]>
Commit | Line | Data |
---|---|---|
f4d2ff34 RS |
1 | /* |
2 | * This file is part of SIS. | |
3 | * | |
4 | * SIS, SPARC instruction simulator V1.8 Copyright (C) 1995 Jiri Gaisler, | |
5 | * European Space Agency | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify it under | |
8 | * the terms of the GNU General Public License as published by the Free | |
9 | * Software Foundation; either version 2 of the License, or (at your option) | |
10 | * any later version. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
13 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
15 | * more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License along with | |
18 | * this program; if not, write to the Free Software Foundation, Inc., 675 | |
19 | * Mass Ave, Cambridge, MA 02139, USA. | |
20 | * | |
21 | */ | |
22 | ||
23 | #include "sis.h" | |
24 | #include "end.h" | |
25 | #include <math.h> | |
26 | #include <stdio.h> | |
27 | ||
28 | extern int32 ext_irl, irqpend, iurev0, sis_verbose; | |
29 | ||
30 | /* Load/store interlock delay */ | |
31 | #define FLSTHOLD 1 | |
32 | ||
33 | /* Load delay (delete if unwanted - speeds up simulation) */ | |
34 | #define LOAD_DEL 1 | |
35 | ||
36 | #define T_LD 2 | |
37 | #define T_LDD 3 | |
38 | #define T_ST 3 | |
39 | #define T_STD 4 | |
40 | #define T_LDST 4 | |
41 | #define T_JMPL 2 | |
42 | #define T_RETT 2 | |
43 | ||
44 | #define FSR_QNE 0x2000 | |
45 | #define FP_EXE_MODE 0 | |
46 | #define FP_EXC_PE 1 | |
47 | #define FP_EXC_MODE 2 | |
48 | ||
49 | #define FBA 8 | |
50 | #define FBN 0 | |
51 | #define FBNE 1 | |
52 | #define FBLG 2 | |
53 | #define FBUL 3 | |
54 | #define FBL 4 | |
55 | #define FBUG 5 | |
56 | #define FBG 6 | |
57 | #define FBU 7 | |
58 | ||
59 | #define FCC_E 0 | |
60 | #define FCC_L 1 | |
61 | #define FCC_G 2 | |
62 | #define FCC_U 3 | |
63 | ||
64 | #define PSR_ET 0x20 | |
65 | #define PSR_EF 0x1000 | |
66 | #define PSR_PS 0x40 | |
67 | #define PSR_S 0x80 | |
68 | #define PSR_N 0x0800000 | |
69 | #define PSR_Z 0x0400000 | |
70 | #define PSR_V 0x0200000 | |
71 | #define PSR_C 0x0100000 | |
72 | #define PSR_CC 0x0F00000 | |
73 | #define PSR_CWP 0x7 | |
74 | #define PSR_PIL 0x0f00 | |
75 | ||
76 | #define ICC_N sregs->psr | |
77 | #define ICC_Z (sregs->psr << 1) | |
78 | #define ICC_V (sregs->psr << 2) | |
79 | #define ICC_C (sregs->psr << 3) | |
80 | ||
81 | #define TRAP_IEXC 1 | |
82 | #define TRAP_UNIMP 2 | |
83 | #define TRAP_PRIVI 3 | |
84 | #define TRAP_FPDIS 4 | |
85 | #define TRAP_WOFL 5 | |
86 | #define TRAP_WUFL 6 | |
87 | #define TRAP_UNALI 7 | |
88 | #define TRAP_FPEXC 8 | |
89 | #define TRAP_DEXC 9 | |
90 | #define TRAP_TAG 10 | |
91 | ||
92 | #define FSR_TT 0x1C000 | |
93 | #define FP_IEEE 0x04000 | |
94 | #define FP_UNIMP 0x0C000 | |
95 | #define FP_SEQ_ERR 0x10000 | |
96 | ||
97 | #define BICC_BN 0 | |
98 | #define BICC_BE 1 | |
99 | #define BICC_BLE 2 | |
100 | #define BICC_BL 3 | |
101 | #define BICC_BLEU 4 | |
102 | #define BICC_BCS 5 | |
103 | #define BICC_NEG 6 | |
104 | #define BICC_BVS 7 | |
105 | #define BICC_BA 8 | |
106 | ||
107 | #define INST_SIMM13 0x1fff | |
108 | #define INST_RS2 0x1f | |
109 | #define INST_I 0x2000 | |
110 | #define ADD 0x00 | |
111 | #define ADDCC 0x10 | |
112 | #define ADDX 0x08 | |
113 | #define ADDXCC 0x18 | |
114 | #define TADDCC 0x20 | |
115 | #define TADDCCTV 0x22 | |
116 | #define IAND 0x01 | |
117 | #define IANDCC 0x11 | |
118 | #define IANDN 0x05 | |
119 | #define IANDNCC 0x15 | |
120 | #define MULScc 0x24 | |
121 | #define IOR 0x02 | |
122 | #define IORCC 0x12 | |
123 | #define IORN 0x06 | |
124 | #define IORNCC 0x16 | |
125 | #define SLL 0x25 | |
126 | #define SRA 0x27 | |
127 | #define SRL 0x26 | |
128 | #define SUB 0x04 | |
129 | #define SUBCC 0x14 | |
130 | #define SUBX 0x0C | |
131 | #define SUBXCC 0x1C | |
132 | #define IXNOR 0x07 | |
133 | #define IXNORCC 0x17 | |
134 | #define IXOR 0x03 | |
135 | #define IXORCC 0x13 | |
136 | #define SETHI 0x04 | |
137 | #define BICC 0x02 | |
138 | #define FPBCC 0x06 | |
139 | #define RDY 0x28 | |
140 | #define RDPSR 0x29 | |
141 | #define RDWIM 0x2A | |
142 | #define RDTBR 0x2B | |
143 | #define WRY 0x30 | |
144 | #define WRPSR 0x31 | |
145 | #define WRWIM 0x32 | |
146 | #define WRTBR 0x33 | |
147 | #define JMPL 0x38 | |
148 | #define RETT 0x39 | |
149 | #define TICC 0x3A | |
150 | #define SAVE 0x3C | |
151 | #define RESTORE 0x3D | |
152 | #define LDD 0x03 | |
153 | #define LDDA 0x13 | |
154 | #define LD 0x00 | |
155 | #define LDA 0x10 | |
156 | #define LDF 0x20 | |
157 | #define LDDF 0x23 | |
158 | #define LDSTUB 0x0D | |
159 | #define LDSTUBA 0x1D | |
160 | #define LDUB 0x01 | |
161 | #define LDUBA 0x11 | |
162 | #define LDSB 0x09 | |
163 | #define LDSBA 0x19 | |
164 | #define LDUH 0x02 | |
165 | #define LDUHA 0x12 | |
166 | #define LDSH 0x0A | |
167 | #define LDSHA 0x1A | |
168 | #define LDFSR 0x21 | |
169 | #define ST 0x04 | |
170 | #define STA 0x14 | |
171 | #define STB 0x05 | |
172 | #define STBA 0x15 | |
173 | #define STD 0x07 | |
174 | #define STDA 0x17 | |
175 | #define STF 0x24 | |
176 | #define STDFQ 0x26 | |
177 | #define STDF 0x27 | |
178 | #define STFSR 0x25 | |
179 | #define STH 0x06 | |
180 | #define STHA 0x16 | |
181 | #define SWAP 0x0F | |
182 | #define SWAPA 0x1F | |
183 | ||
184 | /* # of cycles overhead when a trap is taken */ | |
185 | #define TRAP_C 3 | |
186 | ||
187 | int32 fpexec(); | |
188 | extern struct estate ebase; | |
189 | extern int32 nfp; | |
190 | ||
191 | sub_cc(operand1, operand2, result, sregs) | |
192 | int32 operand1; | |
193 | int32 operand2; | |
194 | int32 result; | |
195 | struct pstate *sregs; | |
196 | { | |
197 | sregs->psr = ((sregs->psr & ~PSR_N) | ((result >> 8) & PSR_N)); | |
198 | if (result) | |
199 | sregs->psr &= ~PSR_Z; | |
200 | else | |
201 | sregs->psr |= PSR_Z; | |
202 | sregs->psr = (sregs->psr & ~PSR_V) | (( | |
203 | ((operand1 & ~operand2 & ~result) | | |
204 | (~operand1 & operand2 & result)) >> 10) & PSR_V); | |
205 | sregs->psr = (sregs->psr & ~PSR_C) | (( | |
206 | ((~operand1 & operand2) | | |
207 | ((~operand1 | operand2) & result)) >> 11) & PSR_C); | |
208 | } | |
209 | ||
210 | add_cc(operand1, operand2, result, psr) | |
211 | int32 operand1; | |
212 | int32 operand2; | |
213 | int32 result; | |
214 | uint32 *psr; | |
215 | { | |
216 | *psr = ((*psr & ~PSR_N) | ((result >> 8) & PSR_N)); | |
217 | if (result) | |
218 | *psr &= ~PSR_Z; | |
219 | else | |
220 | *psr |= PSR_Z; | |
221 | *psr = (*psr & ~PSR_V) | (( | |
222 | ((operand1 & operand2 & ~result) | | |
223 | (~operand1 & ~operand2 & result)) >> 10) & PSR_V); | |
224 | *psr = (*psr & ~PSR_C) | (( | |
225 | ((operand1 & operand2) | | |
226 | ((operand1 | operand2) & ~result)) >> 11) & PSR_C); | |
227 | } | |
228 | ||
229 | log_cc(result, sregs) | |
230 | int32 result; | |
231 | struct pstate *sregs; | |
232 | { | |
233 | sregs->psr &= ~(PSR_CC); /* Zero CC bits */ | |
234 | sregs->psr = (sregs->psr | ((result >> 8) & PSR_N)); | |
235 | if (result == 0) | |
236 | sregs->psr |= PSR_Z; | |
237 | } | |
238 | ||
239 | int | |
240 | dispatch_instruction(sregs) | |
241 | struct pstate *sregs; | |
242 | { | |
243 | ||
244 | uint32 cwp, op, op2, op3, opf, opc, asi, a, rd, cond, rs1, | |
245 | rs2; | |
246 | uint32 ldep; | |
247 | int32 operand1, operand2, *rdd, result, i, disp22, eicc, | |
248 | new_cwp; | |
249 | int32 pc, npc, data, address, ws, mexc, fcc; | |
250 | ||
251 | sregs->ninst++; | |
252 | sregs->icnt = 1; | |
253 | cwp = ((sregs->psr & PSR_CWP) << 4); | |
254 | op = sregs->inst >> 30; | |
255 | pc = sregs->npc; | |
256 | npc = sregs->npc + 4; | |
257 | if (op > 1) { | |
258 | ||
259 | op3 = (sregs->inst >> 19) & 0x3f; | |
260 | rs1 = (sregs->inst >> 14) & 0x1f; | |
261 | rd = (sregs->inst >> 25) & 0x1f; | |
262 | ||
263 | #ifdef LOAD_DEL | |
264 | ||
265 | /* Check if load dependecy is possible */ | |
266 | ldep = ((ebase.simtime <= sregs->ildtime) && ((op3 & 0x38) != 0x28) && | |
267 | ((op3 & 0x3e) != 0x34) && (sregs->ildreg != 0)); | |
268 | if (sregs->inst & INST_I) { | |
269 | if (ldep && (sregs->ildreg == rs1)) | |
270 | sregs->hold++; | |
271 | operand2 = sregs->inst & INST_SIMM13; | |
272 | if (operand2 > 0x0fff) | |
273 | operand2 |= 0xfffff000; | |
274 | } else { | |
275 | rs2 = sregs->inst & INST_RS2; | |
276 | if (rs2 > 7) | |
277 | operand2 = sregs->r[(cwp + rs2) & 0x7f]; | |
278 | else | |
279 | operand2 = sregs->g[rs2]; | |
280 | if (ldep && ((sregs->ildreg == rs1) || (sregs->ildreg == rs2))) | |
281 | sregs->hold++; | |
282 | } | |
283 | #else | |
284 | if (sregs->inst & INST_I) { | |
285 | operand2 = sregs->inst & INST_SIMM13; | |
286 | if (operand2 > 0x0fff) | |
287 | operand2 |= 0xfffff000; | |
288 | } else { | |
289 | rs2 = sregs->inst & INST_RS2; | |
290 | if (rs2 > 7) | |
291 | operand2 = sregs->r[(cwp + rs2) & 0x7f]; | |
292 | else | |
293 | operand2 = sregs->g[rs2]; | |
294 | } | |
295 | #endif | |
296 | ||
297 | if (rd > 7) | |
298 | rdd = &(sregs->r[(cwp + rd) & 0x7f]); | |
299 | else | |
300 | rdd = &(sregs->g[rd]); | |
301 | if (rs1 > 7) | |
302 | rs1 = sregs->r[(cwp + rs1) & 0x7f]; | |
303 | else | |
304 | rs1 = sregs->g[rs1]; | |
305 | } | |
306 | switch (op) { | |
307 | case 0: | |
308 | op2 = (sregs->inst >> 22) & 0x7; | |
309 | switch (op2) { | |
310 | case SETHI: | |
311 | rd = (sregs->inst >> 25) & 0x1f; | |
312 | if (rd > 7) | |
313 | rdd = &(sregs->r[(cwp + rd) & 0x7f]); | |
314 | else | |
315 | rdd = &(sregs->g[rd]); | |
316 | *rdd = sregs->inst << 10; | |
317 | break; | |
318 | case BICC: | |
319 | #ifdef STAT | |
320 | sregs->nbranch++; | |
321 | #endif | |
322 | cond = ((sregs->inst >> 25) & 0x0f); | |
323 | switch (cond & 0x7) { | |
324 | case BICC_BN: | |
325 | eicc = 0; | |
326 | break; | |
327 | case BICC_BE: | |
328 | eicc = ICC_Z; | |
329 | break; | |
330 | case BICC_BLE: | |
331 | eicc = ICC_Z | (ICC_N ^ ICC_V); | |
332 | break; | |
333 | case BICC_BL: | |
334 | eicc = (ICC_N ^ ICC_V); | |
335 | break; | |
336 | case BICC_BLEU: | |
337 | eicc = ICC_C | ICC_Z; | |
338 | break; | |
339 | case BICC_BCS: | |
340 | eicc = ICC_C; | |
341 | break; | |
342 | case BICC_NEG: | |
343 | eicc = ICC_N; | |
344 | break; | |
345 | case BICC_BVS: | |
346 | eicc = ICC_V; | |
347 | break; | |
348 | } | |
349 | eicc &= PSR_N; | |
350 | if (sregs->inst & 0x10000000) | |
351 | eicc = !eicc; | |
352 | a = sregs->inst & 0x20000000; | |
353 | if (eicc) { | |
354 | operand1 = sregs->inst & 0x3fffff; | |
355 | if (sregs->inst & 0x200000) | |
356 | operand1 |= 0xffc00000; | |
357 | npc = sregs->pc + (operand1 << 2); | |
358 | if ((cond == BICC_BA) && (a)) | |
359 | sregs->annul = 1; | |
360 | } else { | |
361 | if (a) | |
362 | sregs->annul = 1; | |
363 | } | |
364 | break; | |
365 | case FPBCC: | |
366 | #ifdef STAT | |
367 | sregs->nbranch++; | |
368 | #endif | |
369 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
370 | sregs->trap = TRAP_FPDIS; | |
371 | break; | |
372 | } | |
373 | if (ebase.simtime < sregs->ftime) { | |
374 | sregs->ftime = ebase.simtime + sregs->hold; | |
375 | } | |
376 | cond = ((sregs->inst >> 25) & 0x0f); | |
377 | fcc = (sregs->fsr >> 10) & 0x3; | |
378 | switch (cond & 0x7) { | |
379 | case FBN: | |
380 | eicc = 0; | |
381 | break; | |
382 | case FBNE: | |
383 | eicc = (fcc != FCC_E); | |
384 | break; | |
385 | case FBLG: | |
386 | eicc = (fcc == FCC_L) || (fcc == FCC_G); | |
387 | break; | |
388 | case FBUL: | |
389 | eicc = (fcc == FCC_L) || (fcc == FCC_U); | |
390 | break; | |
391 | case FBL: | |
392 | eicc = (fcc == FCC_L); | |
393 | break; | |
394 | case FBUG: | |
395 | eicc = (fcc == FCC_G) || (fcc == FCC_U); | |
396 | break; | |
397 | case FBG: | |
398 | eicc = (fcc == FCC_G); | |
399 | break; | |
400 | case FBU: | |
401 | eicc = (fcc == FCC_U); | |
402 | break; | |
403 | } | |
404 | if (sregs->inst & 0x10000000) | |
405 | eicc = !eicc; | |
406 | a = sregs->inst & 0x20000000; | |
407 | if (eicc) { | |
408 | operand1 = sregs->inst & 0x3fffff; | |
409 | if (sregs->inst & 0x200000) | |
410 | operand1 |= 0xffc00000; | |
411 | npc = sregs->pc + (operand1 << 2); | |
412 | if ((cond == FBA) && (a)) | |
413 | sregs->annul = 1; | |
414 | } else { | |
415 | if (a) | |
416 | sregs->annul = 1; | |
417 | } | |
418 | break; | |
419 | ||
420 | default: | |
421 | sregs->trap = TRAP_UNIMP; | |
422 | break; | |
423 | } | |
424 | break; | |
425 | case 1: /* CALL */ | |
426 | #ifdef STAT | |
427 | sregs->nbranch++; | |
428 | #endif | |
429 | sregs->r[(cwp + 15) & 0x7f] = sregs->pc; | |
430 | npc = sregs->pc + (sregs->inst << 2); | |
431 | break; | |
432 | ||
433 | case 2: | |
434 | if ((op3 >> 1) == 0x1a) { | |
435 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
436 | sregs->trap = TRAP_FPDIS; | |
437 | } else { | |
438 | rs1 = (sregs->inst >> 14) & 0x1f; | |
439 | rs2 = sregs->inst & 0x1f; | |
440 | sregs->trap = fpexec(op3, rd, rs1, rs2, sregs); | |
441 | } | |
442 | } else { | |
443 | ||
444 | switch (op3) { | |
445 | case TICC: | |
446 | cond = ((sregs->inst >> 25) & 0x0f); | |
447 | switch (cond & 0x7) { | |
448 | case BICC_BN: | |
449 | eicc = 0; | |
450 | break; | |
451 | case BICC_BE: | |
452 | eicc = ICC_Z; | |
453 | break; | |
454 | case BICC_BLE: | |
455 | eicc = ICC_Z | (ICC_N ^ ICC_V); | |
456 | break; | |
457 | case BICC_BL: | |
458 | eicc = (ICC_N ^ ICC_V); | |
459 | break; | |
460 | case BICC_BLEU: | |
461 | eicc = ICC_C | ICC_Z; | |
462 | break; | |
463 | case BICC_BCS: | |
464 | eicc = ICC_C; | |
465 | break; | |
466 | case BICC_NEG: | |
467 | eicc = ICC_N; | |
468 | break; | |
469 | case BICC_BVS: | |
470 | eicc = ICC_V; | |
471 | break; | |
472 | } | |
473 | eicc &= PSR_N; | |
474 | if (sregs->inst & 0x10000000) | |
475 | eicc = !eicc; | |
476 | if (eicc) { | |
477 | sregs->trap = (0x80 | ((rs1 + operand2) & 0x7f)); | |
478 | } | |
479 | break; | |
480 | ||
481 | case MULScc: | |
482 | operand1 = | |
483 | (((sregs->psr & PSR_V) ^ ((sregs->psr & PSR_N) >> 2)) | |
484 | << 10) | (rs1 >> 1); | |
485 | if ((sregs->y & 1) == 0) | |
486 | operand2 = 0; | |
487 | *rdd = operand1 + operand2; | |
488 | sregs->y = (rs1 << 31) | (sregs->y >> 1); | |
489 | add_cc(operand1, operand2, *rdd, &sregs->psr); | |
490 | break; | |
491 | case IXNOR: | |
492 | *rdd = rs1 ^ ~operand2; | |
493 | break; | |
494 | case IXNORCC: | |
495 | *rdd = rs1 ^ ~operand2; | |
496 | log_cc(*rdd, sregs); | |
497 | break; | |
498 | case IXOR: | |
499 | *rdd = rs1 ^ operand2; | |
500 | break; | |
501 | case IXORCC: | |
502 | *rdd = rs1 ^ operand2; | |
503 | log_cc(*rdd, sregs); | |
504 | break; | |
505 | case IOR: | |
506 | *rdd = rs1 | operand2; | |
507 | break; | |
508 | case IORCC: | |
509 | *rdd = rs1 | operand2; | |
510 | log_cc(*rdd, sregs); | |
511 | break; | |
512 | case IORN: | |
513 | *rdd = rs1 | ~operand2; | |
514 | break; | |
515 | case IORNCC: | |
516 | *rdd = rs1 | ~operand2; | |
517 | log_cc(*rdd, sregs); | |
518 | break; | |
519 | case IANDNCC: | |
520 | *rdd = rs1 & ~operand2; | |
521 | log_cc(*rdd, sregs); | |
522 | break; | |
523 | case IANDN: | |
524 | *rdd = rs1 & ~operand2; | |
525 | break; | |
526 | case IAND: | |
527 | *rdd = rs1 & operand2; | |
528 | break; | |
529 | case IANDCC: | |
530 | *rdd = rs1 & operand2; | |
531 | log_cc(*rdd, sregs); | |
532 | break; | |
533 | case SUB: | |
534 | *rdd = rs1 - operand2; | |
535 | break; | |
536 | case SUBCC: | |
537 | *rdd = rs1 - operand2; | |
538 | sub_cc(rs1, operand2, *rdd, sregs); | |
539 | break; | |
540 | case SUBX: | |
541 | *rdd = rs1 - operand2 - ((sregs->psr >> 20) & 1); | |
542 | break; | |
543 | case SUBXCC: | |
544 | *rdd = rs1 - operand2 - ((sregs->psr >> 20) & 1); | |
545 | sub_cc(rs1, operand2, *rdd, sregs); | |
546 | break; | |
547 | case ADD: | |
548 | *rdd = rs1 + operand2; | |
549 | break; | |
550 | case ADDCC: | |
551 | *rdd = rs1 + operand2; | |
552 | add_cc(rs1, operand2, *rdd, &sregs->psr); | |
553 | break; | |
554 | case ADDX: | |
555 | *rdd = rs1 + operand2 + ((sregs->psr >> 20) & 1); | |
556 | break; | |
557 | case ADDXCC: | |
558 | *rdd = rs1 + operand2 + ((sregs->psr >> 20) & 1); | |
559 | add_cc(rs1, operand2, *rdd, &sregs->psr); | |
560 | break; | |
561 | case TADDCC: | |
562 | *rdd = rs1 + operand2; | |
563 | add_cc(rs1, operand2, *rdd, &sregs->psr); | |
564 | if ((rs1 | operand2) & 0x3) | |
565 | sregs->psr |= PSR_V; | |
566 | break; | |
567 | case TADDCCTV: | |
568 | *rdd = rs1 + operand2; | |
569 | result = 0; | |
570 | add_cc(rs1, operand2, *rdd, &result); | |
571 | if ((rs1 | operand2) & 0x3) | |
572 | result |= PSR_V; | |
573 | if (result & PSR_V) { | |
574 | sregs->trap = TRAP_TAG; | |
575 | } else { | |
576 | sregs->psr = (sregs->psr & PSR_CC) | result; | |
577 | } | |
578 | break; | |
579 | case SLL: | |
580 | *rdd = rs1 << (operand2 & 0x1f); | |
581 | break; | |
582 | case SRL: | |
583 | *rdd = rs1 >> (operand2 & 0x1f); | |
584 | break; | |
585 | case SRA: | |
586 | *rdd = ((int) rs1) >> (operand2 & 0x1f); | |
587 | break; | |
588 | case SAVE: | |
589 | new_cwp = ((sregs->psr & PSR_CWP) - 1) & PSR_CWP; | |
590 | if (sregs->wim & (1 << new_cwp)) { | |
591 | sregs->trap = TRAP_WOFL; | |
592 | break; | |
593 | } | |
594 | if (rd > 7) | |
595 | rdd = &(sregs->r[((new_cwp << 4) + rd) & 0x7f]); | |
596 | *rdd = rs1 + operand2; | |
597 | sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp; | |
598 | break; | |
599 | case RESTORE: | |
600 | ||
601 | #ifdef IUREV0 | |
602 | if ((iurev0) && ((sregs->jmpltime + 1) == sregs->ninst)) { | |
603 | if (!(sregs->rett_err)) { | |
604 | sregs->rett_err = 1; | |
605 | if (sis_verbose) | |
606 | printf("IU rev.0 bug mode entered\n"); | |
607 | } | |
608 | } | |
609 | #endif | |
610 | ||
611 | new_cwp = ((sregs->psr & PSR_CWP) + 1) & PSR_CWP; | |
612 | if (sregs->wim & (1 << new_cwp)) { | |
613 | sregs->trap = TRAP_WUFL; | |
614 | break; | |
615 | } | |
616 | if (rd > 7) | |
617 | rdd = &(sregs->r[((new_cwp << 4) + rd) & 0x7f]); | |
618 | *rdd = rs1 + operand2; | |
619 | sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp; | |
620 | break; | |
621 | case RDPSR: | |
622 | if (!(sregs->psr & PSR_S)) { | |
623 | sregs->trap = TRAP_PRIVI; | |
624 | break; | |
625 | } | |
626 | *rdd = sregs->psr; | |
627 | #ifdef IUREV0 | |
628 | ||
629 | if (iurev0 & sregs->rett_err) { | |
630 | operand2 = sregs->psr; | |
631 | *rdd |= PSR_ET; | |
632 | *rdd &= ~(PSR_S); | |
633 | *rdd |= ((*rdd & PSR_PS) << 1); | |
634 | if (sis_verbose) { | |
635 | if (operand2 != *rdd) | |
636 | printf("rdpsr failed: %08X -> %08X\n", operand2, *rdd); | |
637 | } | |
638 | } | |
639 | #endif | |
640 | break; | |
641 | case RDY: | |
642 | if (!(sregs->psr & PSR_S)) { | |
643 | sregs->trap = TRAP_PRIVI; | |
644 | break; | |
645 | } | |
646 | *rdd = sregs->y; | |
647 | break; | |
648 | case RDWIM: | |
649 | if (!(sregs->psr & PSR_S)) { | |
650 | sregs->trap = TRAP_PRIVI; | |
651 | break; | |
652 | } | |
653 | *rdd = sregs->wim; | |
654 | break; | |
655 | case RDTBR: | |
656 | if (!(sregs->psr & PSR_S)) { | |
657 | sregs->trap = TRAP_PRIVI; | |
658 | break; | |
659 | } | |
660 | *rdd = sregs->tbr; | |
661 | break; | |
662 | case WRPSR: | |
663 | if ((sregs->psr & 0x1f) > 7) { | |
664 | sregs->trap = TRAP_UNIMP; | |
665 | break; | |
666 | } | |
667 | if (!(sregs->psr & PSR_S)) { | |
668 | sregs->trap = TRAP_PRIVI; | |
669 | break; | |
670 | } | |
671 | sregs->psr = (rs1 ^ operand2) & 0x00f03fff; | |
672 | break; | |
673 | case WRWIM: | |
674 | if (!(sregs->psr & PSR_S)) { | |
675 | sregs->trap = TRAP_PRIVI; | |
676 | break; | |
677 | } | |
678 | sregs->wim = (rs1 ^ operand2) & 0x0ff; | |
679 | break; | |
680 | case WRTBR: | |
681 | if (!(sregs->psr & PSR_S)) { | |
682 | sregs->trap = TRAP_PRIVI; | |
683 | break; | |
684 | } | |
685 | sregs->tbr = (sregs->tbr & 0x00000ff0) | | |
686 | ((rs1 ^ operand2) & 0xfffff000); | |
687 | break; | |
688 | case WRY: | |
689 | sregs->y = (rs1 ^ operand2); | |
690 | break; | |
691 | case JMPL: | |
692 | ||
693 | #ifdef IUREV0 | |
694 | if (iurev0) | |
695 | sregs->jmpltime = sregs->ninst; | |
696 | #endif | |
697 | #ifdef STAT | |
698 | sregs->nbranch++; | |
699 | #endif | |
700 | sregs->icnt = T_JMPL; /* JMPL takes two cycles */ | |
701 | if (rs1 & 0x3) { | |
702 | sregs->trap = TRAP_UNALI; | |
703 | break; | |
704 | } | |
705 | *rdd = sregs->pc; | |
706 | npc = rs1 + operand2; | |
707 | break; | |
708 | case RETT: | |
709 | #ifdef IUREV0 | |
710 | if (iurev0 && sregs->rett_err) { | |
711 | sregs->rett_err = 0; | |
712 | if (sis_verbose) | |
713 | printf("IU rev.0 bug mode reset\n"); | |
714 | } | |
715 | #endif | |
716 | ||
717 | address = rs1 + operand2; | |
718 | new_cwp = ((sregs->psr & PSR_CWP) + 1) & PSR_CWP; | |
719 | sregs->icnt = T_RETT; /* RETT takes two cycles */ | |
720 | if (sregs->psr & PSR_ET) { | |
721 | sregs->trap = TRAP_UNIMP; | |
722 | break; | |
723 | } | |
724 | if (!(sregs->psr & PSR_S)) { | |
725 | sregs->trap = TRAP_PRIVI; | |
726 | break; | |
727 | } | |
728 | if (sregs->wim & (1 << new_cwp)) { | |
729 | sregs->trap = TRAP_WUFL; | |
730 | break; | |
731 | } | |
732 | if (address & 0x3) { | |
733 | sregs->trap = TRAP_UNALI; | |
734 | break; | |
735 | } | |
736 | sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp | PSR_ET; | |
737 | sregs->psr = | |
738 | (sregs->psr & ~PSR_S) | ((sregs->psr & PSR_PS) << 1); | |
739 | npc = address; | |
740 | break; | |
741 | ||
742 | default: | |
743 | sregs->trap = TRAP_UNIMP; | |
744 | break; | |
745 | } | |
746 | } | |
747 | break; | |
748 | case 3: /* Load/store instructions */ | |
749 | ||
750 | address = rs1 + operand2; | |
751 | ||
752 | /* Check for load/store to alternate address space */ | |
753 | ||
754 | if ((op3 >> 4) == 1) { | |
755 | if (!(sregs->psr & PSR_S)) { | |
756 | sregs->trap = TRAP_PRIVI; | |
757 | break; | |
758 | } else if (sregs->inst & INST_I) { | |
759 | sregs->trap = TRAP_UNIMP; | |
760 | break; | |
761 | } else | |
762 | asi = (sregs->inst >> 5) & 0x0ff; | |
763 | } else { | |
764 | if (sregs->psr & PSR_S) | |
765 | asi = 11; | |
766 | else | |
767 | asi = 10; | |
768 | #ifdef IUREV0 | |
769 | if (iurev0 && sregs->rett_err) { | |
770 | asi &= ~0x1; | |
771 | asi |= ((sregs->psr & PSR_PS) >> 6); | |
772 | } | |
773 | #endif | |
774 | } | |
775 | ||
776 | if (op3 & 4) { | |
777 | sregs->icnt = T_ST; /* Set store instruction count */ | |
778 | #ifdef STAT | |
779 | sregs->nstore++; | |
780 | #endif | |
781 | } else { | |
782 | sregs->icnt = T_LD; /* Set load instruction count */ | |
783 | #ifdef STAT | |
784 | sregs->nload++; | |
785 | #endif | |
786 | } | |
787 | ||
788 | /* Decode load/store instructions */ | |
789 | ||
790 | switch (op3) { | |
791 | case LDDA: | |
792 | case LDD: | |
793 | if (address & 0x7) { | |
794 | sregs->trap = TRAP_UNALI; | |
795 | break; | |
796 | } | |
797 | if (rd & 1) { | |
798 | rd &= 0x1e; | |
799 | if (rd > 7) | |
800 | rdd = &(sregs->r[(cwp + rd) & 0x7f]); | |
801 | else | |
802 | rdd = &(sregs->g[rd]); | |
803 | } | |
804 | mexc = memory_read(asi, address, &data, &ws); | |
805 | sregs->hold += ws; | |
806 | sregs->icnt = T_LDD; | |
807 | if (mexc) { | |
808 | sregs->trap = TRAP_DEXC; | |
809 | } else { | |
810 | rdd[0] = data; | |
811 | address += 4; | |
812 | mexc = memory_read(asi, address, &data, &ws); | |
813 | sregs->hold += ws; | |
814 | #ifdef STAT | |
815 | sregs->nload++; /* Double load counts twice */ | |
816 | #endif | |
817 | if (mexc) { | |
818 | sregs->trap = TRAP_DEXC; | |
819 | } else { | |
820 | rdd[1] = data; | |
821 | } | |
822 | } | |
823 | break; | |
824 | ||
825 | case LDA: | |
826 | case LD: | |
827 | if (address & 0x3) { | |
828 | sregs->trap = TRAP_UNALI; | |
829 | break; | |
830 | } | |
831 | mexc = memory_read(asi, address, &data, &ws); | |
832 | sregs->hold += ws; | |
833 | if (mexc) { | |
834 | sregs->trap = TRAP_DEXC; | |
835 | } else { | |
836 | *rdd = data; | |
837 | } | |
838 | break; | |
839 | case LDSTUB: | |
840 | case LDSTUBA: | |
841 | mexc = memory_read(asi, address, &data, &ws); | |
842 | sregs->hold += ws; | |
843 | sregs->icnt = T_LDST; | |
844 | if (mexc) { | |
845 | sregs->trap = TRAP_DEXC; | |
846 | break; | |
847 | } | |
848 | data = (data >> ((3 - (address & 0x3)) << 3)) & 0x0ff; | |
849 | *rdd = data; | |
850 | data = 0x0ff; | |
851 | mexc = memory_write(asi, address, &data, 0, &ws); | |
852 | sregs->hold += ws; | |
853 | if (mexc) { | |
854 | sregs->trap = TRAP_DEXC; | |
855 | } | |
856 | #ifdef STAT | |
857 | sregs->nload++; | |
858 | #endif | |
859 | break; | |
860 | case LDSBA: | |
861 | case LDUBA: | |
862 | case LDSB: | |
863 | case LDUB: | |
864 | mexc = memory_read(asi, address, &data, &ws); | |
865 | sregs->hold += ws; | |
866 | if (mexc) { | |
867 | sregs->trap = TRAP_DEXC; | |
868 | break; | |
869 | } | |
870 | data = (data >> ((3 - (address & 0x3)) << 3)) & 0x0ff; | |
871 | if ((op3 == LDSB) && (data >> 7)) | |
872 | data |= 0xffffff00; | |
873 | *rdd = data; | |
874 | break; | |
875 | case LDSHA: | |
876 | case LDUHA: | |
877 | case LDSH: | |
878 | case LDUH: | |
879 | if (address & 0x1) { | |
880 | sregs->trap = TRAP_UNALI; | |
881 | break; | |
882 | } | |
883 | mexc = memory_read(asi, address, &data, &ws); | |
884 | sregs->hold += ws; | |
885 | if (mexc) { | |
886 | sregs->trap = TRAP_DEXC; | |
887 | break; | |
888 | } | |
889 | if (!(address & 0x2)) | |
890 | data >>= 16; | |
891 | data &= 0x0ffff; | |
892 | if ((op3 == LDSH) && (data >> 15)) | |
893 | data |= 0xffff0000; | |
894 | *rdd = data; | |
895 | break; | |
896 | case LDF: | |
897 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
898 | sregs->trap = TRAP_FPDIS; | |
899 | break; | |
900 | } | |
901 | if (address & 0x3) { | |
902 | sregs->trap = TRAP_UNALI; | |
903 | break; | |
904 | } | |
905 | if (ebase.simtime < sregs->ftime) { | |
906 | if ((sregs->frd == rd) || (sregs->frs1 == rd) || | |
907 | (sregs->frs2 == rd)) | |
908 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
909 | } | |
910 | mexc = memory_read(asi, address, &data, &ws); | |
911 | sregs->hold += ws; | |
912 | sregs->flrd = rd; | |
913 | sregs->ltime = ebase.simtime + sregs->icnt + FLSTHOLD + | |
914 | sregs->hold + sregs->fhold; | |
915 | if (mexc) { | |
916 | sregs->trap = TRAP_DEXC; | |
917 | } else { | |
918 | sregs->fs[rd] = *((float32 *) & data); | |
919 | } | |
920 | break; | |
921 | case LDDF: | |
922 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
923 | sregs->trap = TRAP_FPDIS; | |
924 | break; | |
925 | } | |
926 | if (address & 0x7) { | |
927 | sregs->trap = TRAP_UNALI; | |
928 | break; | |
929 | } | |
930 | if (ebase.simtime < sregs->ftime) { | |
931 | if (((sregs->frd >> 1) == (rd >> 1)) || | |
932 | ((sregs->frs1 >> 1) == (rd >> 1)) || | |
933 | ((sregs->frs2 >> 1) == (rd >> 1))) | |
934 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
935 | } | |
936 | mexc = memory_read(asi, address, &data, &ws); | |
937 | sregs->hold += ws; | |
938 | sregs->icnt = T_LDD; | |
939 | if (mexc) { | |
940 | sregs->trap = TRAP_DEXC; | |
941 | } else { | |
942 | rd &= 0x1E; | |
943 | sregs->flrd = rd; | |
944 | sregs->fs[rd] = *((float32 *) & data); | |
945 | mexc = memory_read(asi, address + 4, &data, &ws); | |
946 | sregs->hold += ws; | |
947 | #ifdef STAT | |
948 | sregs->nload++; /* Double load counts twice */ | |
949 | #endif | |
950 | if (mexc) { | |
951 | sregs->trap = TRAP_DEXC; | |
952 | } else { | |
953 | sregs->fs[rd + 1] = *((float32 *) & data); | |
954 | sregs->ltime = ebase.simtime + sregs->icnt + FLSTHOLD + | |
955 | sregs->hold + sregs->fhold; | |
956 | } | |
957 | } | |
958 | break; | |
959 | case LDFSR: | |
960 | if (ebase.simtime < sregs->ftime) { | |
961 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
962 | } | |
963 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
964 | sregs->trap = TRAP_FPDIS; | |
965 | break; | |
966 | } | |
967 | if (address & 0x3) { | |
968 | sregs->trap = TRAP_UNALI; | |
969 | break; | |
970 | } | |
971 | mexc = memory_read(asi, address, &data, &ws); | |
972 | sregs->hold += ws; | |
973 | if (mexc) { | |
974 | sregs->trap = TRAP_DEXC; | |
975 | } else { | |
976 | sregs->fsr = | |
977 | (sregs->fsr & 0x7FF000) | (data & ~0x7FF000); | |
978 | set_fsr(sregs->fsr); | |
979 | } | |
980 | break; | |
981 | case STFSR: | |
982 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
983 | sregs->trap = TRAP_FPDIS; | |
984 | break; | |
985 | } | |
986 | if (address & 0x3) { | |
987 | sregs->trap = TRAP_UNALI; | |
988 | break; | |
989 | } | |
990 | if (ebase.simtime < sregs->ftime) { | |
991 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
992 | } | |
993 | mexc = memory_write(asi, address, &sregs->fsr, 2, &ws); | |
994 | sregs->hold += ws; | |
995 | if (mexc) { | |
996 | sregs->trap = TRAP_DEXC; | |
997 | } | |
998 | break; | |
999 | ||
1000 | case ST: | |
1001 | case STA: | |
1002 | if (address & 0x3) { | |
1003 | sregs->trap = TRAP_UNALI; | |
1004 | break; | |
1005 | } | |
1006 | mexc = memory_write(asi, address, rdd, 2, &ws); | |
1007 | sregs->hold += ws; | |
1008 | if (mexc) { | |
1009 | sregs->trap = TRAP_DEXC; | |
1010 | } | |
1011 | break; | |
1012 | case STB: | |
1013 | case STBA: | |
1014 | mexc = memory_write(asi, address, rdd, 0, &ws); | |
1015 | sregs->hold += ws; | |
1016 | if (mexc) { | |
1017 | sregs->trap = TRAP_DEXC; | |
1018 | } | |
1019 | break; | |
1020 | case STD: | |
1021 | case STDA: | |
1022 | if (address & 0x7) { | |
1023 | sregs->trap = TRAP_UNALI; | |
1024 | break; | |
1025 | } | |
1026 | if (rd & 1) { | |
1027 | rd &= 0x1e; | |
1028 | if (rd > 7) | |
1029 | rdd = &(sregs->r[(cwp + rd) & 0x7f]); | |
1030 | else | |
1031 | rdd = &(sregs->g[rd]); | |
1032 | } | |
1033 | mexc = memory_write(asi, address, rdd, 3, &ws); | |
1034 | sregs->hold += ws; | |
1035 | sregs->icnt = T_STD; | |
1036 | #ifdef STAT | |
1037 | sregs->nstore++; /* Double store counts twice */ | |
1038 | #endif | |
1039 | if (mexc) { | |
1040 | sregs->trap = TRAP_DEXC; | |
1041 | break; | |
1042 | } | |
1043 | break; | |
1044 | case STDFQ: | |
1045 | if ((sregs->psr & 0x1f) > 7) { | |
1046 | sregs->trap = TRAP_UNIMP; | |
1047 | break; | |
1048 | } | |
1049 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
1050 | sregs->trap = TRAP_FPDIS; | |
1051 | break; | |
1052 | } | |
1053 | if (address & 0x7) { | |
1054 | sregs->trap = TRAP_UNALI; | |
1055 | break; | |
1056 | } | |
1057 | if (!(sregs->fsr & FSR_QNE)) { | |
1058 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_SEQ_ERR; | |
1059 | break; | |
1060 | } | |
1061 | rdd = &(sregs->fpq[0]); | |
1062 | mexc = memory_write(asi, address, rdd, 3, &ws); | |
1063 | sregs->hold += ws; | |
1064 | sregs->icnt = T_STD; | |
1065 | #ifdef STAT | |
1066 | sregs->nstore++; /* Double store counts twice */ | |
1067 | #endif | |
1068 | if (mexc) { | |
1069 | sregs->trap = TRAP_DEXC; | |
1070 | break; | |
1071 | } else { | |
1072 | sregs->fsr &= ~FSR_QNE; | |
1073 | sregs->fpstate = FP_EXE_MODE; | |
1074 | } | |
1075 | break; | |
1076 | case STHA: | |
1077 | case STH: | |
1078 | if (address & 0x1) { | |
1079 | sregs->trap = TRAP_UNALI; | |
1080 | break; | |
1081 | } | |
1082 | mexc = memory_write(asi, address, rdd, 1, &ws); | |
1083 | sregs->hold += ws; | |
1084 | if (mexc) { | |
1085 | sregs->trap = TRAP_DEXC; | |
1086 | } | |
1087 | break; | |
1088 | case STF: | |
1089 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
1090 | sregs->trap = TRAP_FPDIS; | |
1091 | break; | |
1092 | } | |
1093 | if (address & 0x3) { | |
1094 | sregs->trap = TRAP_UNALI; | |
1095 | break; | |
1096 | } | |
1097 | if (ebase.simtime < sregs->ftime) { | |
1098 | if (sregs->frd == rd) | |
1099 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
1100 | } | |
1101 | mexc = memory_write(asi, address, &sregs->fsi[rd], 2, &ws); | |
1102 | sregs->hold += ws; | |
1103 | if (mexc) { | |
1104 | sregs->trap = TRAP_DEXC; | |
1105 | } | |
1106 | break; | |
1107 | case STDF: | |
1108 | if (!((sregs->psr & PSR_EF) && chk_fp(sregs))) { | |
1109 | sregs->trap = TRAP_FPDIS; | |
1110 | break; | |
1111 | } | |
1112 | if (address & 0x7) { | |
1113 | sregs->trap = TRAP_UNALI; | |
1114 | break; | |
1115 | } | |
1116 | rd &= 0x1E; | |
1117 | if (ebase.simtime < sregs->ftime) { | |
1118 | if ((sregs->frd == rd) || (sregs->frd + 1 == rd)) | |
1119 | sregs->fhold += (sregs->ftime - ebase.simtime); | |
1120 | } | |
1121 | mexc = memory_write(asi, address, &sregs->fsi[rd], 3, &ws); | |
1122 | sregs->hold += ws; | |
1123 | sregs->icnt = T_STD; | |
1124 | #ifdef STAT | |
1125 | sregs->nstore++; /* Double store counts twice */ | |
1126 | #endif | |
1127 | if (mexc) { | |
1128 | sregs->trap = TRAP_DEXC; | |
1129 | } | |
1130 | break; | |
1131 | case SWAP: | |
1132 | case SWAPA: | |
1133 | if (address & 0x3) { | |
1134 | sregs->trap = TRAP_UNALI; | |
1135 | break; | |
1136 | } | |
1137 | mexc = memory_read(asi, address, &data, &ws); | |
1138 | sregs->hold += ws; | |
1139 | if (mexc) { | |
1140 | sregs->trap = TRAP_DEXC; | |
1141 | break; | |
1142 | } | |
1143 | mexc = memory_write(asi, address, rdd, 2, &ws); | |
1144 | sregs->hold += ws; | |
1145 | sregs->icnt = T_LDST; | |
1146 | if (mexc) { | |
1147 | sregs->trap = TRAP_DEXC; | |
1148 | break; | |
1149 | } else | |
1150 | *rdd = data; | |
1151 | #ifdef STAT | |
1152 | sregs->nload++; | |
1153 | #endif | |
1154 | break; | |
1155 | ||
1156 | ||
1157 | default: | |
1158 | sregs->trap = TRAP_UNIMP; | |
1159 | break; | |
1160 | } | |
1161 | ||
1162 | #ifdef LOAD_DEL | |
1163 | ||
1164 | if (!(op3 & 4)) { | |
1165 | sregs->ildtime = ebase.simtime + sregs->hold + sregs->icnt; | |
1166 | sregs->ildreg = rd; | |
1167 | if ((op3 | 0x10) == 0x13) | |
1168 | sregs->ildreg |= 1; /* Double load, odd register loaded | |
1169 | * last */ | |
1170 | } | |
1171 | #endif | |
1172 | break; | |
1173 | ||
1174 | default: | |
1175 | sregs->trap = TRAP_UNIMP; | |
1176 | break; | |
1177 | } | |
1178 | sregs->g[0] = 0; | |
1179 | if (!sregs->trap) { | |
1180 | sregs->pc = pc; | |
1181 | sregs->npc = npc; | |
1182 | } | |
1183 | return (0); | |
1184 | } | |
1185 | ||
1186 | #define T_FABSs 2 | |
1187 | #define T_FADDs 4 | |
1188 | #define T_FADDd 4 | |
1189 | #define T_FCMPs 4 | |
1190 | #define T_FCMPd 4 | |
1191 | #define T_FDIVs 20 | |
1192 | #define T_FDIVd 35 | |
1193 | #define T_FMOVs 2 | |
1194 | #define T_FMULs 5 | |
1195 | #define T_FMULd 9 | |
1196 | #define T_FNEGs 2 | |
1197 | #define T_FSQRTs 37 | |
1198 | #define T_FSQRTd 65 | |
1199 | #define T_FSUBs 4 | |
1200 | #define T_FSUBd 4 | |
1201 | #define T_FdTOi 7 | |
1202 | #define T_FdTOs 3 | |
1203 | #define T_FiTOs 6 | |
1204 | #define T_FiTOd 6 | |
1205 | #define T_FsTOi 6 | |
1206 | #define T_FsTOd 2 | |
1207 | ||
1208 | #define FABSs 0x09 | |
1209 | #define FADDs 0x41 | |
1210 | #define FADDd 0x42 | |
1211 | #define FCMPs 0x51 | |
1212 | #define FCMPd 0x52 | |
1213 | #define FCMPEs 0x55 | |
1214 | #define FCMPEd 0x56 | |
1215 | #define FDIVs 0x4D | |
1216 | #define FDIVd 0x4E | |
1217 | #define FMOVs 0x01 | |
1218 | #define FMULs 0x49 | |
1219 | #define FMULd 0x4A | |
1220 | #define FNEGs 0x05 | |
1221 | #define FSQRTs 0x29 | |
1222 | #define FSQRTd 0x2A | |
1223 | #define FSUBs 0x45 | |
1224 | #define FSUBd 0x46 | |
1225 | #define FdTOi 0xD2 | |
1226 | #define FdTOs 0xC6 | |
1227 | #define FiTOs 0xC4 | |
1228 | #define FiTOd 0xC8 | |
1229 | #define FsTOi 0xD1 | |
1230 | #define FsTOd 0xC9 | |
1231 | ||
1232 | ||
1233 | int | |
1234 | fpexec(op3, rd, rs1, rs2, sregs) | |
1235 | uint32 op3, rd, rs1, rs2; | |
1236 | struct pstate *sregs; | |
1237 | { | |
1238 | uint32 opf, tem, accex; | |
1239 | float32 ftmps; | |
1240 | float64 ftmpd; | |
1241 | int32 fcc; | |
1242 | char *res; | |
1243 | uint32 ldadj; | |
1244 | ||
1245 | if (sregs->fpstate == FP_EXC_MODE) { | |
1246 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_SEQ_ERR; | |
1247 | sregs->fpstate == FP_EXC_PE; | |
1248 | return (0); | |
1249 | } | |
1250 | if (sregs->fpstate == FP_EXC_PE) { | |
1251 | sregs->fpstate = FP_EXC_MODE; | |
1252 | return (TRAP_FPEXC); | |
1253 | } | |
1254 | opf = (sregs->inst >> 5) & 0x1ff; | |
1255 | ||
1256 | /* | |
1257 | * Check if we already have an FPop in the pipe. If so, halt until it is | |
1258 | * finished by incrementing fhold with the remaining execution time | |
1259 | */ | |
1260 | ||
1261 | if (ebase.simtime < sregs->ftime) { | |
1262 | sregs->fhold = (sregs->ftime - ebase.simtime); | |
1263 | } else { | |
1264 | sregs->fhold = 0; | |
1265 | ||
1266 | /* Check load dependencies. */ | |
1267 | ||
1268 | if (ebase.simtime < sregs->ltime) { | |
1269 | ||
1270 | /* Don't check rs1 if single operand instructions */ | |
1271 | ||
1272 | if (((opf >> 6) == 0) || ((opf >> 6) == 3)) | |
1273 | rs1 = 32; | |
1274 | ||
1275 | /* Adjust for double floats */ | |
1276 | ||
1277 | ldadj = opf & 1; | |
1278 | if (!(((sregs->flrd - rs1) >> ldadj) && ((sregs->flrd - rs2) >> ldadj))) | |
1279 | sregs->fhold++; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | sregs->finst++; | |
1284 | ||
1285 | sregs->frs1 = rs1; /* Store src and dst for dependecy check */ | |
1286 | sregs->frs2 = rs2; | |
1287 | sregs->frd = rd; | |
1288 | ||
1289 | sregs->ftime = ebase.simtime + sregs->hold + sregs->fhold; | |
1290 | ||
1291 | /* SPARC is big-endian - swap double floats if host is little-endian */ | |
1292 | /* This is ugly - I know ... */ | |
1293 | #ifdef HOST_LITTLE_ENDIAN_FLOAT | |
1294 | rs1 &= 0x1f; | |
1295 | switch (opf) { | |
1296 | case FADDd: | |
1297 | case FDIVd: | |
1298 | case FMULd: | |
1299 | case FSQRTd: | |
1300 | case FSUBd: | |
1301 | case FCMPd: | |
1302 | case FCMPEd: | |
1303 | case FdTOi: | |
1304 | case FdTOs: | |
1305 | sregs->fdp[rs1 | 1] = sregs->fs[rs1 & ~1]; | |
1306 | sregs->fdp[rs1 & ~1] = sregs->fs[rs1 | 1]; | |
1307 | sregs->fdp[rs2 | 1] = sregs->fs[rs2 & ~1]; | |
1308 | sregs->fdp[rs2 & ~1] = sregs->fs[rs2 | 1]; | |
1309 | default: | |
1310 | } | |
1311 | #endif | |
1312 | ||
1313 | clear_accex(); | |
1314 | ||
1315 | switch (opf) { | |
1316 | case FABSs: | |
1317 | sregs->fs[rd] = fabs(sregs->fs[rs2]); | |
1318 | sregs->ftime += T_FABSs; | |
1319 | sregs->frs1 = 32; /* rs1 ignored */ | |
1320 | break; | |
1321 | case FADDs: | |
1322 | sregs->fs[rd] = sregs->fs[rs1] + sregs->fs[rs2]; | |
1323 | sregs->ftime += T_FADDs; | |
1324 | break; | |
1325 | case FADDd: | |
1326 | sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] + sregs->fd[rs2 >> 1]; | |
1327 | sregs->ftime += T_FADDd; | |
1328 | break; | |
1329 | case FCMPs: | |
1330 | case FCMPEs: | |
1331 | if (sregs->fs[rs1] == sregs->fs[rs2]) | |
1332 | fcc = 3; | |
1333 | else if (sregs->fs[rs1] < sregs->fs[rs2]) | |
1334 | fcc = 2; | |
1335 | else if (sregs->fs[rs1] > sregs->fs[rs2]) | |
1336 | fcc = 1; | |
1337 | else | |
1338 | fcc = 0; | |
1339 | sregs->fsr |= 0x0C00; | |
1340 | sregs->fsr &= ~(fcc << 10); | |
1341 | sregs->ftime += T_FCMPs; | |
1342 | sregs->frd = 32; /* rd ignored */ | |
1343 | if ((fcc == 0) && (opf == FCMPEs)) { | |
1344 | sregs->fpstate == FP_EXC_PE; | |
1345 | sregs->fsr = (sregs->fsr & ~0x1C000) | (1 << 14); | |
1346 | } | |
1347 | break; | |
1348 | case FCMPd: | |
1349 | case FCMPEd: | |
1350 | if (sregs->fd[rs1 >> 1] == sregs->fd[rs2 >> 1]) | |
1351 | fcc = 3; | |
1352 | else if (sregs->fd[rs1 >> 1] < sregs->fd[rs2 >> 1]) | |
1353 | fcc = 2; | |
1354 | else if (sregs->fd[rs1 >> 1] > sregs->fd[rs2 >> 1]) | |
1355 | fcc = 1; | |
1356 | else | |
1357 | fcc = 0; | |
1358 | sregs->fsr |= 0x0C00; | |
1359 | sregs->fsr &= ~(fcc << 10); | |
1360 | sregs->ftime += T_FCMPd; | |
1361 | sregs->frd = 32; /* rd ignored */ | |
1362 | if ((fcc == 0) && (opf == FCMPEd)) { | |
1363 | sregs->fpstate == FP_EXC_PE; | |
1364 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; | |
1365 | } | |
1366 | break; | |
1367 | case FDIVs: | |
1368 | sregs->fs[rd] = sregs->fs[rs1] / sregs->fs[rs2]; | |
1369 | sregs->ftime += T_FDIVs; | |
1370 | break; | |
1371 | case FDIVd: | |
1372 | sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] / sregs->fd[rs2 >> 1]; | |
1373 | sregs->ftime += T_FDIVd; | |
1374 | break; | |
1375 | case FMOVs: | |
1376 | sregs->fs[rd] = sregs->fs[rs2]; | |
1377 | sregs->ftime += T_FMOVs; | |
1378 | sregs->frs1 = 32; /* rs1 ignored */ | |
1379 | break; | |
1380 | case FMULs: | |
1381 | sregs->fs[rd] = sregs->fs[rs1] * sregs->fs[rs2]; | |
1382 | sregs->ftime += T_FMULs; | |
1383 | break; | |
1384 | case FMULd: | |
1385 | sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] * sregs->fd[rs2 >> 1]; | |
1386 | sregs->ftime += T_FMULd; | |
1387 | break; | |
1388 | case FNEGs: | |
1389 | sregs->fs[rd] = -sregs->fs[rs2]; | |
1390 | sregs->ftime += T_FNEGs; | |
1391 | sregs->frs1 = 32; /* rs1 ignored */ | |
1392 | break; | |
1393 | case FSQRTs: | |
1394 | if (sregs->fs[rs2] < 0.0) { | |
1395 | sregs->fpstate == FP_EXC_PE; | |
1396 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; | |
1397 | sregs->fsr = (sregs->fsr & 0x1f) | 0x10; | |
1398 | break; | |
1399 | } | |
1400 | sregs->fs[rd] = sqrt(sregs->fs[rs2]); | |
1401 | sregs->ftime += T_FSQRTs; | |
1402 | sregs->frs1 = 32; /* rs1 ignored */ | |
1403 | break; | |
1404 | case FSQRTd: | |
1405 | if (sregs->fd[rs2 >> 1] < 0.0) { | |
1406 | sregs->fpstate == FP_EXC_PE; | |
1407 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; | |
1408 | sregs->fsr = (sregs->fsr & 0x1f) | 0x10; | |
1409 | break; | |
1410 | } | |
1411 | sregs->fd[rd >> 1] = sqrt(sregs->fd[rs2 >> 1]); | |
1412 | sregs->ftime += T_FSQRTd; | |
1413 | sregs->frs1 = 32; /* rs1 ignored */ | |
1414 | break; | |
1415 | case FSUBs: | |
1416 | sregs->fs[rd] = sregs->fs[rs1] - sregs->fs[rs2]; | |
1417 | sregs->ftime += T_FSUBs; | |
1418 | break; | |
1419 | case FSUBd: | |
1420 | sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] - sregs->fd[rs2 >> 1]; | |
1421 | sregs->ftime += T_FSUBd; | |
1422 | break; | |
1423 | case FdTOi: | |
1424 | sregs->fsi[rd] = (int) sregs->fd[rs2 >> 1]; | |
1425 | sregs->ftime += T_FdTOi; | |
1426 | sregs->frs1 = 32; /* rs1 ignored */ | |
1427 | break; | |
1428 | case FdTOs: | |
1429 | sregs->fs[rd] = (float32) sregs->fd[rs2 >> 1]; | |
1430 | sregs->ftime += T_FdTOs; | |
1431 | sregs->frs1 = 32; /* rs1 ignored */ | |
1432 | break; | |
1433 | case FiTOs: | |
1434 | sregs->fs[rd] = (float32) sregs->fsi[rs2]; | |
1435 | sregs->ftime += T_FiTOs; | |
1436 | sregs->frs1 = 32; /* rs1 ignored */ | |
1437 | break; | |
1438 | case FiTOd: | |
1439 | sregs->fd[rd >> 1] = (float64) sregs->fsi[rs2]; | |
1440 | sregs->ftime += T_FiTOd; | |
1441 | sregs->frs1 = 32; /* rs1 ignored */ | |
1442 | break; | |
1443 | case FsTOi: | |
1444 | sregs->fsi[rd] = (int) sregs->fs[rs2]; | |
1445 | sregs->ftime += T_FsTOi; | |
1446 | sregs->frs1 = 32; /* rs1 ignored */ | |
1447 | break; | |
1448 | case FsTOd: | |
1449 | sregs->fd[rd >> 1] = sregs->fs[rs2]; | |
1450 | sregs->ftime += T_FsTOd; | |
1451 | sregs->frs1 = 32; /* rs1 ignored */ | |
1452 | break; | |
1453 | ||
1454 | default: | |
1455 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_UNIMP; | |
1456 | sregs->fpstate == FP_EXC_PE; | |
1457 | } | |
1458 | ||
1459 | accex = get_accex(); | |
1460 | ||
1461 | #ifdef HOST_LITTLE_ENDIAN_FLOAT | |
1462 | switch (opf) { | |
1463 | case FADDd: | |
1464 | case FDIVd: | |
1465 | case FMULd: | |
1466 | case FSQRTd: | |
1467 | case FSUBd: | |
1468 | case FiTOd: | |
1469 | case FsTOd: | |
1470 | sregs->fs[rd & ~1] = sregs->fdp[rd | 1]; | |
1471 | sregs->fs[rd | 1] = sregs->fdp[rd & ~1]; | |
1472 | default: | |
1473 | } | |
1474 | #endif | |
1475 | if (sregs->fpstate == FP_EXC_PE) { | |
1476 | sregs->fpq[0] = sregs->pc; | |
1477 | sregs->fpq[1] = sregs->inst; | |
1478 | sregs->fsr |= FSR_QNE; | |
1479 | } else { | |
1480 | tem = (sregs->fsr >> 23) & 0x1f; | |
1481 | if (tem & accex) { | |
1482 | sregs->fpstate = FP_EXC_PE; | |
1483 | sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; | |
1484 | sregs->fsr = ((sregs->fsr & ~0x1f) | accex); | |
1485 | } else { | |
1486 | sregs->fsr = ((((sregs->fsr >> 5) | accex) << 5) | accex); | |
1487 | } | |
1488 | if (sregs->fpstate == FP_EXC_PE) { | |
1489 | sregs->fpq[0] = sregs->pc; | |
1490 | sregs->fpq[1] = sregs->inst; | |
1491 | sregs->fsr |= FSR_QNE; | |
1492 | } | |
1493 | } | |
1494 | clear_accex(); | |
1495 | ||
1496 | return (0); | |
1497 | ||
1498 | ||
1499 | } | |
1500 | ||
1501 | int | |
1502 | execute_trap(sregs) | |
1503 | struct pstate *sregs; | |
1504 | { | |
1505 | int32 cwp; | |
1506 | ||
1507 | if (sregs->trap == 256) { | |
1508 | sregs->pc = 0; | |
1509 | sregs->npc = 4; | |
1510 | sregs->trap = 0; | |
1511 | } else { | |
1512 | ||
1513 | if ((sregs->psr & PSR_ET) == 0) | |
1514 | return (ERROR); | |
1515 | ||
1516 | sregs->tbr = (sregs->tbr & 0xfffff000) | (sregs->trap << 4); | |
1517 | sregs->trap = 0; | |
1518 | sregs->psr &= ~PSR_ET; | |
1519 | sregs->psr |= ((sregs->psr & PSR_S) >> 1); | |
1520 | sregs->annul = 0; | |
1521 | sregs->psr = (((sregs->psr & PSR_CWP) - 1) & 0x7) | (sregs->psr & ~PSR_CWP); | |
1522 | cwp = ((sregs->psr & PSR_CWP) << 4); | |
1523 | sregs->r[(cwp + 17) & 0x7f] = sregs->pc; | |
1524 | sregs->r[(cwp + 18) & 0x7f] = sregs->npc; | |
1525 | sregs->psr |= PSR_S; | |
1526 | sregs->pc = sregs->tbr; | |
1527 | sregs->npc = sregs->tbr + 4; | |
1528 | ||
1529 | /* Increase simulator time */ | |
1530 | sregs->icnt = TRAP_C; | |
1531 | ||
1532 | } | |
1533 | ||
1534 | ||
1535 | return (0); | |
1536 | ||
1537 | } | |
1538 | ||
1539 | extern struct irqcell irqarr[16]; | |
1540 | ||
1541 | void | |
1542 | check_interrupts(sregs) | |
1543 | struct pstate *sregs; | |
1544 | { | |
1545 | if ((ext_irl) && (sregs->psr & PSR_ET) && | |
1546 | ((ext_irl == 15) || (ext_irl > ((sregs->psr & PSR_PIL) >> 8)))) { | |
1547 | if (sregs->trap == 0) { | |
1548 | sregs->trap = 16 + ext_irl; | |
1549 | irqarr[ext_irl & 0x0f].callback(irqarr[ext_irl & 0x0f].arg); | |
1550 | clear_int(ext_irl); | |
1551 | } | |
1552 | } | |
1553 | } | |
1554 | ||
1555 | init_regs(sregs) | |
1556 | struct pstate *sregs; | |
1557 | { | |
1558 | int32 i; | |
1559 | ||
1560 | sregs->pc = 0; | |
1561 | sregs->npc = 4; | |
1562 | sregs->trap = 0; | |
1563 | sregs->psr &= 0x00f03fdf; | |
1564 | sregs->psr |= 0x080; /* Set supervisor bit */ | |
1565 | sregs->breakpoint = 0; | |
1566 | sregs->annul = 0; | |
1567 | sregs->fpstate = FP_EXE_MODE; | |
1568 | sregs->fpqn = 0; | |
1569 | sregs->ftime = 0; | |
1570 | sregs->ltime = 0; | |
1571 | sregs->err_mode = 0; | |
1572 | ext_irl = 0; | |
1573 | irqpend = 0; | |
1574 | sregs->g[0] = 0; | |
1575 | #ifdef HOST_LITTLE_ENDIAN_FLOAT | |
1576 | sregs->fdp = (float32 *) sregs->fd; | |
1577 | sregs->fsi = (int32 *) sregs->fs; | |
1578 | #else | |
1579 | sregs->fs = (float32 *) sregs->fd; | |
1580 | sregs->fsi = (int32 *) sregs->fd; | |
1581 | #endif | |
1582 | sregs->fsr = 0; | |
1583 | sregs->fpu_pres = !nfp; | |
1584 | set_fsr(sregs->fsr); | |
1585 | sregs->bphit = 0; | |
1586 | sregs->ildreg = 0; | |
1587 | sregs->ildtime = 0; | |
1588 | ||
1589 | sregs->rett_err = 0; | |
1590 | sregs->jmpltime = 0; | |
1591 | } | |
1592 | ||
1593 | chk_fp(sregs) | |
1594 | struct pstate *sregs; | |
1595 | { | |
1596 | return (sregs->fpu_pres); | |
1597 | } |