]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Read dbx symbol tables and convert to internal format, for GDB. |
2 | Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | /* This module provides three functions: dbx_symfile_init, | |
22 | which initializes to read a symbol file; dbx_new_init, which | |
23 | discards existing cached information when all symbols are being | |
24 | discarded; and dbx_symfile_read, which reads a symbol table | |
25 | from a file. | |
26 | ||
27 | dbx_symfile_read only does the minimum work necessary for letting the | |
28 | user "name" things symbolically; it does not read the entire symtab. | |
29 | Instead, it reads the external and static symbols and puts them in partial | |
30 | symbol tables. When more extensive information is requested of a | |
31 | file, the corresponding partial symbol table is mutated into a full | |
32 | fledged symbol table by going back and reading the symbols | |
33 | for real. dbx_psymtab_to_symtab() is the function that does this */ | |
34 | ||
35 | #include "defs.h" | |
36 | #include "gdb_string.h" | |
37 | ||
38 | #if defined(USG) || defined(__CYGNUSCLIB__) | |
39 | #include <sys/types.h> | |
40 | #include <fcntl.h> | |
41 | #endif | |
42 | ||
43 | #include "obstack.h" | |
44 | #include "gdb_stat.h" | |
45 | #include <ctype.h> | |
46 | #include "symtab.h" | |
47 | #include "breakpoint.h" | |
48 | #include "command.h" | |
49 | #include "target.h" | |
50 | #include "gdbcore.h" /* for bfd stuff */ | |
51 | #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */ | |
52 | #include "symfile.h" | |
53 | #include "objfiles.h" | |
54 | #include "buildsym.h" | |
55 | #include "stabsread.h" | |
56 | #include "gdb-stabs.h" | |
57 | #include "demangle.h" | |
58 | #include "language.h" /* Needed inside partial-stab.h */ | |
59 | #include "complaints.h" | |
60 | ||
61 | #include "aout/aout64.h" | |
62 | #include "aout/stab_gnu.h" /* We always use GNU stabs, not native, now */ | |
63 | ||
64 | \f | |
65 | /* This macro returns the size field of a minimal symbol, which is normally | |
66 | stored in the "info" field. The macro can be overridden for specific | |
67 | targets (e.g. MIPS16) that use the info field for other purposes. */ | |
68 | #ifndef MSYMBOL_SIZE | |
69 | #define MSYMBOL_SIZE(msym) ((long) MSYMBOL_INFO (msym)) | |
70 | #endif | |
71 | ||
72 | ||
73 | /* We put a pointer to this structure in the read_symtab_private field | |
74 | of the psymtab. */ | |
75 | ||
76 | struct symloc { | |
77 | ||
78 | /* Offset within the file symbol table of first local symbol for this | |
79 | file. */ | |
80 | ||
81 | int ldsymoff; | |
82 | ||
83 | /* Length (in bytes) of the section of the symbol table devoted to | |
84 | this file's symbols (actually, the section bracketed may contain | |
85 | more than just this file's symbols). If ldsymlen is 0, the only | |
86 | reason for this thing's existence is the dependency list. Nothing | |
87 | else will happen when it is read in. */ | |
88 | ||
89 | int ldsymlen; | |
90 | ||
91 | /* The size of each symbol in the symbol file (in external form). */ | |
92 | ||
93 | int symbol_size; | |
94 | ||
95 | /* Further information needed to locate the symbols if they are in | |
96 | an ELF file. */ | |
97 | ||
98 | int symbol_offset; | |
99 | int string_offset; | |
100 | int file_string_offset; | |
101 | }; | |
102 | ||
103 | #define LDSYMOFF(p) (((struct symloc *)((p)->read_symtab_private))->ldsymoff) | |
104 | #define LDSYMLEN(p) (((struct symloc *)((p)->read_symtab_private))->ldsymlen) | |
105 | #define SYMLOC(p) ((struct symloc *)((p)->read_symtab_private)) | |
106 | #define SYMBOL_SIZE(p) (SYMLOC(p)->symbol_size) | |
107 | #define SYMBOL_OFFSET(p) (SYMLOC(p)->symbol_offset) | |
108 | #define STRING_OFFSET(p) (SYMLOC(p)->string_offset) | |
109 | #define FILE_STRING_OFFSET(p) (SYMLOC(p)->file_string_offset) | |
110 | ||
111 | \f | |
112 | /* Remember what we deduced to be the source language of this psymtab. */ | |
113 | ||
114 | static enum language psymtab_language = language_unknown; | |
115 | ||
116 | /* Nonzero means give verbose info on gdb action. From main.c. */ | |
117 | ||
118 | extern int info_verbose; | |
119 | ||
120 | /* The BFD for this file -- implicit parameter to next_symbol_text. */ | |
121 | ||
122 | static bfd *symfile_bfd; | |
123 | ||
124 | /* The size of each symbol in the symbol file (in external form). | |
125 | This is set by dbx_symfile_read when building psymtabs, and by | |
126 | dbx_psymtab_to_symtab when building symtabs. */ | |
127 | ||
128 | static unsigned symbol_size; | |
129 | ||
130 | /* This is the offset of the symbol table in the executable file. */ | |
131 | ||
132 | static unsigned symbol_table_offset; | |
133 | ||
134 | /* This is the offset of the string table in the executable file. */ | |
135 | ||
136 | static unsigned string_table_offset; | |
137 | ||
138 | /* For elf+stab executables, the n_strx field is not a simple index | |
139 | into the string table. Instead, each .o file has a base offset in | |
140 | the string table, and the associated symbols contain offsets from | |
141 | this base. The following two variables contain the base offset for | |
142 | the current and next .o files. */ | |
143 | ||
144 | static unsigned int file_string_table_offset; | |
145 | static unsigned int next_file_string_table_offset; | |
146 | ||
147 | /* .o and NLM files contain unrelocated addresses which are based at | |
148 | 0. When non-zero, this flag disables some of the special cases for | |
149 | Solaris elf+stab text addresses at location 0. */ | |
150 | ||
151 | static int symfile_relocatable = 0; | |
152 | ||
153 | /* If this is nonzero, N_LBRAC, N_RBRAC, and N_SLINE entries are | |
154 | relative to the function start address. */ | |
155 | ||
156 | static int block_address_function_relative = 0; | |
157 | \f | |
158 | /* The lowest text address we have yet encountered. This is needed | |
159 | because in an a.out file, there is no header field which tells us | |
160 | what address the program is actually going to be loaded at, so we | |
161 | need to make guesses based on the symbols (which *are* relocated to | |
162 | reflect the address it will be loaded at). */ | |
163 | ||
164 | static CORE_ADDR lowest_text_address; | |
165 | ||
166 | /* Non-zero if there is any line number info in the objfile. Prevents | |
167 | end_psymtab from discarding an otherwise empty psymtab. */ | |
168 | ||
169 | static int has_line_numbers; | |
170 | ||
171 | /* Complaints about the symbols we have encountered. */ | |
172 | ||
173 | struct complaint lbrac_complaint = | |
174 | {"bad block start address patched", 0, 0}; | |
175 | ||
176 | struct complaint string_table_offset_complaint = | |
177 | {"bad string table offset in symbol %d", 0, 0}; | |
178 | ||
179 | struct complaint unknown_symtype_complaint = | |
180 | {"unknown symbol type %s", 0, 0}; | |
181 | ||
182 | struct complaint unknown_symchar_complaint = | |
183 | {"unknown symbol descriptor `%c'", 0, 0}; | |
184 | ||
185 | struct complaint lbrac_rbrac_complaint = | |
186 | {"block start larger than block end", 0, 0}; | |
187 | ||
188 | struct complaint lbrac_unmatched_complaint = | |
189 | {"unmatched N_LBRAC before symtab pos %d", 0, 0}; | |
190 | ||
191 | struct complaint lbrac_mismatch_complaint = | |
192 | {"N_LBRAC/N_RBRAC symbol mismatch at symtab pos %d", 0, 0}; | |
193 | ||
194 | struct complaint repeated_header_complaint = | |
195 | {"\"repeated\" header file %s not previously seen, at symtab pos %d", 0, 0}; | |
196 | ||
197 | struct complaint unclaimed_bincl_complaint = | |
198 | {"N_BINCL %s not in entries for any file, at symtab pos %d", 0, 0}; | |
7a292a7a SS |
199 | \f |
200 | /* find_text_range --- find start and end of loadable code sections | |
201 | ||
202 | The find_text_range function finds the shortest address range that | |
203 | encloses all sections containing executable code, and stores it in | |
204 | objfile's text_addr and text_size members. | |
205 | ||
206 | dbx_symfile_read will use this to finish off the partial symbol | |
207 | table, in some cases. */ | |
208 | ||
209 | static void | |
210 | find_text_range (bfd *sym_bfd, struct objfile *objfile) | |
211 | { | |
212 | asection *sec; | |
213 | int found_any = 0; | |
214 | CORE_ADDR start, end; | |
215 | ||
216 | for (sec = sym_bfd->sections; sec; sec = sec->next) | |
217 | if (bfd_get_section_flags (sym_bfd, sec) & SEC_CODE) | |
218 | { | |
219 | CORE_ADDR sec_start = bfd_section_vma (sym_bfd, sec); | |
220 | CORE_ADDR sec_end = sec_start + bfd_section_size (sym_bfd, sec); | |
221 | ||
222 | if (found_any) | |
223 | { | |
224 | if (sec_start < start) start = sec_start; | |
225 | if (sec_end > end) end = sec_end; | |
226 | } | |
227 | else | |
228 | { | |
229 | start = sec_start; | |
230 | end = sec_end; | |
231 | } | |
232 | ||
233 | found_any = 1; | |
234 | } | |
235 | ||
236 | if (! found_any) | |
237 | error ("Can't find any code sections in symbol file"); | |
238 | ||
239 | DBX_TEXT_ADDR (objfile) = start; | |
240 | DBX_TEXT_SIZE (objfile) = end - start; | |
241 | } | |
242 | ||
243 | ||
c906108c SS |
244 | \f |
245 | /* During initial symbol readin, we need to have a structure to keep | |
246 | track of which psymtabs have which bincls in them. This structure | |
247 | is used during readin to setup the list of dependencies within each | |
248 | partial symbol table. */ | |
249 | ||
250 | struct header_file_location | |
251 | { | |
252 | char *name; /* Name of header file */ | |
253 | int instance; /* See above */ | |
254 | struct partial_symtab *pst; /* Partial symtab that has the | |
255 | BINCL/EINCL defs for this file */ | |
256 | }; | |
257 | ||
258 | /* The actual list and controling variables */ | |
259 | static struct header_file_location *bincl_list, *next_bincl; | |
260 | static int bincls_allocated; | |
261 | ||
262 | /* Local function prototypes */ | |
263 | ||
264 | static void | |
265 | process_now PARAMS ((struct objfile *)); | |
266 | ||
267 | static void | |
268 | free_header_files PARAMS ((void)); | |
269 | ||
270 | static void | |
271 | init_header_files PARAMS ((void)); | |
272 | ||
273 | static void | |
274 | read_ofile_symtab PARAMS ((struct partial_symtab *)); | |
275 | ||
276 | static void | |
277 | dbx_psymtab_to_symtab PARAMS ((struct partial_symtab *)); | |
278 | ||
279 | static void | |
280 | dbx_psymtab_to_symtab_1 PARAMS ((struct partial_symtab *)); | |
281 | ||
282 | static void | |
283 | read_dbx_dynamic_symtab PARAMS ((struct section_offsets *, | |
284 | struct objfile *objfile)); | |
285 | ||
286 | static void | |
287 | read_dbx_symtab PARAMS ((struct section_offsets *, struct objfile *, | |
288 | CORE_ADDR, int)); | |
289 | ||
290 | static void | |
291 | free_bincl_list PARAMS ((struct objfile *)); | |
292 | ||
293 | static struct partial_symtab * | |
294 | find_corresponding_bincl_psymtab PARAMS ((char *, int)); | |
295 | ||
296 | static void | |
297 | add_bincl_to_list PARAMS ((struct partial_symtab *, char *, int)); | |
298 | ||
299 | static void | |
300 | init_bincl_list PARAMS ((int, struct objfile *)); | |
301 | ||
302 | static char * | |
303 | dbx_next_symbol_text PARAMS ((struct objfile *)); | |
304 | ||
305 | static void | |
306 | fill_symbuf PARAMS ((bfd *)); | |
307 | ||
308 | static void | |
309 | dbx_symfile_init PARAMS ((struct objfile *)); | |
310 | ||
311 | static void | |
312 | dbx_new_init PARAMS ((struct objfile *)); | |
313 | ||
314 | static void | |
315 | dbx_symfile_read PARAMS ((struct objfile *, struct section_offsets *, int)); | |
316 | ||
317 | static void | |
318 | dbx_symfile_finish PARAMS ((struct objfile *)); | |
319 | ||
320 | static void | |
321 | record_minimal_symbol PARAMS ((char *, CORE_ADDR, int, struct objfile *)); | |
322 | ||
323 | static void | |
324 | add_new_header_file PARAMS ((char *, int)); | |
325 | ||
326 | static void | |
327 | add_old_header_file PARAMS ((char *, int)); | |
328 | ||
329 | static void | |
330 | add_this_object_header_file PARAMS ((int)); | |
331 | ||
332 | /* Free up old header file tables */ | |
333 | ||
334 | static void | |
335 | free_header_files () | |
336 | { | |
337 | if (this_object_header_files) | |
338 | { | |
339 | free ((PTR)this_object_header_files); | |
340 | this_object_header_files = NULL; | |
341 | } | |
342 | n_allocated_this_object_header_files = 0; | |
343 | } | |
344 | ||
345 | /* Allocate new header file tables */ | |
346 | ||
347 | static void | |
348 | init_header_files () | |
349 | { | |
350 | n_allocated_this_object_header_files = 10; | |
351 | this_object_header_files = (int *) xmalloc (10 * sizeof (int)); | |
352 | } | |
353 | ||
354 | /* Add header file number I for this object file | |
355 | at the next successive FILENUM. */ | |
356 | ||
357 | static void | |
358 | add_this_object_header_file (i) | |
359 | int i; | |
360 | { | |
361 | if (n_this_object_header_files == n_allocated_this_object_header_files) | |
362 | { | |
363 | n_allocated_this_object_header_files *= 2; | |
364 | this_object_header_files | |
365 | = (int *) xrealloc ((char *) this_object_header_files, | |
366 | n_allocated_this_object_header_files * sizeof (int)); | |
367 | } | |
368 | ||
369 | this_object_header_files[n_this_object_header_files++] = i; | |
370 | } | |
371 | ||
372 | /* Add to this file an "old" header file, one already seen in | |
373 | a previous object file. NAME is the header file's name. | |
374 | INSTANCE is its instance code, to select among multiple | |
375 | symbol tables for the same header file. */ | |
376 | ||
377 | static void | |
378 | add_old_header_file (name, instance) | |
379 | char *name; | |
380 | int instance; | |
381 | { | |
382 | register struct header_file *p = HEADER_FILES (current_objfile); | |
383 | register int i; | |
384 | ||
385 | for (i = 0; i < N_HEADER_FILES (current_objfile); i++) | |
386 | if (STREQ (p[i].name, name) && instance == p[i].instance) | |
387 | { | |
388 | add_this_object_header_file (i); | |
389 | return; | |
390 | } | |
391 | complain (&repeated_header_complaint, name, symnum); | |
392 | } | |
393 | ||
394 | /* Add to this file a "new" header file: definitions for its types follow. | |
395 | NAME is the header file's name. | |
396 | Most often this happens only once for each distinct header file, | |
397 | but not necessarily. If it happens more than once, INSTANCE has | |
398 | a different value each time, and references to the header file | |
399 | use INSTANCE values to select among them. | |
400 | ||
401 | dbx output contains "begin" and "end" markers for each new header file, | |
402 | but at this level we just need to know which files there have been; | |
403 | so we record the file when its "begin" is seen and ignore the "end". */ | |
404 | ||
405 | static void | |
406 | add_new_header_file (name, instance) | |
407 | char *name; | |
408 | int instance; | |
409 | { | |
410 | register int i; | |
411 | register struct header_file *hfile; | |
412 | ||
413 | /* Make sure there is room for one more header file. */ | |
414 | ||
415 | i = N_ALLOCATED_HEADER_FILES (current_objfile); | |
416 | ||
417 | if (N_HEADER_FILES (current_objfile) == i) | |
418 | { | |
419 | if (i == 0) | |
420 | { | |
421 | N_ALLOCATED_HEADER_FILES (current_objfile) = 10; | |
422 | HEADER_FILES (current_objfile) = (struct header_file *) | |
423 | xmalloc (10 * sizeof (struct header_file)); | |
424 | } | |
425 | else | |
426 | { | |
427 | i *= 2; | |
428 | N_ALLOCATED_HEADER_FILES (current_objfile) = i; | |
429 | HEADER_FILES (current_objfile) = (struct header_file *) | |
430 | xrealloc ((char *) HEADER_FILES (current_objfile), | |
431 | (i * sizeof (struct header_file))); | |
432 | } | |
433 | } | |
434 | ||
435 | /* Create an entry for this header file. */ | |
436 | ||
437 | i = N_HEADER_FILES (current_objfile)++; | |
438 | hfile = HEADER_FILES (current_objfile) + i; | |
439 | hfile->name = savestring (name, strlen(name)); | |
440 | hfile->instance = instance; | |
441 | hfile->length = 10; | |
442 | hfile->vector | |
443 | = (struct type **) xmalloc (10 * sizeof (struct type *)); | |
444 | memset (hfile->vector, 0, 10 * sizeof (struct type *)); | |
445 | ||
446 | add_this_object_header_file (i); | |
447 | } | |
448 | ||
449 | #if 0 | |
450 | static struct type ** | |
451 | explicit_lookup_type (real_filenum, index) | |
452 | int real_filenum, index; | |
453 | { | |
454 | register struct header_file *f = &HEADER_FILES (current_objfile)[real_filenum]; | |
455 | ||
456 | if (index >= f->length) | |
457 | { | |
458 | f->length *= 2; | |
459 | f->vector = (struct type **) | |
460 | xrealloc (f->vector, f->length * sizeof (struct type *)); | |
461 | memset (&f->vector[f->length / 2], | |
462 | '\0', f->length * sizeof (struct type *) / 2); | |
463 | } | |
464 | return &f->vector[index]; | |
465 | } | |
466 | #endif | |
467 | \f | |
468 | static void | |
469 | record_minimal_symbol (name, address, type, objfile) | |
470 | char *name; | |
471 | CORE_ADDR address; | |
472 | int type; | |
473 | struct objfile *objfile; | |
474 | { | |
475 | enum minimal_symbol_type ms_type; | |
476 | int section; | |
477 | asection *bfd_section; | |
478 | ||
479 | switch (type) | |
480 | { | |
481 | case N_TEXT | N_EXT: | |
482 | ms_type = mst_text; | |
483 | section = SECT_OFF_TEXT; | |
484 | bfd_section = DBX_TEXT_SECTION (objfile); | |
485 | break; | |
486 | case N_DATA | N_EXT: | |
487 | ms_type = mst_data; | |
488 | section = SECT_OFF_DATA; | |
489 | bfd_section = DBX_DATA_SECTION (objfile); | |
490 | break; | |
491 | case N_BSS | N_EXT: | |
492 | ms_type = mst_bss; | |
493 | section = SECT_OFF_BSS; | |
494 | bfd_section = DBX_BSS_SECTION (objfile); | |
495 | break; | |
496 | case N_ABS | N_EXT: | |
497 | ms_type = mst_abs; | |
498 | section = -1; | |
499 | bfd_section = NULL; | |
500 | break; | |
501 | #ifdef N_SETV | |
502 | case N_SETV | N_EXT: | |
503 | ms_type = mst_data; | |
504 | section = SECT_OFF_DATA; | |
505 | bfd_section = DBX_DATA_SECTION (objfile); | |
506 | break; | |
507 | case N_SETV: | |
508 | /* I don't think this type actually exists; since a N_SETV is the result | |
509 | of going over many .o files, it doesn't make sense to have one | |
510 | file local. */ | |
511 | ms_type = mst_file_data; | |
512 | section = SECT_OFF_DATA; | |
513 | bfd_section = DBX_DATA_SECTION (objfile); | |
514 | break; | |
515 | #endif | |
516 | case N_TEXT: | |
517 | case N_NBTEXT: | |
518 | case N_FN: | |
519 | case N_FN_SEQ: | |
520 | ms_type = mst_file_text; | |
521 | section = SECT_OFF_TEXT; | |
522 | bfd_section = DBX_TEXT_SECTION (objfile); | |
523 | break; | |
524 | case N_DATA: | |
525 | ms_type = mst_file_data; | |
526 | ||
527 | /* Check for __DYNAMIC, which is used by Sun shared libraries. | |
528 | Record it as global even if it's local, not global, so | |
529 | lookup_minimal_symbol can find it. We don't check symbol_leading_char | |
530 | because for SunOS4 it always is '_'. */ | |
531 | if (name[8] == 'C' && STREQ ("__DYNAMIC", name)) | |
532 | ms_type = mst_data; | |
533 | ||
534 | /* Same with virtual function tables, both global and static. */ | |
535 | { | |
536 | char *tempstring = name; | |
537 | if (tempstring[0] == bfd_get_symbol_leading_char (objfile->obfd)) | |
538 | ++tempstring; | |
539 | if (VTBL_PREFIX_P ((tempstring))) | |
540 | ms_type = mst_data; | |
541 | } | |
542 | section = SECT_OFF_DATA; | |
543 | bfd_section = DBX_DATA_SECTION (objfile); | |
544 | break; | |
545 | case N_BSS: | |
546 | ms_type = mst_file_bss; | |
547 | section = SECT_OFF_BSS; | |
548 | bfd_section = DBX_BSS_SECTION (objfile); | |
549 | break; | |
550 | default: | |
551 | ms_type = mst_unknown; | |
552 | section = -1; | |
553 | bfd_section = NULL; | |
554 | break; | |
555 | } | |
556 | ||
557 | if ((ms_type == mst_file_text || ms_type == mst_text) | |
558 | && address < lowest_text_address) | |
559 | lowest_text_address = address; | |
560 | ||
561 | prim_record_minimal_symbol_and_info | |
562 | (name, address, ms_type, NULL, section, bfd_section, objfile); | |
563 | } | |
564 | \f | |
565 | /* Scan and build partial symbols for a symbol file. | |
566 | We have been initialized by a call to dbx_symfile_init, which | |
567 | put all the relevant info into a "struct dbx_symfile_info", | |
568 | hung off the objfile structure. | |
569 | ||
570 | SECTION_OFFSETS contains offsets relative to which the symbols in the | |
571 | various sections are (depending where the sections were actually loaded). | |
572 | MAINLINE is true if we are reading the main symbol | |
573 | table (as opposed to a shared lib or dynamically loaded file). */ | |
574 | ||
575 | static void | |
576 | dbx_symfile_read (objfile, section_offsets, mainline) | |
577 | struct objfile *objfile; | |
578 | struct section_offsets *section_offsets; | |
579 | int mainline; /* FIXME comments above */ | |
580 | { | |
581 | bfd *sym_bfd; | |
582 | int val; | |
583 | struct cleanup *back_to; | |
584 | ||
585 | val = strlen (objfile->name); | |
586 | ||
587 | sym_bfd = objfile->obfd; | |
588 | ||
589 | /* .o and .nlm files are relocatables with text, data and bss segs based at | |
590 | 0. This flag disables special (Solaris stabs-in-elf only) fixups for | |
591 | symbols with a value of 0. */ | |
592 | ||
593 | symfile_relocatable = bfd_get_file_flags (sym_bfd) & HAS_RELOC; | |
594 | ||
595 | /* This is true for Solaris (and all other systems which put stabs | |
596 | in sections, hopefully, since it would be silly to do things | |
597 | differently from Solaris), and false for SunOS4 and other a.out | |
598 | file formats. */ | |
599 | block_address_function_relative = | |
600 | ((0 == strncmp (bfd_get_target (sym_bfd), "elf", 3)) | |
601 | || (0 == strncmp (bfd_get_target (sym_bfd), "som", 3)) | |
602 | || (0 == strncmp (bfd_get_target (sym_bfd), "coff", 4)) | |
603 | || (0 == strncmp (bfd_get_target (sym_bfd), "pe", 2)) | |
604 | || (0 == strncmp (bfd_get_target (sym_bfd), "nlm", 3))); | |
605 | ||
606 | val = bfd_seek (sym_bfd, DBX_SYMTAB_OFFSET (objfile), SEEK_SET); | |
607 | if (val < 0) | |
608 | perror_with_name (objfile->name); | |
609 | ||
610 | /* If we are reinitializing, or if we have never loaded syms yet, init */ | |
611 | if (mainline | |
612 | || objfile->global_psymbols.size == 0 | |
613 | || objfile->static_psymbols.size == 0) | |
614 | init_psymbol_list (objfile, DBX_SYMCOUNT (objfile)); | |
615 | ||
616 | symbol_size = DBX_SYMBOL_SIZE (objfile); | |
617 | symbol_table_offset = DBX_SYMTAB_OFFSET (objfile); | |
618 | ||
619 | free_pending_blocks (); | |
620 | back_to = make_cleanup ((make_cleanup_func) really_free_pendings, 0); | |
621 | ||
622 | init_minimal_symbol_collection (); | |
623 | make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0); | |
624 | ||
625 | /* Now that the symbol table data of the executable file are all in core, | |
626 | process them and define symbols accordingly. */ | |
627 | ||
628 | read_dbx_symtab (section_offsets, objfile, | |
629 | DBX_TEXT_ADDR (objfile), | |
630 | DBX_TEXT_SIZE (objfile)); | |
631 | ||
632 | /* Add the dynamic symbols. */ | |
633 | ||
634 | read_dbx_dynamic_symtab (section_offsets, objfile); | |
635 | ||
636 | /* Install any minimal symbols that have been collected as the current | |
637 | minimal symbols for this objfile. */ | |
638 | ||
639 | install_minimal_symbols (objfile); | |
640 | ||
641 | do_cleanups (back_to); | |
642 | } | |
643 | ||
644 | /* Initialize anything that needs initializing when a completely new | |
645 | symbol file is specified (not just adding some symbols from another | |
646 | file, e.g. a shared library). */ | |
647 | ||
648 | static void | |
649 | dbx_new_init (ignore) | |
650 | struct objfile *ignore; | |
651 | { | |
652 | stabsread_new_init (); | |
653 | buildsym_new_init (); | |
654 | init_header_files (); | |
655 | } | |
656 | ||
657 | ||
658 | /* dbx_symfile_init () | |
659 | is the dbx-specific initialization routine for reading symbols. | |
660 | It is passed a struct objfile which contains, among other things, | |
661 | the BFD for the file whose symbols are being read, and a slot for a pointer | |
662 | to "private data" which we fill with goodies. | |
663 | ||
664 | We read the string table into malloc'd space and stash a pointer to it. | |
665 | ||
666 | Since BFD doesn't know how to read debug symbols in a format-independent | |
667 | way (and may never do so...), we have to do it ourselves. We will never | |
668 | be called unless this is an a.out (or very similar) file. | |
669 | FIXME, there should be a cleaner peephole into the BFD environment here. */ | |
670 | ||
671 | #define DBX_STRINGTAB_SIZE_SIZE sizeof(long) /* FIXME */ | |
672 | ||
673 | static void | |
674 | dbx_symfile_init (objfile) | |
675 | struct objfile *objfile; | |
676 | { | |
677 | int val; | |
678 | bfd *sym_bfd = objfile->obfd; | |
679 | char *name = bfd_get_filename (sym_bfd); | |
680 | asection *text_sect; | |
681 | unsigned char size_temp[DBX_STRINGTAB_SIZE_SIZE]; | |
682 | ||
683 | /* Allocate struct to keep track of the symfile */ | |
684 | objfile->sym_stab_info = (struct dbx_symfile_info *) | |
685 | xmmalloc (objfile -> md, sizeof (struct dbx_symfile_info)); | |
686 | memset ((PTR) objfile->sym_stab_info, 0, sizeof (struct dbx_symfile_info)); | |
687 | ||
688 | DBX_TEXT_SECTION (objfile) = bfd_get_section_by_name (sym_bfd, ".text"); | |
689 | DBX_DATA_SECTION (objfile) = bfd_get_section_by_name (sym_bfd, ".data"); | |
690 | DBX_BSS_SECTION (objfile) = bfd_get_section_by_name (sym_bfd, ".bss"); | |
691 | ||
692 | /* FIXME POKING INSIDE BFD DATA STRUCTURES */ | |
693 | #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd)) | |
694 | #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd)) | |
695 | ||
696 | /* FIXME POKING INSIDE BFD DATA STRUCTURES */ | |
697 | ||
698 | DBX_SYMFILE_INFO (objfile)->stab_section_info = NULL; | |
699 | ||
700 | text_sect = bfd_get_section_by_name (sym_bfd, ".text"); | |
701 | if (!text_sect) | |
702 | error ("Can't find .text section in symbol file"); | |
703 | DBX_TEXT_ADDR (objfile) = bfd_section_vma (sym_bfd, text_sect); | |
704 | DBX_TEXT_SIZE (objfile) = bfd_section_size (sym_bfd, text_sect); | |
705 | ||
706 | DBX_SYMBOL_SIZE (objfile) = obj_symbol_entry_size (sym_bfd); | |
707 | DBX_SYMCOUNT (objfile) = bfd_get_symcount (sym_bfd); | |
708 | DBX_SYMTAB_OFFSET (objfile) = SYMBOL_TABLE_OFFSET; | |
709 | ||
710 | /* Read the string table and stash it away in the psymbol_obstack. It is | |
711 | only needed as long as we need to expand psymbols into full symbols, | |
712 | so when we blow away the psymbol the string table goes away as well. | |
713 | Note that gdb used to use the results of attempting to malloc the | |
714 | string table, based on the size it read, as a form of sanity check | |
715 | for botched byte swapping, on the theory that a byte swapped string | |
716 | table size would be so totally bogus that the malloc would fail. Now | |
717 | that we put in on the psymbol_obstack, we can't do this since gdb gets | |
718 | a fatal error (out of virtual memory) if the size is bogus. We can | |
719 | however at least check to see if the size is less than the size of | |
720 | the size field itself, or larger than the size of the entire file. | |
721 | Note that all valid string tables have a size greater than zero, since | |
722 | the bytes used to hold the size are included in the count. */ | |
723 | ||
724 | if (STRING_TABLE_OFFSET == 0) | |
725 | { | |
726 | /* It appears that with the existing bfd code, STRING_TABLE_OFFSET | |
727 | will never be zero, even when there is no string table. This | |
728 | would appear to be a bug in bfd. */ | |
729 | DBX_STRINGTAB_SIZE (objfile) = 0; | |
730 | DBX_STRINGTAB (objfile) = NULL; | |
731 | } | |
732 | else | |
733 | { | |
734 | val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, SEEK_SET); | |
735 | if (val < 0) | |
736 | perror_with_name (name); | |
737 | ||
738 | memset ((PTR) size_temp, 0, sizeof (size_temp)); | |
739 | val = bfd_read ((PTR) size_temp, sizeof (size_temp), 1, sym_bfd); | |
740 | if (val < 0) | |
741 | { | |
742 | perror_with_name (name); | |
743 | } | |
744 | else if (val == 0) | |
745 | { | |
746 | /* With the existing bfd code, STRING_TABLE_OFFSET will be set to | |
747 | EOF if there is no string table, and attempting to read the size | |
748 | from EOF will read zero bytes. */ | |
749 | DBX_STRINGTAB_SIZE (objfile) = 0; | |
750 | DBX_STRINGTAB (objfile) = NULL; | |
751 | } | |
752 | else | |
753 | { | |
754 | /* Read some data that would appear to be the string table size. | |
755 | If there really is a string table, then it is probably the right | |
756 | size. Byteswap if necessary and validate the size. Note that | |
757 | the minimum is DBX_STRINGTAB_SIZE_SIZE. If we just read some | |
758 | random data that happened to be at STRING_TABLE_OFFSET, because | |
759 | bfd can't tell us there is no string table, the sanity checks may | |
760 | or may not catch this. */ | |
761 | DBX_STRINGTAB_SIZE (objfile) = bfd_h_get_32 (sym_bfd, size_temp); | |
762 | ||
763 | if (DBX_STRINGTAB_SIZE (objfile) < sizeof (size_temp) | |
764 | || DBX_STRINGTAB_SIZE (objfile) > bfd_get_size (sym_bfd)) | |
765 | error ("ridiculous string table size (%d bytes).", | |
766 | DBX_STRINGTAB_SIZE (objfile)); | |
767 | ||
768 | DBX_STRINGTAB (objfile) = | |
769 | (char *) obstack_alloc (&objfile -> psymbol_obstack, | |
770 | DBX_STRINGTAB_SIZE (objfile)); | |
771 | OBJSTAT (objfile, sz_strtab += DBX_STRINGTAB_SIZE (objfile)); | |
772 | ||
773 | /* Now read in the string table in one big gulp. */ | |
774 | ||
775 | val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, SEEK_SET); | |
776 | if (val < 0) | |
777 | perror_with_name (name); | |
778 | val = bfd_read (DBX_STRINGTAB (objfile), DBX_STRINGTAB_SIZE (objfile), 1, | |
779 | sym_bfd); | |
780 | if (val != DBX_STRINGTAB_SIZE (objfile)) | |
781 | perror_with_name (name); | |
782 | } | |
783 | } | |
784 | } | |
785 | ||
786 | /* Perform any local cleanups required when we are done with a particular | |
787 | objfile. I.E, we are in the process of discarding all symbol information | |
788 | for an objfile, freeing up all memory held for it, and unlinking the | |
789 | objfile struct from the global list of known objfiles. */ | |
790 | ||
791 | static void | |
792 | dbx_symfile_finish (objfile) | |
793 | struct objfile *objfile; | |
794 | { | |
795 | if (objfile->sym_stab_info != NULL) | |
796 | { | |
797 | if (HEADER_FILES (objfile) != NULL) | |
798 | { | |
799 | register int i = N_HEADER_FILES (objfile); | |
800 | register struct header_file *hfiles = HEADER_FILES (objfile); | |
801 | ||
802 | while (--i >= 0) | |
803 | { | |
804 | free (hfiles [i].name); | |
805 | free (hfiles [i].vector); | |
806 | } | |
807 | free ((PTR) hfiles); | |
808 | } | |
809 | mfree (objfile -> md, objfile->sym_stab_info); | |
810 | } | |
811 | free_header_files (); | |
812 | } | |
813 | ||
814 | \f | |
815 | /* Buffer for reading the symbol table entries. */ | |
816 | static struct external_nlist symbuf[4096]; | |
817 | static int symbuf_idx; | |
818 | static int symbuf_end; | |
819 | ||
820 | /* cont_elem is used for continuing information in cfront. | |
821 | It saves information about which types need to be fixed up and | |
822 | completed after all the stabs are read. */ | |
823 | struct cont_elem | |
824 | { | |
825 | /* sym and stabsstring for continuing information in cfront */ | |
826 | struct symbol * sym; | |
827 | char * stabs; | |
828 | /* state dependancies (statics that must be preserved) */ | |
829 | int sym_idx; | |
830 | int sym_end; | |
831 | int symnum; | |
832 | int (*func) PARAMS ((struct objfile *, struct symbol *, char *)); | |
833 | /* other state dependancies include: | |
834 | (assumption is that these will not change since process_now FIXME!!) | |
835 | stringtab_global | |
836 | n_stabs | |
837 | objfile | |
838 | symfile_bfd */ | |
839 | }; | |
840 | ||
841 | static struct cont_elem *cont_list = 0; | |
842 | static int cont_limit = 0; | |
843 | static int cont_count = 0; | |
844 | ||
845 | /* Arrange for function F to be called with arguments SYM and P later | |
846 | in the stabs reading process. */ | |
847 | void | |
848 | process_later (sym, p, f) | |
849 | struct symbol *sym; | |
850 | char *p; | |
851 | int (*f) PARAMS ((struct objfile *, struct symbol *, char *)); | |
852 | { | |
853 | ||
854 | /* Allocate more space for the deferred list. */ | |
855 | if (cont_count >= cont_limit - 1) | |
856 | { | |
857 | cont_limit += 32; /* chunk size */ | |
858 | ||
859 | cont_list | |
860 | = (struct cont_elem *) xrealloc (cont_list, | |
861 | (cont_limit | |
862 | * sizeof (struct cont_elem))); | |
863 | if (!cont_list) | |
864 | error ("Virtual memory exhausted\n"); | |
865 | } | |
866 | ||
867 | /* Save state variables so we can process these stabs later. */ | |
868 | cont_list[cont_count].sym_idx = symbuf_idx; | |
869 | cont_list[cont_count].sym_end = symbuf_end; | |
870 | cont_list[cont_count].symnum = symnum; | |
871 | cont_list[cont_count].sym = sym; | |
872 | cont_list[cont_count].stabs = p; | |
873 | cont_list[cont_count].func = f; | |
874 | cont_count++; | |
875 | } | |
876 | ||
877 | /* Call deferred funtions in CONT_LIST. */ | |
878 | ||
879 | static void | |
880 | process_now (objfile) | |
881 | struct objfile *objfile; | |
882 | { | |
883 | int i; | |
884 | int save_symbuf_idx; | |
885 | int save_symbuf_end; | |
886 | int save_symnum; | |
887 | struct symbol *sym; | |
888 | char *stabs; | |
889 | int err; | |
890 | int (*func) PARAMS ((struct objfile *, struct symbol *, char *)); | |
891 | ||
892 | /* Save the state of our caller, we'll want to restore it before | |
893 | returning. */ | |
894 | save_symbuf_idx = symbuf_idx; | |
895 | save_symbuf_end = symbuf_end; | |
896 | save_symnum = symnum; | |
897 | ||
898 | /* Iterate over all the deferred stabs. */ | |
899 | for (i = 0; i < cont_count; i++) | |
900 | { | |
901 | /* Restore the state for this deferred stab. */ | |
902 | symbuf_idx = cont_list[i].sym_idx; | |
903 | symbuf_end = cont_list[i].sym_end; | |
904 | symnum = cont_list[i].symnum; | |
905 | sym = cont_list[i].sym; | |
906 | stabs = cont_list[i].stabs; | |
907 | func = cont_list[i].func; | |
908 | ||
909 | /* Call the function to handle this deferrd stab. */ | |
910 | err = (*func) (objfile, sym, stabs); | |
911 | if (err) | |
912 | error ("Internal error: unable to resolve stab.\n"); | |
913 | } | |
914 | ||
915 | /* Restore our caller's state. */ | |
916 | symbuf_idx = save_symbuf_idx; | |
917 | symbuf_end = save_symbuf_end; | |
918 | symnum = save_symnum; | |
919 | cont_count = 0; | |
920 | } | |
921 | ||
922 | ||
923 | /* Name of last function encountered. Used in Solaris to approximate | |
924 | object file boundaries. */ | |
925 | static char *last_function_name; | |
926 | ||
927 | /* The address in memory of the string table of the object file we are | |
928 | reading (which might not be the "main" object file, but might be a | |
929 | shared library or some other dynamically loaded thing). This is | |
930 | set by read_dbx_symtab when building psymtabs, and by | |
931 | read_ofile_symtab when building symtabs, and is used only by | |
932 | next_symbol_text. FIXME: If that is true, we don't need it when | |
933 | building psymtabs, right? */ | |
934 | static char *stringtab_global; | |
935 | ||
936 | /* These variables are used to control fill_symbuf when the stabs | |
937 | symbols are not contiguous (as may be the case when a COFF file is | |
938 | linked using --split-by-reloc). */ | |
939 | static struct stab_section_list *symbuf_sections; | |
940 | static unsigned int symbuf_left; | |
941 | static unsigned int symbuf_read; | |
942 | ||
943 | /* Refill the symbol table input buffer | |
944 | and set the variables that control fetching entries from it. | |
945 | Reports an error if no data available. | |
946 | This function can read past the end of the symbol table | |
947 | (into the string table) but this does no harm. */ | |
948 | ||
949 | static void | |
950 | fill_symbuf (sym_bfd) | |
951 | bfd *sym_bfd; | |
952 | { | |
953 | unsigned int count; | |
954 | int nbytes; | |
955 | ||
956 | if (symbuf_sections == NULL) | |
957 | count = sizeof (symbuf); | |
958 | else | |
959 | { | |
960 | if (symbuf_left <= 0) | |
961 | { | |
962 | file_ptr filepos = symbuf_sections->section->filepos; | |
963 | if (bfd_seek (sym_bfd, filepos, SEEK_SET) != 0) | |
964 | perror_with_name (bfd_get_filename (sym_bfd)); | |
965 | symbuf_left = bfd_section_size (sym_bfd, symbuf_sections->section); | |
966 | symbol_table_offset = filepos - symbuf_read; | |
967 | symbuf_sections = symbuf_sections->next; | |
968 | } | |
969 | ||
970 | count = symbuf_left; | |
971 | if (count > sizeof (symbuf)) | |
972 | count = sizeof (symbuf); | |
973 | } | |
974 | ||
975 | nbytes = bfd_read ((PTR)symbuf, count, 1, sym_bfd); | |
976 | if (nbytes < 0) | |
977 | perror_with_name (bfd_get_filename (sym_bfd)); | |
978 | else if (nbytes == 0) | |
979 | error ("Premature end of file reading symbol table"); | |
980 | symbuf_end = nbytes / symbol_size; | |
981 | symbuf_idx = 0; | |
982 | symbuf_left -= nbytes; | |
983 | symbuf_read += nbytes; | |
984 | } | |
985 | ||
986 | #define SWAP_SYMBOL(symp, abfd) \ | |
987 | { \ | |
988 | (symp)->n_strx = bfd_h_get_32(abfd, \ | |
989 | (unsigned char *)&(symp)->n_strx); \ | |
990 | (symp)->n_desc = bfd_h_get_16 (abfd, \ | |
991 | (unsigned char *)&(symp)->n_desc); \ | |
992 | (symp)->n_value = bfd_h_get_32 (abfd, \ | |
993 | (unsigned char *)&(symp)->n_value); \ | |
994 | } | |
995 | ||
996 | #define INTERNALIZE_SYMBOL(intern, extern, abfd) \ | |
997 | { \ | |
998 | (intern).n_type = bfd_h_get_8 (abfd, (extern)->e_type); \ | |
999 | (intern).n_strx = bfd_h_get_32 (abfd, (extern)->e_strx); \ | |
1000 | (intern).n_desc = bfd_h_get_16 (abfd, (extern)->e_desc); \ | |
1001 | (intern).n_value = bfd_h_get_32 (abfd, (extern)->e_value); \ | |
1002 | } | |
1003 | ||
1004 | /* Invariant: The symbol pointed to by symbuf_idx is the first one | |
1005 | that hasn't been swapped. Swap the symbol at the same time | |
1006 | that symbuf_idx is incremented. */ | |
1007 | ||
1008 | /* dbx allows the text of a symbol name to be continued into the | |
1009 | next symbol name! When such a continuation is encountered | |
1010 | (a \ at the end of the text of a name) | |
1011 | call this function to get the continuation. */ | |
1012 | ||
1013 | static char * | |
1014 | dbx_next_symbol_text (objfile) | |
1015 | struct objfile *objfile; | |
1016 | { | |
1017 | struct internal_nlist nlist; | |
1018 | ||
1019 | if (symbuf_idx == symbuf_end) | |
1020 | fill_symbuf (symfile_bfd); | |
1021 | ||
1022 | symnum++; | |
1023 | INTERNALIZE_SYMBOL(nlist, &symbuf[symbuf_idx], symfile_bfd); | |
1024 | OBJSTAT (objfile, n_stabs++); | |
1025 | ||
1026 | symbuf_idx++; | |
1027 | ||
1028 | return nlist.n_strx + stringtab_global + file_string_table_offset; | |
1029 | } | |
1030 | \f | |
1031 | /* Initialize the list of bincls to contain none and have some | |
1032 | allocated. */ | |
1033 | ||
1034 | static void | |
1035 | init_bincl_list (number, objfile) | |
1036 | int number; | |
1037 | struct objfile *objfile; | |
1038 | { | |
1039 | bincls_allocated = number; | |
1040 | next_bincl = bincl_list = (struct header_file_location *) | |
1041 | xmmalloc (objfile -> md, bincls_allocated * sizeof(struct header_file_location)); | |
1042 | } | |
1043 | ||
1044 | /* Add a bincl to the list. */ | |
1045 | ||
1046 | static void | |
1047 | add_bincl_to_list (pst, name, instance) | |
1048 | struct partial_symtab *pst; | |
1049 | char *name; | |
1050 | int instance; | |
1051 | { | |
1052 | if (next_bincl >= bincl_list + bincls_allocated) | |
1053 | { | |
1054 | int offset = next_bincl - bincl_list; | |
1055 | bincls_allocated *= 2; | |
1056 | bincl_list = (struct header_file_location *) | |
1057 | xmrealloc (pst->objfile->md, (char *)bincl_list, | |
1058 | bincls_allocated * sizeof (struct header_file_location)); | |
1059 | next_bincl = bincl_list + offset; | |
1060 | } | |
1061 | next_bincl->pst = pst; | |
1062 | next_bincl->instance = instance; | |
1063 | next_bincl++->name = name; | |
1064 | } | |
1065 | ||
1066 | /* Given a name, value pair, find the corresponding | |
1067 | bincl in the list. Return the partial symtab associated | |
1068 | with that header_file_location. */ | |
1069 | ||
1070 | static struct partial_symtab * | |
1071 | find_corresponding_bincl_psymtab (name, instance) | |
1072 | char *name; | |
1073 | int instance; | |
1074 | { | |
1075 | struct header_file_location *bincl; | |
1076 | ||
1077 | for (bincl = bincl_list; bincl < next_bincl; bincl++) | |
1078 | if (bincl->instance == instance | |
1079 | && STREQ (name, bincl->name)) | |
1080 | return bincl->pst; | |
1081 | ||
1082 | complain (&repeated_header_complaint, name, symnum); | |
1083 | return (struct partial_symtab *) 0; | |
1084 | } | |
1085 | ||
1086 | /* Free the storage allocated for the bincl list. */ | |
1087 | ||
1088 | static void | |
1089 | free_bincl_list (objfile) | |
1090 | struct objfile *objfile; | |
1091 | { | |
1092 | mfree (objfile -> md, (PTR)bincl_list); | |
1093 | bincls_allocated = 0; | |
1094 | } | |
1095 | ||
1096 | /* Scan a SunOs dynamic symbol table for symbols of interest and | |
1097 | add them to the minimal symbol table. */ | |
1098 | ||
1099 | static void | |
1100 | read_dbx_dynamic_symtab (section_offsets, objfile) | |
1101 | struct section_offsets *section_offsets; | |
1102 | struct objfile *objfile; | |
1103 | { | |
1104 | bfd *abfd = objfile->obfd; | |
1105 | struct cleanup *back_to; | |
1106 | int counter; | |
1107 | long dynsym_size; | |
1108 | long dynsym_count; | |
1109 | asymbol **dynsyms; | |
1110 | asymbol **symptr; | |
1111 | arelent **relptr; | |
1112 | long dynrel_size; | |
1113 | long dynrel_count; | |
1114 | arelent **dynrels; | |
1115 | CORE_ADDR sym_value; | |
1116 | char *name; | |
1117 | ||
1118 | /* Check that the symbol file has dynamic symbols that we know about. | |
1119 | bfd_arch_unknown can happen if we are reading a sun3 symbol file | |
1120 | on a sun4 host (and vice versa) and bfd is not configured | |
1121 | --with-target=all. This would trigger an assertion in bfd/sunos.c, | |
1122 | so we ignore the dynamic symbols in this case. */ | |
1123 | if (bfd_get_flavour (abfd) != bfd_target_aout_flavour | |
1124 | || (bfd_get_file_flags (abfd) & DYNAMIC) == 0 | |
1125 | || bfd_get_arch (abfd) == bfd_arch_unknown) | |
1126 | return; | |
1127 | ||
1128 | dynsym_size = bfd_get_dynamic_symtab_upper_bound (abfd); | |
1129 | if (dynsym_size < 0) | |
1130 | return; | |
1131 | ||
1132 | dynsyms = (asymbol **) xmalloc (dynsym_size); | |
1133 | back_to = make_cleanup (free, dynsyms); | |
1134 | ||
1135 | dynsym_count = bfd_canonicalize_dynamic_symtab (abfd, dynsyms); | |
1136 | if (dynsym_count < 0) | |
1137 | { | |
1138 | do_cleanups (back_to); | |
1139 | return; | |
1140 | } | |
1141 | ||
1142 | /* Enter dynamic symbols into the minimal symbol table | |
1143 | if this is a stripped executable. */ | |
1144 | if (bfd_get_symcount (abfd) <= 0) | |
1145 | { | |
1146 | symptr = dynsyms; | |
1147 | for (counter = 0; counter < dynsym_count; counter++, symptr++) | |
1148 | { | |
1149 | asymbol *sym = *symptr; | |
1150 | asection *sec; | |
1151 | int type; | |
1152 | ||
1153 | sec = bfd_get_section (sym); | |
1154 | ||
1155 | /* BFD symbols are section relative. */ | |
1156 | sym_value = sym->value + sec->vma; | |
1157 | ||
1158 | if (bfd_get_section_flags (abfd, sec) & SEC_CODE) | |
1159 | { | |
1160 | sym_value += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
1161 | type = N_TEXT; | |
1162 | } | |
1163 | else if (bfd_get_section_flags (abfd, sec) & SEC_DATA) | |
1164 | { | |
1165 | sym_value += ANOFFSET (section_offsets, SECT_OFF_DATA); | |
1166 | type = N_DATA; | |
1167 | } | |
1168 | else if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC) | |
1169 | { | |
1170 | sym_value += ANOFFSET (section_offsets, SECT_OFF_BSS); | |
1171 | type = N_BSS; | |
1172 | } | |
1173 | else | |
1174 | continue; | |
1175 | ||
1176 | if (sym->flags & BSF_GLOBAL) | |
1177 | type |= N_EXT; | |
1178 | ||
1179 | record_minimal_symbol ((char *) bfd_asymbol_name (sym), sym_value, | |
1180 | type, objfile); | |
1181 | } | |
1182 | } | |
1183 | ||
1184 | /* Symbols from shared libraries have a dynamic relocation entry | |
1185 | that points to the associated slot in the procedure linkage table. | |
1186 | We make a mininal symbol table entry with type mst_solib_trampoline | |
1187 | at the address in the procedure linkage table. */ | |
1188 | dynrel_size = bfd_get_dynamic_reloc_upper_bound (abfd); | |
1189 | if (dynrel_size < 0) | |
1190 | { | |
1191 | do_cleanups (back_to); | |
1192 | return; | |
1193 | } | |
1194 | ||
1195 | dynrels = (arelent **) xmalloc (dynrel_size); | |
1196 | make_cleanup (free, dynrels); | |
1197 | ||
1198 | dynrel_count = bfd_canonicalize_dynamic_reloc (abfd, dynrels, dynsyms); | |
1199 | if (dynrel_count < 0) | |
1200 | { | |
1201 | do_cleanups (back_to); | |
1202 | return; | |
1203 | } | |
1204 | ||
1205 | for (counter = 0, relptr = dynrels; | |
1206 | counter < dynrel_count; | |
1207 | counter++, relptr++) | |
1208 | { | |
1209 | arelent *rel = *relptr; | |
1210 | CORE_ADDR address = | |
1211 | rel->address + ANOFFSET (section_offsets, SECT_OFF_DATA); | |
1212 | ||
1213 | switch (bfd_get_arch (abfd)) | |
1214 | { | |
1215 | case bfd_arch_sparc: | |
1216 | if (rel->howto->type != RELOC_JMP_SLOT) | |
1217 | continue; | |
1218 | break; | |
1219 | case bfd_arch_m68k: | |
1220 | /* `16' is the type BFD produces for a jump table relocation. */ | |
1221 | if (rel->howto->type != 16) | |
1222 | continue; | |
1223 | ||
1224 | /* Adjust address in the jump table to point to | |
1225 | the start of the bsr instruction. */ | |
1226 | address -= 2; | |
1227 | break; | |
1228 | default: | |
1229 | continue; | |
1230 | } | |
1231 | ||
1232 | name = (char *) bfd_asymbol_name (*rel->sym_ptr_ptr); | |
1233 | prim_record_minimal_symbol (name, address, mst_solib_trampoline, | |
1234 | objfile); | |
1235 | } | |
1236 | ||
1237 | do_cleanups (back_to); | |
1238 | } | |
1239 | ||
1240 | /* Given pointers to an a.out symbol table in core containing dbx | |
1241 | style data, setup partial_symtab's describing each source file for | |
1242 | which debugging information is available. | |
1243 | SYMFILE_NAME is the name of the file we are reading from | |
1244 | and SECTION_OFFSETS is the set of offsets for the various sections | |
1245 | of the file (a set of zeros if the mainline program). */ | |
1246 | ||
1247 | static void | |
1248 | read_dbx_symtab (section_offsets, objfile, text_addr, text_size) | |
1249 | struct section_offsets *section_offsets; | |
1250 | struct objfile *objfile; | |
1251 | CORE_ADDR text_addr; | |
1252 | int text_size; | |
1253 | { | |
1254 | register struct external_nlist *bufp = 0; /* =0 avoids gcc -Wall glitch */ | |
1255 | struct internal_nlist nlist; | |
1256 | ||
1257 | register char *namestring; | |
1258 | int nsl; | |
1259 | int past_first_source_file = 0; | |
1260 | CORE_ADDR last_o_file_start = 0; | |
1261 | CORE_ADDR last_function_start = 0; | |
1262 | struct cleanup *back_to; | |
1263 | bfd *abfd; | |
1264 | int textlow_not_set; | |
1265 | ||
1266 | /* Current partial symtab */ | |
1267 | struct partial_symtab *pst; | |
1268 | ||
1269 | /* List of current psymtab's include files */ | |
1270 | char **psymtab_include_list; | |
1271 | int includes_allocated; | |
1272 | int includes_used; | |
1273 | ||
1274 | /* Index within current psymtab dependency list */ | |
1275 | struct partial_symtab **dependency_list; | |
1276 | int dependencies_used, dependencies_allocated; | |
1277 | ||
1278 | /* FIXME. We probably want to change stringtab_global rather than add this | |
1279 | while processing every symbol entry. FIXME. */ | |
1280 | file_string_table_offset = 0; | |
1281 | next_file_string_table_offset = 0; | |
1282 | ||
1283 | stringtab_global = DBX_STRINGTAB (objfile); | |
1284 | ||
1285 | pst = (struct partial_symtab *) 0; | |
1286 | ||
1287 | includes_allocated = 30; | |
1288 | includes_used = 0; | |
1289 | psymtab_include_list = (char **) alloca (includes_allocated * | |
1290 | sizeof (char *)); | |
1291 | ||
1292 | dependencies_allocated = 30; | |
1293 | dependencies_used = 0; | |
1294 | dependency_list = | |
1295 | (struct partial_symtab **) alloca (dependencies_allocated * | |
1296 | sizeof (struct partial_symtab *)); | |
1297 | ||
1298 | /* Init bincl list */ | |
1299 | init_bincl_list (20, objfile); | |
1300 | back_to = make_cleanup ((make_cleanup_func) free_bincl_list, objfile); | |
1301 | ||
1302 | last_source_file = NULL; | |
1303 | ||
1304 | lowest_text_address = (CORE_ADDR)-1; | |
1305 | ||
1306 | symfile_bfd = objfile->obfd; /* For next_text_symbol */ | |
1307 | abfd = objfile->obfd; | |
1308 | symbuf_end = symbuf_idx = 0; | |
1309 | next_symbol_text_func = dbx_next_symbol_text; | |
1310 | textlow_not_set = 1; | |
1311 | has_line_numbers = 0; | |
1312 | ||
1313 | for (symnum = 0; symnum < DBX_SYMCOUNT (objfile); symnum++) | |
1314 | { | |
1315 | /* Get the symbol for this run and pull out some info */ | |
1316 | QUIT; /* allow this to be interruptable */ | |
1317 | if (symbuf_idx == symbuf_end) | |
1318 | fill_symbuf (abfd); | |
1319 | bufp = &symbuf[symbuf_idx++]; | |
1320 | ||
1321 | /* | |
1322 | * Special case to speed up readin. | |
1323 | */ | |
1324 | if (bfd_h_get_8 (abfd, bufp->e_type) == N_SLINE) | |
1325 | { | |
1326 | has_line_numbers = 1; | |
1327 | continue; | |
1328 | } | |
1329 | ||
1330 | INTERNALIZE_SYMBOL (nlist, bufp, abfd); | |
1331 | OBJSTAT (objfile, n_stabs++); | |
1332 | ||
1333 | /* Ok. There is a lot of code duplicated in the rest of this | |
1334 | switch statement (for efficiency reasons). Since I don't | |
1335 | like duplicating code, I will do my penance here, and | |
1336 | describe the code which is duplicated: | |
1337 | ||
1338 | *) The assignment to namestring. | |
1339 | *) The call to strchr. | |
1340 | *) The addition of a partial symbol the the two partial | |
1341 | symbol lists. This last is a large section of code, so | |
1342 | I've imbedded it in the following macro. | |
1343 | */ | |
1344 | ||
1345 | /* Set namestring based on nlist. If the string table index is invalid, | |
1346 | give a fake name, and print a single error message per symbol file read, | |
1347 | rather than abort the symbol reading or flood the user with messages. */ | |
1348 | ||
1349 | /*FIXME: Too many adds and indirections in here for the inner loop. */ | |
1350 | #define SET_NAMESTRING()\ | |
1351 | if (((unsigned)CUR_SYMBOL_STRX + file_string_table_offset) >= \ | |
1352 | DBX_STRINGTAB_SIZE (objfile)) { \ | |
1353 | complain (&string_table_offset_complaint, symnum); \ | |
1354 | namestring = "<bad string table offset>"; \ | |
1355 | } else \ | |
1356 | namestring = CUR_SYMBOL_STRX + file_string_table_offset + \ | |
1357 | DBX_STRINGTAB (objfile) | |
1358 | ||
1359 | #define CUR_SYMBOL_TYPE nlist.n_type | |
1360 | #define CUR_SYMBOL_VALUE nlist.n_value | |
1361 | #define CUR_SYMBOL_STRX nlist.n_strx | |
1362 | #define DBXREAD_ONLY | |
1363 | #define START_PSYMTAB(ofile,secoff,fname,low,symoff,global_syms,static_syms)\ | |
1364 | start_psymtab(ofile, secoff, fname, low, symoff, global_syms, static_syms) | |
1365 | #define END_PSYMTAB(pst,ilist,ninc,c_off,c_text,dep_list,n_deps,textlow_not_set)\ | |
1366 | end_psymtab(pst,ilist,ninc,c_off,c_text,dep_list,n_deps,textlow_not_set) | |
1367 | ||
1368 | #include "partial-stab.h" | |
1369 | } | |
1370 | ||
1371 | /* If there's stuff to be cleaned up, clean it up. */ | |
1372 | if (DBX_SYMCOUNT (objfile) > 0 /* We have some syms */ | |
1373 | /*FIXME, does this have a bug at start address 0? */ | |
1374 | && last_o_file_start | |
1375 | && objfile -> ei.entry_point < nlist.n_value | |
1376 | && objfile -> ei.entry_point >= last_o_file_start) | |
1377 | { | |
1378 | objfile -> ei.entry_file_lowpc = last_o_file_start; | |
1379 | objfile -> ei.entry_file_highpc = nlist.n_value; | |
1380 | } | |
1381 | ||
1382 | if (pst) | |
1383 | { | |
1384 | /* Don't set pst->texthigh lower than it already is. */ | |
1385 | CORE_ADDR text_end = | |
1386 | (lowest_text_address == (CORE_ADDR)-1 | |
1387 | ? (text_addr + section_offsets->offsets[SECT_OFF_TEXT]) | |
1388 | : lowest_text_address) | |
1389 | + text_size; | |
1390 | ||
1391 | end_psymtab (pst, psymtab_include_list, includes_used, | |
1392 | symnum * symbol_size, | |
1393 | text_end > pst->texthigh ? text_end : pst->texthigh, | |
1394 | dependency_list, dependencies_used, textlow_not_set); | |
1395 | } | |
1396 | ||
1397 | do_cleanups (back_to); | |
1398 | } | |
1399 | ||
1400 | /* Allocate and partially fill a partial symtab. It will be | |
1401 | completely filled at the end of the symbol list. | |
1402 | ||
1403 | SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR | |
1404 | is the address relative to which its symbols are (incremental) or 0 | |
1405 | (normal). */ | |
1406 | ||
1407 | ||
1408 | struct partial_symtab * | |
1409 | start_psymtab (objfile, section_offsets, | |
1410 | filename, textlow, ldsymoff, global_syms, static_syms) | |
1411 | struct objfile *objfile; | |
1412 | struct section_offsets *section_offsets; | |
1413 | char *filename; | |
1414 | CORE_ADDR textlow; | |
1415 | int ldsymoff; | |
1416 | struct partial_symbol **global_syms; | |
1417 | struct partial_symbol **static_syms; | |
1418 | { | |
1419 | struct partial_symtab *result = | |
1420 | start_psymtab_common(objfile, section_offsets, | |
1421 | filename, textlow, global_syms, static_syms); | |
1422 | ||
1423 | result->read_symtab_private = (char *) | |
1424 | obstack_alloc (&objfile -> psymbol_obstack, sizeof (struct symloc)); | |
1425 | LDSYMOFF(result) = ldsymoff; | |
1426 | result->read_symtab = dbx_psymtab_to_symtab; | |
1427 | SYMBOL_SIZE(result) = symbol_size; | |
1428 | SYMBOL_OFFSET(result) = symbol_table_offset; | |
1429 | STRING_OFFSET(result) = string_table_offset; | |
1430 | FILE_STRING_OFFSET(result) = file_string_table_offset; | |
1431 | ||
1432 | /* If we're handling an ELF file, drag some section-relocation info | |
1433 | for this source file out of the ELF symbol table, to compensate for | |
1434 | Sun brain death. This replaces the section_offsets in this psymtab, | |
1435 | if successful. */ | |
1436 | elfstab_offset_sections (objfile, result); | |
1437 | ||
1438 | /* Deduce the source language from the filename for this psymtab. */ | |
1439 | psymtab_language = deduce_language_from_filename (filename); | |
1440 | ||
1441 | return result; | |
1442 | } | |
1443 | ||
1444 | /* Close off the current usage of PST. | |
1445 | Returns PST or NULL if the partial symtab was empty and thrown away. | |
1446 | ||
1447 | FIXME: List variables and peculiarities of same. */ | |
1448 | ||
1449 | struct partial_symtab * | |
1450 | end_psymtab (pst, include_list, num_includes, capping_symbol_offset, | |
1451 | capping_text, dependency_list, number_dependencies, textlow_not_set) | |
1452 | struct partial_symtab *pst; | |
1453 | char **include_list; | |
1454 | int num_includes; | |
1455 | int capping_symbol_offset; | |
1456 | CORE_ADDR capping_text; | |
1457 | struct partial_symtab **dependency_list; | |
1458 | int number_dependencies; | |
1459 | int textlow_not_set; | |
1460 | { | |
1461 | int i; | |
1462 | struct objfile *objfile = pst -> objfile; | |
1463 | ||
1464 | if (capping_symbol_offset != -1) | |
1465 | LDSYMLEN(pst) = capping_symbol_offset - LDSYMOFF(pst); | |
1466 | pst->texthigh = capping_text; | |
1467 | ||
1468 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
1469 | /* Under Solaris, the N_SO symbols always have a value of 0, | |
1470 | instead of the usual address of the .o file. Therefore, | |
1471 | we have to do some tricks to fill in texthigh and textlow. | |
1472 | The first trick is in partial-stab.h: if we see a static | |
1473 | or global function, and the textlow for the current pst | |
1474 | is not set (ie: textlow_not_set), then we use that function's | |
1475 | address for the textlow of the pst. */ | |
1476 | ||
1477 | /* Now, to fill in texthigh, we remember the last function seen | |
1478 | in the .o file (also in partial-stab.h). Also, there's a hack in | |
1479 | bfd/elf.c and gdb/elfread.c to pass the ELF st_size field | |
1480 | to here via the misc_info field. Therefore, we can fill in | |
1481 | a reliable texthigh by taking the address plus size of the | |
1482 | last function in the file. */ | |
1483 | ||
1484 | if (pst->texthigh == 0 && last_function_name) | |
1485 | { | |
1486 | char *p; | |
1487 | int n; | |
1488 | struct minimal_symbol *minsym; | |
1489 | ||
1490 | p = strchr (last_function_name, ':'); | |
1491 | if (p == NULL) | |
1492 | p = last_function_name; | |
1493 | n = p - last_function_name; | |
1494 | p = alloca (n + 2); | |
1495 | strncpy (p, last_function_name, n); | |
1496 | p[n] = 0; | |
1497 | ||
1498 | minsym = lookup_minimal_symbol (p, pst->filename, objfile); | |
1499 | if (minsym == NULL) | |
1500 | { | |
1501 | /* Sun Fortran appends an underscore to the minimal symbol name, | |
1502 | try again with an appended underscore if the minimal symbol | |
1503 | was not found. */ | |
1504 | p[n] = '_'; | |
1505 | p[n + 1] = 0; | |
1506 | minsym = lookup_minimal_symbol (p, pst->filename, objfile); | |
1507 | } | |
1508 | ||
1509 | if (minsym) | |
1510 | pst->texthigh = SYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym); | |
1511 | ||
1512 | last_function_name = NULL; | |
1513 | } | |
1514 | ||
1515 | /* this test will be true if the last .o file is only data */ | |
1516 | if (textlow_not_set) | |
1517 | pst->textlow = pst->texthigh; | |
1518 | else | |
1519 | { | |
1520 | struct partial_symtab *p1; | |
1521 | ||
1522 | /* If we know our own starting text address, then walk through all other | |
1523 | psymtabs for this objfile, and if any didn't know their ending text | |
1524 | address, set it to our starting address. Take care to not set our | |
1525 | own ending address to our starting address, nor to set addresses on | |
1526 | `dependency' files that have both textlow and texthigh zero. */ | |
1527 | ||
1528 | ALL_OBJFILE_PSYMTABS (objfile, p1) | |
1529 | { | |
1530 | if (p1->texthigh == 0 && p1->textlow != 0 && p1 != pst) | |
1531 | { | |
1532 | p1->texthigh = pst->textlow; | |
1533 | /* if this file has only data, then make textlow match texthigh */ | |
1534 | if (p1->textlow == 0) | |
1535 | p1->textlow = p1->texthigh; | |
1536 | } | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | /* End of kludge for patching Solaris textlow and texthigh. */ | |
1541 | #endif /* SOFUN_ADDRESS_MAYBE_MISSING. */ | |
1542 | ||
1543 | pst->n_global_syms = | |
1544 | objfile->global_psymbols.next - (objfile->global_psymbols.list + pst->globals_offset); | |
1545 | pst->n_static_syms = | |
1546 | objfile->static_psymbols.next - (objfile->static_psymbols.list + pst->statics_offset); | |
1547 | ||
1548 | pst->number_of_dependencies = number_dependencies; | |
1549 | if (number_dependencies) | |
1550 | { | |
1551 | pst->dependencies = (struct partial_symtab **) | |
1552 | obstack_alloc (&objfile->psymbol_obstack, | |
1553 | number_dependencies * sizeof (struct partial_symtab *)); | |
1554 | memcpy (pst->dependencies, dependency_list, | |
1555 | number_dependencies * sizeof (struct partial_symtab *)); | |
1556 | } | |
1557 | else | |
1558 | pst->dependencies = 0; | |
1559 | ||
1560 | for (i = 0; i < num_includes; i++) | |
1561 | { | |
1562 | struct partial_symtab *subpst = | |
1563 | allocate_psymtab (include_list[i], objfile); | |
1564 | ||
1565 | subpst->section_offsets = pst->section_offsets; | |
1566 | subpst->read_symtab_private = | |
1567 | (char *) obstack_alloc (&objfile->psymbol_obstack, | |
1568 | sizeof (struct symloc)); | |
1569 | LDSYMOFF(subpst) = | |
1570 | LDSYMLEN(subpst) = | |
1571 | subpst->textlow = | |
1572 | subpst->texthigh = 0; | |
1573 | ||
1574 | /* We could save slight bits of space by only making one of these, | |
1575 | shared by the entire set of include files. FIXME-someday. */ | |
1576 | subpst->dependencies = (struct partial_symtab **) | |
1577 | obstack_alloc (&objfile->psymbol_obstack, | |
1578 | sizeof (struct partial_symtab *)); | |
1579 | subpst->dependencies[0] = pst; | |
1580 | subpst->number_of_dependencies = 1; | |
1581 | ||
1582 | subpst->globals_offset = | |
1583 | subpst->n_global_syms = | |
1584 | subpst->statics_offset = | |
1585 | subpst->n_static_syms = 0; | |
1586 | ||
1587 | subpst->readin = 0; | |
1588 | subpst->symtab = 0; | |
1589 | subpst->read_symtab = pst->read_symtab; | |
1590 | } | |
1591 | ||
1592 | sort_pst_symbols (pst); | |
1593 | ||
1594 | /* If there is already a psymtab or symtab for a file of this name, remove it. | |
1595 | (If there is a symtab, more drastic things also happen.) | |
1596 | This happens in VxWorks. */ | |
1597 | free_named_symtabs (pst->filename); | |
1598 | ||
1599 | if (num_includes == 0 | |
1600 | && number_dependencies == 0 | |
1601 | && pst->n_global_syms == 0 | |
1602 | && pst->n_static_syms == 0 | |
1603 | && has_line_numbers == 0) | |
1604 | { | |
1605 | /* Throw away this psymtab, it's empty. We can't deallocate it, since | |
1606 | it is on the obstack, but we can forget to chain it on the list. */ | |
1607 | /* Empty psymtabs happen as a result of header files which don't have | |
1608 | any symbols in them. There can be a lot of them. But this check | |
1609 | is wrong, in that a psymtab with N_SLINE entries but nothing else | |
1610 | is not empty, but we don't realize that. Fixing that without slowing | |
1611 | things down might be tricky. */ | |
1612 | ||
1613 | discard_psymtab (pst); | |
1614 | ||
1615 | /* Indicate that psymtab was thrown away. */ | |
1616 | pst = (struct partial_symtab *)NULL; | |
1617 | } | |
1618 | return pst; | |
1619 | } | |
1620 | \f | |
1621 | static void | |
1622 | dbx_psymtab_to_symtab_1 (pst) | |
1623 | struct partial_symtab *pst; | |
1624 | { | |
1625 | struct cleanup *old_chain; | |
1626 | int i; | |
1627 | ||
1628 | if (!pst) | |
1629 | return; | |
1630 | ||
1631 | if (pst->readin) | |
1632 | { | |
1633 | fprintf_unfiltered (gdb_stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
1634 | pst->filename); | |
1635 | return; | |
1636 | } | |
1637 | ||
1638 | /* Read in all partial symtabs on which this one is dependent */ | |
1639 | for (i = 0; i < pst->number_of_dependencies; i++) | |
1640 | if (!pst->dependencies[i]->readin) | |
1641 | { | |
1642 | /* Inform about additional files that need to be read in. */ | |
1643 | if (info_verbose) | |
1644 | { | |
1645 | fputs_filtered (" ", gdb_stdout); | |
1646 | wrap_here (""); | |
1647 | fputs_filtered ("and ", gdb_stdout); | |
1648 | wrap_here (""); | |
1649 | printf_filtered ("%s...", pst->dependencies[i]->filename); | |
1650 | wrap_here (""); /* Flush output */ | |
1651 | gdb_flush (gdb_stdout); | |
1652 | } | |
1653 | dbx_psymtab_to_symtab_1 (pst->dependencies[i]); | |
1654 | } | |
1655 | ||
1656 | if (LDSYMLEN(pst)) /* Otherwise it's a dummy */ | |
1657 | { | |
1658 | /* Init stuff necessary for reading in symbols */ | |
1659 | stabsread_init (); | |
1660 | buildsym_init (); | |
1661 | old_chain = make_cleanup ((make_cleanup_func) really_free_pendings, 0); | |
1662 | file_string_table_offset = FILE_STRING_OFFSET (pst); | |
1663 | symbol_size = SYMBOL_SIZE (pst); | |
1664 | ||
1665 | /* Read in this file's symbols */ | |
1666 | bfd_seek (pst->objfile->obfd, SYMBOL_OFFSET (pst), SEEK_SET); | |
1667 | read_ofile_symtab (pst); | |
1668 | sort_symtab_syms (pst->symtab); | |
1669 | ||
1670 | do_cleanups (old_chain); | |
1671 | } | |
1672 | ||
1673 | pst->readin = 1; | |
1674 | } | |
1675 | ||
1676 | /* Read in all of the symbols for a given psymtab for real. | |
1677 | Be verbose about it if the user wants that. */ | |
1678 | ||
1679 | static void | |
1680 | dbx_psymtab_to_symtab (pst) | |
1681 | struct partial_symtab *pst; | |
1682 | { | |
1683 | bfd *sym_bfd; | |
1684 | ||
1685 | if (!pst) | |
1686 | return; | |
1687 | ||
1688 | if (pst->readin) | |
1689 | { | |
1690 | fprintf_unfiltered (gdb_stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
1691 | pst->filename); | |
1692 | return; | |
1693 | } | |
1694 | ||
1695 | if (LDSYMLEN(pst) || pst->number_of_dependencies) | |
1696 | { | |
1697 | /* Print the message now, before reading the string table, | |
1698 | to avoid disconcerting pauses. */ | |
1699 | if (info_verbose) | |
1700 | { | |
1701 | printf_filtered ("Reading in symbols for %s...", pst->filename); | |
1702 | gdb_flush (gdb_stdout); | |
1703 | } | |
1704 | ||
1705 | sym_bfd = pst->objfile->obfd; | |
1706 | ||
1707 | next_symbol_text_func = dbx_next_symbol_text; | |
1708 | ||
1709 | dbx_psymtab_to_symtab_1 (pst); | |
1710 | ||
1711 | /* Match with global symbols. This only needs to be done once, | |
1712 | after all of the symtabs and dependencies have been read in. */ | |
1713 | scan_file_globals (pst->objfile); | |
1714 | ||
1715 | /* Finish up the debug error message. */ | |
1716 | if (info_verbose) | |
1717 | printf_filtered ("done.\n"); | |
1718 | } | |
1719 | } | |
1720 | ||
1721 | /* Read in a defined section of a specific object file's symbols. */ | |
1722 | ||
1723 | static void | |
1724 | read_ofile_symtab (pst) | |
1725 | struct partial_symtab *pst; | |
1726 | { | |
1727 | register char *namestring; | |
1728 | register struct external_nlist *bufp; | |
1729 | struct internal_nlist nlist; | |
1730 | unsigned char type; | |
1731 | unsigned max_symnum; | |
1732 | register bfd *abfd; | |
1733 | struct objfile *objfile; | |
1734 | int sym_offset; /* Offset to start of symbols to read */ | |
1735 | int sym_size; /* Size of symbols to read */ | |
1736 | CORE_ADDR text_offset; /* Start of text segment for symbols */ | |
1737 | int text_size; /* Size of text segment for symbols */ | |
1738 | struct section_offsets *section_offsets; | |
1739 | ||
1740 | objfile = pst->objfile; | |
1741 | sym_offset = LDSYMOFF(pst); | |
1742 | sym_size = LDSYMLEN(pst); | |
1743 | text_offset = pst->textlow; | |
1744 | text_size = pst->texthigh - pst->textlow; | |
1745 | section_offsets = pst->section_offsets; | |
1746 | ||
1747 | current_objfile = objfile; | |
1748 | subfile_stack = NULL; | |
1749 | ||
1750 | stringtab_global = DBX_STRINGTAB (objfile); | |
1751 | last_source_file = NULL; | |
1752 | ||
1753 | abfd = objfile->obfd; | |
1754 | symfile_bfd = objfile->obfd; /* Implicit param to next_text_symbol */ | |
1755 | symbuf_end = symbuf_idx = 0; | |
1756 | ||
1757 | /* It is necessary to actually read one symbol *before* the start | |
1758 | of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL | |
1759 | occurs before the N_SO symbol. | |
1760 | ||
1761 | Detecting this in read_dbx_symtab | |
1762 | would slow down initial readin, so we look for it here instead. */ | |
1763 | if (!processing_acc_compilation && sym_offset >= (int)symbol_size) | |
1764 | { | |
1765 | bfd_seek (symfile_bfd, sym_offset - symbol_size, SEEK_CUR); | |
1766 | fill_symbuf (abfd); | |
1767 | bufp = &symbuf[symbuf_idx++]; | |
1768 | INTERNALIZE_SYMBOL (nlist, bufp, abfd); | |
1769 | OBJSTAT (objfile, n_stabs++); | |
1770 | ||
1771 | SET_NAMESTRING (); | |
1772 | ||
1773 | processing_gcc_compilation = 0; | |
1774 | if (nlist.n_type == N_TEXT) | |
1775 | { | |
1776 | const char *tempstring = namestring; | |
1777 | ||
1778 | if (STREQ (namestring, GCC_COMPILED_FLAG_SYMBOL)) | |
1779 | processing_gcc_compilation = 1; | |
1780 | else if (STREQ (namestring, GCC2_COMPILED_FLAG_SYMBOL)) | |
1781 | processing_gcc_compilation = 2; | |
1782 | if (tempstring[0] == bfd_get_symbol_leading_char (symfile_bfd)) | |
1783 | ++tempstring; | |
1784 | if (STREQN (tempstring, "__gnu_compiled", 14)) | |
1785 | processing_gcc_compilation = 2; | |
1786 | } | |
1787 | ||
1788 | /* Try to select a C++ demangling based on the compilation unit | |
1789 | producer. */ | |
1790 | ||
1791 | if (processing_gcc_compilation) | |
1792 | { | |
1793 | if (AUTO_DEMANGLING) | |
1794 | { | |
1795 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
1796 | } | |
1797 | } | |
1798 | } | |
1799 | else | |
1800 | { | |
1801 | /* The N_SO starting this symtab is the first symbol, so we | |
1802 | better not check the symbol before it. I'm not this can | |
1803 | happen, but it doesn't hurt to check for it. */ | |
1804 | bfd_seek (symfile_bfd, sym_offset, SEEK_CUR); | |
1805 | processing_gcc_compilation = 0; | |
1806 | } | |
1807 | ||
1808 | if (symbuf_idx == symbuf_end) | |
1809 | fill_symbuf (abfd); | |
1810 | bufp = &symbuf[symbuf_idx]; | |
1811 | if (bfd_h_get_8 (abfd, bufp->e_type) != N_SO) | |
1812 | error("First symbol in segment of executable not a source symbol"); | |
1813 | ||
1814 | max_symnum = sym_size / symbol_size; | |
1815 | ||
1816 | for (symnum = 0; | |
1817 | symnum < max_symnum; | |
1818 | symnum++) | |
1819 | { | |
1820 | QUIT; /* Allow this to be interruptable */ | |
1821 | if (symbuf_idx == symbuf_end) | |
1822 | fill_symbuf(abfd); | |
1823 | bufp = &symbuf[symbuf_idx++]; | |
1824 | INTERNALIZE_SYMBOL (nlist, bufp, abfd); | |
1825 | OBJSTAT (objfile, n_stabs++); | |
1826 | ||
1827 | type = bfd_h_get_8 (abfd, bufp->e_type); | |
1828 | ||
1829 | SET_NAMESTRING (); | |
1830 | ||
1831 | if (type & N_STAB) { | |
1832 | process_one_symbol (type, nlist.n_desc, nlist.n_value, | |
1833 | namestring, section_offsets, objfile); | |
1834 | } | |
1835 | /* We skip checking for a new .o or -l file; that should never | |
1836 | happen in this routine. */ | |
1837 | else if (type == N_TEXT) | |
1838 | { | |
1839 | /* I don't think this code will ever be executed, because | |
1840 | the GCC_COMPILED_FLAG_SYMBOL usually is right before | |
1841 | the N_SO symbol which starts this source file. | |
1842 | However, there is no reason not to accept | |
1843 | the GCC_COMPILED_FLAG_SYMBOL anywhere. */ | |
1844 | ||
1845 | if (STREQ (namestring, GCC_COMPILED_FLAG_SYMBOL)) | |
1846 | processing_gcc_compilation = 1; | |
1847 | else if (STREQ (namestring, GCC2_COMPILED_FLAG_SYMBOL)) | |
1848 | processing_gcc_compilation = 2; | |
1849 | ||
1850 | if (AUTO_DEMANGLING) | |
1851 | { | |
1852 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
1853 | } | |
1854 | } | |
1855 | else if (type & N_EXT || type == (unsigned char)N_TEXT | |
1856 | || type == (unsigned char)N_NBTEXT | |
1857 | ) { | |
1858 | /* Global symbol: see if we came across a dbx defintion for | |
1859 | a corresponding symbol. If so, store the value. Remove | |
1860 | syms from the chain when their values are stored, but | |
1861 | search the whole chain, as there may be several syms from | |
1862 | different files with the same name. */ | |
1863 | /* This is probably not true. Since the files will be read | |
1864 | in one at a time, each reference to a global symbol will | |
1865 | be satisfied in each file as it appears. So we skip this | |
1866 | section. */ | |
1867 | ; | |
1868 | } | |
1869 | } | |
1870 | ||
1871 | current_objfile = NULL; | |
1872 | ||
1873 | /* In a Solaris elf file, this variable, which comes from the | |
1874 | value of the N_SO symbol, will still be 0. Luckily, text_offset, | |
1875 | which comes from pst->textlow is correct. */ | |
1876 | if (last_source_start_addr == 0) | |
1877 | last_source_start_addr = text_offset; | |
1878 | ||
1879 | /* In reordered executables last_source_start_addr may not be the | |
1880 | lower bound for this symtab, instead use text_offset which comes | |
1881 | from pst->textlow which is correct. */ | |
1882 | if (last_source_start_addr > text_offset) | |
1883 | last_source_start_addr = text_offset; | |
1884 | ||
1885 | pst->symtab = end_symtab (text_offset + text_size, objfile, SECT_OFF_TEXT); | |
1886 | ||
1887 | /* Process items which we had to "process_later" due to dependancies | |
1888 | on other stabs. */ | |
1889 | process_now (objfile); | |
1890 | ||
1891 | end_stabs (); | |
1892 | } | |
1893 | ||
1894 | \f | |
1895 | /* This handles a single symbol from the symbol-file, building symbols | |
1896 | into a GDB symtab. It takes these arguments and an implicit argument. | |
1897 | ||
1898 | TYPE is the type field of the ".stab" symbol entry. | |
1899 | DESC is the desc field of the ".stab" entry. | |
1900 | VALU is the value field of the ".stab" entry. | |
1901 | NAME is the symbol name, in our address space. | |
1902 | SECTION_OFFSETS is a set of amounts by which the sections of this object | |
1903 | file were relocated when it was loaded into memory. | |
1904 | All symbols that refer | |
1905 | to memory locations need to be offset by these amounts. | |
1906 | OBJFILE is the object file from which we are reading symbols. | |
1907 | It is used in end_symtab. */ | |
1908 | ||
1909 | void | |
1910 | process_one_symbol (type, desc, valu, name, section_offsets, objfile) | |
1911 | int type, desc; | |
1912 | CORE_ADDR valu; | |
1913 | char *name; | |
1914 | struct section_offsets *section_offsets; | |
1915 | struct objfile *objfile; | |
1916 | { | |
1917 | #ifdef SUN_FIXED_LBRAC_BUG | |
1918 | /* If SUN_FIXED_LBRAC_BUG is defined, then it tells us whether we need | |
1919 | to correct the address of N_LBRAC's. If it is not defined, then | |
1920 | we never need to correct the addresses. */ | |
1921 | ||
1922 | /* This records the last pc address we've seen. We depend on there being | |
1923 | an SLINE or FUN or SO before the first LBRAC, since the variable does | |
1924 | not get reset in between reads of different symbol files. */ | |
1925 | static CORE_ADDR last_pc_address; | |
1926 | #endif | |
1927 | ||
1928 | register struct context_stack *new; | |
1929 | /* This remembers the address of the start of a function. It is used | |
1930 | because in Solaris 2, N_LBRAC, N_RBRAC, and N_SLINE entries are | |
1931 | relative to the current function's start address. On systems | |
1932 | other than Solaris 2, this just holds the SECT_OFF_TEXT value, and is | |
1933 | used to relocate these symbol types rather than SECTION_OFFSETS. */ | |
1934 | static CORE_ADDR function_start_offset; | |
1935 | ||
1936 | /* If this is nonzero, we've seen a non-gcc N_OPT symbol for this source | |
1937 | file. Used to detect the SunPRO solaris compiler. */ | |
1938 | static int n_opt_found; | |
1939 | ||
1940 | /* The stab type used for the definition of the last function. | |
1941 | N_STSYM or N_GSYM for SunOS4 acc; N_FUN for other compilers. */ | |
1942 | static int function_stab_type = 0; | |
1943 | ||
1944 | if (!block_address_function_relative) | |
1945 | /* N_LBRAC, N_RBRAC and N_SLINE entries are not relative to the | |
1946 | function start address, so just use the text offset. */ | |
1947 | function_start_offset = ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
1948 | ||
1949 | /* Something is wrong if we see real data before | |
1950 | seeing a source file name. */ | |
1951 | ||
1952 | if (last_source_file == NULL && type != (unsigned char)N_SO) | |
1953 | { | |
1954 | /* Ignore any symbols which appear before an N_SO symbol. | |
1955 | Currently no one puts symbols there, but we should deal | |
1956 | gracefully with the case. A complain()t might be in order, | |
1957 | but this should not be an error (). */ | |
1958 | return; | |
1959 | } | |
1960 | ||
1961 | switch (type) | |
1962 | { | |
1963 | case N_FUN: | |
1964 | case N_FNAME: | |
1965 | ||
1966 | if (*name == '\000') | |
1967 | { | |
1968 | /* This N_FUN marks the end of a function. This closes off the | |
1969 | current block. */ | |
1970 | within_function = 0; | |
1971 | new = pop_context (); | |
1972 | ||
1973 | /* Make a block for the local symbols within. */ | |
1974 | finish_block (new->name, &local_symbols, new->old_blocks, | |
1975 | new->start_addr, new->start_addr + valu, | |
1976 | objfile); | |
1977 | ||
1978 | /* May be switching to an assembler file which may not be using | |
1979 | block relative stabs, so reset the offset. */ | |
1980 | if (block_address_function_relative) | |
1981 | function_start_offset = 0; | |
1982 | ||
1983 | break; | |
1984 | } | |
1985 | ||
1986 | /* Relocate for dynamic loading */ | |
1987 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
1988 | #ifdef SMASH_TEXT_ADDRESS | |
1989 | SMASH_TEXT_ADDRESS (valu); | |
1990 | #endif | |
1991 | goto define_a_symbol; | |
1992 | ||
1993 | case N_LBRAC: | |
1994 | /* This "symbol" just indicates the start of an inner lexical | |
1995 | context within a function. */ | |
1996 | ||
1997 | /* Ignore extra outermost context from SunPRO cc and acc. */ | |
1998 | if (n_opt_found && desc == 1) | |
1999 | break; | |
2000 | ||
2001 | if (block_address_function_relative) | |
2002 | /* Relocate for Sun ELF acc fn-relative syms. */ | |
2003 | valu += function_start_offset; | |
2004 | else | |
2005 | /* On most machines, the block addresses are relative to the | |
2006 | N_SO, the linker did not relocate them (sigh). */ | |
2007 | valu += last_source_start_addr; | |
2008 | ||
2009 | #ifdef SUN_FIXED_LBRAC_BUG | |
2010 | if (!SUN_FIXED_LBRAC_BUG && valu < last_pc_address) { | |
2011 | /* Patch current LBRAC pc value to match last handy pc value */ | |
2012 | complain (&lbrac_complaint); | |
2013 | valu = last_pc_address; | |
2014 | } | |
2015 | #endif | |
2016 | new = push_context (desc, valu); | |
2017 | break; | |
2018 | ||
2019 | case N_RBRAC: | |
2020 | /* This "symbol" just indicates the end of an inner lexical | |
2021 | context that was started with N_LBRAC. */ | |
2022 | ||
2023 | /* Ignore extra outermost context from SunPRO cc and acc. */ | |
2024 | if (n_opt_found && desc == 1) | |
2025 | break; | |
2026 | ||
2027 | if (block_address_function_relative) | |
2028 | /* Relocate for Sun ELF acc fn-relative syms. */ | |
2029 | valu += function_start_offset; | |
2030 | else | |
2031 | /* On most machines, the block addresses are relative to the | |
2032 | N_SO, the linker did not relocate them (sigh). */ | |
2033 | valu += last_source_start_addr; | |
2034 | ||
2035 | new = pop_context(); | |
2036 | if (desc != new->depth) | |
2037 | complain (&lbrac_mismatch_complaint, symnum); | |
2038 | ||
2039 | /* Some compilers put the variable decls inside of an | |
2040 | LBRAC/RBRAC block. This macro should be nonzero if this | |
2041 | is true. DESC is N_DESC from the N_RBRAC symbol. | |
2042 | GCC_P is true if we've detected the GCC_COMPILED_SYMBOL | |
2043 | or the GCC2_COMPILED_SYMBOL. */ | |
2044 | #if !defined (VARIABLES_INSIDE_BLOCK) | |
2045 | #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0 | |
2046 | #endif | |
2047 | ||
2048 | /* Can only use new->locals as local symbols here if we're in | |
2049 | gcc or on a machine that puts them before the lbrack. */ | |
2050 | if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)) | |
2051 | local_symbols = new->locals; | |
2052 | ||
2053 | if (context_stack_depth | |
2054 | > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)) | |
2055 | { | |
2056 | /* This is not the outermost LBRAC...RBRAC pair in the function, | |
2057 | its local symbols preceded it, and are the ones just recovered | |
2058 | from the context stack. Define the block for them (but don't | |
2059 | bother if the block contains no symbols. Should we complain | |
2060 | on blocks without symbols? I can't think of any useful purpose | |
2061 | for them). */ | |
2062 | if (local_symbols != NULL) | |
2063 | { | |
2064 | /* Muzzle a compiler bug that makes end < start. (which | |
2065 | compilers? Is this ever harmful?). */ | |
2066 | if (new->start_addr > valu) | |
2067 | { | |
2068 | complain (&lbrac_rbrac_complaint); | |
2069 | new->start_addr = valu; | |
2070 | } | |
2071 | /* Make a block for the local symbols within. */ | |
2072 | finish_block (0, &local_symbols, new->old_blocks, | |
2073 | new->start_addr, valu, objfile); | |
2074 | } | |
2075 | } | |
2076 | else | |
2077 | { | |
2078 | /* This is the outermost LBRAC...RBRAC pair. There is no | |
2079 | need to do anything; leave the symbols that preceded it | |
2080 | to be attached to the function's own block. We need to | |
2081 | indicate that we just moved outside of the function. */ | |
2082 | within_function = 0; | |
2083 | } | |
2084 | ||
2085 | if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)) | |
2086 | /* Now pop locals of block just finished. */ | |
2087 | local_symbols = new->locals; | |
2088 | break; | |
2089 | ||
2090 | case N_FN: | |
2091 | case N_FN_SEQ: | |
2092 | /* This kind of symbol indicates the start of an object file. */ | |
2093 | /* Relocate for dynamic loading */ | |
2094 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
2095 | break; | |
2096 | ||
2097 | case N_SO: | |
2098 | /* This type of symbol indicates the start of data | |
2099 | for one source file. | |
2100 | Finish the symbol table of the previous source file | |
2101 | (if any) and start accumulating a new symbol table. */ | |
2102 | /* Relocate for dynamic loading */ | |
2103 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
2104 | ||
2105 | n_opt_found = 0; | |
2106 | ||
2107 | #ifdef SUN_FIXED_LBRAC_BUG | |
2108 | last_pc_address = valu; /* Save for SunOS bug circumcision */ | |
2109 | #endif | |
2110 | ||
2111 | #ifdef PCC_SOL_BROKEN | |
2112 | /* pcc bug, occasionally puts out SO for SOL. */ | |
2113 | if (context_stack_depth > 0) | |
2114 | { | |
2115 | start_subfile (name, NULL); | |
2116 | break; | |
2117 | } | |
2118 | #endif | |
2119 | if (last_source_file) | |
2120 | { | |
2121 | /* Check if previous symbol was also an N_SO (with some | |
2122 | sanity checks). If so, that one was actually the directory | |
2123 | name, and the current one is the real file name. | |
2124 | Patch things up. */ | |
2125 | if (previous_stab_code == (unsigned char) N_SO) | |
2126 | { | |
2127 | patch_subfile_names (current_subfile, name); | |
2128 | break; /* Ignore repeated SOs */ | |
2129 | } | |
2130 | end_symtab (valu, objfile, SECT_OFF_TEXT); | |
2131 | end_stabs (); | |
2132 | } | |
2133 | ||
2134 | /* Null name means this just marks the end of text for this .o file. | |
2135 | Don't start a new symtab in this case. */ | |
2136 | if (*name == '\000') | |
2137 | break; | |
2138 | ||
2139 | if (block_address_function_relative) | |
2140 | function_start_offset = 0; | |
2141 | ||
2142 | start_stabs (); | |
2143 | start_symtab (name, NULL, valu); | |
2144 | record_debugformat ("stabs"); | |
2145 | break; | |
2146 | ||
2147 | case N_SOL: | |
2148 | /* This type of symbol indicates the start of data for | |
2149 | a sub-source-file, one whose contents were copied or | |
2150 | included in the compilation of the main source file | |
2151 | (whose name was given in the N_SO symbol.) */ | |
2152 | /* Relocate for dynamic loading */ | |
2153 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
2154 | start_subfile (name, current_subfile->dirname); | |
2155 | break; | |
2156 | ||
2157 | case N_BINCL: | |
2158 | push_subfile (); | |
2159 | add_new_header_file (name, valu); | |
2160 | start_subfile (name, current_subfile->dirname); | |
2161 | break; | |
2162 | ||
2163 | case N_EINCL: | |
2164 | start_subfile (pop_subfile (), current_subfile->dirname); | |
2165 | break; | |
2166 | ||
2167 | case N_EXCL: | |
2168 | add_old_header_file (name, valu); | |
2169 | break; | |
2170 | ||
2171 | case N_SLINE: | |
2172 | /* This type of "symbol" really just records | |
2173 | one line-number -- core-address correspondence. | |
2174 | Enter it in the line list for this symbol table. */ | |
2175 | ||
2176 | /* Relocate for dynamic loading and for ELF acc fn-relative syms. */ | |
2177 | valu += function_start_offset; | |
2178 | ||
2179 | #ifdef SUN_FIXED_LBRAC_BUG | |
2180 | last_pc_address = valu; /* Save for SunOS bug circumcision */ | |
2181 | #endif | |
2182 | record_line (current_subfile, desc, valu); | |
2183 | break; | |
2184 | ||
2185 | case N_BCOMM: | |
2186 | common_block_start (name, objfile); | |
2187 | break; | |
2188 | ||
2189 | case N_ECOMM: | |
2190 | common_block_end (objfile); | |
2191 | break; | |
2192 | ||
2193 | /* The following symbol types need to have the appropriate offset added | |
2194 | to their value; then we process symbol definitions in the name. */ | |
2195 | ||
2196 | case N_STSYM: /* Static symbol in data seg */ | |
2197 | case N_LCSYM: /* Static symbol in BSS seg */ | |
2198 | case N_ROSYM: /* Static symbol in Read-only data seg */ | |
2199 | /* HORRID HACK DEPT. However, it's Sun's furgin' fault. | |
2200 | Solaris2's stabs-in-elf makes *most* symbols relative | |
2201 | but leaves a few absolute (at least for Solaris 2.1 and version | |
2202 | 2.0.1 of the SunPRO compiler). N_STSYM and friends sit on the fence. | |
2203 | .stab "foo:S...",N_STSYM is absolute (ld relocates it) | |
2204 | .stab "foo:V...",N_STSYM is relative (section base subtracted). | |
2205 | This leaves us no choice but to search for the 'S' or 'V'... | |
2206 | (or pass the whole section_offsets stuff down ONE MORE function | |
2207 | call level, which we really don't want to do). */ | |
2208 | { | |
2209 | char *p; | |
2210 | ||
2211 | /* .o files and NLMs have non-zero text seg offsets, but don't need | |
2212 | their static syms offset in this fashion. XXX - This is really a | |
2213 | crock that should be fixed in the solib handling code so that I | |
2214 | don't have to work around it here. */ | |
2215 | ||
2216 | if (!symfile_relocatable) | |
2217 | { | |
2218 | p = strchr (name, ':'); | |
2219 | if (p != 0 && p[1] == 'S') | |
2220 | { | |
2221 | /* The linker relocated it. We don't want to add an | |
2222 | elfstab_offset_sections-type offset, but we *do* want | |
2223 | to add whatever solib.c passed to symbol_file_add as | |
2224 | addr (this is known to affect SunOS4, and I suspect ELF | |
2225 | too). Since elfstab_offset_sections currently does not | |
2226 | muck with the text offset (there is no Ttext.text | |
2227 | symbol), we can get addr from the text offset. If | |
2228 | elfstab_offset_sections ever starts dealing with the | |
2229 | text offset, and we still need to do this, we need to | |
2230 | invent a SECT_OFF_ADDR_KLUDGE or something. */ | |
2231 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
2232 | goto define_a_symbol; | |
2233 | } | |
2234 | } | |
2235 | /* Since it's not the kludge case, re-dispatch to the right handler. */ | |
2236 | switch (type) { | |
2237 | case N_STSYM: goto case_N_STSYM; | |
2238 | case N_LCSYM: goto case_N_LCSYM; | |
2239 | case N_ROSYM: goto case_N_ROSYM; | |
2240 | default: abort(); | |
2241 | } | |
2242 | } | |
2243 | ||
2244 | case_N_STSYM: /* Static symbol in data seg */ | |
2245 | case N_DSLINE: /* Source line number, data seg */ | |
2246 | valu += ANOFFSET (section_offsets, SECT_OFF_DATA); | |
2247 | goto define_a_symbol; | |
2248 | ||
2249 | case_N_LCSYM: /* Static symbol in BSS seg */ | |
2250 | case N_BSLINE: /* Source line number, bss seg */ | |
2251 | /* N_BROWS: overlaps with N_BSLINE */ | |
2252 | valu += ANOFFSET (section_offsets, SECT_OFF_BSS); | |
2253 | goto define_a_symbol; | |
2254 | ||
2255 | case_N_ROSYM: /* Static symbol in Read-only data seg */ | |
2256 | valu += ANOFFSET (section_offsets, SECT_OFF_RODATA); | |
2257 | goto define_a_symbol; | |
2258 | ||
2259 | case N_ENTRY: /* Alternate entry point */ | |
2260 | /* Relocate for dynamic loading */ | |
2261 | valu += ANOFFSET (section_offsets, SECT_OFF_TEXT); | |
2262 | goto define_a_symbol; | |
2263 | ||
2264 | /* The following symbol types we don't know how to process. Handle | |
2265 | them in a "default" way, but complain to people who care. */ | |
2266 | default: | |
2267 | case N_CATCH: /* Exception handler catcher */ | |
2268 | case N_EHDECL: /* Exception handler name */ | |
2269 | case N_PC: /* Global symbol in Pascal */ | |
2270 | case N_M2C: /* Modula-2 compilation unit */ | |
2271 | /* N_MOD2: overlaps with N_EHDECL */ | |
2272 | case N_SCOPE: /* Modula-2 scope information */ | |
2273 | case N_ECOML: /* End common (local name) */ | |
2274 | case N_NBTEXT: /* Gould Non-Base-Register symbols??? */ | |
2275 | case N_NBDATA: | |
2276 | case N_NBBSS: | |
2277 | case N_NBSTS: | |
2278 | case N_NBLCS: | |
2279 | complain (&unknown_symtype_complaint, local_hex_string (type)); | |
2280 | /* FALLTHROUGH */ | |
2281 | ||
2282 | /* The following symbol types don't need the address field relocated, | |
2283 | since it is either unused, or is absolute. */ | |
2284 | define_a_symbol: | |
2285 | case N_GSYM: /* Global variable */ | |
2286 | case N_NSYMS: /* Number of symbols (ultrix) */ | |
2287 | case N_NOMAP: /* No map? (ultrix) */ | |
2288 | case N_RSYM: /* Register variable */ | |
2289 | case N_DEFD: /* Modula-2 GNU module dependency */ | |
2290 | case N_SSYM: /* Struct or union element */ | |
2291 | case N_LSYM: /* Local symbol in stack */ | |
2292 | case N_PSYM: /* Parameter variable */ | |
2293 | case N_LENG: /* Length of preceding symbol type */ | |
2294 | if (name) | |
2295 | { | |
2296 | int deftype; | |
2297 | char *colon_pos = strchr (name, ':'); | |
2298 | if (colon_pos == NULL) | |
2299 | deftype = '\0'; | |
2300 | else | |
2301 | deftype = colon_pos[1]; | |
2302 | ||
2303 | switch (deftype) | |
2304 | { | |
2305 | case 'f': | |
2306 | case 'F': | |
2307 | function_stab_type = type; | |
2308 | ||
2309 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
2310 | /* Deal with the SunPRO 3.0 compiler which omits the address | |
2311 | from N_FUN symbols. */ | |
2312 | if (type == N_FUN | |
2313 | && valu == ANOFFSET (section_offsets, SECT_OFF_TEXT)) | |
2314 | { | |
2315 | struct minimal_symbol *msym; | |
2316 | char *p; | |
2317 | int n; | |
2318 | ||
2319 | p = strchr (name, ':'); | |
2320 | if (p == NULL) | |
2321 | p = name; | |
2322 | n = p - name; | |
2323 | p = alloca (n + 2); | |
2324 | strncpy (p, name, n); | |
2325 | p[n] = 0; | |
2326 | ||
2327 | msym = lookup_minimal_symbol (p, last_source_file, | |
2328 | objfile); | |
2329 | if (msym == NULL) | |
2330 | { | |
2331 | /* Sun Fortran appends an underscore to the minimal | |
2332 | symbol name, try again with an appended underscore | |
2333 | if the minimal symbol was not found. */ | |
2334 | p[n] = '_'; | |
2335 | p[n + 1] = 0; | |
2336 | msym = lookup_minimal_symbol (p, last_source_file, | |
2337 | objfile); | |
2338 | } | |
2339 | if (msym) | |
2340 | valu = SYMBOL_VALUE_ADDRESS (msym); | |
2341 | } | |
2342 | #endif | |
2343 | ||
2344 | #ifdef SUN_FIXED_LBRAC_BUG | |
2345 | /* The Sun acc compiler, under SunOS4, puts out | |
2346 | functions with N_GSYM or N_STSYM. The problem is | |
2347 | that the address of the symbol is no good (for N_GSYM | |
2348 | it doesn't even attept an address; for N_STSYM it | |
2349 | puts out an address but then it gets relocated | |
2350 | relative to the data segment, not the text segment). | |
2351 | Currently we can't fix this up later as we do for | |
2352 | some types of symbol in scan_file_globals. | |
2353 | Fortunately we do have a way of finding the address - | |
2354 | we know that the value in last_pc_address is either | |
2355 | the one we want (if we're dealing with the first | |
2356 | function in an object file), or somewhere in the | |
2357 | previous function. This means that we can use the | |
2358 | minimal symbol table to get the address. */ | |
2359 | ||
2360 | /* Starting with release 3.0, the Sun acc compiler, | |
2361 | under SunOS4, puts out functions with N_FUN and a value | |
2362 | of zero. This gets relocated to the start of the text | |
2363 | segment of the module, which is no good either. | |
2364 | Under SunOS4 we can deal with this as N_SLINE and N_SO | |
2365 | entries contain valid absolute addresses. | |
2366 | Release 3.0 acc also puts out N_OPT entries, which makes | |
2367 | it possible to discern acc from cc or gcc. */ | |
2368 | ||
2369 | if (type == N_GSYM || type == N_STSYM | |
2370 | || (type == N_FUN | |
2371 | && n_opt_found && !block_address_function_relative)) | |
2372 | { | |
2373 | struct minimal_symbol *m; | |
2374 | int l = colon_pos - name; | |
2375 | ||
2376 | m = lookup_minimal_symbol_by_pc (last_pc_address); | |
2377 | if (m && STREQN (SYMBOL_NAME (m), name, l) | |
2378 | && SYMBOL_NAME (m) [l] == '\0') | |
2379 | /* last_pc_address was in this function */ | |
2380 | valu = SYMBOL_VALUE (m); | |
2381 | else if (m && SYMBOL_NAME (m+1) | |
2382 | && STREQN (SYMBOL_NAME (m+1), name, l) | |
2383 | && SYMBOL_NAME (m+1) [l] == '\0') | |
2384 | /* last_pc_address was in last function */ | |
2385 | valu = SYMBOL_VALUE (m+1); | |
2386 | else | |
2387 | /* Not found - use last_pc_address (for finish_block) */ | |
2388 | valu = last_pc_address; | |
2389 | } | |
2390 | ||
2391 | last_pc_address = valu; /* Save for SunOS bug circumcision */ | |
2392 | #endif | |
2393 | ||
2394 | if (block_address_function_relative) | |
2395 | /* For Solaris 2.0 compilers, the block addresses and | |
2396 | N_SLINE's are relative to the start of the | |
2397 | function. On normal systems, and when using gcc on | |
2398 | Solaris 2.0, these addresses are just absolute, or | |
2399 | relative to the N_SO, depending on | |
2400 | BLOCK_ADDRESS_ABSOLUTE. */ | |
2401 | function_start_offset = valu; | |
2402 | ||
2403 | within_function = 1; | |
2404 | if (context_stack_depth > 0) | |
2405 | { | |
2406 | new = pop_context (); | |
2407 | /* Make a block for the local symbols within. */ | |
2408 | finish_block (new->name, &local_symbols, new->old_blocks, | |
2409 | new->start_addr, valu, objfile); | |
2410 | } | |
2411 | /* Stack must be empty now. */ | |
2412 | if (context_stack_depth != 0) | |
2413 | complain (&lbrac_unmatched_complaint, symnum); | |
2414 | ||
2415 | new = push_context (0, valu); | |
2416 | new->name = define_symbol (valu, name, desc, type, objfile); | |
2417 | break; | |
2418 | ||
2419 | default: | |
2420 | define_symbol (valu, name, desc, type, objfile); | |
2421 | break; | |
2422 | } | |
2423 | } | |
2424 | break; | |
2425 | ||
2426 | /* We use N_OPT to carry the gcc2_compiled flag. Sun uses it | |
2427 | for a bunch of other flags, too. Someday we may parse their | |
2428 | flags; for now we ignore theirs and hope they'll ignore ours. */ | |
2429 | case N_OPT: /* Solaris 2: Compiler options */ | |
2430 | if (name) | |
2431 | { | |
2432 | if (STREQ (name, GCC2_COMPILED_FLAG_SYMBOL)) | |
2433 | { | |
2434 | processing_gcc_compilation = 2; | |
2435 | #if 1 /* Works, but is experimental. -fnf */ | |
2436 | if (AUTO_DEMANGLING) | |
2437 | { | |
2438 | set_demangling_style (GNU_DEMANGLING_STYLE_STRING); | |
2439 | } | |
2440 | #endif | |
2441 | } | |
2442 | else | |
2443 | n_opt_found = 1; | |
2444 | } | |
2445 | break; | |
2446 | ||
2447 | /* The following symbol types can be ignored. */ | |
2448 | case N_OBJ: /* Solaris 2: Object file dir and name */ | |
2449 | /* N_UNDF: Solaris 2: file separator mark */ | |
2450 | /* N_UNDF: -- we will never encounter it, since we only process one | |
2451 | file's symbols at once. */ | |
2452 | case N_ENDM: /* Solaris 2: End of module */ | |
2453 | case N_MAIN: /* Name of main routine. */ | |
2454 | case N_ALIAS: /* SunPro F77: alias name, ignore for now. */ | |
2455 | break; | |
2456 | } | |
2457 | ||
2458 | /* '#' is a GNU C extension to allow one symbol to refer to another | |
2459 | related symbol. | |
2460 | ||
2461 | Generally this is used so that an alias can refer to its main | |
2462 | symbol. */ | |
2463 | if (name[0] == '#') | |
2464 | { | |
2465 | /* Initialize symbol reference names and determine if this is | |
2466 | a definition. If symbol reference is being defined, go | |
2467 | ahead and add it. Otherwise, just return sym. */ | |
2468 | ||
2469 | char *s = name; | |
2470 | int refnum; | |
2471 | ||
2472 | /* If this stab defines a new reference ID that is not on the | |
2473 | reference list, then put it on the reference list. | |
2474 | ||
2475 | We go ahead and advance NAME past the reference, even though | |
2476 | it is not strictly necessary at this time. */ | |
2477 | refnum = symbol_reference_defined (&s); | |
2478 | if (refnum >= 0) | |
2479 | if (!ref_search (refnum)) | |
2480 | ref_add (refnum, 0, name, valu); | |
2481 | name = s; | |
2482 | } | |
2483 | ||
2484 | ||
2485 | previous_stab_code = type; | |
2486 | } | |
2487 | \f | |
2488 | /* FIXME: The only difference between this and elfstab_build_psymtabs | |
2489 | is the call to install_minimal_symbols for elf, and the support for | |
2490 | split sections. If the differences are really that small, the code | |
2491 | should be shared. */ | |
2492 | ||
2493 | /* Scan and build partial symbols for an coff symbol file. | |
2494 | The coff file has already been processed to get its minimal symbols. | |
2495 | ||
2496 | This routine is the equivalent of dbx_symfile_init and dbx_symfile_read | |
2497 | rolled into one. | |
2498 | ||
2499 | OBJFILE is the object file we are reading symbols from. | |
2500 | ADDR is the address relative to which the symbols are (e.g. | |
2501 | the base address of the text segment). | |
2502 | MAINLINE is true if we are reading the main symbol | |
2503 | table (as opposed to a shared lib or dynamically loaded file). | |
2504 | TEXTADDR is the address of the text section. | |
2505 | TEXTSIZE is the size of the text section. | |
2506 | STABSECTS is the list of .stab sections in OBJFILE. | |
2507 | STABSTROFFSET and STABSTRSIZE define the location in OBJFILE where the | |
2508 | .stabstr section exists. | |
2509 | ||
2510 | This routine is mostly copied from dbx_symfile_init and dbx_symfile_read, | |
2511 | adjusted for coff details. */ | |
2512 | ||
2513 | void | |
2514 | coffstab_build_psymtabs (objfile, section_offsets, mainline, | |
2515 | textaddr, textsize, stabsects, | |
2516 | stabstroffset, stabstrsize) | |
2517 | struct objfile *objfile; | |
2518 | struct section_offsets *section_offsets; | |
2519 | int mainline; | |
2520 | CORE_ADDR textaddr; | |
2521 | unsigned int textsize; | |
2522 | struct stab_section_list *stabsects; | |
2523 | file_ptr stabstroffset; | |
2524 | unsigned int stabstrsize; | |
2525 | { | |
2526 | int val; | |
2527 | bfd *sym_bfd = objfile->obfd; | |
2528 | char *name = bfd_get_filename (sym_bfd); | |
2529 | struct dbx_symfile_info *info; | |
2530 | unsigned int stabsize; | |
2531 | ||
2532 | /* There is already a dbx_symfile_info allocated by our caller. | |
2533 | It might even contain some info from the coff symtab to help us. */ | |
2534 | info = objfile->sym_stab_info; | |
2535 | ||
2536 | DBX_TEXT_ADDR (objfile) = textaddr; | |
2537 | DBX_TEXT_SIZE (objfile) = textsize; | |
2538 | ||
2539 | #define COFF_STABS_SYMBOL_SIZE 12 /* XXX FIXME XXX */ | |
2540 | DBX_SYMBOL_SIZE (objfile) = COFF_STABS_SYMBOL_SIZE; | |
2541 | DBX_STRINGTAB_SIZE (objfile) = stabstrsize; | |
2542 | ||
2543 | if (stabstrsize > bfd_get_size (sym_bfd)) | |
2544 | error ("ridiculous string table size: %d bytes", stabstrsize); | |
2545 | DBX_STRINGTAB (objfile) = (char *) | |
2546 | obstack_alloc (&objfile->psymbol_obstack, stabstrsize+1); | |
2547 | OBJSTAT (objfile, sz_strtab += stabstrsize+1); | |
2548 | ||
2549 | /* Now read in the string table in one big gulp. */ | |
2550 | ||
2551 | val = bfd_seek (sym_bfd, stabstroffset, SEEK_SET); | |
2552 | if (val < 0) | |
2553 | perror_with_name (name); | |
2554 | val = bfd_read (DBX_STRINGTAB (objfile), stabstrsize, 1, sym_bfd); | |
2555 | if (val != stabstrsize) | |
2556 | perror_with_name (name); | |
2557 | ||
2558 | stabsread_new_init (); | |
2559 | buildsym_new_init (); | |
2560 | free_header_files (); | |
2561 | init_header_files (); | |
2562 | ||
2563 | processing_acc_compilation = 1; | |
2564 | ||
2565 | /* In a coff file, we've already installed the minimal symbols that came | |
2566 | from the coff (non-stab) symbol table, so always act like an | |
2567 | incremental load here. */ | |
2568 | if (stabsects->next == NULL) | |
2569 | { | |
2570 | stabsize = bfd_section_size (sym_bfd, stabsects->section); | |
2571 | DBX_SYMCOUNT (objfile) = stabsize / DBX_SYMBOL_SIZE (objfile); | |
2572 | DBX_SYMTAB_OFFSET (objfile) = stabsects->section->filepos; | |
2573 | } | |
2574 | else | |
2575 | { | |
2576 | struct stab_section_list *stabsect; | |
2577 | ||
2578 | DBX_SYMCOUNT (objfile) = 0; | |
2579 | for (stabsect = stabsects; stabsect != NULL; stabsect = stabsect->next) | |
2580 | { | |
2581 | stabsize = bfd_section_size (sym_bfd, stabsect->section); | |
2582 | DBX_SYMCOUNT (objfile) += stabsize / DBX_SYMBOL_SIZE (objfile); | |
2583 | } | |
2584 | ||
2585 | DBX_SYMTAB_OFFSET (objfile) = stabsects->section->filepos; | |
2586 | ||
2587 | symbuf_sections = stabsects->next; | |
2588 | symbuf_left = bfd_section_size (sym_bfd, stabsects->section); | |
2589 | symbuf_read = 0; | |
2590 | } | |
2591 | ||
2592 | dbx_symfile_read (objfile, section_offsets, 0); | |
2593 | } | |
2594 | \f | |
2595 | /* Scan and build partial symbols for an ELF symbol file. | |
2596 | This ELF file has already been processed to get its minimal symbols, | |
2597 | and any DWARF symbols that were in it. | |
2598 | ||
2599 | This routine is the equivalent of dbx_symfile_init and dbx_symfile_read | |
2600 | rolled into one. | |
2601 | ||
2602 | OBJFILE is the object file we are reading symbols from. | |
2603 | ADDR is the address relative to which the symbols are (e.g. | |
2604 | the base address of the text segment). | |
2605 | MAINLINE is true if we are reading the main symbol | |
2606 | table (as opposed to a shared lib or dynamically loaded file). | |
2607 | STABOFFSET and STABSIZE define the location in OBJFILE where the .stab | |
2608 | section exists. | |
2609 | STABSTROFFSET and STABSTRSIZE define the location in OBJFILE where the | |
2610 | .stabstr section exists. | |
2611 | ||
2612 | This routine is mostly copied from dbx_symfile_init and dbx_symfile_read, | |
2613 | adjusted for elf details. */ | |
2614 | ||
2615 | void | |
2616 | elfstab_build_psymtabs (objfile, section_offsets, mainline, | |
2617 | staboffset, stabsize, | |
2618 | stabstroffset, stabstrsize) | |
2619 | struct objfile *objfile; | |
2620 | struct section_offsets *section_offsets; | |
2621 | int mainline; | |
2622 | file_ptr staboffset; | |
2623 | unsigned int stabsize; | |
2624 | file_ptr stabstroffset; | |
2625 | unsigned int stabstrsize; | |
2626 | { | |
2627 | int val; | |
2628 | bfd *sym_bfd = objfile->obfd; | |
2629 | char *name = bfd_get_filename (sym_bfd); | |
2630 | struct dbx_symfile_info *info; | |
2631 | asection *text_sect; | |
2632 | ||
2633 | /* There is already a dbx_symfile_info allocated by our caller. | |
2634 | It might even contain some info from the ELF symtab to help us. */ | |
2635 | info = objfile->sym_stab_info; | |
2636 | ||
7a292a7a SS |
2637 | /* Find the first and last text address. dbx_symfile_read seems to |
2638 | want this. */ | |
2639 | find_text_range (sym_bfd, objfile); | |
c906108c SS |
2640 | |
2641 | #define ELF_STABS_SYMBOL_SIZE 12 /* XXX FIXME XXX */ | |
2642 | DBX_SYMBOL_SIZE (objfile) = ELF_STABS_SYMBOL_SIZE; | |
2643 | DBX_SYMCOUNT (objfile) = stabsize / DBX_SYMBOL_SIZE (objfile); | |
2644 | DBX_STRINGTAB_SIZE (objfile) = stabstrsize; | |
2645 | DBX_SYMTAB_OFFSET (objfile) = staboffset; | |
2646 | ||
2647 | if (stabstrsize > bfd_get_size (sym_bfd)) | |
2648 | error ("ridiculous string table size: %d bytes", stabstrsize); | |
2649 | DBX_STRINGTAB (objfile) = (char *) | |
2650 | obstack_alloc (&objfile->psymbol_obstack, stabstrsize+1); | |
2651 | OBJSTAT (objfile, sz_strtab += stabstrsize+1); | |
2652 | ||
2653 | /* Now read in the string table in one big gulp. */ | |
2654 | ||
2655 | val = bfd_seek (sym_bfd, stabstroffset, SEEK_SET); | |
2656 | if (val < 0) | |
2657 | perror_with_name (name); | |
2658 | val = bfd_read (DBX_STRINGTAB (objfile), stabstrsize, 1, sym_bfd); | |
2659 | if (val != stabstrsize) | |
2660 | perror_with_name (name); | |
2661 | ||
2662 | stabsread_new_init (); | |
2663 | buildsym_new_init (); | |
2664 | free_header_files (); | |
2665 | init_header_files (); | |
2666 | install_minimal_symbols (objfile); | |
2667 | ||
2668 | processing_acc_compilation = 1; | |
2669 | ||
2670 | /* In an elf file, we've already installed the minimal symbols that came | |
2671 | from the elf (non-stab) symbol table, so always act like an | |
2672 | incremental load here. */ | |
2673 | dbx_symfile_read (objfile, section_offsets, 0); | |
2674 | } | |
2675 | \f | |
2676 | /* Scan and build partial symbols for a file with special sections for stabs | |
2677 | and stabstrings. The file has already been processed to get its minimal | |
2678 | symbols, and any other symbols that might be necessary to resolve GSYMs. | |
2679 | ||
2680 | This routine is the equivalent of dbx_symfile_init and dbx_symfile_read | |
2681 | rolled into one. | |
2682 | ||
2683 | OBJFILE is the object file we are reading symbols from. | |
2684 | ADDR is the address relative to which the symbols are (e.g. the base address | |
2685 | of the text segment). | |
2686 | MAINLINE is true if we are reading the main symbol table (as opposed to a | |
2687 | shared lib or dynamically loaded file). | |
2688 | STAB_NAME is the name of the section that contains the stabs. | |
2689 | STABSTR_NAME is the name of the section that contains the stab strings. | |
2690 | ||
2691 | This routine is mostly copied from dbx_symfile_init and dbx_symfile_read. */ | |
2692 | ||
2693 | void | |
2694 | stabsect_build_psymtabs (objfile, section_offsets, mainline, stab_name, | |
2695 | stabstr_name, text_name) | |
2696 | struct objfile *objfile; | |
2697 | struct section_offsets *section_offsets; | |
2698 | int mainline; | |
2699 | char *stab_name; | |
2700 | char *stabstr_name; | |
2701 | char *text_name; | |
2702 | { | |
2703 | int val; | |
2704 | bfd *sym_bfd = objfile->obfd; | |
2705 | char *name = bfd_get_filename (sym_bfd); | |
2706 | asection *stabsect; | |
2707 | asection *stabstrsect; | |
2708 | asection *text_sect; | |
2709 | ||
2710 | stabsect = bfd_get_section_by_name (sym_bfd, stab_name); | |
2711 | stabstrsect = bfd_get_section_by_name (sym_bfd, stabstr_name); | |
2712 | ||
2713 | if (!stabsect) | |
2714 | return; | |
2715 | ||
2716 | if (!stabstrsect) | |
2717 | error ("stabsect_build_psymtabs: Found stabs (%s), but not string section (%s)", | |
2718 | stab_name, stabstr_name); | |
2719 | ||
2720 | objfile->sym_stab_info = (struct dbx_symfile_info *) | |
2721 | xmalloc (sizeof (struct dbx_symfile_info)); | |
2722 | memset (objfile->sym_stab_info, 0, sizeof (struct dbx_symfile_info)); | |
2723 | ||
2724 | text_sect = bfd_get_section_by_name (sym_bfd, text_name); | |
2725 | if (!text_sect) | |
2726 | error ("Can't find %s section in symbol file", text_name); | |
2727 | DBX_TEXT_ADDR (objfile) = bfd_section_vma (sym_bfd, text_sect); | |
2728 | DBX_TEXT_SIZE (objfile) = bfd_section_size (sym_bfd, text_sect); | |
2729 | ||
2730 | DBX_SYMBOL_SIZE (objfile) = sizeof (struct external_nlist); | |
2731 | DBX_SYMCOUNT (objfile) = bfd_section_size (sym_bfd, stabsect) | |
2732 | / DBX_SYMBOL_SIZE (objfile); | |
2733 | DBX_STRINGTAB_SIZE (objfile) = bfd_section_size (sym_bfd, stabstrsect); | |
2734 | DBX_SYMTAB_OFFSET (objfile) = stabsect->filepos; /* XXX - FIXME: POKING INSIDE BFD DATA STRUCTURES */ | |
2735 | ||
2736 | if (DBX_STRINGTAB_SIZE (objfile) > bfd_get_size (sym_bfd)) | |
2737 | error ("ridiculous string table size: %d bytes", DBX_STRINGTAB_SIZE (objfile)); | |
2738 | DBX_STRINGTAB (objfile) = (char *) | |
2739 | obstack_alloc (&objfile->psymbol_obstack, DBX_STRINGTAB_SIZE (objfile) + 1); | |
2740 | OBJSTAT (objfile, sz_strtab += DBX_STRINGTAB_SIZE (objfile) + 1); | |
2741 | ||
2742 | /* Now read in the string table in one big gulp. */ | |
2743 | ||
2744 | val = bfd_get_section_contents (sym_bfd, /* bfd */ | |
2745 | stabstrsect, /* bfd section */ | |
2746 | DBX_STRINGTAB (objfile), /* input buffer */ | |
2747 | 0, /* offset into section */ | |
2748 | DBX_STRINGTAB_SIZE (objfile)); /* amount to read */ | |
2749 | ||
2750 | if (!val) | |
2751 | perror_with_name (name); | |
2752 | ||
2753 | stabsread_new_init (); | |
2754 | buildsym_new_init (); | |
2755 | free_header_files (); | |
2756 | init_header_files (); | |
2757 | install_minimal_symbols (objfile); | |
2758 | ||
2759 | /* Now, do an incremental load */ | |
2760 | ||
2761 | processing_acc_compilation = 1; | |
2762 | dbx_symfile_read (objfile, section_offsets, 0); | |
2763 | } | |
2764 | \f | |
2765 | static struct sym_fns aout_sym_fns = | |
2766 | { | |
2767 | bfd_target_aout_flavour, | |
2768 | dbx_new_init, /* sym_new_init: init anything gbl to entire symtab */ | |
2769 | dbx_symfile_init, /* sym_init: read initial info, setup for sym_read() */ | |
2770 | dbx_symfile_read, /* sym_read: read a symbol file into symtab */ | |
2771 | dbx_symfile_finish, /* sym_finish: finished with file, cleanup */ | |
2772 | default_symfile_offsets, | |
2773 | /* sym_offsets: parse user's offsets to internal form */ | |
2774 | NULL /* next: pointer to next struct sym_fns */ | |
2775 | }; | |
2776 | ||
2777 | void | |
2778 | _initialize_dbxread () | |
2779 | { | |
2780 | add_symtab_fns(&aout_sym_fns); | |
2781 | } |