
815 | C++ compilation unit or not. So for the sake of supporting cached | |
816 | demangled C++ names, we have no choice but to try and demangle each new one | |
817 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
818 | symbol and set the symbol's language and demangled name fields | |
819 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
820 | allocating obstack space that subsequently can't be freed for the demangled | |
821 | names, we mark all newly added symbols with language_auto. After | |
822 | compaction of the minimal symbols, we go back and scan the entire minimal | |
823 | symbol table looking for these new symbols. For each new symbol we attempt | |
824 | to demangle it, and if successful, record it as a language_cplus symbol | |
825 | and cache the demangled form on the symbol obstack. Symbols which don't | |
826 | demangle are marked as language_unknown symbols, which inhibits future | |
827 | attempts to demangle them if we later add more minimal symbols. */ | |
828 | ||
829 | void | |
fba45db2 | 830 | install_minimal_symbols (struct objfile *objfile) |
c906108c SS |
831 | { |
832 | register int bindex; | |
833 | register int mcount; | |
834 | register struct msym_bunch *bunch; | |
835 | register struct minimal_symbol *msymbols; | |
836 | int alloc_count; | |
837 | register char leading_char; | |
838 | ||
839 | if (msym_count > 0) | |
840 | { | |
841 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
842 | bunches of new and existing minimal symbols, sort them, and then |
843 | compact out the duplicate entries. Once we have a final table, | |
844 | we will give back the excess space. */ | |
c906108c SS |
845 | |
846 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
847 | obstack_blank (&objfile->symbol_obstack, | |
848 | alloc_count * sizeof (struct minimal_symbol)); | |
849 | msymbols = (struct minimal_symbol *) | |
c5aa993b | 850 | obstack_base (&objfile->symbol_obstack); |
c906108c SS |
851 | |
852 | /* Copy in the existing minimal symbols, if there are any. */ | |
853 | ||
854 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
855 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
856 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
857 | |
858 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
859 | to the new contiguous array of symbols. Note that we start with the |
860 | current, possibly partially filled bunch (thus we use the current | |
861 | msym_bunch_index for the first bunch we copy over), and thereafter | |
862 | each bunch is full. */ | |
863 | ||
c906108c SS |
864 | mcount = objfile->minimal_symbol_count; |
865 | leading_char = get_symbol_leading_char (objfile->obfd); | |
c5aa993b JM |
866 | |
867 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
868 | { |
869 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
870 | { | |
c5aa993b | 871 | msymbols[mcount] = bunch->contents[bindex]; |
f56f77c1 | 872 | if (SYMBOL_LINKAGE_NAME (&msymbols[mcount])[0] == leading_char) |
c906108c | 873 | { |
f56f77c1 | 874 | SYMBOL_LINKAGE_NAME (&msymbols[mcount])++; |
c906108c SS |
875 | } |
876 | } | |
877 | msym_bunch_index = BUNCH_SIZE; | |
878 | } | |
879 | ||
880 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 881 | |
c906108c SS |
882 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
883 | compare_minimal_symbols); | |
c5aa993b | 884 | |
c906108c | 885 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
886 | no longer using. */ |
887 | ||
9227b5eb | 888 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c SS |
889 | |
890 | obstack_blank (&objfile->symbol_obstack, | |
c5aa993b | 891 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c SS |
892 | msymbols = (struct minimal_symbol *) |
893 | obstack_finish (&objfile->symbol_obstack); | |
894 | ||
895 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
896 | which is *not* included in the size of the table. This makes it |
897 | easier to find the end of the table when we are handed a pointer | |
898 | to some symbol in the middle of it. Zero out the fields in the | |
899 | "null symbol" allocated at the end of the array. Note that the | |
900 | symbol count does *not* include this null symbol, which is why it | |
901 | is indexed by mcount and not mcount-1. */ | |
c906108c | 902 | |
f56f77c1 | 903 | SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL; |
c906108c SS |
904 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; |
905 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
906 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; | |
907 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
908 | ||
909 | /* Attach the minimal symbol table to the specified objfile. | |
c5aa993b JM |
910 | The strings themselves are also located in the symbol_obstack |
911 | of this objfile. */ | |
c906108c | 912 | |
c5aa993b JM |
913 | objfile->minimal_symbol_count = mcount; |
914 | objfile->msymbols = msymbols; | |
c906108c | 915 | |
7ed49443 JB |
916 | /* Try to guess the appropriate C++ ABI by looking at the names |
917 | of the minimal symbols in the table. */ | |
918 | { | |
919 | int i; | |
920 | ||
921 | for (i = 0; i < mcount; i++) | |
922 | { | |
6aca59a3 DJ |
923 | /* If a symbol's name starts with _Z and was successfully |
924 | demangled, then we can assume we've found a GNU v3 symbol. | |
925 | For now we set the C++ ABI globally; if the user is | |
926 | mixing ABIs then the user will need to "set cp-abi" | |
927 | manually. */ | |
f56f77c1 | 928 | const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]); |
6aca59a3 DJ |
929 | if (name[0] == '_' && name[1] == 'Z' |
930 | && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL) | |
7ed49443 | 931 | { |
fe1f4a5e | 932 | set_cp_abi_as_auto_default ("gnu-v3"); |
7ed49443 JB |
933 | break; |
934 | } | |
935 | } | |
936 | } | |
afbb8d7a KB |
937 | |
938 | /* Now build the hash tables; we can't do this incrementally | |
939 | at an earlier point since we weren't finished with the obstack | |
940 | yet. (And if the msymbol obstack gets moved, all the internal | |
941 | pointers to other msymbols need to be adjusted.) */ | |
942 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
943 | } |
944 | } | |
945 | ||
946 | /* Sort all the minimal symbols in OBJFILE. */ | |
947 | ||
948 | void | |
fba45db2 | 949 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
950 | { |
951 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
952 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 953 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
954 | } |
955 | ||
956 | /* Check if PC is in a shared library trampoline code stub. | |
957 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
958 | in a trampoline code stub. */ | |
959 | ||
960 | struct minimal_symbol * | |
fba45db2 | 961 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
962 | { |
963 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
964 | ||
965 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
966 | return msymbol; | |
967 | return NULL; | |
968 | } | |
969 | ||
970 | /* If PC is in a shared library trampoline code stub, return the | |
971 | address of the `real' function belonging to the stub. | |
972 | Return 0 if PC is not in a trampoline code stub or if the real | |
973 | function is not found in the minimal symbol table. | |
974 | ||
975 | We may fail to find the right function if a function with the | |
976 | same name is defined in more than one shared library, but this | |
977 | is considered bad programming style. We could return 0 if we find | |
978 | a duplicate function in case this matters someday. */ | |
979 | ||
980 | CORE_ADDR | |
fba45db2 | 981 | find_solib_trampoline_target (CORE_ADDR pc) |
c906108c SS |
982 | { |
983 | struct objfile *objfile; | |
984 | struct minimal_symbol *msymbol; | |
985 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
986 | ||
987 | if (tsymbol != NULL) | |
988 | { | |
989 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
990 | { |
991 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
f56f77c1 DC |
992 | && STREQ (SYMBOL_LINKAGE_NAME (msymbol), |
993 | SYMBOL_LINKAGE_NAME (tsymbol))) | |
c5aa993b JM |
994 | return SYMBOL_VALUE_ADDRESS (msymbol); |
995 | } | |
c906108c SS |
996 | } |
997 | return 0; | |
998 | } |