]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Native support code for HPUX PA-RISC. |
2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
23 | ||
24 | ||
25 | #include "defs.h" | |
26 | #include "inferior.h" | |
27 | #include "target.h" | |
28 | #include <sys/ptrace.h> | |
29 | #include "gdbcore.h" | |
30 | #include <wait.h> | |
31 | #include <signal.h> | |
32 | ||
33 | extern CORE_ADDR text_end; | |
34 | ||
35 | static void fetch_register PARAMS ((int)); | |
36 | ||
37 | void | |
38 | fetch_inferior_registers (regno) | |
39 | int regno; | |
40 | { | |
41 | if (regno == -1) | |
42 | for (regno = 0; regno < NUM_REGS; regno++) | |
43 | fetch_register (regno); | |
44 | else | |
45 | fetch_register (regno); | |
46 | } | |
47 | ||
48 | /* Store our register values back into the inferior. | |
49 | If REGNO is -1, do this for all registers. | |
50 | Otherwise, REGNO specifies which register (so we can save time). */ | |
51 | ||
52 | void | |
53 | store_inferior_registers (regno) | |
54 | int regno; | |
55 | { | |
56 | register unsigned int regaddr; | |
57 | char buf[80]; | |
c906108c SS |
58 | register int i; |
59 | unsigned int offset = U_REGS_OFFSET; | |
60 | int scratch; | |
61 | ||
62 | if (regno >= 0) | |
63 | { | |
64 | if (CANNOT_STORE_REGISTER (regno)) | |
65 | return; | |
66 | regaddr = register_addr (regno, offset); | |
67 | errno = 0; | |
68 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) | |
69 | { | |
70 | scratch = *(int *) ®isters[REGISTER_BYTE (regno)] | 0x3; | |
71 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
72 | scratch); | |
73 | if (errno != 0) | |
74 | { | |
75 | /* Error, even if attached. Failing to write these two | |
76 | registers is pretty serious. */ | |
77 | sprintf (buf, "writing register number %d", regno); | |
78 | perror_with_name (buf); | |
79 | } | |
80 | } | |
81 | else | |
82 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) | |
83 | { | |
84 | errno = 0; | |
85 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
86 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); | |
87 | if (errno != 0) | |
88 | { | |
89 | /* Warning, not error, in case we are attached; sometimes the | |
90 | kernel doesn't let us at the registers. */ | |
91 | char *err = safe_strerror (errno); | |
92 | char *msg = alloca (strlen (err) + 128); | |
93 | sprintf (msg, "writing register %s: %s", | |
94 | REGISTER_NAME (regno), err); | |
95 | warning (msg); | |
96 | return; | |
97 | } | |
98 | regaddr += sizeof(int); | |
99 | } | |
100 | } | |
101 | else | |
102 | for (regno = 0; regno < NUM_REGS; regno++) | |
103 | store_inferior_registers (regno); | |
104 | } | |
105 | ||
106 | /* Fetch one register. */ | |
107 | ||
108 | static void | |
109 | fetch_register (regno) | |
110 | int regno; | |
111 | { | |
112 | register unsigned int regaddr; | |
113 | char buf[MAX_REGISTER_RAW_SIZE]; | |
114 | register int i; | |
115 | ||
116 | /* Offset of registers within the u area. */ | |
117 | unsigned int offset; | |
118 | ||
119 | offset = U_REGS_OFFSET; | |
120 | ||
121 | regaddr = register_addr (regno, offset); | |
122 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) | |
123 | { | |
124 | errno = 0; | |
125 | *(int *) &buf[i] = call_ptrace (PT_RUREGS, inferior_pid, | |
126 | (PTRACE_ARG3_TYPE) regaddr, 0); | |
127 | regaddr += sizeof (int); | |
128 | if (errno != 0) | |
129 | { | |
130 | /* Warning, not error, in case we are attached; sometimes the | |
131 | * kernel doesn't let us at the registers. | |
132 | */ | |
133 | char *err = safe_strerror (errno); | |
134 | char *msg = alloca (strlen (err) + 128); | |
135 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regno), err); | |
136 | warning (msg); | |
137 | goto error_exit; | |
138 | } | |
139 | } | |
140 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) | |
141 | buf[3] &= ~0x3; | |
142 | supply_register (regno, buf); | |
143 | error_exit:; | |
144 | } | |
145 | ||
146 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR | |
147 | to debugger memory starting at MYADDR. Copy to inferior if | |
148 | WRITE is nonzero. | |
149 | ||
150 | Returns the length copied, which is either the LEN argument or zero. | |
151 | This xfer function does not do partial moves, since child_ops | |
152 | doesn't allow memory operations to cross below us in the target stack | |
153 | anyway. */ | |
154 | ||
155 | int | |
156 | child_xfer_memory (memaddr, myaddr, len, write, target) | |
157 | CORE_ADDR memaddr; | |
158 | char *myaddr; | |
159 | int len; | |
160 | int write; | |
161 | struct target_ops *target; /* ignored */ | |
162 | { | |
163 | register int i; | |
164 | /* Round starting address down to longword boundary. */ | |
165 | register CORE_ADDR addr = memaddr & - sizeof (int); | |
166 | /* Round ending address up; get number of longwords that makes. */ | |
167 | register int count | |
168 | = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); | |
169 | ||
170 | /* Allocate buffer of that many longwords. */ | |
171 | /* Note (RT) - This code formerly used alloca, which I have | |
172 | * replaced with xmalloc and a matching free() at the end. | |
173 | * The problem with alloca() is that there is no guarantee of | |
174 | * when it'll be freed, and we were seeing cases of memory | |
175 | * leaks on: | |
176 | * (gdb) watch x | |
177 | * (gdb) cont | |
178 | * where the piled-up alloca's for the child_xfer_memory buffers | |
179 | * were not getting freed. | |
180 | */ | |
181 | register int *buffer = (int *) xmalloc (count * sizeof (int)); | |
182 | ||
183 | if (write) | |
184 | { | |
185 | /* Fill start and end extra bytes of buffer with existing memory data. */ | |
186 | ||
187 | if (addr != memaddr || len < (int)sizeof (int)) { | |
188 | /* Need part of initial word -- fetch it. */ | |
189 | buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, | |
190 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); | |
191 | } | |
192 | ||
193 | if (count > 1) /* FIXME, avoid if even boundary */ | |
194 | { | |
195 | buffer[count - 1] | |
196 | = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, inferior_pid, | |
197 | (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)), | |
198 | 0); | |
199 | } | |
200 | ||
201 | /* Copy data to be written over corresponding part of buffer */ | |
202 | ||
203 | memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); | |
204 | ||
205 | /* Write the entire buffer. */ | |
206 | ||
207 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
208 | { | |
209 | int pt_status; | |
210 | int pt_request; | |
211 | /* The HP-UX kernel crashes if you use PT_WDUSER to write into the text | |
212 | segment. FIXME -- does it work to write into the data segment using | |
213 | WIUSER, or do these idiots really expect us to figure out which segment | |
214 | the address is in, so we can use a separate system call for it??! */ | |
215 | errno = 0; | |
216 | pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER; | |
217 | pt_status = call_ptrace (pt_request, | |
218 | inferior_pid, | |
219 | (PTRACE_ARG3_TYPE) addr, | |
220 | buffer[i]); | |
221 | ||
222 | /* Did we fail? Might we've guessed wrong about which | |
223 | segment this address resides in? Try the other request, | |
224 | and see if that works... | |
225 | */ | |
226 | if ((pt_status == -1) && errno) { | |
227 | errno = 0; | |
228 | pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER; | |
229 | pt_status = call_ptrace (pt_request, | |
230 | inferior_pid, | |
231 | (PTRACE_ARG3_TYPE) addr, | |
232 | buffer[i]); | |
233 | ||
234 | /* No, we still fail. Okay, time to punt. */ | |
235 | if ((pt_status == -1) && errno) | |
236 | { | |
237 | free(buffer); | |
238 | return 0; | |
239 | } | |
240 | } | |
241 | } | |
242 | } | |
243 | else | |
244 | { | |
245 | /* Read all the longwords */ | |
246 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
247 | { | |
248 | errno = 0; | |
249 | buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, | |
250 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); | |
251 | if (errno) { | |
252 | free(buffer); | |
253 | return 0; | |
254 | } | |
255 | QUIT; | |
256 | } | |
257 | ||
258 | /* Copy appropriate bytes out of the buffer. */ | |
259 | memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); | |
260 | } | |
261 | free(buffer); | |
262 | return len; | |
263 | } | |
264 | ||
265 | ||
266 | void | |
267 | child_post_follow_inferior_by_clone () | |
268 | { | |
269 | int status; | |
270 | ||
271 | /* This function is used when following both the parent and child | |
272 | of a fork. In this case, the debugger clones itself. The original | |
273 | debugger follows the parent, the clone follows the child. The | |
274 | original detaches from the child, delivering a SIGSTOP to it to | |
275 | keep it from running away until the clone can attach itself. | |
276 | ||
277 | At this point, the clone has attached to the child. Because of | |
278 | the SIGSTOP, we must now deliver a SIGCONT to the child, or it | |
279 | won't behave properly. */ | |
280 | status = kill (inferior_pid, SIGCONT); | |
281 | } | |
282 | ||
283 | ||
284 | void | |
285 | child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child) | |
286 | int parent_pid; | |
287 | int followed_parent; | |
288 | int child_pid; | |
289 | int followed_child; | |
290 | { | |
291 | ||
292 | /* Are we a debugger that followed the parent of a vfork? If so, | |
293 | then recall that the child's vfork event was delivered to us | |
294 | first. And, that the parent was suspended by the OS until the | |
295 | child's exec or exit events were received. | |
296 | ||
297 | Upon receiving that child vfork, then, we were forced to remove | |
298 | all breakpoints in the child and continue it so that it could | |
299 | reach the exec or exit point. | |
300 | ||
301 | But also recall that the parent and child of a vfork share the | |
302 | same address space. Thus, removing bp's in the child also | |
303 | removed them from the parent. | |
304 | ||
305 | Now that the child has safely exec'd or exited, we must restore | |
306 | the parent's breakpoints before we continue it. Else, we may | |
307 | cause it run past expected stopping points. */ | |
308 | if (followed_parent) | |
309 | { | |
310 | reattach_breakpoints (parent_pid); | |
311 | } | |
312 | ||
313 | /* Are we a debugger that followed the child of a vfork? If so, | |
314 | then recall that we don't actually acquire control of the child | |
315 | until after it has exec'd or exited. | |
316 | */ | |
317 | if (followed_child) | |
318 | { | |
319 | /* If the child has exited, then there's nothing for us to do. | |
320 | In the case of an exec event, we'll let that be handled by | |
321 | the normal mechanism that notices and handles exec events, in | |
322 | resume(). */ | |
323 | ||
324 | } | |
325 | } | |
326 | ||
327 | /* Format a process id, given a pid. Be sure to terminate | |
328 | * this with a null--it's going to be printed via a "%s". | |
329 | */ | |
330 | char * | |
331 | hppa_pid_to_str( pid ) | |
332 | pid_t pid; | |
333 | { | |
334 | static char buf[30]; /* Static because address returned */ | |
335 | ||
336 | sprintf( buf, "process %d\0\0\0\0", pid ); | |
337 | /* Extra NULLs for paranoia's sake */ | |
338 | ||
339 | return buf; | |
340 | } | |
341 | ||
342 | /* Format a thread id, given a tid. Be sure to terminate | |
343 | * this with a null--it's going to be printed via a "%s". | |
344 | * | |
345 | * Note: This is a core-gdb tid, not the actual system tid. | |
346 | * See infttrace.c for details. | |
347 | */ | |
348 | char * | |
349 | hppa_tid_to_str( tid ) | |
350 | pid_t tid; | |
351 | { | |
352 | static char buf[30]; /* Static because address returned */ | |
353 | ||
354 | sprintf( buf, "system thread %d\0\0\0\0", tid ); | |
355 | /* Extra NULLs for paranoia's sake */ | |
356 | ||
357 | return buf; | |
358 | } | |
359 | ||
360 | #if !defined (GDB_NATIVE_HPUX_11) | |
361 | ||
362 | /* The following code is a substitute for the infttrace.c versions used | |
363 | with ttrace() in HPUX 11. */ | |
364 | ||
365 | /* This value is an arbitrary integer. */ | |
366 | #define PT_VERSION 123456 | |
367 | ||
368 | /* This semaphore is used to coordinate the child and parent processes | |
369 | after a fork(), and before an exec() by the child. See | |
370 | parent_attach_all for details. */ | |
371 | ||
372 | typedef struct { | |
373 | int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */ | |
374 | int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */ | |
375 | } startup_semaphore_t; | |
376 | ||
377 | #define SEM_TALK (1) | |
378 | #define SEM_LISTEN (0) | |
379 | ||
380 | static startup_semaphore_t startup_semaphore; | |
381 | ||
382 | extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int)); | |
383 | ||
384 | #ifdef PT_SETTRC | |
385 | /* This function causes the caller's process to be traced by its | |
386 | parent. This is intended to be called after GDB forks itself, | |
387 | and before the child execs the target. | |
388 | ||
389 | Note that HP-UX ptrace is rather funky in how this is done. | |
390 | If the parent wants to get the initial exec event of a child, | |
391 | it must set the ptrace event mask of the child to include execs. | |
392 | (The child cannot do this itself.) This must be done after the | |
393 | child is forked, but before it execs. | |
394 | ||
395 | To coordinate the parent and child, we implement a semaphore using | |
396 | pipes. After SETTRC'ing itself, the child tells the parent that | |
397 | it is now traceable by the parent, and waits for the parent's | |
398 | acknowledgement. The parent can then set the child's event mask, | |
399 | and notify the child that it can now exec. | |
400 | ||
401 | (The acknowledgement by parent happens as a result of a call to | |
402 | child_acknowledge_created_inferior.) */ | |
403 | ||
404 | int | |
405 | parent_attach_all (pid, addr, data) | |
406 | int pid; | |
407 | PTRACE_ARG3_TYPE addr; | |
408 | int data; | |
409 | { | |
410 | int pt_status = 0; | |
411 | ||
412 | /* We need a memory home for a constant. */ | |
413 | int tc_magic_child = PT_VERSION; | |
414 | int tc_magic_parent = 0; | |
415 | ||
416 | /* The remainder of this function is only useful for HPUX 10.0 and | |
417 | later, as it depends upon the ability to request notification | |
418 | of specific kinds of events by the kernel. */ | |
419 | #if defined(PT_SET_EVENT_MASK) | |
420 | ||
421 | /* Notify the parent that we're potentially ready to exec(). */ | |
422 | write (startup_semaphore.child_channel[SEM_TALK], | |
423 | &tc_magic_child, | |
424 | sizeof (tc_magic_child)); | |
425 | ||
426 | /* Wait for acknowledgement from the parent. */ | |
427 | read (startup_semaphore.parent_channel[SEM_LISTEN], | |
428 | &tc_magic_parent, | |
429 | sizeof (tc_magic_parent)); | |
430 | if (tc_magic_child != tc_magic_parent) | |
431 | warning ("mismatched semaphore magic"); | |
432 | ||
433 | /* Discard our copy of the semaphore. */ | |
434 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
435 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
436 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
437 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
438 | #endif | |
439 | ||
440 | return 0; | |
441 | } | |
442 | #endif | |
443 | ||
444 | int | |
445 | hppa_require_attach (pid) | |
446 | int pid; | |
447 | { | |
448 | int pt_status; | |
449 | CORE_ADDR pc; | |
450 | CORE_ADDR pc_addr; | |
451 | unsigned int regs_offset; | |
452 | ||
453 | /* Are we already attached? There appears to be no explicit way to | |
454 | answer this via ptrace, so we try something which should be | |
455 | innocuous if we are attached. If that fails, then we assume | |
456 | we're not attached, and so attempt to make it so. */ | |
457 | ||
458 | errno = 0; | |
459 | regs_offset = U_REGS_OFFSET; | |
460 | pc_addr = register_addr (PC_REGNUM, regs_offset); | |
461 | pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0); | |
462 | ||
463 | if (errno) | |
464 | { | |
465 | errno = 0; | |
466 | pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); | |
467 | ||
468 | if (errno) | |
469 | return -1; | |
470 | ||
471 | /* Now we really are attached. */ | |
472 | errno = 0; | |
473 | } | |
474 | attach_flag = 1; | |
475 | return pid; | |
476 | } | |
477 | ||
478 | int | |
479 | hppa_require_detach (pid, signal) | |
480 | int pid; | |
481 | int signal; | |
482 | { | |
483 | errno = 0; | |
484 | call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal); | |
485 | errno = 0; /* Ignore any errors. */ | |
486 | return pid; | |
487 | } | |
488 | ||
489 | /* Since ptrace doesn't support memory page-protection events, which | |
490 | are used to implement "hardware" watchpoints on HP-UX, these are | |
491 | dummy versions, which perform no useful work. */ | |
492 | ||
493 | void | |
494 | hppa_enable_page_protection_events (pid) | |
495 | int pid; | |
496 | { | |
497 | } | |
498 | ||
499 | void | |
500 | hppa_disable_page_protection_events (pid) | |
501 | int pid; | |
502 | { | |
503 | } | |
504 | ||
505 | int | |
506 | hppa_insert_hw_watchpoint (pid, start, len, type) | |
507 | int pid; | |
508 | CORE_ADDR start; | |
509 | LONGEST len; | |
510 | int type; | |
511 | { | |
512 | error ("Hardware watchpoints not implemented on this platform."); | |
513 | } | |
514 | ||
515 | int | |
516 | hppa_remove_hw_watchpoint (pid, start, len, type) | |
517 | int pid; | |
518 | CORE_ADDR start; | |
519 | LONGEST len; | |
520 | enum bptype type; | |
521 | { | |
522 | error ("Hardware watchpoints not implemented on this platform."); | |
523 | } | |
524 | ||
525 | int | |
526 | hppa_can_use_hw_watchpoint (type, cnt, ot) | |
527 | enum bptype type; | |
528 | int cnt; | |
529 | enum bptype ot; | |
530 | { | |
531 | return 0; | |
532 | } | |
533 | ||
534 | int | |
535 | hppa_range_profitable_for_hw_watchpoint (pid, start, len) | |
536 | int pid; | |
537 | CORE_ADDR start; | |
538 | LONGEST len; | |
539 | { | |
540 | error ("Hardware watchpoints not implemented on this platform."); | |
541 | } | |
542 | ||
543 | char * | |
544 | hppa_pid_or_tid_to_str (id) | |
545 | pid_t id; | |
546 | { | |
547 | /* In the ptrace world, there are only processes. */ | |
548 | return hppa_pid_to_str (id); | |
549 | } | |
550 | ||
551 | /* This function has no meaning in a non-threaded world. Thus, we | |
552 | return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in | |
553 | hppa-tdep.c. */ | |
554 | ||
555 | pid_t | |
556 | hppa_switched_threads (pid) | |
557 | pid_t pid; | |
558 | { | |
559 | return (pid_t) 0; | |
560 | } | |
561 | ||
562 | void | |
563 | hppa_ensure_vforking_parent_remains_stopped (pid) | |
564 | int pid; | |
565 | { | |
566 | /* This assumes that the vforked parent is presently stopped, and | |
567 | that the vforked child has just delivered its first exec event. | |
568 | Calling kill() this way will cause the SIGTRAP to be delivered as | |
569 | soon as the parent is resumed, which happens as soon as the | |
570 | vforked child is resumed. See wait_for_inferior for the use of | |
571 | this function. */ | |
572 | kill (pid, SIGTRAP); | |
573 | } | |
574 | ||
575 | int | |
576 | hppa_resume_execd_vforking_child_to_get_parent_vfork () | |
577 | { | |
578 | return 1; /* Yes, the child must be resumed. */ | |
579 | } | |
580 | ||
581 | void | |
582 | require_notification_of_events (pid) | |
583 | int pid; | |
584 | { | |
585 | #if defined(PT_SET_EVENT_MASK) | |
586 | int pt_status; | |
587 | ptrace_event_t ptrace_events; | |
588 | ||
589 | /* Instruct the kernel as to the set of events we wish to be | |
590 | informed of. (This support does not exist before HPUX 10.0. | |
591 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
592 | <sys/ptrace.h>, then we're being built on pre-10.0.) | |
593 | */ | |
594 | memset (&ptrace_events, 0, sizeof (ptrace_events)); | |
595 | ||
596 | /* Note: By default, all signals are visible to us. If we wish | |
597 | the kernel to keep certain signals hidden from us, we do it | |
598 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
599 | each such signal here, before doing PT_SET_EVENT_MASK. | |
600 | */ | |
601 | sigemptyset (&ptrace_events.pe_signals); | |
602 | ||
603 | ptrace_events.pe_set_event = 0; | |
604 | ||
605 | ptrace_events.pe_set_event |= PTRACE_SIGNAL; | |
606 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
607 | ptrace_events.pe_set_event |= PTRACE_FORK; | |
608 | ptrace_events.pe_set_event |= PTRACE_VFORK; | |
609 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
610 | ptrace_events.pe_set_event |= PTRACE_EXIT; | |
611 | */ | |
612 | ||
613 | errno = 0; | |
614 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
615 | pid, | |
616 | (PTRACE_ARG3_TYPE) &ptrace_events, | |
617 | sizeof (ptrace_events)); | |
618 | if (errno) | |
619 | perror_with_name ("ptrace"); | |
620 | if (pt_status < 0) | |
621 | return; | |
622 | #endif | |
623 | } | |
624 | ||
625 | void | |
626 | require_notification_of_exec_events (pid) | |
627 | int pid; | |
628 | { | |
629 | #if defined(PT_SET_EVENT_MASK) | |
630 | int pt_status; | |
631 | ptrace_event_t ptrace_events; | |
632 | ||
633 | /* Instruct the kernel as to the set of events we wish to be | |
634 | informed of. (This support does not exist before HPUX 10.0. | |
635 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
636 | <sys/ptrace.h>, then we're being built on pre-10.0.) | |
637 | */ | |
638 | memset (&ptrace_events, 0, sizeof (ptrace_events)); | |
639 | ||
640 | /* Note: By default, all signals are visible to us. If we wish | |
641 | the kernel to keep certain signals hidden from us, we do it | |
642 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
643 | each such signal here, before doing PT_SET_EVENT_MASK. | |
644 | */ | |
645 | sigemptyset (&ptrace_events.pe_signals); | |
646 | ||
647 | ptrace_events.pe_set_event = 0; | |
648 | ||
649 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
650 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
651 | ptrace_events.pe_set_event |= PTRACE_EXIT; | |
652 | */ | |
653 | ||
654 | errno = 0; | |
655 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
656 | pid, | |
657 | (PTRACE_ARG3_TYPE) &ptrace_events, | |
658 | sizeof (ptrace_events)); | |
659 | if (errno) | |
660 | perror_with_name ("ptrace"); | |
661 | if (pt_status < 0) | |
662 | return; | |
663 | #endif | |
664 | } | |
665 | ||
666 | /* This function is called by the parent process, with pid being the | |
667 | ID of the child process, after the debugger has forked. */ | |
668 | ||
669 | void | |
670 | child_acknowledge_created_inferior (pid) | |
671 | int pid; | |
672 | { | |
673 | /* We need a memory home for a constant. */ | |
674 | int tc_magic_parent = PT_VERSION; | |
675 | int tc_magic_child = 0; | |
676 | ||
677 | /* Wait for the child to tell us that it has forked. */ | |
678 | read (startup_semaphore.child_channel[SEM_LISTEN], | |
679 | &tc_magic_child, | |
680 | sizeof(tc_magic_child)); | |
681 | ||
682 | /* Notify the child that it can exec. | |
683 | ||
684 | In the infttrace.c variant of this function, we set the child's | |
685 | event mask after the fork but before the exec. In the ptrace | |
686 | world, it seems we can't set the event mask until after the exec. */ | |
687 | ||
688 | write (startup_semaphore.parent_channel[SEM_TALK], | |
689 | &tc_magic_parent, | |
690 | sizeof (tc_magic_parent)); | |
691 | ||
692 | /* We'd better pause a bit before trying to set the event mask, | |
693 | though, to ensure that the exec has happened. We don't want to | |
694 | wait() on the child, because that'll screw up the upper layers | |
695 | of gdb's execution control that expect to see the exec event. | |
696 | ||
697 | After an exec, the child is no longer executing gdb code. Hence, | |
698 | we can't have yet another synchronization via the pipes. We'll | |
699 | just sleep for a second, and hope that's enough delay... */ | |
700 | ||
701 | sleep (1); | |
702 | ||
703 | /* Instruct the kernel as to the set of events we wish to be | |
704 | informed of. */ | |
705 | ||
706 | require_notification_of_exec_events (pid); | |
707 | ||
708 | /* Discard our copy of the semaphore. */ | |
709 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
710 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
711 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
712 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
713 | } | |
714 | ||
715 | void | |
716 | child_post_startup_inferior (pid) | |
717 | int pid; | |
718 | ||
719 | { | |
720 | require_notification_of_events (pid); | |
721 | } | |
722 | ||
723 | void | |
724 | child_post_attach (pid) | |
725 | int pid; | |
726 | { | |
727 | require_notification_of_events (pid); | |
728 | } | |
729 | ||
730 | int | |
731 | child_insert_fork_catchpoint (pid) | |
732 | int pid; | |
733 | { | |
734 | /* This request is only available on HPUX 10.0 and later. */ | |
735 | #if !defined(PT_SET_EVENT_MASK) | |
736 | error ("Unable to catch forks prior to HPUX 10.0"); | |
737 | #else | |
738 | /* Enable reporting of fork events from the kernel. */ | |
739 | /* ??rehrauer: For the moment, we're always enabling these events, | |
740 | and just ignoring them if there's no catchpoint to catch them. | |
741 | */ | |
742 | return 0; | |
743 | #endif | |
744 | } | |
745 | ||
746 | int | |
747 | child_remove_fork_catchpoint (pid) | |
748 | int pid; | |
749 | { | |
750 | /* This request is only available on HPUX 10.0 and later. */ | |
751 | #if !defined(PT_SET_EVENT_MASK) | |
752 | error ("Unable to catch forks prior to HPUX 10.0"); | |
753 | #else | |
754 | /* Disable reporting of fork events from the kernel. */ | |
755 | /* ??rehrauer: For the moment, we're always enabling these events, | |
756 | and just ignoring them if there's no catchpoint to catch them. */ | |
757 | return 0; | |
758 | #endif | |
759 | } | |
760 | ||
761 | int | |
762 | child_insert_vfork_catchpoint (pid) | |
763 | int pid; | |
764 | { | |
765 | /* This request is only available on HPUX 10.0 and later. */ | |
766 | #if !defined(PT_SET_EVENT_MASK) | |
767 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
768 | #else | |
769 | /* Enable reporting of vfork events from the kernel. */ | |
770 | /* ??rehrauer: For the moment, we're always enabling these events, | |
771 | and just ignoring them if there's no catchpoint to catch them. */ | |
772 | return 0; | |
773 | #endif | |
774 | } | |
775 | ||
776 | int | |
777 | child_remove_vfork_catchpoint (pid) | |
778 | int pid; | |
779 | { | |
780 | /* This request is only available on HPUX 10.0 and later. */ | |
781 | #if !defined(PT_SET_EVENT_MASK) | |
782 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
783 | #else | |
784 | /* Disable reporting of vfork events from the kernel. */ | |
785 | /* ??rehrauer: For the moment, we're always enabling these events, | |
786 | and just ignoring them if there's no catchpoint to catch them. */ | |
787 | return 0; | |
788 | #endif | |
789 | } | |
790 | ||
791 | int | |
792 | child_has_forked (pid, childpid) | |
793 | int pid; | |
794 | int * childpid; | |
795 | { | |
796 | /* This request is only available on HPUX 10.0 and later. */ | |
797 | #if !defined(PT_GET_PROCESS_STATE) | |
798 | *childpid = 0; | |
799 | return 0; | |
800 | #else | |
801 | int pt_status; | |
802 | ptrace_state_t ptrace_state; | |
803 | ||
804 | errno = 0; | |
805 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
806 | pid, | |
807 | (PTRACE_ARG3_TYPE) &ptrace_state, | |
808 | sizeof (ptrace_state)); | |
809 | if (errno) | |
810 | perror_with_name ("ptrace"); | |
811 | if (pt_status < 0) | |
812 | return 0; | |
813 | ||
814 | if (ptrace_state.pe_report_event & PTRACE_FORK) | |
815 | { | |
816 | *childpid = ptrace_state.pe_other_pid; | |
817 | return 1; | |
818 | } | |
819 | ||
820 | return 0; | |
821 | #endif | |
822 | } | |
823 | ||
824 | int | |
825 | child_has_vforked (pid, childpid) | |
826 | int pid; | |
827 | int * childpid; | |
828 | { | |
829 | /* This request is only available on HPUX 10.0 and later. */ | |
830 | #if !defined(PT_GET_PROCESS_STATE) | |
831 | *childpid = 0; | |
832 | return 0; | |
833 | ||
834 | #else | |
835 | int pt_status; | |
836 | ptrace_state_t ptrace_state; | |
837 | ||
838 | errno = 0; | |
839 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
840 | pid, | |
841 | (PTRACE_ARG3_TYPE) &ptrace_state, | |
842 | sizeof (ptrace_state)); | |
843 | if (errno) | |
844 | perror_with_name ("ptrace"); | |
845 | if (pt_status < 0) | |
846 | return 0; | |
847 | ||
848 | if (ptrace_state.pe_report_event & PTRACE_VFORK) | |
849 | { | |
850 | *childpid = ptrace_state.pe_other_pid; | |
851 | return 1; | |
852 | } | |
853 | ||
854 | return 0; | |
855 | #endif | |
856 | } | |
857 | ||
858 | int | |
859 | child_can_follow_vfork_prior_to_exec () | |
860 | { | |
861 | /* ptrace doesn't allow this. */ | |
862 | return 0; | |
863 | } | |
864 | ||
865 | int | |
866 | child_insert_exec_catchpoint (pid) | |
867 | int pid; | |
868 | { | |
869 | /* This request is only available on HPUX 10.0 and later. | |
870 | */ | |
871 | #if !defined(PT_SET_EVENT_MASK) | |
872 | error ("Unable to catch execs prior to HPUX 10.0"); | |
873 | ||
874 | #else | |
875 | /* Enable reporting of exec events from the kernel. */ | |
876 | /* ??rehrauer: For the moment, we're always enabling these events, | |
877 | and just ignoring them if there's no catchpoint to catch them. | |
878 | */ | |
879 | return 0; | |
880 | #endif | |
881 | } | |
882 | ||
883 | int | |
884 | child_remove_exec_catchpoint (pid) | |
885 | int pid; | |
886 | { | |
887 | /* This request is only available on HPUX 10.0 and later. | |
888 | */ | |
889 | #if !defined(PT_SET_EVENT_MASK) | |
890 | error ("Unable to catch execs prior to HPUX 10.0"); | |
891 | ||
892 | #else | |
893 | /* Disable reporting of exec events from the kernel. */ | |
894 | /* ??rehrauer: For the moment, we're always enabling these events, | |
895 | and just ignoring them if there's no catchpoint to catch them. | |
896 | */ | |
897 | return 0; | |
898 | #endif | |
899 | } | |
900 | ||
901 | int | |
902 | child_has_execd (pid, execd_pathname) | |
903 | int pid; | |
904 | char ** execd_pathname; | |
905 | { | |
906 | ||
907 | /* This request is only available on HPUX 10.0 and later. | |
908 | */ | |
909 | #if !defined(PT_GET_PROCESS_STATE) | |
910 | *execd_pathname = NULL; | |
911 | return 0; | |
912 | ||
913 | #else | |
914 | int pt_status; | |
915 | ptrace_state_t ptrace_state; | |
916 | ||
917 | errno = 0; | |
918 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
919 | pid, | |
920 | (PTRACE_ARG3_TYPE) &ptrace_state, | |
921 | sizeof (ptrace_state)); | |
922 | if (errno) | |
923 | perror_with_name ("ptrace"); | |
924 | if (pt_status < 0) | |
925 | return 0; | |
926 | ||
927 | if (ptrace_state.pe_report_event & PTRACE_EXEC) | |
928 | { | |
929 | char * exec_file = target_pid_to_exec_file (pid); | |
930 | *execd_pathname = savestring (exec_file, strlen (exec_file)); | |
931 | return 1; | |
932 | } | |
933 | ||
934 | return 0; | |
935 | #endif | |
936 | } | |
937 | ||
938 | int | |
939 | child_reported_exec_events_per_exec_call () | |
940 | { | |
941 | return 2; /* ptrace reports the event twice per call. */ | |
942 | } | |
943 | ||
944 | int | |
945 | child_has_syscall_event (pid, kind, syscall_id) | |
946 | int pid; | |
947 | enum target_waitkind *kind; | |
948 | int *syscall_id; | |
949 | { | |
950 | /* This request is only available on HPUX 10.30 and later, via | |
951 | the ttrace interface. */ | |
952 | ||
953 | *kind = TARGET_WAITKIND_SPURIOUS; | |
954 | *syscall_id = -1; | |
955 | return 0; | |
956 | } | |
957 | ||
958 | char * | |
959 | child_pid_to_exec_file (pid) | |
960 | int pid; | |
961 | { | |
962 | static char exec_file_buffer[1024]; | |
963 | int pt_status; | |
964 | CORE_ADDR top_of_stack; | |
965 | char four_chars[4]; | |
966 | int name_index; | |
967 | int i; | |
968 | int saved_inferior_pid; | |
969 | boolean done; | |
970 | ||
971 | #ifdef PT_GET_PROCESS_PATHNAME | |
972 | /* As of 10.x HP-UX, there's an explicit request to get the pathname. */ | |
973 | pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME, | |
974 | pid, | |
975 | (PTRACE_ARG3_TYPE) exec_file_buffer, | |
976 | sizeof (exec_file_buffer) - 1); | |
977 | if (pt_status == 0) | |
978 | return exec_file_buffer; | |
979 | #endif | |
980 | ||
981 | /* It appears that this request is broken prior to 10.30. | |
982 | If it fails, try a really, truly amazingly gross hack | |
983 | that DDE uses, of pawing through the process' data | |
984 | segment to find the pathname. */ | |
985 | ||
986 | top_of_stack = 0x7b03a000; | |
987 | name_index = 0; | |
988 | done = 0; | |
989 | ||
990 | /* On the chance that pid != inferior_pid, set inferior_pid | |
991 | to pid, so that (grrrr!) implicit uses of inferior_pid get | |
992 | the right id. */ | |
993 | ||
994 | saved_inferior_pid = inferior_pid; | |
995 | inferior_pid = pid; | |
996 | ||
997 | /* Try to grab a null-terminated string. */ | |
998 | while (! done) | |
999 | { | |
1000 | if (target_read_memory (top_of_stack, four_chars, 4) != 0) | |
1001 | { | |
1002 | inferior_pid = saved_inferior_pid; | |
1003 | return NULL; | |
1004 | } | |
1005 | for (i = 0; i < 4; i++) | |
1006 | { | |
1007 | exec_file_buffer[name_index++] = four_chars[i]; | |
1008 | done = (four_chars[i] == '\0'); | |
1009 | if (done) | |
1010 | break; | |
1011 | } | |
1012 | top_of_stack += 4; | |
1013 | } | |
1014 | ||
1015 | if (exec_file_buffer[0] == '\0') | |
1016 | { | |
1017 | inferior_pid = saved_inferior_pid; | |
1018 | return NULL; | |
1019 | } | |
1020 | ||
1021 | inferior_pid = saved_inferior_pid; | |
1022 | return exec_file_buffer; | |
1023 | } | |
1024 | ||
1025 | void | |
1026 | pre_fork_inferior () | |
1027 | { | |
1028 | int status; | |
1029 | ||
1030 | status = pipe (startup_semaphore.parent_channel); | |
1031 | if (status < 0) | |
1032 | { | |
1033 | warning ("error getting parent pipe for startup semaphore"); | |
1034 | return; | |
1035 | } | |
1036 | ||
1037 | status = pipe (startup_semaphore.child_channel); | |
1038 | if (status < 0) | |
1039 | { | |
1040 | warning ("error getting child pipe for startup semaphore"); | |
1041 | return; | |
1042 | } | |
1043 | } | |
1044 | ||
1045 | \f | |
1046 | /* Check to see if the given thread is alive. | |
1047 | ||
1048 | This is a no-op, as ptrace doesn't support threads, so we just | |
1049 | return "TRUE". */ | |
1050 | ||
1051 | int | |
1052 | child_thread_alive (pid) | |
1053 | int pid; | |
1054 | { | |
1055 | return 1; | |
1056 | } | |
1057 | ||
1058 | #endif /* ! GDB_NATIVE_HPUX_11 */ |