]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger. |
2 | Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | ||
22 | #include "defs.h" | |
23 | ||
24 | /* This file is only compilable if link.h is available. */ | |
25 | ||
26 | #ifdef HAVE_LINK_H | |
27 | ||
28 | #include <sys/types.h> | |
29 | #include <signal.h> | |
30 | #include "gdb_string.h" | |
31 | #include <sys/param.h> | |
32 | #include <fcntl.h> | |
33 | #include <unistd.h> | |
34 | ||
35 | #ifndef SVR4_SHARED_LIBS | |
36 | /* SunOS shared libs need the nlist structure. */ | |
37 | #include <a.out.h> | |
38 | #else | |
39 | #include "elf/external.h" | |
40 | #endif | |
41 | ||
42 | #include <link.h> | |
43 | ||
44 | #include "symtab.h" | |
45 | #include "bfd.h" | |
46 | #include "symfile.h" | |
47 | #include "objfiles.h" | |
48 | #include "gdbcore.h" | |
49 | #include "command.h" | |
50 | #include "target.h" | |
51 | #include "frame.h" | |
52 | #include "gnu-regex.h" | |
53 | #include "inferior.h" | |
54 | #include "environ.h" | |
55 | #include "language.h" | |
56 | #include "gdbcmd.h" | |
57 | ||
58 | #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */ | |
59 | ||
60 | /* On SVR4 systems, a list of symbols in the dynamic linker where | |
61 | GDB can try to place a breakpoint to monitor shared library | |
62 | events. | |
63 | ||
64 | If none of these symbols are found, or other errors occur, then | |
65 | SVR4 systems will fall back to using a symbol as the "startup | |
66 | mapping complete" breakpoint address. */ | |
67 | ||
68 | #ifdef SVR4_SHARED_LIBS | |
69 | static char *solib_break_names[] = { | |
70 | "r_debug_state", | |
71 | "_r_debug_state", | |
72 | "_dl_debug_state", | |
73 | "rtld_db_dlactivity", | |
74 | NULL | |
75 | }; | |
76 | #endif | |
77 | ||
78 | #define BKPT_AT_SYMBOL 1 | |
79 | ||
80 | #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS) | |
81 | static char *bkpt_names[] = { | |
82 | #ifdef SOLIB_BKPT_NAME | |
83 | SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */ | |
84 | #endif | |
85 | "_start", | |
86 | "main", | |
87 | NULL | |
88 | }; | |
89 | #endif | |
90 | ||
91 | /* Symbols which are used to locate the base of the link map structures. */ | |
92 | ||
93 | #ifndef SVR4_SHARED_LIBS | |
94 | static char *debug_base_symbols[] = { | |
95 | "_DYNAMIC", | |
96 | "_DYNAMIC__MGC", | |
97 | NULL | |
98 | }; | |
99 | #endif | |
100 | ||
101 | static char *main_name_list[] = { | |
102 | "main_$main", | |
103 | NULL | |
104 | }; | |
105 | ||
106 | /* local data declarations */ | |
107 | ||
108 | #ifndef SVR4_SHARED_LIBS | |
109 | ||
110 | #define LM_ADDR(so) ((so) -> lm.lm_addr) | |
111 | #define LM_NEXT(so) ((so) -> lm.lm_next) | |
112 | #define LM_NAME(so) ((so) -> lm.lm_name) | |
113 | /* Test for first link map entry; first entry is a shared library. */ | |
114 | #define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0) | |
115 | static struct link_dynamic dynamic_copy; | |
116 | static struct link_dynamic_2 ld_2_copy; | |
117 | static struct ld_debug debug_copy; | |
118 | static CORE_ADDR debug_addr; | |
119 | static CORE_ADDR flag_addr; | |
120 | ||
121 | #else /* SVR4_SHARED_LIBS */ | |
122 | ||
123 | #define LM_ADDR(so) ((so) -> lm.l_addr) | |
124 | #define LM_NEXT(so) ((so) -> lm.l_next) | |
125 | #define LM_NAME(so) ((so) -> lm.l_name) | |
126 | /* Test for first link map entry; first entry is the exec-file. */ | |
127 | #define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL) | |
128 | static struct r_debug debug_copy; | |
129 | char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ | |
130 | ||
131 | #endif /* !SVR4_SHARED_LIBS */ | |
132 | ||
133 | struct so_list { | |
134 | struct so_list *next; /* next structure in linked list */ | |
135 | struct link_map lm; /* copy of link map from inferior */ | |
136 | struct link_map *lmaddr; /* addr in inferior lm was read from */ | |
137 | CORE_ADDR lmend; /* upper addr bound of mapped object */ | |
138 | char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */ | |
139 | char symbols_loaded; /* flag: symbols read in yet? */ | |
140 | char from_tty; /* flag: print msgs? */ | |
141 | struct objfile *objfile; /* objfile for loaded lib */ | |
142 | struct section_table *sections; | |
143 | struct section_table *sections_end; | |
144 | struct section_table *textsection; | |
145 | bfd *abfd; | |
146 | }; | |
147 | ||
148 | static struct so_list *so_list_head; /* List of known shared objects */ | |
149 | static CORE_ADDR debug_base; /* Base of dynamic linker structures */ | |
150 | static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ | |
151 | ||
152 | static int solib_cleanup_queued = 0; /* make_run_cleanup called */ | |
153 | ||
154 | extern int | |
155 | fdmatch PARAMS ((int, int)); /* In libiberty */ | |
156 | ||
157 | /* Local function prototypes */ | |
158 | ||
159 | static void | |
160 | do_clear_solib PARAMS ((PTR)); | |
161 | ||
162 | static int | |
163 | match_main PARAMS ((char *)); | |
164 | ||
165 | static void | |
166 | special_symbol_handling PARAMS ((struct so_list *)); | |
167 | ||
168 | static void | |
169 | sharedlibrary_command PARAMS ((char *, int)); | |
170 | ||
171 | static int | |
172 | enable_break PARAMS ((void)); | |
173 | ||
174 | static void | |
175 | info_sharedlibrary_command PARAMS ((char *, int)); | |
176 | ||
177 | static int symbol_add_stub PARAMS ((PTR)); | |
178 | ||
179 | static struct so_list * | |
180 | find_solib PARAMS ((struct so_list *)); | |
181 | ||
182 | static struct link_map * | |
183 | first_link_map_member PARAMS ((void)); | |
184 | ||
185 | static CORE_ADDR | |
186 | locate_base PARAMS ((void)); | |
187 | ||
188 | static int solib_map_sections PARAMS ((PTR)); | |
189 | ||
190 | #ifdef SVR4_SHARED_LIBS | |
191 | ||
192 | static CORE_ADDR | |
193 | elf_locate_base PARAMS ((void)); | |
194 | ||
195 | #else | |
196 | ||
197 | static int | |
198 | disable_break PARAMS ((void)); | |
199 | ||
200 | static void | |
201 | allocate_rt_common_objfile PARAMS ((void)); | |
202 | ||
203 | static void | |
204 | solib_add_common_symbols PARAMS ((struct rtc_symb *)); | |
205 | ||
206 | #endif | |
207 | ||
208 | void _initialize_solib PARAMS ((void)); | |
209 | ||
210 | /* If non-zero, this is a prefix that will be added to the front of the name | |
211 | shared libraries with an absolute filename for loading. */ | |
212 | static char *solib_absolute_prefix = NULL; | |
213 | ||
214 | /* If non-empty, this is a search path for loading non-absolute shared library | |
215 | symbol files. This takes precedence over the environment variables PATH | |
216 | and LD_LIBRARY_PATH. */ | |
217 | static char *solib_search_path = NULL; | |
218 | ||
219 | /* | |
220 | ||
221 | LOCAL FUNCTION | |
222 | ||
223 | solib_map_sections -- open bfd and build sections for shared lib | |
224 | ||
225 | SYNOPSIS | |
226 | ||
227 | static int solib_map_sections (struct so_list *so) | |
228 | ||
229 | DESCRIPTION | |
230 | ||
231 | Given a pointer to one of the shared objects in our list | |
232 | of mapped objects, use the recorded name to open a bfd | |
233 | descriptor for the object, build a section table, and then | |
234 | relocate all the section addresses by the base address at | |
235 | which the shared object was mapped. | |
236 | ||
237 | FIXMES | |
238 | ||
239 | In most (all?) cases the shared object file name recorded in the | |
240 | dynamic linkage tables will be a fully qualified pathname. For | |
241 | cases where it isn't, do we really mimic the systems search | |
242 | mechanism correctly in the below code (particularly the tilde | |
243 | expansion stuff?). | |
244 | */ | |
245 | ||
246 | static int | |
247 | solib_map_sections (arg) | |
248 | PTR arg; | |
249 | { | |
250 | struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */ | |
251 | char *filename; | |
252 | char *scratch_pathname; | |
253 | int scratch_chan; | |
254 | struct section_table *p; | |
255 | struct cleanup *old_chain; | |
256 | bfd *abfd; | |
257 | ||
258 | filename = tilde_expand (so -> so_name); | |
259 | ||
260 | if (solib_absolute_prefix && ROOTED_P (filename)) | |
261 | /* Prefix shared libraries with absolute filenames with | |
262 | SOLIB_ABSOLUTE_PREFIX. */ | |
263 | { | |
264 | char *pfxed_fn; | |
265 | int pfx_len; | |
266 | ||
267 | pfx_len = strlen (solib_absolute_prefix); | |
268 | ||
269 | /* Remove trailing slashes. */ | |
270 | while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1])) | |
271 | pfx_len--; | |
272 | ||
273 | pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1); | |
274 | strcpy (pfxed_fn, solib_absolute_prefix); | |
275 | strcat (pfxed_fn, filename); | |
276 | free (filename); | |
277 | ||
278 | filename = pfxed_fn; | |
279 | } | |
280 | ||
281 | old_chain = make_cleanup (free, filename); | |
282 | ||
283 | scratch_chan = -1; | |
284 | ||
285 | if (solib_search_path) | |
286 | scratch_chan = openp (solib_search_path, | |
287 | 1, filename, O_RDONLY, 0, &scratch_pathname); | |
288 | if (scratch_chan < 0) | |
289 | scratch_chan = openp (get_in_environ (inferior_environ, "PATH"), | |
290 | 1, filename, O_RDONLY, 0, &scratch_pathname); | |
291 | if (scratch_chan < 0) | |
292 | { | |
293 | scratch_chan = openp (get_in_environ | |
294 | (inferior_environ, "LD_LIBRARY_PATH"), | |
295 | 1, filename, O_RDONLY, 0, &scratch_pathname); | |
296 | } | |
297 | if (scratch_chan < 0) | |
298 | { | |
299 | perror_with_name (filename); | |
300 | } | |
301 | /* Leave scratch_pathname allocated. abfd->name will point to it. */ | |
302 | ||
303 | abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan); | |
304 | if (!abfd) | |
305 | { | |
306 | close (scratch_chan); | |
307 | error ("Could not open `%s' as an executable file: %s", | |
308 | scratch_pathname, bfd_errmsg (bfd_get_error ())); | |
309 | } | |
310 | /* Leave bfd open, core_xfer_memory and "info files" need it. */ | |
311 | so -> abfd = abfd; | |
312 | abfd -> cacheable = true; | |
313 | ||
314 | /* copy full path name into so_name, so that later symbol_file_add can find | |
315 | it */ | |
316 | if (strlen (scratch_pathname) >= MAX_PATH_SIZE) | |
317 | error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure."); | |
318 | strcpy (so->so_name, scratch_pathname); | |
319 | ||
320 | if (!bfd_check_format (abfd, bfd_object)) | |
321 | { | |
322 | error ("\"%s\": not in executable format: %s.", | |
323 | scratch_pathname, bfd_errmsg (bfd_get_error ())); | |
324 | } | |
325 | if (build_section_table (abfd, &so -> sections, &so -> sections_end)) | |
326 | { | |
327 | error ("Can't find the file sections in `%s': %s", | |
328 | bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ())); | |
329 | } | |
330 | ||
331 | for (p = so -> sections; p < so -> sections_end; p++) | |
332 | { | |
333 | /* Relocate the section binding addresses as recorded in the shared | |
334 | object's file by the base address to which the object was actually | |
335 | mapped. */ | |
336 | p -> addr += (CORE_ADDR) LM_ADDR (so); | |
337 | p -> endaddr += (CORE_ADDR) LM_ADDR (so); | |
338 | so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend); | |
339 | if (STREQ (p -> the_bfd_section -> name, ".text")) | |
340 | { | |
341 | so -> textsection = p; | |
342 | } | |
343 | } | |
344 | ||
345 | /* Free the file names, close the file now. */ | |
346 | do_cleanups (old_chain); | |
347 | ||
348 | return (1); | |
349 | } | |
350 | ||
351 | #ifndef SVR4_SHARED_LIBS | |
352 | ||
353 | /* Allocate the runtime common object file. */ | |
354 | ||
355 | static void | |
356 | allocate_rt_common_objfile () | |
357 | { | |
358 | struct objfile *objfile; | |
359 | struct objfile *last_one; | |
360 | ||
361 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
362 | memset (objfile, 0, sizeof (struct objfile)); | |
363 | objfile -> md = NULL; | |
364 | obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0, | |
365 | xmalloc, free); | |
366 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, | |
367 | free); | |
368 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
369 | free); | |
370 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
371 | free); | |
372 | objfile -> name = mstrsave (objfile -> md, "rt_common"); | |
373 | ||
374 | /* Add this file onto the tail of the linked list of other such files. */ | |
375 | ||
376 | objfile -> next = NULL; | |
377 | if (object_files == NULL) | |
378 | object_files = objfile; | |
379 | else | |
380 | { | |
381 | for (last_one = object_files; | |
382 | last_one -> next; | |
383 | last_one = last_one -> next); | |
384 | last_one -> next = objfile; | |
385 | } | |
386 | ||
387 | rt_common_objfile = objfile; | |
388 | } | |
389 | ||
390 | /* Read all dynamically loaded common symbol definitions from the inferior | |
391 | and put them into the minimal symbol table for the runtime common | |
392 | objfile. */ | |
393 | ||
394 | static void | |
395 | solib_add_common_symbols (rtc_symp) | |
396 | struct rtc_symb *rtc_symp; | |
397 | { | |
398 | struct rtc_symb inferior_rtc_symb; | |
399 | struct nlist inferior_rtc_nlist; | |
400 | int len; | |
401 | char *name; | |
402 | ||
403 | /* Remove any runtime common symbols from previous runs. */ | |
404 | ||
405 | if (rt_common_objfile != NULL && rt_common_objfile -> minimal_symbol_count) | |
406 | { | |
407 | obstack_free (&rt_common_objfile -> symbol_obstack, 0); | |
408 | obstack_specify_allocation (&rt_common_objfile -> symbol_obstack, 0, 0, | |
409 | xmalloc, free); | |
410 | rt_common_objfile -> minimal_symbol_count = 0; | |
411 | rt_common_objfile -> msymbols = NULL; | |
412 | } | |
413 | ||
414 | init_minimal_symbol_collection (); | |
415 | make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0); | |
416 | ||
417 | while (rtc_symp) | |
418 | { | |
419 | read_memory ((CORE_ADDR) rtc_symp, | |
420 | (char *) &inferior_rtc_symb, | |
421 | sizeof (inferior_rtc_symb)); | |
422 | read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp, | |
423 | (char *) &inferior_rtc_nlist, | |
424 | sizeof(inferior_rtc_nlist)); | |
425 | if (inferior_rtc_nlist.n_type == N_COMM) | |
426 | { | |
427 | /* FIXME: The length of the symbol name is not available, but in the | |
428 | current implementation the common symbol is allocated immediately | |
429 | behind the name of the symbol. */ | |
430 | len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx; | |
431 | ||
432 | name = xmalloc (len); | |
433 | read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len); | |
434 | ||
435 | /* Allocate the runtime common objfile if necessary. */ | |
436 | if (rt_common_objfile == NULL) | |
437 | allocate_rt_common_objfile (); | |
438 | ||
439 | prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value, | |
440 | mst_bss, rt_common_objfile); | |
441 | free (name); | |
442 | } | |
443 | rtc_symp = inferior_rtc_symb.rtc_next; | |
444 | } | |
445 | ||
446 | /* Install any minimal symbols that have been collected as the current | |
447 | minimal symbols for the runtime common objfile. */ | |
448 | ||
449 | install_minimal_symbols (rt_common_objfile); | |
450 | } | |
451 | ||
452 | #endif /* SVR4_SHARED_LIBS */ | |
453 | ||
454 | ||
455 | #ifdef SVR4_SHARED_LIBS | |
456 | ||
457 | static CORE_ADDR | |
458 | bfd_lookup_symbol PARAMS ((bfd *, char *)); | |
459 | ||
460 | /* | |
461 | ||
462 | LOCAL FUNCTION | |
463 | ||
464 | bfd_lookup_symbol -- lookup the value for a specific symbol | |
465 | ||
466 | SYNOPSIS | |
467 | ||
468 | CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname) | |
469 | ||
470 | DESCRIPTION | |
471 | ||
472 | An expensive way to lookup the value of a single symbol for | |
473 | bfd's that are only temporary anyway. This is used by the | |
474 | shared library support to find the address of the debugger | |
475 | interface structures in the shared library. | |
476 | ||
477 | Note that 0 is specifically allowed as an error return (no | |
478 | such symbol). | |
479 | */ | |
480 | ||
481 | static CORE_ADDR | |
482 | bfd_lookup_symbol (abfd, symname) | |
483 | bfd *abfd; | |
484 | char *symname; | |
485 | { | |
486 | unsigned int storage_needed; | |
487 | asymbol *sym; | |
488 | asymbol **symbol_table; | |
489 | unsigned int number_of_symbols; | |
490 | unsigned int i; | |
491 | struct cleanup *back_to; | |
492 | CORE_ADDR symaddr = 0; | |
493 | ||
494 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
495 | ||
496 | if (storage_needed > 0) | |
497 | { | |
498 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
499 | back_to = make_cleanup (free, (PTR)symbol_table); | |
500 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); | |
501 | ||
502 | for (i = 0; i < number_of_symbols; i++) | |
503 | { | |
504 | sym = *symbol_table++; | |
505 | if (STREQ (sym -> name, symname)) | |
506 | { | |
507 | /* Bfd symbols are section relative. */ | |
508 | symaddr = sym -> value + sym -> section -> vma; | |
509 | break; | |
510 | } | |
511 | } | |
512 | do_cleanups (back_to); | |
513 | } | |
514 | return (symaddr); | |
515 | } | |
516 | ||
517 | #ifdef HANDLE_SVR4_EXEC_EMULATORS | |
518 | ||
519 | /* | |
520 | Solaris BCP (the part of Solaris which allows it to run SunOS4 | |
521 | a.out files) throws in another wrinkle. Solaris does not fill | |
522 | in the usual a.out link map structures when running BCP programs, | |
523 | the only way to get at them is via groping around in the dynamic | |
524 | linker. | |
525 | The dynamic linker and it's structures are located in the shared | |
526 | C library, which gets run as the executable's "interpreter" by | |
527 | the kernel. | |
528 | ||
529 | Note that we can assume nothing about the process state at the time | |
530 | we need to find these structures. We may be stopped on the first | |
531 | instruction of the interpreter (C shared library), the first | |
532 | instruction of the executable itself, or somewhere else entirely | |
533 | (if we attached to the process for example). | |
534 | */ | |
535 | ||
536 | static char *debug_base_symbols[] = { | |
537 | "r_debug", /* Solaris 2.3 */ | |
538 | "_r_debug", /* Solaris 2.1, 2.2 */ | |
539 | NULL | |
540 | }; | |
541 | ||
542 | static int | |
543 | look_for_base PARAMS ((int, CORE_ADDR)); | |
544 | ||
545 | /* | |
546 | ||
547 | LOCAL FUNCTION | |
548 | ||
549 | look_for_base -- examine file for each mapped address segment | |
550 | ||
551 | SYNOPSYS | |
552 | ||
553 | static int look_for_base (int fd, CORE_ADDR baseaddr) | |
554 | ||
555 | DESCRIPTION | |
556 | ||
557 | This function is passed to proc_iterate_over_mappings, which | |
558 | causes it to get called once for each mapped address space, with | |
559 | an open file descriptor for the file mapped to that space, and the | |
560 | base address of that mapped space. | |
561 | ||
562 | Our job is to find the debug base symbol in the file that this | |
563 | fd is open on, if it exists, and if so, initialize the dynamic | |
564 | linker structure base address debug_base. | |
565 | ||
566 | Note that this is a computationally expensive proposition, since | |
567 | we basically have to open a bfd on every call, so we specifically | |
568 | avoid opening the exec file. | |
569 | */ | |
570 | ||
571 | static int | |
572 | look_for_base (fd, baseaddr) | |
573 | int fd; | |
574 | CORE_ADDR baseaddr; | |
575 | { | |
576 | bfd *interp_bfd; | |
577 | CORE_ADDR address = 0; | |
578 | char **symbolp; | |
579 | ||
580 | /* If the fd is -1, then there is no file that corresponds to this | |
581 | mapped memory segment, so skip it. Also, if the fd corresponds | |
582 | to the exec file, skip it as well. */ | |
583 | ||
584 | if (fd == -1 | |
585 | || (exec_bfd != NULL | |
586 | && fdmatch (fileno ((FILE *)(exec_bfd -> iostream)), fd))) | |
587 | { | |
588 | return (0); | |
589 | } | |
590 | ||
591 | /* Try to open whatever random file this fd corresponds to. Note that | |
592 | we have no way currently to find the filename. Don't gripe about | |
593 | any problems we might have, just fail. */ | |
594 | ||
595 | if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL) | |
596 | { | |
597 | return (0); | |
598 | } | |
599 | if (!bfd_check_format (interp_bfd, bfd_object)) | |
600 | { | |
601 | /* FIXME-leak: on failure, might not free all memory associated with | |
602 | interp_bfd. */ | |
603 | bfd_close (interp_bfd); | |
604 | return (0); | |
605 | } | |
606 | ||
607 | /* Now try to find our debug base symbol in this file, which we at | |
608 | least know to be a valid ELF executable or shared library. */ | |
609 | ||
610 | for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++) | |
611 | { | |
612 | address = bfd_lookup_symbol (interp_bfd, *symbolp); | |
613 | if (address != 0) | |
614 | { | |
615 | break; | |
616 | } | |
617 | } | |
618 | if (address == 0) | |
619 | { | |
620 | /* FIXME-leak: on failure, might not free all memory associated with | |
621 | interp_bfd. */ | |
622 | bfd_close (interp_bfd); | |
623 | return (0); | |
624 | } | |
625 | ||
626 | /* Eureka! We found the symbol. But now we may need to relocate it | |
627 | by the base address. If the symbol's value is less than the base | |
628 | address of the shared library, then it hasn't yet been relocated | |
629 | by the dynamic linker, and we have to do it ourself. FIXME: Note | |
630 | that we make the assumption that the first segment that corresponds | |
631 | to the shared library has the base address to which the library | |
632 | was relocated. */ | |
633 | ||
634 | if (address < baseaddr) | |
635 | { | |
636 | address += baseaddr; | |
637 | } | |
638 | debug_base = address; | |
639 | /* FIXME-leak: on failure, might not free all memory associated with | |
640 | interp_bfd. */ | |
641 | bfd_close (interp_bfd); | |
642 | return (1); | |
643 | } | |
644 | #endif /* HANDLE_SVR4_EXEC_EMULATORS */ | |
645 | ||
646 | /* | |
647 | ||
648 | LOCAL FUNCTION | |
649 | ||
650 | elf_locate_base -- locate the base address of dynamic linker structs | |
651 | for SVR4 elf targets. | |
652 | ||
653 | SYNOPSIS | |
654 | ||
655 | CORE_ADDR elf_locate_base (void) | |
656 | ||
657 | DESCRIPTION | |
658 | ||
659 | For SVR4 elf targets the address of the dynamic linker's runtime | |
660 | structure is contained within the dynamic info section in the | |
661 | executable file. The dynamic section is also mapped into the | |
662 | inferior address space. Because the runtime loader fills in the | |
663 | real address before starting the inferior, we have to read in the | |
664 | dynamic info section from the inferior address space. | |
665 | If there are any errors while trying to find the address, we | |
666 | silently return 0, otherwise the found address is returned. | |
667 | ||
668 | */ | |
669 | ||
670 | static CORE_ADDR | |
671 | elf_locate_base () | |
672 | { | |
673 | sec_ptr dyninfo_sect; | |
674 | int dyninfo_sect_size; | |
675 | CORE_ADDR dyninfo_addr; | |
676 | char *buf; | |
677 | char *bufend; | |
678 | ||
679 | /* Find the start address of the .dynamic section. */ | |
680 | dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic"); | |
681 | if (dyninfo_sect == NULL) | |
682 | return 0; | |
683 | dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect); | |
684 | ||
685 | /* Read in .dynamic section, silently ignore errors. */ | |
686 | dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect); | |
687 | buf = alloca (dyninfo_sect_size); | |
688 | if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size)) | |
689 | return 0; | |
690 | ||
691 | /* Find the DT_DEBUG entry in the the .dynamic section. | |
692 | For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has | |
693 | no DT_DEBUG entries. */ | |
694 | #ifndef TARGET_ELF64 | |
695 | for (bufend = buf + dyninfo_sect_size; | |
696 | buf < bufend; | |
697 | buf += sizeof (Elf32_External_Dyn)) | |
698 | { | |
699 | Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *)buf; | |
700 | long dyn_tag; | |
701 | CORE_ADDR dyn_ptr; | |
702 | ||
703 | dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
704 | if (dyn_tag == DT_NULL) | |
705 | break; | |
706 | else if (dyn_tag == DT_DEBUG) | |
707 | { | |
708 | dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr); | |
709 | return dyn_ptr; | |
710 | } | |
711 | #ifdef DT_MIPS_RLD_MAP | |
712 | else if (dyn_tag == DT_MIPS_RLD_MAP) | |
713 | { | |
714 | char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; | |
715 | ||
716 | /* DT_MIPS_RLD_MAP contains a pointer to the address | |
717 | of the dynamic link structure. */ | |
718 | dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr); | |
719 | if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf))) | |
720 | return 0; | |
721 | return extract_unsigned_integer (pbuf, sizeof (pbuf)); | |
722 | } | |
723 | #endif | |
724 | } | |
725 | #else /* ELF64 */ | |
726 | for (bufend = buf + dyninfo_sect_size; | |
727 | buf < bufend; | |
728 | buf += sizeof (Elf64_External_Dyn)) | |
729 | { | |
730 | Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *)buf; | |
731 | long dyn_tag; | |
732 | CORE_ADDR dyn_ptr; | |
733 | ||
734 | dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
735 | if (dyn_tag == DT_NULL) | |
736 | break; | |
737 | else if (dyn_tag == DT_DEBUG) | |
738 | { | |
739 | dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr); | |
740 | return dyn_ptr; | |
741 | } | |
742 | } | |
743 | #endif | |
744 | ||
745 | /* DT_DEBUG entry not found. */ | |
746 | return 0; | |
747 | } | |
748 | ||
749 | #endif /* SVR4_SHARED_LIBS */ | |
750 | ||
751 | /* | |
752 | ||
753 | LOCAL FUNCTION | |
754 | ||
755 | locate_base -- locate the base address of dynamic linker structs | |
756 | ||
757 | SYNOPSIS | |
758 | ||
759 | CORE_ADDR locate_base (void) | |
760 | ||
761 | DESCRIPTION | |
762 | ||
763 | For both the SunOS and SVR4 shared library implementations, if the | |
764 | inferior executable has been linked dynamically, there is a single | |
765 | address somewhere in the inferior's data space which is the key to | |
766 | locating all of the dynamic linker's runtime structures. This | |
767 | address is the value of the debug base symbol. The job of this | |
768 | function is to find and return that address, or to return 0 if there | |
769 | is no such address (the executable is statically linked for example). | |
770 | ||
771 | For SunOS, the job is almost trivial, since the dynamic linker and | |
772 | all of it's structures are statically linked to the executable at | |
773 | link time. Thus the symbol for the address we are looking for has | |
774 | already been added to the minimal symbol table for the executable's | |
775 | objfile at the time the symbol file's symbols were read, and all we | |
776 | have to do is look it up there. Note that we explicitly do NOT want | |
777 | to find the copies in the shared library. | |
778 | ||
779 | The SVR4 version is a bit more complicated because the address | |
780 | is contained somewhere in the dynamic info section. We have to go | |
781 | to a lot more work to discover the address of the debug base symbol. | |
782 | Because of this complexity, we cache the value we find and return that | |
783 | value on subsequent invocations. Note there is no copy in the | |
784 | executable symbol tables. | |
785 | ||
786 | */ | |
787 | ||
788 | static CORE_ADDR | |
789 | locate_base () | |
790 | { | |
791 | ||
792 | #ifndef SVR4_SHARED_LIBS | |
793 | ||
794 | struct minimal_symbol *msymbol; | |
795 | CORE_ADDR address = 0; | |
796 | char **symbolp; | |
797 | ||
798 | /* For SunOS, we want to limit the search for the debug base symbol to the | |
799 | executable being debugged, since there is a duplicate named symbol in the | |
800 | shared library. We don't want the shared library versions. */ | |
801 | ||
802 | for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++) | |
803 | { | |
804 | msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile); | |
805 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
806 | { | |
807 | address = SYMBOL_VALUE_ADDRESS (msymbol); | |
808 | return (address); | |
809 | } | |
810 | } | |
811 | return (0); | |
812 | ||
813 | #else /* SVR4_SHARED_LIBS */ | |
814 | ||
815 | /* Check to see if we have a currently valid address, and if so, avoid | |
816 | doing all this work again and just return the cached address. If | |
817 | we have no cached address, try to locate it in the dynamic info | |
818 | section for ELF executables. */ | |
819 | ||
820 | if (debug_base == 0) | |
821 | { | |
822 | if (exec_bfd != NULL | |
823 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
824 | debug_base = elf_locate_base (); | |
825 | #ifdef HANDLE_SVR4_EXEC_EMULATORS | |
826 | /* Try it the hard way for emulated executables. */ | |
827 | else if (inferior_pid != 0 && target_has_execution) | |
828 | proc_iterate_over_mappings (look_for_base); | |
829 | #endif | |
830 | } | |
831 | return (debug_base); | |
832 | ||
833 | #endif /* !SVR4_SHARED_LIBS */ | |
834 | ||
835 | } | |
836 | ||
837 | /* | |
838 | ||
839 | LOCAL FUNCTION | |
840 | ||
841 | first_link_map_member -- locate first member in dynamic linker's map | |
842 | ||
843 | SYNOPSIS | |
844 | ||
845 | static struct link_map *first_link_map_member (void) | |
846 | ||
847 | DESCRIPTION | |
848 | ||
849 | Read in a copy of the first member in the inferior's dynamic | |
850 | link map from the inferior's dynamic linker structures, and return | |
851 | a pointer to the copy in our address space. | |
852 | */ | |
853 | ||
854 | static struct link_map * | |
855 | first_link_map_member () | |
856 | { | |
857 | struct link_map *lm = NULL; | |
858 | ||
859 | #ifndef SVR4_SHARED_LIBS | |
860 | ||
861 | read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy)); | |
862 | if (dynamic_copy.ld_version >= 2) | |
863 | { | |
864 | /* It is a version that we can deal with, so read in the secondary | |
865 | structure and find the address of the link map list from it. */ | |
866 | read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy, | |
867 | sizeof (struct link_dynamic_2)); | |
868 | lm = ld_2_copy.ld_loaded; | |
869 | } | |
870 | ||
871 | #else /* SVR4_SHARED_LIBS */ | |
872 | ||
873 | read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug)); | |
874 | /* FIXME: Perhaps we should validate the info somehow, perhaps by | |
875 | checking r_version for a known version number, or r_state for | |
876 | RT_CONSISTENT. */ | |
877 | lm = debug_copy.r_map; | |
878 | ||
879 | #endif /* !SVR4_SHARED_LIBS */ | |
880 | ||
881 | return (lm); | |
882 | } | |
883 | ||
884 | /* | |
885 | ||
886 | LOCAL FUNCTION | |
887 | ||
888 | find_solib -- step through list of shared objects | |
889 | ||
890 | SYNOPSIS | |
891 | ||
892 | struct so_list *find_solib (struct so_list *so_list_ptr) | |
893 | ||
894 | DESCRIPTION | |
895 | ||
896 | This module contains the routine which finds the names of any | |
897 | loaded "images" in the current process. The argument in must be | |
898 | NULL on the first call, and then the returned value must be passed | |
899 | in on subsequent calls. This provides the capability to "step" down | |
900 | the list of loaded objects. On the last object, a NULL value is | |
901 | returned. | |
902 | ||
903 | The arg and return value are "struct link_map" pointers, as defined | |
904 | in <link.h>. | |
905 | */ | |
906 | ||
907 | static struct so_list * | |
908 | find_solib (so_list_ptr) | |
909 | struct so_list *so_list_ptr; /* Last lm or NULL for first one */ | |
910 | { | |
911 | struct so_list *so_list_next = NULL; | |
912 | struct link_map *lm = NULL; | |
913 | struct so_list *new; | |
914 | ||
915 | if (so_list_ptr == NULL) | |
916 | { | |
917 | /* We are setting up for a new scan through the loaded images. */ | |
918 | if ((so_list_next = so_list_head) == NULL) | |
919 | { | |
920 | /* We have not already read in the dynamic linking structures | |
921 | from the inferior, lookup the address of the base structure. */ | |
922 | debug_base = locate_base (); | |
923 | if (debug_base != 0) | |
924 | { | |
925 | /* Read the base structure in and find the address of the first | |
926 | link map list member. */ | |
927 | lm = first_link_map_member (); | |
928 | } | |
929 | } | |
930 | } | |
931 | else | |
932 | { | |
933 | /* We have been called before, and are in the process of walking | |
934 | the shared library list. Advance to the next shared object. */ | |
935 | if ((lm = LM_NEXT (so_list_ptr)) == NULL) | |
936 | { | |
937 | /* We have hit the end of the list, so check to see if any were | |
938 | added, but be quiet if we can't read from the target any more. */ | |
939 | int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr, | |
940 | (char *) &(so_list_ptr -> lm), | |
941 | sizeof (struct link_map)); | |
942 | if (status == 0) | |
943 | { | |
944 | lm = LM_NEXT (so_list_ptr); | |
945 | } | |
946 | else | |
947 | { | |
948 | lm = NULL; | |
949 | } | |
950 | } | |
951 | so_list_next = so_list_ptr -> next; | |
952 | } | |
953 | if ((so_list_next == NULL) && (lm != NULL)) | |
954 | { | |
955 | /* Get next link map structure from inferior image and build a local | |
956 | abbreviated load_map structure */ | |
957 | new = (struct so_list *) xmalloc (sizeof (struct so_list)); | |
958 | memset ((char *) new, 0, sizeof (struct so_list)); | |
959 | new -> lmaddr = lm; | |
960 | /* Add the new node as the next node in the list, or as the root | |
961 | node if this is the first one. */ | |
962 | if (so_list_ptr != NULL) | |
963 | { | |
964 | so_list_ptr -> next = new; | |
965 | } | |
966 | else | |
967 | { | |
968 | so_list_head = new; | |
969 | ||
970 | if (! solib_cleanup_queued) | |
971 | { | |
972 | make_run_cleanup (do_clear_solib, NULL); | |
973 | solib_cleanup_queued = 1; | |
974 | } | |
975 | ||
976 | } | |
977 | so_list_next = new; | |
978 | read_memory ((CORE_ADDR) lm, (char *) &(new -> lm), | |
979 | sizeof (struct link_map)); | |
980 | /* For SVR4 versions, the first entry in the link map is for the | |
981 | inferior executable, so we must ignore it. For some versions of | |
982 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
983 | does have a name, so we can no longer use a missing name to | |
984 | decide when to ignore it. */ | |
985 | if (!IGNORE_FIRST_LINK_MAP_ENTRY (new -> lm)) | |
986 | { | |
987 | int errcode; | |
988 | char *buffer; | |
989 | target_read_string ((CORE_ADDR) LM_NAME (new), &buffer, | |
990 | MAX_PATH_SIZE - 1, &errcode); | |
991 | if (errcode != 0) | |
992 | { | |
993 | warning ("find_solib: Can't read pathname for load map: %s\n", | |
994 | safe_strerror (errcode)); | |
995 | return (so_list_next); | |
996 | } | |
997 | strncpy (new -> so_name, buffer, MAX_PATH_SIZE - 1); | |
998 | new -> so_name[MAX_PATH_SIZE - 1] = '\0'; | |
999 | free (buffer); | |
1000 | catch_errors (solib_map_sections, new, | |
1001 | "Error while mapping shared library sections:\n", | |
1002 | RETURN_MASK_ALL); | |
1003 | } | |
1004 | } | |
1005 | return (so_list_next); | |
1006 | } | |
1007 | ||
1008 | /* A small stub to get us past the arg-passing pinhole of catch_errors. */ | |
1009 | ||
1010 | static int | |
1011 | symbol_add_stub (arg) | |
1012 | PTR arg; | |
1013 | { | |
1014 | register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */ | |
1015 | CORE_ADDR text_addr = 0; | |
1016 | ||
1017 | if (so -> textsection) | |
1018 | text_addr = so -> textsection -> addr; | |
1019 | else if (so -> abfd != NULL) | |
1020 | { | |
1021 | asection *lowest_sect; | |
1022 | ||
1023 | /* If we didn't find a mapped non zero sized .text section, set up | |
1024 | text_addr so that the relocation in symbol_file_add does no harm. */ | |
1025 | ||
1026 | lowest_sect = bfd_get_section_by_name (so -> abfd, ".text"); | |
1027 | if (lowest_sect == NULL) | |
1028 | bfd_map_over_sections (so -> abfd, find_lowest_section, | |
1029 | (PTR) &lowest_sect); | |
1030 | if (lowest_sect) | |
1031 | text_addr = bfd_section_vma (so -> abfd, lowest_sect) | |
1032 | + (CORE_ADDR) LM_ADDR (so); | |
1033 | } | |
1034 | ||
1035 | ALL_OBJFILES (so -> objfile) | |
1036 | { | |
1037 | if (strcmp (so -> objfile -> name, so -> so_name) == 0) | |
1038 | return 1; | |
1039 | } | |
1040 | so -> objfile = | |
1041 | symbol_file_add (so -> so_name, so -> from_tty, | |
1042 | text_addr, | |
1043 | 0, 0, 0, 0, 1); | |
1044 | return (1); | |
1045 | } | |
1046 | ||
1047 | /* This function will check the so name to see if matches the main list. | |
1048 | In some system the main object is in the list, which we want to exclude */ | |
1049 | ||
1050 | static int match_main (soname) | |
1051 | char *soname; | |
1052 | { | |
1053 | char **mainp; | |
1054 | ||
1055 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
1056 | { | |
1057 | if (strcmp (soname, *mainp) == 0) | |
1058 | return (1); | |
1059 | } | |
1060 | ||
1061 | return (0); | |
1062 | } | |
1063 | ||
1064 | /* | |
1065 | ||
1066 | GLOBAL FUNCTION | |
1067 | ||
1068 | solib_add -- add a shared library file to the symtab and section list | |
1069 | ||
1070 | SYNOPSIS | |
1071 | ||
1072 | void solib_add (char *arg_string, int from_tty, | |
1073 | struct target_ops *target) | |
1074 | ||
1075 | DESCRIPTION | |
1076 | ||
1077 | */ | |
1078 | ||
1079 | void | |
1080 | solib_add (arg_string, from_tty, target) | |
1081 | char *arg_string; | |
1082 | int from_tty; | |
1083 | struct target_ops *target; | |
1084 | { | |
1085 | register struct so_list *so = NULL; /* link map state variable */ | |
1086 | ||
1087 | /* Last shared library that we read. */ | |
1088 | struct so_list *so_last = NULL; | |
1089 | ||
1090 | char *re_err; | |
1091 | int count; | |
1092 | int old; | |
1093 | ||
1094 | if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL) | |
1095 | { | |
1096 | error ("Invalid regexp: %s", re_err); | |
1097 | } | |
1098 | ||
1099 | /* Add the shared library sections to the section table of the | |
1100 | specified target, if any. */ | |
1101 | if (target) | |
1102 | { | |
1103 | /* Count how many new section_table entries there are. */ | |
1104 | so = NULL; | |
1105 | count = 0; | |
1106 | while ((so = find_solib (so)) != NULL) | |
1107 | { | |
1108 | if (so -> so_name[0] && !match_main (so -> so_name)) | |
1109 | { | |
1110 | count += so -> sections_end - so -> sections; | |
1111 | } | |
1112 | } | |
1113 | ||
1114 | if (count) | |
1115 | { | |
1116 | int update_coreops; | |
1117 | ||
1118 | /* We must update the to_sections field in the core_ops structure | |
1119 | here, otherwise we dereference a potential dangling pointer | |
1120 | for each call to target_read/write_memory within this routine. */ | |
1121 | update_coreops = core_ops.to_sections == target->to_sections; | |
1122 | ||
1123 | /* Reallocate the target's section table including the new size. */ | |
1124 | if (target -> to_sections) | |
1125 | { | |
1126 | old = target -> to_sections_end - target -> to_sections; | |
1127 | target -> to_sections = (struct section_table *) | |
1128 | xrealloc ((char *)target -> to_sections, | |
1129 | (sizeof (struct section_table)) * (count + old)); | |
1130 | } | |
1131 | else | |
1132 | { | |
1133 | old = 0; | |
1134 | target -> to_sections = (struct section_table *) | |
1135 | xmalloc ((sizeof (struct section_table)) * count); | |
1136 | } | |
1137 | target -> to_sections_end = target -> to_sections + (count + old); | |
1138 | ||
1139 | /* Update the to_sections field in the core_ops structure | |
1140 | if needed. */ | |
1141 | if (update_coreops) | |
1142 | { | |
1143 | core_ops.to_sections = target->to_sections; | |
1144 | core_ops.to_sections_end = target->to_sections_end; | |
1145 | } | |
1146 | ||
1147 | /* Add these section table entries to the target's table. */ | |
1148 | while ((so = find_solib (so)) != NULL) | |
1149 | { | |
1150 | if (so -> so_name[0]) | |
1151 | { | |
1152 | count = so -> sections_end - so -> sections; | |
1153 | memcpy ((char *) (target -> to_sections + old), | |
1154 | so -> sections, | |
1155 | (sizeof (struct section_table)) * count); | |
1156 | old += count; | |
1157 | } | |
1158 | } | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | /* Now add the symbol files. */ | |
1163 | while ((so = find_solib (so)) != NULL) | |
1164 | { | |
1165 | if (so -> so_name[0] && re_exec (so -> so_name) && | |
1166 | !match_main (so -> so_name)) | |
1167 | { | |
1168 | so -> from_tty = from_tty; | |
1169 | if (so -> symbols_loaded) | |
1170 | { | |
1171 | if (from_tty) | |
1172 | { | |
1173 | printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name); | |
1174 | } | |
1175 | } | |
1176 | else if (catch_errors | |
1177 | (symbol_add_stub, so, | |
1178 | "Error while reading shared library symbols:\n", | |
1179 | RETURN_MASK_ALL)) | |
1180 | { | |
1181 | so_last = so; | |
1182 | so -> symbols_loaded = 1; | |
1183 | } | |
1184 | } | |
1185 | } | |
1186 | ||
1187 | /* Getting new symbols may change our opinion about what is | |
1188 | frameless. */ | |
1189 | if (so_last) | |
1190 | reinit_frame_cache (); | |
1191 | ||
1192 | if (so_last) | |
1193 | special_symbol_handling (so_last); | |
1194 | } | |
1195 | ||
1196 | /* | |
1197 | ||
1198 | LOCAL FUNCTION | |
1199 | ||
1200 | info_sharedlibrary_command -- code for "info sharedlibrary" | |
1201 | ||
1202 | SYNOPSIS | |
1203 | ||
1204 | static void info_sharedlibrary_command () | |
1205 | ||
1206 | DESCRIPTION | |
1207 | ||
1208 | Walk through the shared library list and print information | |
1209 | about each attached library. | |
1210 | */ | |
1211 | ||
1212 | static void | |
1213 | info_sharedlibrary_command (ignore, from_tty) | |
1214 | char *ignore; | |
1215 | int from_tty; | |
1216 | { | |
1217 | register struct so_list *so = NULL; /* link map state variable */ | |
1218 | int header_done = 0; | |
1219 | int addr_width; | |
1220 | char *addr_fmt; | |
1221 | ||
1222 | if (exec_bfd == NULL) | |
1223 | { | |
1224 | printf_unfiltered ("No exec file.\n"); | |
1225 | return; | |
1226 | } | |
1227 | ||
1228 | #ifndef TARGET_ELF64 | |
1229 | addr_width = 8+4; | |
1230 | addr_fmt = "08l"; | |
1231 | #else | |
1232 | addr_width = 16+4; | |
1233 | addr_fmt = "016l"; | |
1234 | #endif | |
1235 | ||
1236 | while ((so = find_solib (so)) != NULL) | |
1237 | { | |
1238 | if (so -> so_name[0]) | |
1239 | { | |
1240 | if (!header_done) | |
1241 | { | |
1242 | printf_unfiltered("%-*s%-*s%-12s%s\n", addr_width, "From", | |
1243 | addr_width, "To", "Syms Read", | |
1244 | "Shared Object Library"); | |
1245 | header_done++; | |
1246 | } | |
1247 | ||
1248 | printf_unfiltered ("%-*s", addr_width, | |
1249 | local_hex_string_custom ((unsigned long) LM_ADDR (so), | |
1250 | addr_fmt)); | |
1251 | printf_unfiltered ("%-*s", addr_width, | |
1252 | local_hex_string_custom ((unsigned long) so -> lmend, | |
1253 | addr_fmt)); | |
1254 | printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No"); | |
1255 | printf_unfiltered ("%s\n", so -> so_name); | |
1256 | } | |
1257 | } | |
1258 | if (so_list_head == NULL) | |
1259 | { | |
1260 | printf_unfiltered ("No shared libraries loaded at this time.\n"); | |
1261 | } | |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | ||
1266 | GLOBAL FUNCTION | |
1267 | ||
1268 | solib_address -- check to see if an address is in a shared lib | |
1269 | ||
1270 | SYNOPSIS | |
1271 | ||
1272 | char * solib_address (CORE_ADDR address) | |
1273 | ||
1274 | DESCRIPTION | |
1275 | ||
1276 | Provides a hook for other gdb routines to discover whether or | |
1277 | not a particular address is within the mapped address space of | |
1278 | a shared library. Any address between the base mapping address | |
1279 | and the first address beyond the end of the last mapping, is | |
1280 | considered to be within the shared library address space, for | |
1281 | our purposes. | |
1282 | ||
1283 | For example, this routine is called at one point to disable | |
1284 | breakpoints which are in shared libraries that are not currently | |
1285 | mapped in. | |
1286 | */ | |
1287 | ||
1288 | char * | |
1289 | solib_address (address) | |
1290 | CORE_ADDR address; | |
1291 | { | |
1292 | register struct so_list *so = 0; /* link map state variable */ | |
1293 | ||
1294 | while ((so = find_solib (so)) != NULL) | |
1295 | { | |
1296 | if (so -> so_name[0]) | |
1297 | { | |
1298 | if ((address >= (CORE_ADDR) LM_ADDR (so)) && | |
1299 | (address < (CORE_ADDR) so -> lmend)) | |
1300 | return (so->so_name); | |
1301 | } | |
1302 | } | |
1303 | return (0); | |
1304 | } | |
1305 | ||
1306 | /* Called by free_all_symtabs */ | |
1307 | ||
1308 | void | |
1309 | clear_solib() | |
1310 | { | |
1311 | struct so_list *next; | |
1312 | char *bfd_filename; | |
7a292a7a | 1313 | |
c906108c SS |
1314 | while (so_list_head) |
1315 | { | |
1316 | if (so_list_head -> sections) | |
1317 | { | |
1318 | free ((PTR)so_list_head -> sections); | |
1319 | } | |
1320 | if (so_list_head -> abfd) | |
1321 | { | |
1322 | bfd_filename = bfd_get_filename (so_list_head -> abfd); | |
1323 | if (!bfd_close (so_list_head -> abfd)) | |
1324 | warning ("cannot close \"%s\": %s", | |
1325 | bfd_filename, bfd_errmsg (bfd_get_error ())); | |
1326 | } | |
1327 | else | |
1328 | /* This happens for the executable on SVR4. */ | |
1329 | bfd_filename = NULL; | |
1330 | ||
1331 | next = so_list_head -> next; | |
1332 | if (bfd_filename) | |
1333 | free ((PTR)bfd_filename); | |
1334 | free ((PTR)so_list_head); | |
1335 | so_list_head = next; | |
1336 | } | |
1337 | debug_base = 0; | |
1338 | } | |
1339 | ||
1340 | static void | |
1341 | do_clear_solib (dummy) | |
1342 | PTR dummy; | |
1343 | { | |
1344 | solib_cleanup_queued = 0; | |
1345 | clear_solib (); | |
1346 | } | |
1347 | ||
1348 | #ifdef SVR4_SHARED_LIBS | |
1349 | ||
1350 | /* Return 1 if PC lies in the dynamic symbol resolution code of the | |
1351 | SVR4 run time loader. */ | |
1352 | ||
1353 | static CORE_ADDR interp_text_sect_low; | |
1354 | static CORE_ADDR interp_text_sect_high; | |
1355 | static CORE_ADDR interp_plt_sect_low; | |
1356 | static CORE_ADDR interp_plt_sect_high; | |
1357 | ||
1358 | int | |
1359 | in_svr4_dynsym_resolve_code (pc) | |
1360 | CORE_ADDR pc; | |
1361 | { | |
1362 | return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) | |
1363 | || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) | |
1364 | || in_plt_section (pc, NULL)); | |
1365 | } | |
1366 | #endif | |
1367 | ||
1368 | /* | |
1369 | ||
1370 | LOCAL FUNCTION | |
1371 | ||
1372 | disable_break -- remove the "mapping changed" breakpoint | |
1373 | ||
1374 | SYNOPSIS | |
1375 | ||
1376 | static int disable_break () | |
1377 | ||
1378 | DESCRIPTION | |
1379 | ||
1380 | Removes the breakpoint that gets hit when the dynamic linker | |
1381 | completes a mapping change. | |
1382 | ||
1383 | */ | |
1384 | ||
1385 | #ifndef SVR4_SHARED_LIBS | |
1386 | ||
1387 | static int | |
1388 | disable_break () | |
1389 | { | |
1390 | int status = 1; | |
1391 | ||
1392 | #ifndef SVR4_SHARED_LIBS | |
1393 | ||
1394 | int in_debugger = 0; | |
1395 | ||
1396 | /* Read the debugger structure from the inferior to retrieve the | |
1397 | address of the breakpoint and the original contents of the | |
1398 | breakpoint address. Remove the breakpoint by writing the original | |
1399 | contents back. */ | |
1400 | ||
1401 | read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy)); | |
1402 | ||
1403 | /* Set `in_debugger' to zero now. */ | |
1404 | ||
1405 | write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger)); | |
1406 | ||
1407 | breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr; | |
1408 | write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst, | |
1409 | sizeof (debug_copy.ldd_bp_inst)); | |
1410 | ||
1411 | #else /* SVR4_SHARED_LIBS */ | |
1412 | ||
1413 | /* Note that breakpoint address and original contents are in our address | |
1414 | space, so we just need to write the original contents back. */ | |
1415 | ||
1416 | if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0) | |
1417 | { | |
1418 | status = 0; | |
1419 | } | |
1420 | ||
1421 | #endif /* !SVR4_SHARED_LIBS */ | |
1422 | ||
1423 | /* For the SVR4 version, we always know the breakpoint address. For the | |
1424 | SunOS version we don't know it until the above code is executed. | |
1425 | Grumble if we are stopped anywhere besides the breakpoint address. */ | |
1426 | ||
1427 | if (stop_pc != breakpoint_addr) | |
1428 | { | |
1429 | warning ("stopped at unknown breakpoint while handling shared libraries"); | |
1430 | } | |
1431 | ||
1432 | return (status); | |
1433 | } | |
1434 | ||
1435 | #endif /* #ifdef SVR4_SHARED_LIBS */ | |
1436 | ||
1437 | /* | |
1438 | ||
1439 | LOCAL FUNCTION | |
1440 | ||
1441 | enable_break -- arrange for dynamic linker to hit breakpoint | |
1442 | ||
1443 | SYNOPSIS | |
1444 | ||
1445 | int enable_break (void) | |
1446 | ||
1447 | DESCRIPTION | |
1448 | ||
1449 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
1450 | debugger interface, support for arranging for the inferior to hit | |
1451 | a breakpoint after mapping in the shared libraries. This function | |
1452 | enables that breakpoint. | |
1453 | ||
1454 | For SunOS, there is a special flag location (in_debugger) which we | |
1455 | set to 1. When the dynamic linker sees this flag set, it will set | |
1456 | a breakpoint at a location known only to itself, after saving the | |
1457 | original contents of that place and the breakpoint address itself, | |
1458 | in it's own internal structures. When we resume the inferior, it | |
1459 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
1460 | We handle this (in a different place) by restoring the contents of | |
1461 | the breakpointed location (which is only known after it stops), | |
1462 | chasing around to locate the shared libraries that have been | |
1463 | loaded, then resuming. | |
1464 | ||
1465 | For SVR4, the debugger interface structure contains a member (r_brk) | |
1466 | which is statically initialized at the time the shared library is | |
1467 | built, to the offset of a function (_r_debug_state) which is guaran- | |
1468 | teed to be called once before mapping in a library, and again when | |
1469 | the mapping is complete. At the time we are examining this member, | |
1470 | it contains only the unrelocated offset of the function, so we have | |
1471 | to do our own relocation. Later, when the dynamic linker actually | |
1472 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
1473 | ||
1474 | The debugger interface structure also contains an enumeration which | |
1475 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
1476 | depending upon whether or not the library is being mapped or unmapped, | |
1477 | and then set to RT_CONSISTENT after the library is mapped/unmapped. | |
1478 | */ | |
1479 | ||
1480 | static int | |
1481 | enable_break () | |
1482 | { | |
1483 | int success = 0; | |
1484 | ||
1485 | #ifndef SVR4_SHARED_LIBS | |
1486 | ||
1487 | int j; | |
1488 | int in_debugger; | |
1489 | ||
1490 | /* Get link_dynamic structure */ | |
1491 | ||
1492 | j = target_read_memory (debug_base, (char *) &dynamic_copy, | |
1493 | sizeof (dynamic_copy)); | |
1494 | if (j) | |
1495 | { | |
1496 | /* unreadable */ | |
1497 | return (0); | |
1498 | } | |
1499 | ||
1500 | /* Calc address of debugger interface structure */ | |
1501 | ||
1502 | debug_addr = (CORE_ADDR) dynamic_copy.ldd; | |
1503 | ||
1504 | /* Calc address of `in_debugger' member of debugger interface structure */ | |
1505 | ||
1506 | flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger - | |
1507 | (char *) &debug_copy); | |
1508 | ||
1509 | /* Write a value of 1 to this member. */ | |
1510 | ||
1511 | in_debugger = 1; | |
1512 | write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger)); | |
1513 | success = 1; | |
1514 | ||
1515 | #else /* SVR4_SHARED_LIBS */ | |
1516 | ||
1517 | #ifdef BKPT_AT_SYMBOL | |
1518 | ||
1519 | struct minimal_symbol *msymbol; | |
1520 | char **bkpt_namep; | |
1521 | asection *interp_sect; | |
1522 | ||
1523 | /* First, remove all the solib event breakpoints. Their addresses | |
1524 | may have changed since the last time we ran the program. */ | |
1525 | remove_solib_event_breakpoints (); | |
1526 | ||
1527 | #ifdef SVR4_SHARED_LIBS | |
1528 | interp_text_sect_low = interp_text_sect_high = 0; | |
1529 | interp_plt_sect_low = interp_plt_sect_high = 0; | |
1530 | ||
1531 | /* Find the .interp section; if not found, warn the user and drop | |
1532 | into the old breakpoint at symbol code. */ | |
1533 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
1534 | if (interp_sect) | |
1535 | { | |
1536 | unsigned int interp_sect_size; | |
1537 | char *buf; | |
1538 | CORE_ADDR load_addr; | |
1539 | bfd *tmp_bfd; | |
1540 | CORE_ADDR sym_addr = 0; | |
1541 | ||
1542 | /* Read the contents of the .interp section into a local buffer; | |
1543 | the contents specify the dynamic linker this program uses. */ | |
1544 | interp_sect_size = bfd_section_size (exec_bfd, interp_sect); | |
1545 | buf = alloca (interp_sect_size); | |
1546 | bfd_get_section_contents (exec_bfd, interp_sect, | |
1547 | buf, 0, interp_sect_size); | |
1548 | ||
1549 | /* Now we need to figure out where the dynamic linker was | |
1550 | loaded so that we can load its symbols and place a breakpoint | |
1551 | in the dynamic linker itself. | |
1552 | ||
1553 | This address is stored on the stack. However, I've been unable | |
1554 | to find any magic formula to find it for Solaris (appears to | |
1555 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
1556 | mechanism to find the dynamic linker's base address. */ | |
1557 | tmp_bfd = bfd_openr (buf, gnutarget); | |
1558 | if (tmp_bfd == NULL) | |
1559 | goto bkpt_at_symbol; | |
1560 | ||
1561 | /* Make sure the dynamic linker's really a useful object. */ | |
1562 | if (!bfd_check_format (tmp_bfd, bfd_object)) | |
1563 | { | |
1564 | warning ("Unable to grok dynamic linker %s as an object file", buf); | |
1565 | bfd_close (tmp_bfd); | |
1566 | goto bkpt_at_symbol; | |
1567 | } | |
1568 | ||
1569 | /* We find the dynamic linker's base address by examining the | |
1570 | current pc (which point at the entry point for the dynamic | |
1571 | linker) and subtracting the offset of the entry point. */ | |
1572 | load_addr = read_pc () - tmp_bfd->start_address; | |
1573 | ||
1574 | /* Record the relocated start and end address of the dynamic linker | |
1575 | text and plt section for in_svr4_dynsym_resolve_code. */ | |
1576 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
1577 | if (interp_sect) | |
1578 | { | |
1579 | interp_text_sect_low = | |
1580 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1581 | interp_text_sect_high = | |
1582 | interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1583 | } | |
1584 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1585 | if (interp_sect) | |
1586 | { | |
1587 | interp_plt_sect_low = | |
1588 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1589 | interp_plt_sect_high = | |
1590 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1591 | } | |
1592 | ||
1593 | /* Now try to set a breakpoint in the dynamic linker. */ | |
1594 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1595 | { | |
1596 | sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep); | |
1597 | if (sym_addr != 0) | |
1598 | break; | |
1599 | } | |
1600 | ||
1601 | /* We're done with the temporary bfd. */ | |
1602 | bfd_close (tmp_bfd); | |
1603 | ||
1604 | if (sym_addr != 0) | |
1605 | { | |
1606 | create_solib_event_breakpoint (load_addr + sym_addr); | |
1607 | return 1; | |
1608 | } | |
1609 | ||
1610 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
1611 | linker. Warn and drop into the old code. */ | |
1612 | bkpt_at_symbol: | |
1613 | warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."); | |
1614 | } | |
1615 | #endif | |
1616 | ||
1617 | /* Scan through the list of symbols, trying to look up the symbol and | |
1618 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
1619 | ||
1620 | breakpoint_addr = 0; | |
1621 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) | |
1622 | { | |
1623 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
1624 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1625 | { | |
1626 | create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); | |
1627 | return 1; | |
1628 | } | |
1629 | } | |
1630 | ||
1631 | /* Nothing good happened. */ | |
1632 | success = 0; | |
1633 | ||
1634 | #endif /* BKPT_AT_SYMBOL */ | |
1635 | ||
1636 | #endif /* !SVR4_SHARED_LIBS */ | |
1637 | ||
1638 | return (success); | |
1639 | } | |
1640 | ||
1641 | /* | |
1642 | ||
1643 | GLOBAL FUNCTION | |
1644 | ||
1645 | solib_create_inferior_hook -- shared library startup support | |
1646 | ||
1647 | SYNOPSIS | |
1648 | ||
1649 | void solib_create_inferior_hook() | |
1650 | ||
1651 | DESCRIPTION | |
1652 | ||
1653 | When gdb starts up the inferior, it nurses it along (through the | |
1654 | shell) until it is ready to execute it's first instruction. At this | |
1655 | point, this function gets called via expansion of the macro | |
1656 | SOLIB_CREATE_INFERIOR_HOOK. | |
1657 | ||
1658 | For SunOS executables, this first instruction is typically the | |
1659 | one at "_start", or a similar text label, regardless of whether | |
1660 | the executable is statically or dynamically linked. The runtime | |
1661 | startup code takes care of dynamically linking in any shared | |
1662 | libraries, once gdb allows the inferior to continue. | |
1663 | ||
1664 | For SVR4 executables, this first instruction is either the first | |
1665 | instruction in the dynamic linker (for dynamically linked | |
1666 | executables) or the instruction at "start" for statically linked | |
1667 | executables. For dynamically linked executables, the system | |
1668 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
1669 | and starts it running. The dynamic linker maps in any needed | |
1670 | shared libraries, maps in the actual user executable, and then | |
1671 | jumps to "start" in the user executable. | |
1672 | ||
1673 | For both SunOS shared libraries, and SVR4 shared libraries, we | |
1674 | can arrange to cooperate with the dynamic linker to discover the | |
1675 | names of shared libraries that are dynamically linked, and the | |
1676 | base addresses to which they are linked. | |
1677 | ||
1678 | This function is responsible for discovering those names and | |
1679 | addresses, and saving sufficient information about them to allow | |
1680 | their symbols to be read at a later time. | |
1681 | ||
1682 | FIXME | |
1683 | ||
1684 | Between enable_break() and disable_break(), this code does not | |
1685 | properly handle hitting breakpoints which the user might have | |
1686 | set in the startup code or in the dynamic linker itself. Proper | |
1687 | handling will probably have to wait until the implementation is | |
1688 | changed to use the "breakpoint handler function" method. | |
1689 | ||
1690 | Also, what if child has exit()ed? Must exit loop somehow. | |
1691 | */ | |
1692 | ||
1693 | void | |
1694 | solib_create_inferior_hook() | |
1695 | { | |
1696 | /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base | |
1697 | yet. In fact, in the case of a SunOS4 executable being run on | |
1698 | Solaris, we can't get it yet. find_solib will get it when it needs | |
1699 | it. */ | |
1700 | #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL)) | |
1701 | if ((debug_base = locate_base ()) == 0) | |
1702 | { | |
1703 | /* Can't find the symbol or the executable is statically linked. */ | |
1704 | return; | |
1705 | } | |
1706 | #endif | |
1707 | ||
1708 | if (!enable_break ()) | |
1709 | { | |
1710 | warning ("shared library handler failed to enable breakpoint"); | |
1711 | return; | |
1712 | } | |
1713 | ||
1714 | #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS) | |
1715 | /* SCO and SunOS need the loop below, other systems should be using the | |
1716 | special shared library breakpoints and the shared library breakpoint | |
1717 | service routine. | |
1718 | ||
1719 | Now run the target. It will eventually hit the breakpoint, at | |
1720 | which point all of the libraries will have been mapped in and we | |
1721 | can go groveling around in the dynamic linker structures to find | |
1722 | out what we need to know about them. */ | |
1723 | ||
1724 | clear_proceed_status (); | |
1725 | stop_soon_quietly = 1; | |
1726 | stop_signal = TARGET_SIGNAL_0; | |
1727 | do | |
1728 | { | |
1729 | target_resume (-1, 0, stop_signal); | |
1730 | wait_for_inferior (); | |
1731 | } | |
1732 | while (stop_signal != TARGET_SIGNAL_TRAP); | |
1733 | stop_soon_quietly = 0; | |
1734 | ||
1735 | #if !defined(_SCO_DS) | |
1736 | /* We are now either at the "mapping complete" breakpoint (or somewhere | |
1737 | else, a condition we aren't prepared to deal with anyway), so adjust | |
1738 | the PC as necessary after a breakpoint, disable the breakpoint, and | |
1739 | add any shared libraries that were mapped in. */ | |
1740 | ||
1741 | if (DECR_PC_AFTER_BREAK) | |
1742 | { | |
1743 | stop_pc -= DECR_PC_AFTER_BREAK; | |
1744 | write_register (PC_REGNUM, stop_pc); | |
1745 | } | |
1746 | ||
1747 | if (!disable_break ()) | |
1748 | { | |
1749 | warning ("shared library handler failed to disable breakpoint"); | |
1750 | } | |
1751 | ||
1752 | if (auto_solib_add) | |
1753 | solib_add ((char *) 0, 0, (struct target_ops *) 0); | |
1754 | #endif /* ! _SCO_DS */ | |
1755 | #endif | |
1756 | } | |
1757 | ||
1758 | /* | |
1759 | ||
1760 | LOCAL FUNCTION | |
1761 | ||
1762 | special_symbol_handling -- additional shared library symbol handling | |
1763 | ||
1764 | SYNOPSIS | |
1765 | ||
1766 | void special_symbol_handling (struct so_list *so) | |
1767 | ||
1768 | DESCRIPTION | |
1769 | ||
1770 | Once the symbols from a shared object have been loaded in the usual | |
1771 | way, we are called to do any system specific symbol handling that | |
1772 | is needed. | |
1773 | ||
1774 | For SunOS4, this consists of grunging around in the dynamic | |
1775 | linkers structures to find symbol definitions for "common" symbols | |
1776 | and adding them to the minimal symbol table for the runtime common | |
1777 | objfile. | |
1778 | ||
1779 | */ | |
1780 | ||
1781 | static void | |
1782 | special_symbol_handling (so) | |
1783 | struct so_list *so; | |
1784 | { | |
1785 | #ifndef SVR4_SHARED_LIBS | |
1786 | int j; | |
1787 | ||
1788 | if (debug_addr == 0) | |
1789 | { | |
1790 | /* Get link_dynamic structure */ | |
1791 | ||
1792 | j = target_read_memory (debug_base, (char *) &dynamic_copy, | |
1793 | sizeof (dynamic_copy)); | |
1794 | if (j) | |
1795 | { | |
1796 | /* unreadable */ | |
1797 | return; | |
1798 | } | |
1799 | ||
1800 | /* Calc address of debugger interface structure */ | |
1801 | /* FIXME, this needs work for cross-debugging of core files | |
1802 | (byteorder, size, alignment, etc). */ | |
1803 | ||
1804 | debug_addr = (CORE_ADDR) dynamic_copy.ldd; | |
1805 | } | |
1806 | ||
1807 | /* Read the debugger structure from the inferior, just to make sure | |
1808 | we have a current copy. */ | |
1809 | ||
1810 | j = target_read_memory (debug_addr, (char *) &debug_copy, | |
1811 | sizeof (debug_copy)); | |
1812 | if (j) | |
1813 | return; /* unreadable */ | |
1814 | ||
1815 | /* Get common symbol definitions for the loaded object. */ | |
1816 | ||
1817 | if (debug_copy.ldd_cp) | |
1818 | { | |
1819 | solib_add_common_symbols (debug_copy.ldd_cp); | |
1820 | } | |
1821 | ||
1822 | #endif /* !SVR4_SHARED_LIBS */ | |
1823 | } | |
1824 | ||
1825 | ||
1826 | /* | |
1827 | ||
1828 | LOCAL FUNCTION | |
1829 | ||
1830 | sharedlibrary_command -- handle command to explicitly add library | |
1831 | ||
1832 | SYNOPSIS | |
1833 | ||
1834 | static void sharedlibrary_command (char *args, int from_tty) | |
1835 | ||
1836 | DESCRIPTION | |
1837 | ||
1838 | */ | |
1839 | ||
1840 | static void | |
1841 | sharedlibrary_command (args, from_tty) | |
1842 | char *args; | |
1843 | int from_tty; | |
1844 | { | |
1845 | dont_repeat (); | |
1846 | solib_add (args, from_tty, (struct target_ops *) 0); | |
1847 | } | |
1848 | ||
1849 | #endif /* HAVE_LINK_H */ | |
1850 | ||
1851 | void | |
1852 | _initialize_solib() | |
1853 | { | |
1854 | #ifdef HAVE_LINK_H | |
1855 | ||
1856 | add_com ("sharedlibrary", class_files, sharedlibrary_command, | |
1857 | "Load shared object library symbols for files matching REGEXP."); | |
1858 | add_info ("sharedlibrary", info_sharedlibrary_command, | |
1859 | "Status of loaded shared object libraries."); | |
1860 | ||
1861 | add_show_from_set | |
1862 | (add_set_cmd ("auto-solib-add", class_support, var_zinteger, | |
1863 | (char *) &auto_solib_add, | |
1864 | "Set autoloading of shared library symbols.\n\ | |
1865 | If nonzero, symbols from all shared object libraries will be loaded\n\ | |
1866 | automatically when the inferior begins execution or when the dynamic linker\n\ | |
1867 | informs gdb that a new library has been loaded. Otherwise, symbols\n\ | |
1868 | must be loaded manually, using `sharedlibrary'.", | |
1869 | &setlist), | |
1870 | &showlist); | |
1871 | ||
1872 | add_show_from_set | |
1873 | (add_set_cmd ("solib-absolute-prefix", class_support, var_filename, | |
1874 | (char *) &solib_absolute_prefix, | |
1875 | "Set prefix for loading absolute shared library symbol files.\n\ | |
1876 | For other (relative) files, you can add values using `set solib-search-path'.", | |
1877 | &setlist), | |
1878 | &showlist); | |
1879 | add_show_from_set | |
1880 | (add_set_cmd ("solib-search-path", class_support, var_string, | |
1881 | (char *) &solib_search_path, | |
1882 | "Set the search path for loading non-absolute shared library symbol files.\n\ | |
1883 | This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.", | |
1884 | &setlist), | |
1885 | &showlist); | |
1886 | ||
1887 | #endif /* HAVE_LINK_H */ | |
1888 | } |