]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* BFD back-end for MIPS Extended-Coff files. |
7898deda NC |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
3 | 2000, 2001 | |
252b5132 RH |
4 | Free Software Foundation, Inc. |
5 | Original version by Per Bothner. | |
6 | Full support added by Ian Lance Taylor, [email protected]. | |
7 | ||
8 | This file is part of BFD, the Binary File Descriptor library. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
23 | ||
24 | #include "bfd.h" | |
25 | #include "sysdep.h" | |
26 | #include "bfdlink.h" | |
27 | #include "libbfd.h" | |
28 | #include "coff/internal.h" | |
29 | #include "coff/sym.h" | |
30 | #include "coff/symconst.h" | |
31 | #include "coff/ecoff.h" | |
32 | #include "coff/mips.h" | |
33 | #include "libcoff.h" | |
34 | #include "libecoff.h" | |
35 | \f | |
36 | /* Prototypes for static functions. */ | |
37 | ||
38 | static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr)); | |
39 | static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR, | |
40 | struct internal_reloc *)); | |
41 | static void mips_ecoff_swap_reloc_out PARAMS ((bfd *, | |
42 | const struct internal_reloc *, | |
43 | PTR)); | |
44 | static void mips_adjust_reloc_in PARAMS ((bfd *, | |
45 | const struct internal_reloc *, | |
46 | arelent *)); | |
47 | static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *, | |
48 | struct internal_reloc *)); | |
49 | static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd, | |
50 | arelent *reloc, | |
51 | asymbol *symbol, | |
52 | PTR data, | |
53 | asection *section, | |
54 | bfd *output_bfd, | |
55 | char **error)); | |
56 | static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd, | |
57 | arelent *reloc, | |
58 | asymbol *symbol, | |
59 | PTR data, | |
60 | asection *section, | |
61 | bfd *output_bfd, | |
62 | char **error)); | |
63 | static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd, | |
64 | arelent *reloc, | |
65 | asymbol *symbol, | |
66 | PTR data, | |
67 | asection *section, | |
68 | bfd *output_bfd, | |
69 | char **error)); | |
70 | static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd, | |
71 | arelent *reloc, | |
72 | asymbol *symbol, | |
73 | PTR data, | |
74 | asection *section, | |
75 | bfd *output_bfd, | |
76 | char **error)); | |
77 | static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd, | |
78 | arelent *reloc, | |
79 | asymbol *symbol, | |
80 | PTR data, | |
81 | asection *section, | |
82 | bfd *output_bfd, | |
83 | char **error)); | |
84 | static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd, | |
85 | arelent *reloc, | |
86 | asymbol *symbol, | |
87 | PTR data, | |
88 | asection *section, | |
89 | bfd *output_bfd, | |
90 | char **error)); | |
91 | static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd, | |
92 | arelent *reloc, | |
93 | asymbol *symbol, | |
94 | PTR data, | |
95 | asection *section, | |
96 | bfd *output_bfd, | |
97 | char **error)); | |
98 | static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi, | |
99 | struct internal_reloc *reflo, | |
100 | bfd *input_bfd, | |
101 | asection *input_section, | |
102 | bfd_byte *contents, | |
103 | size_t adjust, | |
104 | bfd_vma relocation, | |
105 | boolean pcrel)); | |
106 | static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *, | |
107 | bfd *, asection *, | |
108 | bfd_byte *, PTR)); | |
109 | static boolean mips_read_relocs PARAMS ((bfd *, asection *)); | |
110 | static boolean mips_relax_section PARAMS ((bfd *, asection *, | |
111 | struct bfd_link_info *, | |
112 | boolean *)); | |
113 | static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *, | |
114 | asection *, | |
115 | struct ecoff_link_hash_entry *, | |
116 | bfd_byte *, bfd_vma)); | |
117 | static reloc_howto_type *mips_bfd_reloc_type_lookup | |
118 | PARAMS ((bfd *, bfd_reloc_code_real_type)); | |
252b5132 RH |
119 | \f |
120 | /* ECOFF has COFF sections, but the debugging information is stored in | |
121 | a completely different format. ECOFF targets use some of the | |
122 | swapping routines from coffswap.h, and some of the generic COFF | |
123 | routines in coffgen.c, but, unlike the real COFF targets, do not | |
124 | use coffcode.h itself. | |
125 | ||
126 | Get the generic COFF swapping routines, except for the reloc, | |
127 | symbol, and lineno ones. Give them ECOFF names. */ | |
128 | #define MIPSECOFF | |
129 | #define NO_COFF_RELOCS | |
130 | #define NO_COFF_SYMBOLS | |
131 | #define NO_COFF_LINENOS | |
132 | #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in | |
133 | #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out | |
134 | #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in | |
135 | #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out | |
136 | #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in | |
137 | #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out | |
138 | #include "coffswap.h" | |
139 | ||
140 | /* Get the ECOFF swapping routines. */ | |
141 | #define ECOFF_32 | |
142 | #include "ecoffswap.h" | |
143 | \f | |
144 | /* How to process the various relocs types. */ | |
145 | ||
146 | static reloc_howto_type mips_howto_table[] = | |
147 | { | |
148 | /* Reloc type 0 is ignored. The reloc reading code ensures that | |
149 | this is a reference to the .abs section, which will cause | |
150 | bfd_perform_relocation to do nothing. */ | |
151 | HOWTO (MIPS_R_IGNORE, /* type */ | |
152 | 0, /* rightshift */ | |
153 | 0, /* size (0 = byte, 1 = short, 2 = long) */ | |
154 | 8, /* bitsize */ | |
155 | false, /* pc_relative */ | |
156 | 0, /* bitpos */ | |
157 | complain_overflow_dont, /* complain_on_overflow */ | |
158 | 0, /* special_function */ | |
159 | "IGNORE", /* name */ | |
160 | false, /* partial_inplace */ | |
161 | 0, /* src_mask */ | |
162 | 0, /* dst_mask */ | |
163 | false), /* pcrel_offset */ | |
164 | ||
165 | /* A 16 bit reference to a symbol, normally from a data section. */ | |
166 | HOWTO (MIPS_R_REFHALF, /* type */ | |
167 | 0, /* rightshift */ | |
168 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
169 | 16, /* bitsize */ | |
170 | false, /* pc_relative */ | |
171 | 0, /* bitpos */ | |
172 | complain_overflow_bitfield, /* complain_on_overflow */ | |
173 | mips_generic_reloc, /* special_function */ | |
174 | "REFHALF", /* name */ | |
175 | true, /* partial_inplace */ | |
176 | 0xffff, /* src_mask */ | |
177 | 0xffff, /* dst_mask */ | |
178 | false), /* pcrel_offset */ | |
179 | ||
180 | /* A 32 bit reference to a symbol, normally from a data section. */ | |
181 | HOWTO (MIPS_R_REFWORD, /* type */ | |
182 | 0, /* rightshift */ | |
183 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
184 | 32, /* bitsize */ | |
185 | false, /* pc_relative */ | |
186 | 0, /* bitpos */ | |
187 | complain_overflow_bitfield, /* complain_on_overflow */ | |
188 | mips_generic_reloc, /* special_function */ | |
189 | "REFWORD", /* name */ | |
190 | true, /* partial_inplace */ | |
191 | 0xffffffff, /* src_mask */ | |
192 | 0xffffffff, /* dst_mask */ | |
193 | false), /* pcrel_offset */ | |
194 | ||
195 | /* A 26 bit absolute jump address. */ | |
196 | HOWTO (MIPS_R_JMPADDR, /* type */ | |
197 | 2, /* rightshift */ | |
198 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
199 | 26, /* bitsize */ | |
200 | false, /* pc_relative */ | |
201 | 0, /* bitpos */ | |
202 | complain_overflow_dont, /* complain_on_overflow */ | |
203 | /* This needs complex overflow | |
204 | detection, because the upper four | |
205 | bits must match the PC. */ | |
206 | mips_generic_reloc, /* special_function */ | |
207 | "JMPADDR", /* name */ | |
208 | true, /* partial_inplace */ | |
209 | 0x3ffffff, /* src_mask */ | |
210 | 0x3ffffff, /* dst_mask */ | |
211 | false), /* pcrel_offset */ | |
212 | ||
213 | /* The high 16 bits of a symbol value. Handled by the function | |
214 | mips_refhi_reloc. */ | |
215 | HOWTO (MIPS_R_REFHI, /* type */ | |
216 | 16, /* rightshift */ | |
217 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
218 | 16, /* bitsize */ | |
219 | false, /* pc_relative */ | |
220 | 0, /* bitpos */ | |
221 | complain_overflow_bitfield, /* complain_on_overflow */ | |
222 | mips_refhi_reloc, /* special_function */ | |
223 | "REFHI", /* name */ | |
224 | true, /* partial_inplace */ | |
225 | 0xffff, /* src_mask */ | |
226 | 0xffff, /* dst_mask */ | |
227 | false), /* pcrel_offset */ | |
228 | ||
229 | /* The low 16 bits of a symbol value. */ | |
230 | HOWTO (MIPS_R_REFLO, /* type */ | |
231 | 0, /* rightshift */ | |
232 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
233 | 16, /* bitsize */ | |
234 | false, /* pc_relative */ | |
235 | 0, /* bitpos */ | |
236 | complain_overflow_dont, /* complain_on_overflow */ | |
237 | mips_reflo_reloc, /* special_function */ | |
238 | "REFLO", /* name */ | |
239 | true, /* partial_inplace */ | |
240 | 0xffff, /* src_mask */ | |
241 | 0xffff, /* dst_mask */ | |
242 | false), /* pcrel_offset */ | |
243 | ||
244 | /* A reference to an offset from the gp register. Handled by the | |
245 | function mips_gprel_reloc. */ | |
246 | HOWTO (MIPS_R_GPREL, /* type */ | |
247 | 0, /* rightshift */ | |
248 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
249 | 16, /* bitsize */ | |
250 | false, /* pc_relative */ | |
251 | 0, /* bitpos */ | |
252 | complain_overflow_signed, /* complain_on_overflow */ | |
253 | mips_gprel_reloc, /* special_function */ | |
254 | "GPREL", /* name */ | |
255 | true, /* partial_inplace */ | |
256 | 0xffff, /* src_mask */ | |
257 | 0xffff, /* dst_mask */ | |
258 | false), /* pcrel_offset */ | |
259 | ||
260 | /* A reference to a literal using an offset from the gp register. | |
261 | Handled by the function mips_gprel_reloc. */ | |
262 | HOWTO (MIPS_R_LITERAL, /* type */ | |
263 | 0, /* rightshift */ | |
264 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
265 | 16, /* bitsize */ | |
266 | false, /* pc_relative */ | |
267 | 0, /* bitpos */ | |
268 | complain_overflow_signed, /* complain_on_overflow */ | |
269 | mips_gprel_reloc, /* special_function */ | |
270 | "LITERAL", /* name */ | |
271 | true, /* partial_inplace */ | |
272 | 0xffff, /* src_mask */ | |
273 | 0xffff, /* dst_mask */ | |
274 | false), /* pcrel_offset */ | |
275 | ||
5f771d47 ILT |
276 | EMPTY_HOWTO (8), |
277 | EMPTY_HOWTO (9), | |
278 | EMPTY_HOWTO (10), | |
279 | EMPTY_HOWTO (11), | |
252b5132 RH |
280 | |
281 | /* This reloc is a Cygnus extension used when generating position | |
282 | independent code for embedded systems. It represents a 16 bit PC | |
283 | relative reloc rightshifted twice as used in the MIPS branch | |
284 | instructions. */ | |
285 | HOWTO (MIPS_R_PCREL16, /* type */ | |
286 | 2, /* rightshift */ | |
287 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
288 | 16, /* bitsize */ | |
289 | true, /* pc_relative */ | |
290 | 0, /* bitpos */ | |
291 | complain_overflow_signed, /* complain_on_overflow */ | |
292 | mips_generic_reloc, /* special_function */ | |
293 | "PCREL16", /* name */ | |
294 | true, /* partial_inplace */ | |
295 | 0xffff, /* src_mask */ | |
296 | 0xffff, /* dst_mask */ | |
297 | true), /* pcrel_offset */ | |
298 | ||
299 | /* This reloc is a Cygnus extension used when generating position | |
300 | independent code for embedded systems. It represents the high 16 | |
301 | bits of a PC relative reloc. The next reloc must be | |
302 | MIPS_R_RELLO, and the addend is formed from the addends of the | |
303 | two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The | |
304 | final value is actually PC relative to the location of the | |
305 | MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */ | |
306 | HOWTO (MIPS_R_RELHI, /* type */ | |
307 | 16, /* rightshift */ | |
308 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
309 | 16, /* bitsize */ | |
310 | true, /* pc_relative */ | |
311 | 0, /* bitpos */ | |
312 | complain_overflow_bitfield, /* complain_on_overflow */ | |
313 | mips_relhi_reloc, /* special_function */ | |
314 | "RELHI", /* name */ | |
315 | true, /* partial_inplace */ | |
316 | 0xffff, /* src_mask */ | |
317 | 0xffff, /* dst_mask */ | |
318 | true), /* pcrel_offset */ | |
319 | ||
320 | /* This reloc is a Cygnus extension used when generating position | |
321 | independent code for embedded systems. It represents the low 16 | |
322 | bits of a PC relative reloc. */ | |
323 | HOWTO (MIPS_R_RELLO, /* type */ | |
324 | 0, /* rightshift */ | |
325 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
326 | 16, /* bitsize */ | |
327 | true, /* pc_relative */ | |
328 | 0, /* bitpos */ | |
329 | complain_overflow_dont, /* complain_on_overflow */ | |
330 | mips_rello_reloc, /* special_function */ | |
331 | "RELLO", /* name */ | |
332 | true, /* partial_inplace */ | |
333 | 0xffff, /* src_mask */ | |
334 | 0xffff, /* dst_mask */ | |
335 | true), /* pcrel_offset */ | |
336 | ||
5f771d47 ILT |
337 | EMPTY_HOWTO (15), |
338 | EMPTY_HOWTO (16), | |
339 | EMPTY_HOWTO (17), | |
340 | EMPTY_HOWTO (18), | |
341 | EMPTY_HOWTO (19), | |
342 | EMPTY_HOWTO (20), | |
343 | EMPTY_HOWTO (21), | |
252b5132 RH |
344 | |
345 | /* This reloc is a Cygnus extension used when generating position | |
346 | independent code for embedded systems. It represents an entry in | |
347 | a switch table, which is the difference between two symbols in | |
348 | the .text section. The symndx is actually the offset from the | |
349 | reloc address to the subtrahend. See include/coff/mips.h for | |
350 | more details. */ | |
351 | HOWTO (MIPS_R_SWITCH, /* type */ | |
352 | 0, /* rightshift */ | |
353 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
354 | 32, /* bitsize */ | |
355 | true, /* pc_relative */ | |
356 | 0, /* bitpos */ | |
357 | complain_overflow_dont, /* complain_on_overflow */ | |
358 | mips_switch_reloc, /* special_function */ | |
359 | "SWITCH", /* name */ | |
360 | true, /* partial_inplace */ | |
361 | 0xffffffff, /* src_mask */ | |
362 | 0xffffffff, /* dst_mask */ | |
363 | true) /* pcrel_offset */ | |
364 | }; | |
365 | ||
366 | #define MIPS_HOWTO_COUNT \ | |
367 | (sizeof mips_howto_table / sizeof mips_howto_table[0]) | |
368 | ||
369 | /* When the linker is doing relaxing, it may change a external PCREL16 | |
370 | reloc. This typically represents an instruction like | |
371 | bal foo | |
372 | We change it to | |
373 | .set noreorder | |
374 | bal $L1 | |
375 | lui $at,%hi(foo - $L1) | |
376 | $L1: | |
377 | addiu $at,%lo(foo - $L1) | |
378 | addu $at,$at,$31 | |
379 | jalr $at | |
380 | PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the | |
381 | instruction by. */ | |
382 | ||
383 | #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4) | |
384 | \f | |
385 | /* See whether the magic number matches. */ | |
386 | ||
387 | static boolean | |
388 | mips_ecoff_bad_format_hook (abfd, filehdr) | |
389 | bfd *abfd; | |
390 | PTR filehdr; | |
391 | { | |
392 | struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; | |
393 | ||
394 | switch (internal_f->f_magic) | |
395 | { | |
396 | case MIPS_MAGIC_1: | |
397 | /* I don't know what endianness this implies. */ | |
398 | return true; | |
399 | ||
400 | case MIPS_MAGIC_BIG: | |
401 | case MIPS_MAGIC_BIG2: | |
402 | case MIPS_MAGIC_BIG3: | |
403 | return bfd_big_endian (abfd); | |
404 | ||
405 | case MIPS_MAGIC_LITTLE: | |
406 | case MIPS_MAGIC_LITTLE2: | |
407 | case MIPS_MAGIC_LITTLE3: | |
408 | return bfd_little_endian (abfd); | |
409 | ||
410 | default: | |
411 | return false; | |
412 | } | |
413 | } | |
414 | \f | |
415 | /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in | |
416 | external form. They use a bit which indicates whether the symbol | |
417 | is external. */ | |
418 | ||
419 | /* Swap a reloc in. */ | |
420 | ||
421 | static void | |
422 | mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern) | |
423 | bfd *abfd; | |
424 | PTR ext_ptr; | |
425 | struct internal_reloc *intern; | |
426 | { | |
427 | const RELOC *ext = (RELOC *) ext_ptr; | |
428 | ||
429 | intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr); | |
430 | if (bfd_header_big_endian (abfd)) | |
431 | { | |
432 | intern->r_symndx = (((int) ext->r_bits[0] | |
433 | << RELOC_BITS0_SYMNDX_SH_LEFT_BIG) | |
434 | | ((int) ext->r_bits[1] | |
435 | << RELOC_BITS1_SYMNDX_SH_LEFT_BIG) | |
436 | | ((int) ext->r_bits[2] | |
437 | << RELOC_BITS2_SYMNDX_SH_LEFT_BIG)); | |
438 | intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG) | |
439 | >> RELOC_BITS3_TYPE_SH_BIG); | |
440 | intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0; | |
441 | } | |
442 | else | |
443 | { | |
444 | intern->r_symndx = (((int) ext->r_bits[0] | |
445 | << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE) | |
446 | | ((int) ext->r_bits[1] | |
447 | << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE) | |
448 | | ((int) ext->r_bits[2] | |
449 | << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE)); | |
450 | intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE) | |
451 | >> RELOC_BITS3_TYPE_SH_LITTLE) | |
452 | | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE) | |
453 | << RELOC_BITS3_TYPEHI_SH_LITTLE)); | |
454 | intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0; | |
455 | } | |
456 | ||
457 | /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or | |
458 | MIPS_R_RELLO reloc, r_symndx is actually the offset from the | |
459 | reloc address to the base of the difference (see | |
460 | include/coff/mips.h for more details). We copy symndx into the | |
461 | r_offset field so as not to confuse ecoff_slurp_reloc_table in | |
462 | ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc | |
463 | addend. */ | |
464 | if (intern->r_type == MIPS_R_SWITCH | |
465 | || (! intern->r_extern | |
466 | && (intern->r_type == MIPS_R_RELLO | |
467 | || intern->r_type == MIPS_R_RELHI))) | |
468 | { | |
469 | BFD_ASSERT (! intern->r_extern); | |
470 | intern->r_offset = intern->r_symndx; | |
471 | if (intern->r_offset & 0x800000) | |
472 | intern->r_offset -= 0x1000000; | |
473 | intern->r_symndx = RELOC_SECTION_TEXT; | |
474 | } | |
475 | } | |
476 | ||
477 | /* Swap a reloc out. */ | |
478 | ||
479 | static void | |
480 | mips_ecoff_swap_reloc_out (abfd, intern, dst) | |
481 | bfd *abfd; | |
482 | const struct internal_reloc *intern; | |
483 | PTR dst; | |
484 | { | |
485 | RELOC *ext = (RELOC *) dst; | |
486 | long r_symndx; | |
487 | ||
488 | BFD_ASSERT (intern->r_extern | |
489 | || (intern->r_symndx >= 0 && intern->r_symndx <= 12)); | |
490 | ||
491 | /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or | |
492 | MIPS_R_RELHI reloc, we actually want to write the contents of | |
493 | r_offset out as the symbol index. This undoes the change made by | |
494 | mips_ecoff_swap_reloc_in. */ | |
495 | if (intern->r_type != MIPS_R_SWITCH | |
496 | && (intern->r_extern | |
497 | || (intern->r_type != MIPS_R_RELHI | |
498 | && intern->r_type != MIPS_R_RELLO))) | |
499 | r_symndx = intern->r_symndx; | |
500 | else | |
501 | { | |
502 | BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT); | |
503 | r_symndx = intern->r_offset & 0xffffff; | |
504 | } | |
505 | ||
506 | bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr); | |
507 | if (bfd_header_big_endian (abfd)) | |
508 | { | |
509 | ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG; | |
510 | ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG; | |
511 | ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG; | |
512 | ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG) | |
513 | & RELOC_BITS3_TYPE_BIG) | |
514 | | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0)); | |
515 | } | |
516 | else | |
517 | { | |
518 | ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE; | |
519 | ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE; | |
520 | ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE; | |
521 | ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE) | |
522 | & RELOC_BITS3_TYPE_LITTLE) | |
523 | | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE | |
524 | & RELOC_BITS3_TYPEHI_LITTLE)) | |
525 | | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0)); | |
526 | } | |
527 | } | |
528 | ||
529 | /* Finish canonicalizing a reloc. Part of this is generic to all | |
530 | ECOFF targets, and that part is in ecoff.c. The rest is done in | |
531 | this backend routine. It must fill in the howto field. */ | |
532 | ||
533 | static void | |
534 | mips_adjust_reloc_in (abfd, intern, rptr) | |
535 | bfd *abfd; | |
536 | const struct internal_reloc *intern; | |
537 | arelent *rptr; | |
538 | { | |
539 | if (intern->r_type > MIPS_R_SWITCH) | |
540 | abort (); | |
541 | ||
542 | if (! intern->r_extern | |
543 | && (intern->r_type == MIPS_R_GPREL | |
544 | || intern->r_type == MIPS_R_LITERAL)) | |
545 | rptr->addend += ecoff_data (abfd)->gp; | |
546 | ||
547 | /* If the type is MIPS_R_IGNORE, make sure this is a reference to | |
548 | the absolute section so that the reloc is ignored. */ | |
549 | if (intern->r_type == MIPS_R_IGNORE) | |
550 | rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | |
551 | ||
552 | /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or | |
553 | MIPS_R_RELLO reloc, we want the addend field of the BFD relocto | |
554 | hold the value which was originally in the symndx field of the | |
555 | internal MIPS ECOFF reloc. This value was copied into | |
556 | intern->r_offset by mips_swap_reloc_in, and here we copy it into | |
557 | the addend field. */ | |
558 | if (intern->r_type == MIPS_R_SWITCH | |
559 | || (! intern->r_extern | |
560 | && (intern->r_type == MIPS_R_RELHI | |
561 | || intern->r_type == MIPS_R_RELLO))) | |
562 | rptr->addend = intern->r_offset; | |
563 | ||
564 | rptr->howto = &mips_howto_table[intern->r_type]; | |
565 | } | |
566 | ||
567 | /* Make any adjustments needed to a reloc before writing it out. None | |
568 | are needed for MIPS. */ | |
569 | ||
570 | static void | |
571 | mips_adjust_reloc_out (abfd, rel, intern) | |
5f771d47 | 572 | bfd *abfd ATTRIBUTE_UNUSED; |
252b5132 RH |
573 | const arelent *rel; |
574 | struct internal_reloc *intern; | |
575 | { | |
576 | /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or | |
577 | MIPS_R_RELLO reloc, we must copy rel->addend into | |
578 | intern->r_offset. This will then be written out as the symbol | |
579 | index by mips_ecoff_swap_reloc_out. This operation parallels the | |
580 | action of mips_adjust_reloc_in. */ | |
581 | if (intern->r_type == MIPS_R_SWITCH | |
582 | || (! intern->r_extern | |
583 | && (intern->r_type == MIPS_R_RELHI | |
584 | || intern->r_type == MIPS_R_RELLO))) | |
585 | intern->r_offset = rel->addend; | |
586 | } | |
587 | ||
588 | /* ECOFF relocs are either against external symbols, or against | |
589 | sections. If we are producing relocateable output, and the reloc | |
590 | is against an external symbol, and nothing has given us any | |
591 | additional addend, the resulting reloc will also be against the | |
592 | same symbol. In such a case, we don't want to change anything | |
593 | about the way the reloc is handled, since it will all be done at | |
594 | final link time. Rather than put special case code into | |
595 | bfd_perform_relocation, all the reloc types use this howto | |
596 | function. It just short circuits the reloc if producing | |
597 | relocateable output against an external symbol. */ | |
598 | ||
599 | static bfd_reloc_status_type | |
600 | mips_generic_reloc (abfd, | |
601 | reloc_entry, | |
602 | symbol, | |
603 | data, | |
604 | input_section, | |
605 | output_bfd, | |
606 | error_message) | |
5f771d47 | 607 | bfd *abfd ATTRIBUTE_UNUSED; |
252b5132 RH |
608 | arelent *reloc_entry; |
609 | asymbol *symbol; | |
5f771d47 | 610 | PTR data ATTRIBUTE_UNUSED; |
252b5132 RH |
611 | asection *input_section; |
612 | bfd *output_bfd; | |
5f771d47 | 613 | char **error_message ATTRIBUTE_UNUSED; |
252b5132 RH |
614 | { |
615 | if (output_bfd != (bfd *) NULL | |
616 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
617 | && reloc_entry->addend == 0) | |
618 | { | |
619 | reloc_entry->address += input_section->output_offset; | |
620 | return bfd_reloc_ok; | |
621 | } | |
622 | ||
623 | return bfd_reloc_continue; | |
624 | } | |
625 | ||
626 | /* Do a REFHI relocation. This has to be done in combination with a | |
627 | REFLO reloc, because there is a carry from the REFLO to the REFHI. | |
628 | Here we just save the information we need; we do the actual | |
629 | relocation when we see the REFLO. MIPS ECOFF requires that the | |
630 | REFLO immediately follow the REFHI. As a GNU extension, we permit | |
631 | an arbitrary number of HI relocs to be associated with a single LO | |
632 | reloc. This extension permits gcc to output the HI and LO relocs | |
633 | itself. */ | |
634 | ||
635 | struct mips_hi | |
636 | { | |
637 | struct mips_hi *next; | |
638 | bfd_byte *addr; | |
639 | bfd_vma addend; | |
640 | }; | |
641 | ||
642 | /* FIXME: This should not be a static variable. */ | |
643 | ||
644 | static struct mips_hi *mips_refhi_list; | |
645 | ||
646 | static bfd_reloc_status_type | |
647 | mips_refhi_reloc (abfd, | |
648 | reloc_entry, | |
649 | symbol, | |
650 | data, | |
651 | input_section, | |
652 | output_bfd, | |
653 | error_message) | |
5f771d47 | 654 | bfd *abfd ATTRIBUTE_UNUSED; |
252b5132 RH |
655 | arelent *reloc_entry; |
656 | asymbol *symbol; | |
657 | PTR data; | |
658 | asection *input_section; | |
659 | bfd *output_bfd; | |
5f771d47 | 660 | char **error_message ATTRIBUTE_UNUSED; |
252b5132 RH |
661 | { |
662 | bfd_reloc_status_type ret; | |
663 | bfd_vma relocation; | |
664 | struct mips_hi *n; | |
665 | ||
666 | /* If we're relocating, and this an external symbol, we don't want | |
667 | to change anything. */ | |
668 | if (output_bfd != (bfd *) NULL | |
669 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
670 | && reloc_entry->addend == 0) | |
671 | { | |
672 | reloc_entry->address += input_section->output_offset; | |
673 | return bfd_reloc_ok; | |
674 | } | |
675 | ||
676 | ret = bfd_reloc_ok; | |
677 | if (bfd_is_und_section (symbol->section) | |
678 | && output_bfd == (bfd *) NULL) | |
679 | ret = bfd_reloc_undefined; | |
680 | ||
681 | if (bfd_is_com_section (symbol->section)) | |
682 | relocation = 0; | |
683 | else | |
684 | relocation = symbol->value; | |
685 | ||
686 | relocation += symbol->section->output_section->vma; | |
687 | relocation += symbol->section->output_offset; | |
688 | relocation += reloc_entry->addend; | |
689 | ||
690 | if (reloc_entry->address > input_section->_cooked_size) | |
691 | return bfd_reloc_outofrange; | |
692 | ||
693 | /* Save the information, and let REFLO do the actual relocation. */ | |
694 | n = (struct mips_hi *) bfd_malloc (sizeof *n); | |
695 | if (n == NULL) | |
696 | return bfd_reloc_outofrange; | |
697 | n->addr = (bfd_byte *) data + reloc_entry->address; | |
698 | n->addend = relocation; | |
699 | n->next = mips_refhi_list; | |
700 | mips_refhi_list = n; | |
701 | ||
702 | if (output_bfd != (bfd *) NULL) | |
703 | reloc_entry->address += input_section->output_offset; | |
704 | ||
705 | return ret; | |
706 | } | |
707 | ||
708 | /* Do a REFLO relocation. This is a straightforward 16 bit inplace | |
709 | relocation; this function exists in order to do the REFHI | |
710 | relocation described above. */ | |
711 | ||
712 | static bfd_reloc_status_type | |
713 | mips_reflo_reloc (abfd, | |
714 | reloc_entry, | |
715 | symbol, | |
716 | data, | |
717 | input_section, | |
718 | output_bfd, | |
719 | error_message) | |
720 | bfd *abfd; | |
721 | arelent *reloc_entry; | |
722 | asymbol *symbol; | |
723 | PTR data; | |
724 | asection *input_section; | |
725 | bfd *output_bfd; | |
726 | char **error_message; | |
727 | { | |
728 | if (mips_refhi_list != NULL) | |
729 | { | |
730 | struct mips_hi *l; | |
731 | ||
732 | l = mips_refhi_list; | |
733 | while (l != NULL) | |
734 | { | |
735 | unsigned long insn; | |
736 | unsigned long val; | |
737 | unsigned long vallo; | |
738 | struct mips_hi *next; | |
739 | ||
740 | /* Do the REFHI relocation. Note that we actually don't | |
741 | need to know anything about the REFLO itself, except | |
742 | where to find the low 16 bits of the addend needed by the | |
743 | REFHI. */ | |
744 | insn = bfd_get_32 (abfd, l->addr); | |
745 | vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) | |
746 | & 0xffff); | |
747 | val = ((insn & 0xffff) << 16) + vallo; | |
748 | val += l->addend; | |
749 | ||
750 | /* The low order 16 bits are always treated as a signed | |
751 | value. Therefore, a negative value in the low order bits | |
752 | requires an adjustment in the high order bits. We need | |
753 | to make this adjustment in two ways: once for the bits we | |
754 | took from the data, and once for the bits we are putting | |
755 | back in to the data. */ | |
756 | if ((vallo & 0x8000) != 0) | |
757 | val -= 0x10000; | |
758 | if ((val & 0x8000) != 0) | |
759 | val += 0x10000; | |
760 | ||
761 | insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); | |
762 | bfd_put_32 (abfd, insn, l->addr); | |
763 | ||
764 | next = l->next; | |
765 | free (l); | |
766 | l = next; | |
767 | } | |
768 | ||
769 | mips_refhi_list = NULL; | |
770 | } | |
771 | ||
772 | /* Now do the REFLO reloc in the usual way. */ | |
773 | return mips_generic_reloc (abfd, reloc_entry, symbol, data, | |
774 | input_section, output_bfd, error_message); | |
775 | } | |
776 | ||
777 | /* Do a GPREL relocation. This is a 16 bit value which must become | |
778 | the offset from the gp register. */ | |
779 | ||
780 | static bfd_reloc_status_type | |
781 | mips_gprel_reloc (abfd, | |
782 | reloc_entry, | |
783 | symbol, | |
784 | data, | |
785 | input_section, | |
786 | output_bfd, | |
787 | error_message) | |
788 | bfd *abfd; | |
789 | arelent *reloc_entry; | |
790 | asymbol *symbol; | |
791 | PTR data; | |
792 | asection *input_section; | |
793 | bfd *output_bfd; | |
794 | char **error_message; | |
795 | { | |
796 | boolean relocateable; | |
797 | bfd_vma gp; | |
798 | bfd_vma relocation; | |
799 | unsigned long val; | |
800 | unsigned long insn; | |
801 | ||
802 | /* If we're relocating, and this is an external symbol with no | |
803 | addend, we don't want to change anything. We will only have an | |
804 | addend if this is a newly created reloc, not read from an ECOFF | |
805 | file. */ | |
806 | if (output_bfd != (bfd *) NULL | |
807 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
808 | && reloc_entry->addend == 0) | |
809 | { | |
810 | reloc_entry->address += input_section->output_offset; | |
811 | return bfd_reloc_ok; | |
812 | } | |
813 | ||
814 | if (output_bfd != (bfd *) NULL) | |
815 | relocateable = true; | |
816 | else | |
817 | { | |
818 | relocateable = false; | |
819 | output_bfd = symbol->section->output_section->owner; | |
820 | } | |
821 | ||
822 | if (bfd_is_und_section (symbol->section) | |
823 | && relocateable == false) | |
824 | return bfd_reloc_undefined; | |
825 | ||
826 | /* We have to figure out the gp value, so that we can adjust the | |
827 | symbol value correctly. We look up the symbol _gp in the output | |
828 | BFD. If we can't find it, we're stuck. We cache it in the ECOFF | |
829 | target data. We don't need to adjust the symbol value for an | |
830 | external symbol if we are producing relocateable output. */ | |
831 | gp = _bfd_get_gp_value (output_bfd); | |
832 | if (gp == 0 | |
833 | && (relocateable == false | |
834 | || (symbol->flags & BSF_SECTION_SYM) != 0)) | |
835 | { | |
836 | if (relocateable != false) | |
837 | { | |
838 | /* Make up a value. */ | |
839 | gp = symbol->section->output_section->vma + 0x4000; | |
840 | _bfd_set_gp_value (output_bfd, gp); | |
841 | } | |
842 | else | |
843 | { | |
844 | unsigned int count; | |
845 | asymbol **sym; | |
846 | unsigned int i; | |
847 | ||
848 | count = bfd_get_symcount (output_bfd); | |
849 | sym = bfd_get_outsymbols (output_bfd); | |
850 | ||
851 | if (sym == (asymbol **) NULL) | |
852 | i = count; | |
853 | else | |
854 | { | |
855 | for (i = 0; i < count; i++, sym++) | |
856 | { | |
857 | register CONST char *name; | |
858 | ||
859 | name = bfd_asymbol_name (*sym); | |
860 | if (*name == '_' && strcmp (name, "_gp") == 0) | |
861 | { | |
862 | gp = bfd_asymbol_value (*sym); | |
863 | _bfd_set_gp_value (output_bfd, gp); | |
864 | break; | |
865 | } | |
866 | } | |
867 | } | |
868 | ||
869 | if (i >= count) | |
870 | { | |
871 | /* Only get the error once. */ | |
872 | gp = 4; | |
873 | _bfd_set_gp_value (output_bfd, gp); | |
874 | *error_message = | |
875 | (char *) _("GP relative relocation when _gp not defined"); | |
876 | return bfd_reloc_dangerous; | |
877 | } | |
878 | } | |
879 | } | |
880 | ||
881 | if (bfd_is_com_section (symbol->section)) | |
882 | relocation = 0; | |
883 | else | |
884 | relocation = symbol->value; | |
885 | ||
886 | relocation += symbol->section->output_section->vma; | |
887 | relocation += symbol->section->output_offset; | |
888 | ||
889 | if (reloc_entry->address > input_section->_cooked_size) | |
890 | return bfd_reloc_outofrange; | |
891 | ||
892 | insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); | |
893 | ||
894 | /* Set val to the offset into the section or symbol. */ | |
895 | val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; | |
896 | if (val & 0x8000) | |
897 | val -= 0x10000; | |
898 | ||
899 | /* Adjust val for the final section location and GP value. If we | |
900 | are producing relocateable output, we don't want to do this for | |
901 | an external symbol. */ | |
902 | if (relocateable == false | |
903 | || (symbol->flags & BSF_SECTION_SYM) != 0) | |
904 | val += relocation - gp; | |
905 | ||
906 | insn = (insn &~ 0xffff) | (val & 0xffff); | |
907 | bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); | |
908 | ||
909 | if (relocateable != false) | |
910 | reloc_entry->address += input_section->output_offset; | |
911 | ||
912 | /* Make sure it fit in 16 bits. */ | |
43cbcf28 | 913 | if ((long) val >= 0x8000 || (long) val < -0x8000) |
252b5132 RH |
914 | return bfd_reloc_overflow; |
915 | ||
916 | return bfd_reloc_ok; | |
917 | } | |
918 | ||
919 | /* Do a RELHI relocation. We do this in conjunction with a RELLO | |
920 | reloc, just as REFHI and REFLO are done together. RELHI and RELLO | |
921 | are Cygnus extensions used when generating position independent | |
922 | code for embedded systems. */ | |
923 | ||
924 | /* FIXME: This should not be a static variable. */ | |
925 | ||
926 | static struct mips_hi *mips_relhi_list; | |
927 | ||
928 | static bfd_reloc_status_type | |
929 | mips_relhi_reloc (abfd, | |
930 | reloc_entry, | |
931 | symbol, | |
932 | data, | |
933 | input_section, | |
934 | output_bfd, | |
935 | error_message) | |
5f771d47 | 936 | bfd *abfd ATTRIBUTE_UNUSED; |
252b5132 RH |
937 | arelent *reloc_entry; |
938 | asymbol *symbol; | |
939 | PTR data; | |
940 | asection *input_section; | |
941 | bfd *output_bfd; | |
5f771d47 | 942 | char **error_message ATTRIBUTE_UNUSED; |
252b5132 RH |
943 | { |
944 | bfd_reloc_status_type ret; | |
945 | bfd_vma relocation; | |
946 | struct mips_hi *n; | |
947 | ||
948 | /* If this is a reloc against a section symbol, then it is correct | |
949 | in the object file. The only time we want to change this case is | |
950 | when we are relaxing, and that is handled entirely by | |
951 | mips_relocate_section and never calls this function. */ | |
952 | if ((symbol->flags & BSF_SECTION_SYM) != 0) | |
953 | { | |
954 | if (output_bfd != (bfd *) NULL) | |
955 | reloc_entry->address += input_section->output_offset; | |
956 | return bfd_reloc_ok; | |
957 | } | |
958 | ||
959 | /* This is an external symbol. If we're relocating, we don't want | |
960 | to change anything. */ | |
961 | if (output_bfd != (bfd *) NULL) | |
962 | { | |
963 | reloc_entry->address += input_section->output_offset; | |
964 | return bfd_reloc_ok; | |
965 | } | |
966 | ||
967 | ret = bfd_reloc_ok; | |
968 | if (bfd_is_und_section (symbol->section) | |
969 | && output_bfd == (bfd *) NULL) | |
970 | ret = bfd_reloc_undefined; | |
971 | ||
972 | if (bfd_is_com_section (symbol->section)) | |
973 | relocation = 0; | |
974 | else | |
975 | relocation = symbol->value; | |
976 | ||
977 | relocation += symbol->section->output_section->vma; | |
978 | relocation += symbol->section->output_offset; | |
979 | relocation += reloc_entry->addend; | |
980 | ||
981 | if (reloc_entry->address > input_section->_cooked_size) | |
982 | return bfd_reloc_outofrange; | |
983 | ||
984 | /* Save the information, and let RELLO do the actual relocation. */ | |
985 | n = (struct mips_hi *) bfd_malloc (sizeof *n); | |
986 | if (n == NULL) | |
987 | return bfd_reloc_outofrange; | |
988 | n->addr = (bfd_byte *) data + reloc_entry->address; | |
989 | n->addend = relocation; | |
990 | n->next = mips_relhi_list; | |
991 | mips_relhi_list = n; | |
992 | ||
993 | if (output_bfd != (bfd *) NULL) | |
994 | reloc_entry->address += input_section->output_offset; | |
995 | ||
996 | return ret; | |
997 | } | |
998 | ||
999 | /* Do a RELLO relocation. This is a straightforward 16 bit PC | |
1000 | relative relocation; this function exists in order to do the RELHI | |
1001 | relocation described above. */ | |
1002 | ||
1003 | static bfd_reloc_status_type | |
1004 | mips_rello_reloc (abfd, | |
1005 | reloc_entry, | |
1006 | symbol, | |
1007 | data, | |
1008 | input_section, | |
1009 | output_bfd, | |
1010 | error_message) | |
1011 | bfd *abfd; | |
1012 | arelent *reloc_entry; | |
1013 | asymbol *symbol; | |
1014 | PTR data; | |
1015 | asection *input_section; | |
1016 | bfd *output_bfd; | |
1017 | char **error_message; | |
1018 | { | |
1019 | if (mips_relhi_list != NULL) | |
1020 | { | |
1021 | struct mips_hi *l; | |
1022 | ||
1023 | l = mips_relhi_list; | |
1024 | while (l != NULL) | |
1025 | { | |
1026 | unsigned long insn; | |
1027 | unsigned long val; | |
1028 | unsigned long vallo; | |
1029 | struct mips_hi *next; | |
1030 | ||
1031 | /* Do the RELHI relocation. Note that we actually don't | |
1032 | need to know anything about the RELLO itself, except | |
1033 | where to find the low 16 bits of the addend needed by the | |
1034 | RELHI. */ | |
1035 | insn = bfd_get_32 (abfd, l->addr); | |
1036 | vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address) | |
1037 | & 0xffff); | |
1038 | val = ((insn & 0xffff) << 16) + vallo; | |
1039 | val += l->addend; | |
1040 | ||
1041 | /* If the symbol is defined, make val PC relative. If the | |
1042 | symbol is not defined we don't want to do this, because | |
1043 | we don't want the value in the object file to incorporate | |
1044 | the address of the reloc. */ | |
1045 | if (! bfd_is_und_section (bfd_get_section (symbol)) | |
1046 | && ! bfd_is_com_section (bfd_get_section (symbol))) | |
1047 | val -= (input_section->output_section->vma | |
1048 | + input_section->output_offset | |
1049 | + reloc_entry->address); | |
1050 | ||
1051 | /* The low order 16 bits are always treated as a signed | |
1052 | value. Therefore, a negative value in the low order bits | |
1053 | requires an adjustment in the high order bits. We need | |
1054 | to make this adjustment in two ways: once for the bits we | |
1055 | took from the data, and once for the bits we are putting | |
1056 | back in to the data. */ | |
1057 | if ((vallo & 0x8000) != 0) | |
1058 | val -= 0x10000; | |
1059 | if ((val & 0x8000) != 0) | |
1060 | val += 0x10000; | |
1061 | ||
1062 | insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); | |
1063 | bfd_put_32 (abfd, insn, l->addr); | |
1064 | ||
1065 | next = l->next; | |
1066 | free (l); | |
1067 | l = next; | |
1068 | } | |
1069 | ||
1070 | mips_relhi_list = NULL; | |
1071 | } | |
1072 | ||
1073 | /* If this is a reloc against a section symbol, then it is correct | |
1074 | in the object file. The only time we want to change this case is | |
1075 | when we are relaxing, and that is handled entirely by | |
1076 | mips_relocate_section and never calls this function. */ | |
1077 | if ((symbol->flags & BSF_SECTION_SYM) != 0) | |
1078 | { | |
1079 | if (output_bfd != (bfd *) NULL) | |
1080 | reloc_entry->address += input_section->output_offset; | |
1081 | return bfd_reloc_ok; | |
1082 | } | |
1083 | ||
1084 | /* bfd_perform_relocation does not handle pcrel_offset relocations | |
1085 | correctly when generating a relocateable file, so handle them | |
1086 | directly here. */ | |
1087 | if (output_bfd != (bfd *) NULL) | |
1088 | { | |
1089 | reloc_entry->address += input_section->output_offset; | |
1090 | return bfd_reloc_ok; | |
1091 | } | |
1092 | ||
1093 | /* Now do the RELLO reloc in the usual way. */ | |
1094 | return mips_generic_reloc (abfd, reloc_entry, symbol, data, | |
1095 | input_section, output_bfd, error_message); | |
1096 | } | |
1097 | ||
1098 | /* This is the special function for the MIPS_R_SWITCH reloc. This | |
1099 | special reloc is normally correct in the object file, and only | |
1100 | requires special handling when relaxing. We don't want | |
1101 | bfd_perform_relocation to tamper with it at all. */ | |
1102 | ||
252b5132 RH |
1103 | static bfd_reloc_status_type |
1104 | mips_switch_reloc (abfd, | |
1105 | reloc_entry, | |
1106 | symbol, | |
1107 | data, | |
1108 | input_section, | |
1109 | output_bfd, | |
1110 | error_message) | |
5f771d47 ILT |
1111 | bfd *abfd ATTRIBUTE_UNUSED; |
1112 | arelent *reloc_entry ATTRIBUTE_UNUSED; | |
1113 | asymbol *symbol ATTRIBUTE_UNUSED; | |
1114 | PTR data ATTRIBUTE_UNUSED; | |
1115 | asection *input_section ATTRIBUTE_UNUSED; | |
1116 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
1117 | char **error_message ATTRIBUTE_UNUSED; | |
252b5132 RH |
1118 | { |
1119 | return bfd_reloc_ok; | |
1120 | } | |
1121 | ||
1122 | /* Get the howto structure for a generic reloc type. */ | |
1123 | ||
1124 | static reloc_howto_type * | |
1125 | mips_bfd_reloc_type_lookup (abfd, code) | |
5f771d47 | 1126 | bfd *abfd ATTRIBUTE_UNUSED; |
252b5132 RH |
1127 | bfd_reloc_code_real_type code; |
1128 | { | |
1129 | int mips_type; | |
1130 | ||
1131 | switch (code) | |
1132 | { | |
1133 | case BFD_RELOC_16: | |
1134 | mips_type = MIPS_R_REFHALF; | |
1135 | break; | |
1136 | case BFD_RELOC_32: | |
1137 | case BFD_RELOC_CTOR: | |
1138 | mips_type = MIPS_R_REFWORD; | |
1139 | break; | |
1140 | case BFD_RELOC_MIPS_JMP: | |
1141 | mips_type = MIPS_R_JMPADDR; | |
1142 | break; | |
1143 | case BFD_RELOC_HI16_S: | |
1144 | mips_type = MIPS_R_REFHI; | |
1145 | break; | |
1146 | case BFD_RELOC_LO16: | |
1147 | mips_type = MIPS_R_REFLO; | |
1148 | break; | |
1149 | case BFD_RELOC_MIPS_GPREL: | |
1150 | mips_type = MIPS_R_GPREL; | |
1151 | break; | |
1152 | case BFD_RELOC_MIPS_LITERAL: | |
1153 | mips_type = MIPS_R_LITERAL; | |
1154 | break; | |
1155 | case BFD_RELOC_16_PCREL_S2: | |
1156 | mips_type = MIPS_R_PCREL16; | |
1157 | break; | |
1158 | case BFD_RELOC_PCREL_HI16_S: | |
1159 | mips_type = MIPS_R_RELHI; | |
1160 | break; | |
1161 | case BFD_RELOC_PCREL_LO16: | |
1162 | mips_type = MIPS_R_RELLO; | |
1163 | break; | |
1164 | case BFD_RELOC_GPREL32: | |
1165 | mips_type = MIPS_R_SWITCH; | |
1166 | break; | |
1167 | default: | |
1168 | return (reloc_howto_type *) NULL; | |
1169 | } | |
1170 | ||
1171 | return &mips_howto_table[mips_type]; | |
1172 | } | |
1173 | \f | |
1174 | /* A helper routine for mips_relocate_section which handles the REFHI | |
1175 | and RELHI relocations. The REFHI relocation must be followed by a | |
1176 | REFLO relocation (and RELHI by a RELLO), and the addend used is | |
1177 | formed from the addends of both instructions. */ | |
1178 | ||
1179 | static void | |
1180 | mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust, | |
1181 | relocation, pcrel) | |
1182 | struct internal_reloc *refhi; | |
1183 | struct internal_reloc *reflo; | |
1184 | bfd *input_bfd; | |
1185 | asection *input_section; | |
1186 | bfd_byte *contents; | |
1187 | size_t adjust; | |
1188 | bfd_vma relocation; | |
1189 | boolean pcrel; | |
1190 | { | |
1191 | unsigned long insn; | |
1192 | unsigned long val; | |
1193 | unsigned long vallo; | |
1194 | ||
1195 | if (refhi == NULL) | |
1196 | return; | |
b48499ec | 1197 | |
252b5132 RH |
1198 | insn = bfd_get_32 (input_bfd, |
1199 | contents + adjust + refhi->r_vaddr - input_section->vma); | |
1200 | if (reflo == NULL) | |
1201 | vallo = 0; | |
1202 | else | |
1203 | vallo = (bfd_get_32 (input_bfd, | |
1204 | contents + adjust + reflo->r_vaddr - input_section->vma) | |
1205 | & 0xffff); | |
b48499ec | 1206 | |
252b5132 RH |
1207 | val = ((insn & 0xffff) << 16) + vallo; |
1208 | val += relocation; | |
1209 | ||
1210 | /* The low order 16 bits are always treated as a signed value. | |
1211 | Therefore, a negative value in the low order bits requires an | |
1212 | adjustment in the high order bits. We need to make this | |
1213 | adjustment in two ways: once for the bits we took from the data, | |
1214 | and once for the bits we are putting back in to the data. */ | |
1215 | if ((vallo & 0x8000) != 0) | |
1216 | val -= 0x10000; | |
1217 | ||
1218 | if (pcrel) | |
1219 | val -= (input_section->output_section->vma | |
1220 | + input_section->output_offset | |
1221 | + (reflo->r_vaddr - input_section->vma + adjust)); | |
1222 | ||
1223 | if ((val & 0x8000) != 0) | |
1224 | val += 0x10000; | |
1225 | ||
1226 | insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff); | |
1227 | bfd_put_32 (input_bfd, (bfd_vma) insn, | |
1228 | contents + adjust + refhi->r_vaddr - input_section->vma); | |
1229 | } | |
1230 | ||
1231 | /* Relocate a section while linking a MIPS ECOFF file. */ | |
1232 | ||
1233 | static boolean | |
1234 | mips_relocate_section (output_bfd, info, input_bfd, input_section, | |
1235 | contents, external_relocs) | |
1236 | bfd *output_bfd; | |
1237 | struct bfd_link_info *info; | |
1238 | bfd *input_bfd; | |
1239 | asection *input_section; | |
1240 | bfd_byte *contents; | |
1241 | PTR external_relocs; | |
1242 | { | |
1243 | asection **symndx_to_section; | |
1244 | struct ecoff_link_hash_entry **sym_hashes; | |
1245 | bfd_vma gp; | |
1246 | boolean gp_undefined; | |
1247 | size_t adjust; | |
1248 | long *offsets; | |
1249 | struct external_reloc *ext_rel; | |
1250 | struct external_reloc *ext_rel_end; | |
1251 | unsigned int i; | |
1252 | boolean got_lo; | |
1253 | struct internal_reloc lo_int_rel; | |
1254 | ||
1255 | BFD_ASSERT (input_bfd->xvec->byteorder | |
1256 | == output_bfd->xvec->byteorder); | |
1257 | ||
1258 | /* We keep a table mapping the symndx found in an internal reloc to | |
1259 | the appropriate section. This is faster than looking up the | |
1260 | section by name each time. */ | |
1261 | symndx_to_section = ecoff_data (input_bfd)->symndx_to_section; | |
1262 | if (symndx_to_section == (asection **) NULL) | |
1263 | { | |
1264 | symndx_to_section = ((asection **) | |
1265 | bfd_alloc (input_bfd, | |
1266 | (NUM_RELOC_SECTIONS | |
1267 | * sizeof (asection *)))); | |
1268 | if (!symndx_to_section) | |
1269 | return false; | |
1270 | ||
1271 | symndx_to_section[RELOC_SECTION_NONE] = NULL; | |
1272 | symndx_to_section[RELOC_SECTION_TEXT] = | |
1273 | bfd_get_section_by_name (input_bfd, ".text"); | |
1274 | symndx_to_section[RELOC_SECTION_RDATA] = | |
1275 | bfd_get_section_by_name (input_bfd, ".rdata"); | |
1276 | symndx_to_section[RELOC_SECTION_DATA] = | |
1277 | bfd_get_section_by_name (input_bfd, ".data"); | |
1278 | symndx_to_section[RELOC_SECTION_SDATA] = | |
1279 | bfd_get_section_by_name (input_bfd, ".sdata"); | |
1280 | symndx_to_section[RELOC_SECTION_SBSS] = | |
1281 | bfd_get_section_by_name (input_bfd, ".sbss"); | |
1282 | symndx_to_section[RELOC_SECTION_BSS] = | |
1283 | bfd_get_section_by_name (input_bfd, ".bss"); | |
1284 | symndx_to_section[RELOC_SECTION_INIT] = | |
1285 | bfd_get_section_by_name (input_bfd, ".init"); | |
1286 | symndx_to_section[RELOC_SECTION_LIT8] = | |
1287 | bfd_get_section_by_name (input_bfd, ".lit8"); | |
1288 | symndx_to_section[RELOC_SECTION_LIT4] = | |
1289 | bfd_get_section_by_name (input_bfd, ".lit4"); | |
1290 | symndx_to_section[RELOC_SECTION_XDATA] = NULL; | |
1291 | symndx_to_section[RELOC_SECTION_PDATA] = NULL; | |
1292 | symndx_to_section[RELOC_SECTION_FINI] = | |
1293 | bfd_get_section_by_name (input_bfd, ".fini"); | |
1294 | symndx_to_section[RELOC_SECTION_LITA] = NULL; | |
1295 | symndx_to_section[RELOC_SECTION_ABS] = NULL; | |
1296 | ||
1297 | ecoff_data (input_bfd)->symndx_to_section = symndx_to_section; | |
1298 | } | |
1299 | ||
1300 | sym_hashes = ecoff_data (input_bfd)->sym_hashes; | |
1301 | ||
1302 | gp = _bfd_get_gp_value (output_bfd); | |
1303 | if (gp == 0) | |
1304 | gp_undefined = true; | |
1305 | else | |
1306 | gp_undefined = false; | |
1307 | ||
1308 | got_lo = false; | |
1309 | ||
1310 | adjust = 0; | |
1311 | ||
1312 | if (ecoff_section_data (input_bfd, input_section) == NULL) | |
1313 | offsets = NULL; | |
1314 | else | |
1315 | offsets = ecoff_section_data (input_bfd, input_section)->offsets; | |
1316 | ||
1317 | ext_rel = (struct external_reloc *) external_relocs; | |
1318 | ext_rel_end = ext_rel + input_section->reloc_count; | |
1319 | for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++) | |
1320 | { | |
1321 | struct internal_reloc int_rel; | |
1322 | boolean use_lo = false; | |
1323 | bfd_vma addend; | |
1324 | reloc_howto_type *howto; | |
1325 | struct ecoff_link_hash_entry *h = NULL; | |
1326 | asection *s = NULL; | |
1327 | bfd_vma relocation; | |
1328 | bfd_reloc_status_type r; | |
1329 | ||
1330 | if (! got_lo) | |
1331 | mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel); | |
1332 | else | |
1333 | { | |
1334 | int_rel = lo_int_rel; | |
1335 | got_lo = false; | |
1336 | } | |
1337 | ||
1338 | BFD_ASSERT (int_rel.r_type | |
1339 | < sizeof mips_howto_table / sizeof mips_howto_table[0]); | |
1340 | ||
1341 | /* The REFHI and RELHI relocs requires special handling. they | |
1342 | must be followed by a REFLO or RELLO reloc, respectively, and | |
1343 | the addend is formed from both relocs. */ | |
1344 | if (int_rel.r_type == MIPS_R_REFHI | |
1345 | || int_rel.r_type == MIPS_R_RELHI) | |
1346 | { | |
1347 | struct external_reloc *lo_ext_rel; | |
1348 | ||
1349 | /* As a GNU extension, permit an arbitrary number of REFHI | |
1350 | or RELHI relocs before the REFLO or RELLO reloc. This | |
1351 | permits gcc to emit the HI and LO relocs itself. */ | |
1352 | for (lo_ext_rel = ext_rel + 1; | |
1353 | lo_ext_rel < ext_rel_end; | |
1354 | lo_ext_rel++) | |
1355 | { | |
1356 | mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel, | |
1357 | &lo_int_rel); | |
1358 | if (lo_int_rel.r_type != int_rel.r_type) | |
1359 | break; | |
1360 | } | |
1361 | ||
1362 | if (lo_ext_rel < ext_rel_end | |
1363 | && (lo_int_rel.r_type | |
1364 | == (int_rel.r_type == MIPS_R_REFHI | |
1365 | ? MIPS_R_REFLO | |
1366 | : MIPS_R_RELLO)) | |
1367 | && int_rel.r_extern == lo_int_rel.r_extern | |
1368 | && int_rel.r_symndx == lo_int_rel.r_symndx) | |
1369 | { | |
1370 | use_lo = true; | |
1371 | if (lo_ext_rel == ext_rel + 1) | |
1372 | got_lo = true; | |
1373 | } | |
1374 | } | |
1375 | ||
1376 | howto = &mips_howto_table[int_rel.r_type]; | |
1377 | ||
1378 | /* The SWITCH reloc must be handled specially. This reloc is | |
1379 | marks the location of a difference between two portions of an | |
1380 | object file. The symbol index does not reference a symbol, | |
1381 | but is actually the offset from the reloc to the subtrahend | |
1382 | of the difference. This reloc is correct in the object file, | |
1383 | and needs no further adjustment, unless we are relaxing. If | |
1384 | we are relaxing, we may have to add in an offset. Since no | |
1385 | symbols are involved in this reloc, we handle it completely | |
1386 | here. */ | |
1387 | if (int_rel.r_type == MIPS_R_SWITCH) | |
1388 | { | |
1389 | if (offsets != NULL | |
1390 | && offsets[i] != 0) | |
1391 | { | |
1392 | r = _bfd_relocate_contents (howto, input_bfd, | |
1393 | (bfd_vma) offsets[i], | |
1394 | (contents | |
1395 | + adjust | |
1396 | + int_rel.r_vaddr | |
1397 | - input_section->vma)); | |
1398 | BFD_ASSERT (r == bfd_reloc_ok); | |
1399 | } | |
1400 | ||
1401 | continue; | |
1402 | } | |
1403 | ||
1404 | if (int_rel.r_extern) | |
1405 | { | |
1406 | h = sym_hashes[int_rel.r_symndx]; | |
1407 | /* If h is NULL, that means that there is a reloc against an | |
1408 | external symbol which we thought was just a debugging | |
1409 | symbol. This should not happen. */ | |
1410 | if (h == (struct ecoff_link_hash_entry *) NULL) | |
1411 | abort (); | |
1412 | } | |
1413 | else | |
1414 | { | |
1415 | if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS) | |
1416 | s = NULL; | |
1417 | else | |
1418 | s = symndx_to_section[int_rel.r_symndx]; | |
1419 | ||
1420 | if (s == (asection *) NULL) | |
1421 | abort (); | |
1422 | } | |
1423 | ||
1424 | /* The GPREL reloc uses an addend: the difference in the GP | |
1425 | values. */ | |
1426 | if (int_rel.r_type != MIPS_R_GPREL | |
1427 | && int_rel.r_type != MIPS_R_LITERAL) | |
1428 | addend = 0; | |
1429 | else | |
1430 | { | |
1431 | if (gp_undefined) | |
1432 | { | |
1433 | if (! ((*info->callbacks->reloc_dangerous) | |
1434 | (info, _("GP relative relocation when GP not defined"), | |
1435 | input_bfd, input_section, | |
1436 | int_rel.r_vaddr - input_section->vma))) | |
1437 | return false; | |
1438 | /* Only give the error once per link. */ | |
1439 | gp = 4; | |
1440 | _bfd_set_gp_value (output_bfd, gp); | |
1441 | gp_undefined = false; | |
1442 | } | |
1443 | if (! int_rel.r_extern) | |
1444 | { | |
1445 | /* This is a relocation against a section. The current | |
1446 | addend in the instruction is the difference between | |
1447 | INPUT_SECTION->vma and the GP value of INPUT_BFD. We | |
1448 | must change this to be the difference between the | |
1449 | final definition (which will end up in RELOCATION) | |
1450 | and the GP value of OUTPUT_BFD (which is in GP). */ | |
1451 | addend = ecoff_data (input_bfd)->gp - gp; | |
1452 | } | |
1453 | else if (! info->relocateable | |
1454 | || h->root.type == bfd_link_hash_defined | |
1455 | || h->root.type == bfd_link_hash_defweak) | |
1456 | { | |
1457 | /* This is a relocation against a defined symbol. The | |
1458 | current addend in the instruction is simply the | |
1459 | desired offset into the symbol (normally zero). We | |
1460 | are going to change this into a relocation against a | |
1461 | defined symbol, so we want the instruction to hold | |
1462 | the difference between the final definition of the | |
1463 | symbol (which will end up in RELOCATION) and the GP | |
1464 | value of OUTPUT_BFD (which is in GP). */ | |
1465 | addend = - gp; | |
1466 | } | |
1467 | else | |
1468 | { | |
1469 | /* This is a relocation against an undefined or common | |
1470 | symbol. The current addend in the instruction is | |
1471 | simply the desired offset into the symbol (normally | |
1472 | zero). We are generating relocateable output, and we | |
1473 | aren't going to define this symbol, so we just leave | |
1474 | the instruction alone. */ | |
1475 | addend = 0; | |
1476 | } | |
1477 | } | |
1478 | ||
1479 | /* If we are relaxing, mips_relax_section may have set | |
1480 | offsets[i] to some value. A value of 1 means we must expand | |
1481 | a PC relative branch into a multi-instruction of sequence, | |
1482 | and any other value is an addend. */ | |
1483 | if (offsets != NULL | |
1484 | && offsets[i] != 0) | |
1485 | { | |
1486 | BFD_ASSERT (! info->relocateable); | |
1487 | BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16 | |
1488 | || int_rel.r_type == MIPS_R_RELHI | |
1489 | || int_rel.r_type == MIPS_R_RELLO); | |
1490 | if (offsets[i] != 1) | |
1491 | addend += offsets[i]; | |
1492 | else | |
1493 | { | |
1494 | bfd_byte *here; | |
1495 | ||
1496 | BFD_ASSERT (int_rel.r_extern | |
1497 | && int_rel.r_type == MIPS_R_PCREL16); | |
1498 | ||
1499 | /* Move the rest of the instructions up. */ | |
1500 | here = (contents | |
1501 | + adjust | |
1502 | + int_rel.r_vaddr | |
1503 | - input_section->vma); | |
1504 | memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here, | |
1505 | (size_t) (input_section->_raw_size | |
1506 | - (int_rel.r_vaddr - input_section->vma))); | |
b48499ec | 1507 | |
252b5132 RH |
1508 | /* Generate the new instructions. */ |
1509 | if (! mips_relax_pcrel16 (info, input_bfd, input_section, | |
1510 | h, here, | |
1511 | (input_section->output_section->vma | |
1512 | + input_section->output_offset | |
1513 | + (int_rel.r_vaddr | |
1514 | - input_section->vma) | |
1515 | + adjust))) | |
1516 | return false; | |
1517 | ||
1518 | /* We must adjust everything else up a notch. */ | |
1519 | adjust += PCREL16_EXPANSION_ADJUSTMENT; | |
1520 | ||
1521 | /* mips_relax_pcrel16 handles all the details of this | |
1522 | relocation. */ | |
1523 | continue; | |
1524 | } | |
1525 | } | |
1526 | ||
1527 | /* If we are relaxing, and this is a reloc against the .text | |
1528 | segment, we may need to adjust it if some branches have been | |
1529 | expanded. The reloc types which are likely to occur in the | |
1530 | .text section are handled efficiently by mips_relax_section, | |
1531 | and thus do not need to be handled here. */ | |
1532 | if (ecoff_data (input_bfd)->debug_info.adjust != NULL | |
1533 | && ! int_rel.r_extern | |
1534 | && int_rel.r_symndx == RELOC_SECTION_TEXT | |
1535 | && (strcmp (bfd_get_section_name (input_bfd, input_section), | |
1536 | ".text") != 0 | |
1537 | || (int_rel.r_type != MIPS_R_PCREL16 | |
1538 | && int_rel.r_type != MIPS_R_SWITCH | |
1539 | && int_rel.r_type != MIPS_R_RELHI | |
1540 | && int_rel.r_type != MIPS_R_RELLO))) | |
1541 | { | |
1542 | bfd_vma adr; | |
1543 | struct ecoff_value_adjust *a; | |
1544 | ||
1545 | /* We need to get the addend so that we know whether we need | |
1546 | to adjust the address. */ | |
1547 | BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD); | |
1548 | ||
1549 | adr = bfd_get_32 (input_bfd, | |
1550 | (contents | |
1551 | + adjust | |
1552 | + int_rel.r_vaddr | |
1553 | - input_section->vma)); | |
1554 | ||
1555 | for (a = ecoff_data (input_bfd)->debug_info.adjust; | |
1556 | a != (struct ecoff_value_adjust *) NULL; | |
1557 | a = a->next) | |
1558 | { | |
1559 | if (adr >= a->start && adr < a->end) | |
1560 | addend += a->adjust; | |
1561 | } | |
1562 | } | |
1563 | ||
1564 | if (info->relocateable) | |
1565 | { | |
1566 | /* We are generating relocateable output, and must convert | |
1567 | the existing reloc. */ | |
1568 | if (int_rel.r_extern) | |
1569 | { | |
1570 | if ((h->root.type == bfd_link_hash_defined | |
1571 | || h->root.type == bfd_link_hash_defweak) | |
1572 | && ! bfd_is_abs_section (h->root.u.def.section)) | |
1573 | { | |
1574 | const char *name; | |
1575 | ||
1576 | /* This symbol is defined in the output. Convert | |
1577 | the reloc from being against the symbol to being | |
1578 | against the section. */ | |
1579 | ||
1580 | /* Clear the r_extern bit. */ | |
1581 | int_rel.r_extern = 0; | |
1582 | ||
1583 | /* Compute a new r_symndx value. */ | |
1584 | s = h->root.u.def.section; | |
1585 | name = bfd_get_section_name (output_bfd, | |
1586 | s->output_section); | |
1587 | ||
1588 | int_rel.r_symndx = -1; | |
1589 | switch (name[1]) | |
1590 | { | |
1591 | case 'b': | |
1592 | if (strcmp (name, ".bss") == 0) | |
1593 | int_rel.r_symndx = RELOC_SECTION_BSS; | |
1594 | break; | |
1595 | case 'd': | |
1596 | if (strcmp (name, ".data") == 0) | |
1597 | int_rel.r_symndx = RELOC_SECTION_DATA; | |
1598 | break; | |
1599 | case 'f': | |
1600 | if (strcmp (name, ".fini") == 0) | |
1601 | int_rel.r_symndx = RELOC_SECTION_FINI; | |
1602 | break; | |
1603 | case 'i': | |
1604 | if (strcmp (name, ".init") == 0) | |
1605 | int_rel.r_symndx = RELOC_SECTION_INIT; | |
1606 | break; | |
1607 | case 'l': | |
1608 | if (strcmp (name, ".lit8") == 0) | |
1609 | int_rel.r_symndx = RELOC_SECTION_LIT8; | |
1610 | else if (strcmp (name, ".lit4") == 0) | |
1611 | int_rel.r_symndx = RELOC_SECTION_LIT4; | |
1612 | break; | |
1613 | case 'r': | |
1614 | if (strcmp (name, ".rdata") == 0) | |
1615 | int_rel.r_symndx = RELOC_SECTION_RDATA; | |
1616 | break; | |
1617 | case 's': | |
1618 | if (strcmp (name, ".sdata") == 0) | |
1619 | int_rel.r_symndx = RELOC_SECTION_SDATA; | |
1620 | else if (strcmp (name, ".sbss") == 0) | |
1621 | int_rel.r_symndx = RELOC_SECTION_SBSS; | |
1622 | break; | |
1623 | case 't': | |
1624 | if (strcmp (name, ".text") == 0) | |
1625 | int_rel.r_symndx = RELOC_SECTION_TEXT; | |
1626 | break; | |
1627 | } | |
b48499ec | 1628 | |
252b5132 RH |
1629 | if (int_rel.r_symndx == -1) |
1630 | abort (); | |
1631 | ||
1632 | /* Add the section VMA and the symbol value. */ | |
1633 | relocation = (h->root.u.def.value | |
1634 | + s->output_section->vma | |
1635 | + s->output_offset); | |
1636 | ||
1637 | /* For a PC relative relocation, the object file | |
1638 | currently holds just the addend. We must adjust | |
1639 | by the address to get the right value. */ | |
1640 | if (howto->pc_relative) | |
1641 | { | |
1642 | relocation -= int_rel.r_vaddr - input_section->vma; | |
1643 | ||
1644 | /* If we are converting a RELHI or RELLO reloc | |
1645 | from being against an external symbol to | |
1646 | being against a section, we must put a | |
1647 | special value into the r_offset field. This | |
1648 | value is the old addend. The r_offset for | |
1649 | both the RELHI and RELLO relocs are the same, | |
1650 | and we set both when we see RELHI. */ | |
1651 | if (int_rel.r_type == MIPS_R_RELHI) | |
1652 | { | |
1653 | long addhi, addlo; | |
1654 | ||
1655 | addhi = bfd_get_32 (input_bfd, | |
1656 | (contents | |
1657 | + adjust | |
1658 | + int_rel.r_vaddr | |
1659 | - input_section->vma)); | |
1660 | addhi &= 0xffff; | |
1661 | if (addhi & 0x8000) | |
1662 | addhi -= 0x10000; | |
1663 | addhi <<= 16; | |
1664 | ||
1665 | if (! use_lo) | |
1666 | addlo = 0; | |
1667 | else | |
1668 | { | |
1669 | addlo = bfd_get_32 (input_bfd, | |
1670 | (contents | |
1671 | + adjust | |
1672 | + lo_int_rel.r_vaddr | |
1673 | - input_section->vma)); | |
1674 | addlo &= 0xffff; | |
1675 | if (addlo & 0x8000) | |
1676 | addlo -= 0x10000; | |
1677 | ||
1678 | lo_int_rel.r_offset = addhi + addlo; | |
1679 | } | |
1680 | ||
1681 | int_rel.r_offset = addhi + addlo; | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | h = NULL; | |
1686 | } | |
1687 | else | |
1688 | { | |
1689 | /* Change the symndx value to the right one for the | |
1690 | output BFD. */ | |
1691 | int_rel.r_symndx = h->indx; | |
1692 | if (int_rel.r_symndx == -1) | |
1693 | { | |
1694 | /* This symbol is not being written out. */ | |
1695 | if (! ((*info->callbacks->unattached_reloc) | |
1696 | (info, h->root.root.string, input_bfd, | |
1697 | input_section, | |
1698 | int_rel.r_vaddr - input_section->vma))) | |
1699 | return false; | |
1700 | int_rel.r_symndx = 0; | |
1701 | } | |
1702 | relocation = 0; | |
1703 | } | |
1704 | } | |
1705 | else | |
1706 | { | |
1707 | /* This is a relocation against a section. Adjust the | |
1708 | value by the amount the section moved. */ | |
1709 | relocation = (s->output_section->vma | |
1710 | + s->output_offset | |
1711 | - s->vma); | |
1712 | } | |
1713 | ||
1714 | relocation += addend; | |
1715 | addend = 0; | |
1716 | ||
1717 | /* Adjust a PC relative relocation by removing the reference | |
1718 | to the original address in the section and including the | |
1719 | reference to the new address. However, external RELHI | |
1720 | and RELLO relocs are PC relative, but don't include any | |
1721 | reference to the address. The addend is merely an | |
1722 | addend. */ | |
1723 | if (howto->pc_relative | |
1724 | && (! int_rel.r_extern | |
1725 | || (int_rel.r_type != MIPS_R_RELHI | |
1726 | && int_rel.r_type != MIPS_R_RELLO))) | |
1727 | relocation -= (input_section->output_section->vma | |
1728 | + input_section->output_offset | |
1729 | - input_section->vma); | |
1730 | ||
1731 | /* Adjust the contents. */ | |
1732 | if (relocation == 0) | |
1733 | r = bfd_reloc_ok; | |
1734 | else | |
1735 | { | |
1736 | if (int_rel.r_type != MIPS_R_REFHI | |
1737 | && int_rel.r_type != MIPS_R_RELHI) | |
1738 | r = _bfd_relocate_contents (howto, input_bfd, relocation, | |
1739 | (contents | |
1740 | + adjust | |
1741 | + int_rel.r_vaddr | |
1742 | - input_section->vma)); | |
1743 | else | |
1744 | { | |
1745 | mips_relocate_hi (&int_rel, | |
1746 | use_lo ? &lo_int_rel : NULL, | |
1747 | input_bfd, input_section, contents, | |
1748 | adjust, relocation, | |
1749 | int_rel.r_type == MIPS_R_RELHI); | |
1750 | r = bfd_reloc_ok; | |
1751 | } | |
1752 | } | |
1753 | ||
1754 | /* Adjust the reloc address. */ | |
1755 | int_rel.r_vaddr += (input_section->output_section->vma | |
1756 | + input_section->output_offset | |
1757 | - input_section->vma); | |
1758 | ||
1759 | /* Save the changed reloc information. */ | |
1760 | mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel); | |
1761 | } | |
1762 | else | |
1763 | { | |
1764 | /* We are producing a final executable. */ | |
1765 | if (int_rel.r_extern) | |
1766 | { | |
1767 | /* This is a reloc against a symbol. */ | |
1768 | if (h->root.type == bfd_link_hash_defined | |
1769 | || h->root.type == bfd_link_hash_defweak) | |
1770 | { | |
1771 | asection *hsec; | |
1772 | ||
1773 | hsec = h->root.u.def.section; | |
1774 | relocation = (h->root.u.def.value | |
1775 | + hsec->output_section->vma | |
1776 | + hsec->output_offset); | |
1777 | } | |
1778 | else | |
1779 | { | |
1780 | if (! ((*info->callbacks->undefined_symbol) | |
1781 | (info, h->root.root.string, input_bfd, | |
1782 | input_section, | |
5cc7c785 | 1783 | int_rel.r_vaddr - input_section->vma, true))) |
252b5132 RH |
1784 | return false; |
1785 | relocation = 0; | |
1786 | } | |
1787 | } | |
1788 | else | |
1789 | { | |
1790 | /* This is a reloc against a section. */ | |
1791 | relocation = (s->output_section->vma | |
1792 | + s->output_offset | |
1793 | - s->vma); | |
1794 | ||
1795 | /* A PC relative reloc is already correct in the object | |
1796 | file. Make it look like a pcrel_offset relocation by | |
1797 | adding in the start address. */ | |
1798 | if (howto->pc_relative) | |
1799 | { | |
1800 | if (int_rel.r_type != MIPS_R_RELHI || ! use_lo) | |
1801 | relocation += int_rel.r_vaddr + adjust; | |
1802 | else | |
1803 | relocation += lo_int_rel.r_vaddr + adjust; | |
1804 | } | |
1805 | } | |
1806 | ||
1807 | if (int_rel.r_type != MIPS_R_REFHI | |
1808 | && int_rel.r_type != MIPS_R_RELHI) | |
1809 | r = _bfd_final_link_relocate (howto, | |
1810 | input_bfd, | |
1811 | input_section, | |
1812 | contents, | |
1813 | (int_rel.r_vaddr | |
1814 | - input_section->vma | |
1815 | + adjust), | |
1816 | relocation, | |
1817 | addend); | |
1818 | else | |
1819 | { | |
1820 | mips_relocate_hi (&int_rel, | |
1821 | use_lo ? &lo_int_rel : NULL, | |
1822 | input_bfd, input_section, contents, adjust, | |
1823 | relocation, | |
1824 | int_rel.r_type == MIPS_R_RELHI); | |
1825 | r = bfd_reloc_ok; | |
1826 | } | |
1827 | } | |
1828 | ||
1829 | /* MIPS_R_JMPADDR requires peculiar overflow detection. The | |
1830 | instruction provides a 28 bit address (the two lower bits are | |
1831 | implicit zeroes) which is combined with the upper four bits | |
1832 | of the instruction address. */ | |
1833 | if (r == bfd_reloc_ok | |
1834 | && int_rel.r_type == MIPS_R_JMPADDR | |
1835 | && (((relocation | |
1836 | + addend | |
1837 | + (int_rel.r_extern ? 0 : s->vma)) | |
1838 | & 0xf0000000) | |
1839 | != ((input_section->output_section->vma | |
1840 | + input_section->output_offset | |
1841 | + (int_rel.r_vaddr - input_section->vma) | |
1842 | + adjust) | |
1843 | & 0xf0000000))) | |
1844 | r = bfd_reloc_overflow; | |
1845 | ||
1846 | if (r != bfd_reloc_ok) | |
1847 | { | |
1848 | switch (r) | |
1849 | { | |
1850 | default: | |
1851 | case bfd_reloc_outofrange: | |
1852 | abort (); | |
1853 | case bfd_reloc_overflow: | |
1854 | { | |
1855 | const char *name; | |
1856 | ||
1857 | if (int_rel.r_extern) | |
1858 | name = h->root.root.string; | |
1859 | else | |
1860 | name = bfd_section_name (input_bfd, s); | |
1861 | if (! ((*info->callbacks->reloc_overflow) | |
1862 | (info, name, howto->name, (bfd_vma) 0, | |
1863 | input_bfd, input_section, | |
1864 | int_rel.r_vaddr - input_section->vma))) | |
1865 | return false; | |
1866 | } | |
1867 | break; | |
1868 | } | |
1869 | } | |
1870 | } | |
1871 | ||
1872 | return true; | |
1873 | } | |
1874 | \f | |
1875 | /* Read in the relocs for a section. */ | |
1876 | ||
1877 | static boolean | |
1878 | mips_read_relocs (abfd, sec) | |
1879 | bfd *abfd; | |
1880 | asection *sec; | |
1881 | { | |
1882 | struct ecoff_section_tdata *section_tdata; | |
1883 | ||
1884 | section_tdata = ecoff_section_data (abfd, sec); | |
1885 | if (section_tdata == (struct ecoff_section_tdata *) NULL) | |
1886 | { | |
1887 | sec->used_by_bfd = | |
1888 | (PTR) bfd_alloc (abfd, sizeof (struct ecoff_section_tdata)); | |
1889 | if (sec->used_by_bfd == NULL) | |
1890 | return false; | |
1891 | ||
1892 | section_tdata = ecoff_section_data (abfd, sec); | |
1893 | section_tdata->external_relocs = NULL; | |
1894 | section_tdata->contents = NULL; | |
1895 | section_tdata->offsets = NULL; | |
1896 | } | |
1897 | ||
1898 | if (section_tdata->external_relocs == NULL) | |
1899 | { | |
1900 | bfd_size_type external_relocs_size; | |
1901 | ||
1902 | external_relocs_size = (ecoff_backend (abfd)->external_reloc_size | |
1903 | * sec->reloc_count); | |
1904 | ||
1905 | section_tdata->external_relocs = | |
1906 | (PTR) bfd_alloc (abfd, external_relocs_size); | |
1907 | if (section_tdata->external_relocs == NULL && external_relocs_size != 0) | |
1908 | return false; | |
1909 | ||
1910 | if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0 | |
1911 | || (bfd_read (section_tdata->external_relocs, 1, | |
1912 | external_relocs_size, abfd) | |
1913 | != external_relocs_size)) | |
1914 | return false; | |
1915 | } | |
1916 | ||
1917 | return true; | |
1918 | } | |
1919 | ||
1920 | /* Relax a section when linking a MIPS ECOFF file. This is used for | |
1921 | embedded PIC code, which always uses PC relative branches which | |
1922 | only have an 18 bit range on MIPS. If a branch is not in range, we | |
1923 | generate a long instruction sequence to compensate. Each time we | |
1924 | find a branch to expand, we have to check all the others again to | |
1925 | make sure they are still in range. This is slow, but it only has | |
1926 | to be done when -relax is passed to the linker. | |
1927 | ||
1928 | This routine figures out which branches need to expand; the actual | |
1929 | expansion is done in mips_relocate_section when the section | |
1930 | contents are relocated. The information is stored in the offsets | |
1931 | field of the ecoff_section_tdata structure. An offset of 1 means | |
1932 | that the branch must be expanded into a multi-instruction PC | |
1933 | relative branch (such an offset will only occur for a PC relative | |
1934 | branch to an external symbol). Any other offset must be a multiple | |
1935 | of four, and is the amount to change the branch by (such an offset | |
1936 | will only occur for a PC relative branch within the same section). | |
1937 | ||
1938 | We do not modify the section relocs or contents themselves so that | |
1939 | if memory usage becomes an issue we can discard them and read them | |
1940 | again. The only information we must save in memory between this | |
1941 | routine and the mips_relocate_section routine is the table of | |
1942 | offsets. */ | |
1943 | ||
1944 | static boolean | |
1945 | mips_relax_section (abfd, sec, info, again) | |
1946 | bfd *abfd; | |
1947 | asection *sec; | |
1948 | struct bfd_link_info *info; | |
1949 | boolean *again; | |
1950 | { | |
1951 | struct ecoff_section_tdata *section_tdata; | |
1952 | bfd_byte *contents = NULL; | |
1953 | long *offsets; | |
1954 | struct external_reloc *ext_rel; | |
1955 | struct external_reloc *ext_rel_end; | |
1956 | unsigned int i; | |
1957 | ||
1958 | /* Assume we are not going to need another pass. */ | |
1959 | *again = false; | |
1960 | ||
1961 | /* If we are not generating an ECOFF file, this is much too | |
1962 | confusing to deal with. */ | |
1963 | if (info->hash->creator->flavour != bfd_get_flavour (abfd)) | |
1964 | return true; | |
1965 | ||
1966 | /* If there are no relocs, there is nothing to do. */ | |
1967 | if (sec->reloc_count == 0) | |
1968 | return true; | |
1969 | ||
1970 | /* We are only interested in PC relative relocs, and why would there | |
1971 | ever be one from anything but the .text section? */ | |
1972 | if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0) | |
1973 | return true; | |
1974 | ||
1975 | /* Read in the relocs, if we haven't already got them. */ | |
1976 | section_tdata = ecoff_section_data (abfd, sec); | |
1977 | if (section_tdata == (struct ecoff_section_tdata *) NULL | |
1978 | || section_tdata->external_relocs == NULL) | |
1979 | { | |
1980 | if (! mips_read_relocs (abfd, sec)) | |
1981 | goto error_return; | |
1982 | section_tdata = ecoff_section_data (abfd, sec); | |
1983 | } | |
1984 | ||
1985 | if (sec->_cooked_size == 0) | |
1986 | { | |
1987 | /* We must initialize _cooked_size only the first time we are | |
1988 | called. */ | |
1989 | sec->_cooked_size = sec->_raw_size; | |
1990 | } | |
1991 | ||
1992 | contents = section_tdata->contents; | |
1993 | offsets = section_tdata->offsets; | |
1994 | ||
1995 | /* Look for any external PC relative relocs. Internal PC relative | |
1996 | relocs are already correct in the object file, so they certainly | |
1997 | can not overflow. */ | |
1998 | ext_rel = (struct external_reloc *) section_tdata->external_relocs; | |
1999 | ext_rel_end = ext_rel + sec->reloc_count; | |
2000 | for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++) | |
2001 | { | |
2002 | struct internal_reloc int_rel; | |
2003 | struct ecoff_link_hash_entry *h; | |
2004 | asection *hsec; | |
2005 | bfd_signed_vma relocation; | |
2006 | struct external_reloc *adj_ext_rel; | |
2007 | unsigned int adj_i; | |
2008 | unsigned long ext_count; | |
2009 | struct ecoff_link_hash_entry **adj_h_ptr; | |
2010 | struct ecoff_link_hash_entry **adj_h_ptr_end; | |
2011 | struct ecoff_value_adjust *adjust; | |
2012 | ||
2013 | /* If we have already expanded this reloc, we certainly don't | |
2014 | need to do it again. */ | |
2015 | if (offsets != (long *) NULL && offsets[i] == 1) | |
2016 | continue; | |
2017 | ||
2018 | /* Quickly check that this reloc is external PCREL16. */ | |
2019 | if (bfd_header_big_endian (abfd)) | |
2020 | { | |
2021 | if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0 | |
2022 | || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG) | |
2023 | >> RELOC_BITS3_TYPE_SH_BIG) | |
2024 | != MIPS_R_PCREL16)) | |
2025 | continue; | |
2026 | } | |
2027 | else | |
2028 | { | |
2029 | if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0 | |
2030 | || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE) | |
2031 | >> RELOC_BITS3_TYPE_SH_LITTLE) | |
2032 | != MIPS_R_PCREL16)) | |
2033 | continue; | |
2034 | } | |
2035 | ||
2036 | mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel); | |
2037 | ||
2038 | h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx]; | |
2039 | if (h == (struct ecoff_link_hash_entry *) NULL) | |
2040 | abort (); | |
2041 | ||
2042 | if (h->root.type != bfd_link_hash_defined | |
2043 | && h->root.type != bfd_link_hash_defweak) | |
2044 | { | |
2045 | /* Just ignore undefined symbols. These will presumably | |
2046 | generate an error later in the link. */ | |
2047 | continue; | |
2048 | } | |
2049 | ||
2050 | /* Get the value of the symbol. */ | |
2051 | hsec = h->root.u.def.section; | |
2052 | relocation = (h->root.u.def.value | |
2053 | + hsec->output_section->vma | |
2054 | + hsec->output_offset); | |
2055 | ||
2056 | /* Subtract out the current address. */ | |
2057 | relocation -= (sec->output_section->vma | |
2058 | + sec->output_offset | |
2059 | + (int_rel.r_vaddr - sec->vma)); | |
2060 | ||
2061 | /* The addend is stored in the object file. In the normal case | |
2062 | of ``bal symbol'', the addend will be -4. It will only be | |
2063 | different in the case of ``bal symbol+constant''. To avoid | |
2064 | always reading in the section contents, we don't check the | |
2065 | addend in the object file (we could easily check the contents | |
2066 | if we happen to have already read them in, but I fear that | |
2067 | this could be confusing). This means we will screw up if | |
2068 | there is a branch to a symbol that is in range, but added to | |
2069 | a constant which puts it out of range; in such a case the | |
2070 | link will fail with a reloc overflow error. Since the | |
2071 | compiler will never generate such code, it should be easy | |
2072 | enough to work around it by changing the assembly code in the | |
2073 | source file. */ | |
2074 | relocation -= 4; | |
2075 | ||
2076 | /* Now RELOCATION is the number we want to put in the object | |
2077 | file. See whether it fits. */ | |
2078 | if (relocation >= -0x20000 && relocation < 0x20000) | |
2079 | continue; | |
2080 | ||
2081 | /* Now that we know this reloc needs work, which will rarely | |
2082 | happen, go ahead and grab the section contents. */ | |
2083 | if (contents == (bfd_byte *) NULL) | |
2084 | { | |
2085 | if (info->keep_memory) | |
2086 | contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size); | |
2087 | else | |
2088 | contents = (bfd_byte *) bfd_malloc ((size_t) sec->_raw_size); | |
2089 | if (contents == (bfd_byte *) NULL) | |
2090 | goto error_return; | |
2091 | if (! bfd_get_section_contents (abfd, sec, (PTR) contents, | |
2092 | (file_ptr) 0, sec->_raw_size)) | |
2093 | goto error_return; | |
2094 | if (info->keep_memory) | |
2095 | section_tdata->contents = contents; | |
2096 | } | |
2097 | ||
2098 | /* We only support changing the bal instruction. It would be | |
2099 | possible to handle other PC relative branches, but some of | |
2100 | them (the conditional branches) would require a different | |
2101 | length instruction sequence which would complicate both this | |
2102 | routine and mips_relax_pcrel16. It could be written if | |
2103 | somebody felt it were important. Ignoring this reloc will | |
2104 | presumably cause a reloc overflow error later on. */ | |
2105 | if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma) | |
b48499ec | 2106 | != 0x0411ffff) /* bgezal $0,. == bal . */ |
252b5132 RH |
2107 | continue; |
2108 | ||
2109 | /* Bother. We need to expand this reloc, and we will need to | |
2110 | make another relaxation pass since this change may put other | |
2111 | relocs out of range. We need to examine the local branches | |
2112 | and we need to allocate memory to hold the offsets we must | |
2113 | add to them. We also need to adjust the values of all | |
2114 | symbols in the object file following this location. */ | |
2115 | ||
2116 | sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT; | |
2117 | *again = true; | |
2118 | ||
2119 | if (offsets == (long *) NULL) | |
2120 | { | |
2121 | size_t size; | |
2122 | ||
2123 | size = sec->reloc_count * sizeof (long); | |
2124 | offsets = (long *) bfd_alloc (abfd, size); | |
2125 | if (offsets == (long *) NULL) | |
2126 | goto error_return; | |
2127 | memset (offsets, 0, size); | |
2128 | section_tdata->offsets = offsets; | |
2129 | } | |
2130 | ||
2131 | offsets[i] = 1; | |
2132 | ||
2133 | /* Now look for all PC relative references that cross this reloc | |
2134 | and adjust their offsets. */ | |
2135 | adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs; | |
2136 | for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++) | |
2137 | { | |
2138 | struct internal_reloc adj_int_rel; | |
2139 | bfd_vma start, stop; | |
2140 | int change; | |
2141 | ||
2142 | mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel); | |
2143 | ||
2144 | if (adj_int_rel.r_type == MIPS_R_PCREL16) | |
2145 | { | |
2146 | unsigned long insn; | |
2147 | ||
2148 | /* We only care about local references. External ones | |
2149 | will be relocated correctly anyhow. */ | |
2150 | if (adj_int_rel.r_extern) | |
2151 | continue; | |
2152 | ||
2153 | /* We are only interested in a PC relative reloc within | |
2154 | this section. FIXME: Cross section PC relative | |
2155 | relocs may not be handled correctly; does anybody | |
2156 | care? */ | |
2157 | if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT) | |
2158 | continue; | |
2159 | ||
2160 | start = adj_int_rel.r_vaddr; | |
2161 | ||
2162 | insn = bfd_get_32 (abfd, | |
2163 | contents + adj_int_rel.r_vaddr - sec->vma); | |
2164 | ||
2165 | stop = (insn & 0xffff) << 2; | |
2166 | if ((stop & 0x20000) != 0) | |
2167 | stop -= 0x40000; | |
2168 | stop += adj_int_rel.r_vaddr + 4; | |
2169 | } | |
2170 | else if (adj_int_rel.r_type == MIPS_R_RELHI) | |
2171 | { | |
2172 | struct internal_reloc rello; | |
2173 | long addhi, addlo; | |
2174 | ||
2175 | /* The next reloc must be MIPS_R_RELLO, and we handle | |
2176 | them together. */ | |
2177 | BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end); | |
2178 | ||
2179 | mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello); | |
2180 | ||
2181 | BFD_ASSERT (rello.r_type == MIPS_R_RELLO); | |
b48499ec | 2182 | |
252b5132 RH |
2183 | addhi = bfd_get_32 (abfd, |
2184 | contents + adj_int_rel.r_vaddr - sec->vma); | |
2185 | addhi &= 0xffff; | |
2186 | if (addhi & 0x8000) | |
2187 | addhi -= 0x10000; | |
2188 | addhi <<= 16; | |
2189 | ||
2190 | addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma); | |
2191 | addlo &= 0xffff; | |
2192 | if (addlo & 0x8000) | |
2193 | addlo -= 0x10000; | |
2194 | ||
2195 | if (adj_int_rel.r_extern) | |
2196 | { | |
2197 | /* The value we want here is | |
2198 | sym - RELLOaddr + addend | |
2199 | which we can express as | |
2200 | sym - (RELLOaddr - addend) | |
2201 | Therefore if we are expanding the area between | |
2202 | RELLOaddr and RELLOaddr - addend we must adjust | |
2203 | the addend. This is admittedly ambiguous, since | |
2204 | we might mean (sym + addend) - RELLOaddr, but in | |
2205 | practice we don't, and there is no way to handle | |
2206 | that case correctly since at this point we have | |
2207 | no idea whether any reloc is being expanded | |
2208 | between sym and sym + addend. */ | |
2209 | start = rello.r_vaddr - (addhi + addlo); | |
2210 | stop = rello.r_vaddr; | |
2211 | } | |
2212 | else | |
2213 | { | |
2214 | /* An internal RELHI/RELLO pair represents the | |
2215 | difference between two addresses, $LC0 - foo. | |
2216 | The symndx value is actually the difference | |
2217 | between the reloc address and $LC0. This lets us | |
2218 | compute $LC0, and, by considering the addend, | |
2219 | foo. If the reloc we are expanding falls between | |
2220 | those two relocs, we must adjust the addend. At | |
2221 | this point, the symndx value is actually in the | |
2222 | r_offset field, where it was put by | |
2223 | mips_ecoff_swap_reloc_in. */ | |
2224 | start = rello.r_vaddr - adj_int_rel.r_offset; | |
2225 | stop = start + addhi + addlo; | |
2226 | } | |
2227 | } | |
2228 | else if (adj_int_rel.r_type == MIPS_R_SWITCH) | |
2229 | { | |
2230 | /* A MIPS_R_SWITCH reloc represents a word of the form | |
2231 | .word $L3-$LS12 | |
2232 | The value in the object file is correct, assuming the | |
2233 | original value of $L3. The symndx value is actually | |
2234 | the difference between the reloc address and $LS12. | |
2235 | This lets us compute the original value of $LS12 as | |
2236 | vaddr - symndx | |
2237 | and the original value of $L3 as | |
2238 | vaddr - symndx + addend | |
2239 | where addend is the value from the object file. At | |
2240 | this point, the symndx value is actually found in the | |
2241 | r_offset field, since it was moved by | |
2242 | mips_ecoff_swap_reloc_in. */ | |
2243 | start = adj_int_rel.r_vaddr - adj_int_rel.r_offset; | |
2244 | stop = start + bfd_get_32 (abfd, | |
2245 | (contents | |
2246 | + adj_int_rel.r_vaddr | |
2247 | - sec->vma)); | |
2248 | } | |
2249 | else | |
2250 | continue; | |
2251 | ||
2252 | /* If the range expressed by this reloc, which is the | |
2253 | distance between START and STOP crosses the reloc we are | |
2254 | expanding, we must adjust the offset. The sign of the | |
2255 | adjustment depends upon the direction in which the range | |
2256 | crosses the reloc being expanded. */ | |
2257 | if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr) | |
2258 | change = PCREL16_EXPANSION_ADJUSTMENT; | |
2259 | else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr) | |
2260 | change = - PCREL16_EXPANSION_ADJUSTMENT; | |
2261 | else | |
2262 | change = 0; | |
2263 | ||
2264 | offsets[adj_i] += change; | |
2265 | ||
2266 | if (adj_int_rel.r_type == MIPS_R_RELHI) | |
2267 | { | |
2268 | adj_ext_rel++; | |
2269 | adj_i++; | |
2270 | offsets[adj_i] += change; | |
2271 | } | |
2272 | } | |
2273 | ||
2274 | /* Find all symbols in this section defined by this object file | |
2275 | and adjust their values. Note that we decide whether to | |
2276 | adjust the value based on the value stored in the ECOFF EXTR | |
2277 | structure, because the value stored in the hash table may | |
2278 | have been changed by an earlier expanded reloc and thus may | |
2279 | no longer correctly indicate whether the symbol is before or | |
2280 | after the expanded reloc. */ | |
2281 | ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax; | |
2282 | adj_h_ptr = ecoff_data (abfd)->sym_hashes; | |
2283 | adj_h_ptr_end = adj_h_ptr + ext_count; | |
2284 | for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++) | |
2285 | { | |
2286 | struct ecoff_link_hash_entry *adj_h; | |
2287 | ||
2288 | adj_h = *adj_h_ptr; | |
2289 | if (adj_h != (struct ecoff_link_hash_entry *) NULL | |
2290 | && (adj_h->root.type == bfd_link_hash_defined | |
2291 | || adj_h->root.type == bfd_link_hash_defweak) | |
2292 | && adj_h->root.u.def.section == sec | |
2293 | && adj_h->esym.asym.value > int_rel.r_vaddr) | |
2294 | adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT; | |
2295 | } | |
2296 | ||
2297 | /* Add an entry to the symbol value adjust list. This is used | |
2298 | by bfd_ecoff_debug_accumulate to adjust the values of | |
2299 | internal symbols and FDR's. */ | |
2300 | adjust = ((struct ecoff_value_adjust *) | |
2301 | bfd_alloc (abfd, sizeof (struct ecoff_value_adjust))); | |
2302 | if (adjust == (struct ecoff_value_adjust *) NULL) | |
2303 | goto error_return; | |
2304 | ||
2305 | adjust->start = int_rel.r_vaddr; | |
2306 | adjust->end = sec->vma + sec->_raw_size; | |
2307 | adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT; | |
2308 | ||
2309 | adjust->next = ecoff_data (abfd)->debug_info.adjust; | |
2310 | ecoff_data (abfd)->debug_info.adjust = adjust; | |
2311 | } | |
2312 | ||
2313 | if (contents != (bfd_byte *) NULL && ! info->keep_memory) | |
2314 | free (contents); | |
2315 | ||
2316 | return true; | |
2317 | ||
2318 | error_return: | |
2319 | if (contents != (bfd_byte *) NULL && ! info->keep_memory) | |
2320 | free (contents); | |
2321 | return false; | |
2322 | } | |
2323 | ||
2324 | /* This routine is called from mips_relocate_section when a PC | |
2325 | relative reloc must be expanded into the five instruction sequence. | |
2326 | It handles all the details of the expansion, including resolving | |
2327 | the reloc. */ | |
2328 | ||
2329 | static boolean | |
2330 | mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address) | |
5f771d47 | 2331 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
252b5132 | 2332 | bfd *input_bfd; |
5f771d47 | 2333 | asection *input_section ATTRIBUTE_UNUSED; |
252b5132 RH |
2334 | struct ecoff_link_hash_entry *h; |
2335 | bfd_byte *location; | |
2336 | bfd_vma address; | |
2337 | { | |
2338 | bfd_vma relocation; | |
2339 | ||
2340 | /* 0x0411ffff is bgezal $0,. == bal . */ | |
2341 | BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff); | |
2342 | ||
2343 | /* We need to compute the distance between the symbol and the | |
2344 | current address plus eight. */ | |
2345 | relocation = (h->root.u.def.value | |
2346 | + h->root.u.def.section->output_section->vma | |
2347 | + h->root.u.def.section->output_offset); | |
2348 | relocation -= address + 8; | |
2349 | ||
2350 | /* If the lower half is negative, increment the upper 16 half. */ | |
2351 | if ((relocation & 0x8000) != 0) | |
2352 | relocation += 0x10000; | |
2353 | ||
2354 | bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */ | |
2355 | bfd_put_32 (input_bfd, | |
2356 | 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */ | |
2357 | location + 4); | |
2358 | bfd_put_32 (input_bfd, | |
2359 | 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */ | |
2360 | location + 8); | |
2361 | bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */ | |
2362 | bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */ | |
2363 | ||
2364 | return true; | |
2365 | } | |
2366 | ||
2367 | /* Given a .sdata section and a .rel.sdata in-memory section, store | |
2368 | relocation information into the .rel.sdata section which can be | |
2369 | used at runtime to relocate the section. This is called by the | |
2370 | linker when the --embedded-relocs switch is used. This is called | |
2371 | after the add_symbols entry point has been called for all the | |
2372 | objects, and before the final_link entry point is called. This | |
2373 | function presumes that the object was compiled using | |
2374 | -membedded-pic. */ | |
2375 | ||
2376 | boolean | |
2377 | bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) | |
2378 | bfd *abfd; | |
2379 | struct bfd_link_info *info; | |
2380 | asection *datasec; | |
2381 | asection *relsec; | |
2382 | char **errmsg; | |
2383 | { | |
2384 | struct ecoff_link_hash_entry **sym_hashes; | |
2385 | struct ecoff_section_tdata *section_tdata; | |
2386 | struct external_reloc *ext_rel; | |
2387 | struct external_reloc *ext_rel_end; | |
2388 | bfd_byte *p; | |
2389 | ||
2390 | BFD_ASSERT (! info->relocateable); | |
2391 | ||
2392 | *errmsg = NULL; | |
2393 | ||
2394 | if (datasec->reloc_count == 0) | |
2395 | return true; | |
2396 | ||
2397 | sym_hashes = ecoff_data (abfd)->sym_hashes; | |
2398 | ||
2399 | if (! mips_read_relocs (abfd, datasec)) | |
2400 | return false; | |
2401 | ||
2402 | relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4); | |
2403 | if (relsec->contents == NULL) | |
2404 | return false; | |
2405 | ||
2406 | p = relsec->contents; | |
2407 | ||
2408 | section_tdata = ecoff_section_data (abfd, datasec); | |
2409 | ext_rel = (struct external_reloc *) section_tdata->external_relocs; | |
2410 | ext_rel_end = ext_rel + datasec->reloc_count; | |
2411 | for (; ext_rel < ext_rel_end; ext_rel++, p += 4) | |
2412 | { | |
2413 | struct internal_reloc int_rel; | |
2414 | boolean text_relative; | |
2415 | ||
2416 | mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel); | |
2417 | ||
2418 | /* We are going to write a four byte word into the runtime reloc | |
2419 | section. The word will be the address in the data section | |
2420 | which must be relocated. This must be on a word boundary, | |
2421 | which means the lower two bits must be zero. We use the | |
2422 | least significant bit to indicate how the value in the data | |
2423 | section must be relocated. A 0 means that the value is | |
2424 | relative to the text section, while a 1 indicates that the | |
2425 | value is relative to the data section. Given that we are | |
2426 | assuming the code was compiled using -membedded-pic, there | |
2427 | should not be any other possibilities. */ | |
2428 | ||
2429 | /* We can only relocate REFWORD relocs at run time. */ | |
2430 | if (int_rel.r_type != MIPS_R_REFWORD) | |
2431 | { | |
2432 | *errmsg = _("unsupported reloc type"); | |
2433 | bfd_set_error (bfd_error_bad_value); | |
2434 | return false; | |
2435 | } | |
2436 | ||
2437 | if (int_rel.r_extern) | |
2438 | { | |
2439 | struct ecoff_link_hash_entry *h; | |
2440 | ||
2441 | h = sym_hashes[int_rel.r_symndx]; | |
2442 | /* If h is NULL, that means that there is a reloc against an | |
2443 | external symbol which we thought was just a debugging | |
2444 | symbol. This should not happen. */ | |
2445 | if (h == (struct ecoff_link_hash_entry *) NULL) | |
2446 | abort (); | |
2447 | if ((h->root.type == bfd_link_hash_defined | |
2448 | || h->root.type == bfd_link_hash_defweak) | |
2449 | && (h->root.u.def.section->flags & SEC_CODE) != 0) | |
2450 | text_relative = true; | |
2451 | else | |
2452 | text_relative = false; | |
2453 | } | |
2454 | else | |
2455 | { | |
2456 | switch (int_rel.r_symndx) | |
2457 | { | |
2458 | case RELOC_SECTION_TEXT: | |
2459 | text_relative = true; | |
2460 | break; | |
2461 | case RELOC_SECTION_SDATA: | |
2462 | case RELOC_SECTION_SBSS: | |
2463 | case RELOC_SECTION_LIT8: | |
2464 | text_relative = false; | |
2465 | break; | |
2466 | default: | |
2467 | /* No other sections should appear in -membedded-pic | |
2468 | code. */ | |
2469 | *errmsg = _("reloc against unsupported section"); | |
2470 | bfd_set_error (bfd_error_bad_value); | |
2471 | return false; | |
2472 | } | |
2473 | } | |
2474 | ||
2475 | if ((int_rel.r_offset & 3) != 0) | |
2476 | { | |
2477 | *errmsg = _("reloc not properly aligned"); | |
2478 | bfd_set_error (bfd_error_bad_value); | |
2479 | return false; | |
2480 | } | |
2481 | ||
2482 | bfd_put_32 (abfd, | |
2483 | (int_rel.r_vaddr - datasec->vma + datasec->output_offset | |
2484 | + (text_relative ? 0 : 1)), | |
2485 | p); | |
2486 | } | |
2487 | ||
2488 | return true; | |
2489 | } | |
2490 | \f | |
2491 | /* This is the ECOFF backend structure. The backend field of the | |
2492 | target vector points to this. */ | |
2493 | ||
2494 | static const struct ecoff_backend_data mips_ecoff_backend_data = | |
2495 | { | |
2496 | /* COFF backend structure. */ | |
2497 | { | |
2498 | (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */ | |
2499 | (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */ | |
2500 | (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */ | |
2501 | (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/ | |
2502 | (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */ | |
2503 | (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */ | |
2504 | (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */ | |
2505 | mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out, | |
2506 | mips_ecoff_swap_scnhdr_out, | |
ecefdb58 | 2507 | FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, true, false, 4, false, 2, |
252b5132 RH |
2508 | mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in, |
2509 | mips_ecoff_swap_scnhdr_in, NULL, | |
2510 | mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook, | |
2511 | _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags, | |
2512 | _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table, | |
5f771d47 ILT |
2513 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
2514 | NULL, NULL | |
252b5132 RH |
2515 | }, |
2516 | /* Supported architecture. */ | |
2517 | bfd_arch_mips, | |
2518 | /* Initial portion of armap string. */ | |
2519 | "__________", | |
2520 | /* The page boundary used to align sections in a demand-paged | |
2521 | executable file. E.g., 0x1000. */ | |
2522 | 0x1000, | |
2523 | /* True if the .rdata section is part of the text segment, as on the | |
2524 | Alpha. False if .rdata is part of the data segment, as on the | |
2525 | MIPS. */ | |
2526 | false, | |
2527 | /* Bitsize of constructor entries. */ | |
2528 | 32, | |
2529 | /* Reloc to use for constructor entries. */ | |
2530 | &mips_howto_table[MIPS_R_REFWORD], | |
2531 | { | |
2532 | /* Symbol table magic number. */ | |
2533 | magicSym, | |
2534 | /* Alignment of debugging information. E.g., 4. */ | |
2535 | 4, | |
2536 | /* Sizes of external symbolic information. */ | |
2537 | sizeof (struct hdr_ext), | |
2538 | sizeof (struct dnr_ext), | |
2539 | sizeof (struct pdr_ext), | |
2540 | sizeof (struct sym_ext), | |
2541 | sizeof (struct opt_ext), | |
2542 | sizeof (struct fdr_ext), | |
2543 | sizeof (struct rfd_ext), | |
2544 | sizeof (struct ext_ext), | |
2545 | /* Functions to swap in external symbolic data. */ | |
2546 | ecoff_swap_hdr_in, | |
2547 | ecoff_swap_dnr_in, | |
2548 | ecoff_swap_pdr_in, | |
2549 | ecoff_swap_sym_in, | |
2550 | ecoff_swap_opt_in, | |
2551 | ecoff_swap_fdr_in, | |
2552 | ecoff_swap_rfd_in, | |
2553 | ecoff_swap_ext_in, | |
2554 | _bfd_ecoff_swap_tir_in, | |
2555 | _bfd_ecoff_swap_rndx_in, | |
2556 | /* Functions to swap out external symbolic data. */ | |
2557 | ecoff_swap_hdr_out, | |
2558 | ecoff_swap_dnr_out, | |
2559 | ecoff_swap_pdr_out, | |
2560 | ecoff_swap_sym_out, | |
2561 | ecoff_swap_opt_out, | |
2562 | ecoff_swap_fdr_out, | |
2563 | ecoff_swap_rfd_out, | |
2564 | ecoff_swap_ext_out, | |
2565 | _bfd_ecoff_swap_tir_out, | |
2566 | _bfd_ecoff_swap_rndx_out, | |
2567 | /* Function to read in symbolic data. */ | |
2568 | _bfd_ecoff_slurp_symbolic_info | |
2569 | }, | |
2570 | /* External reloc size. */ | |
2571 | RELSZ, | |
2572 | /* Reloc swapping functions. */ | |
2573 | mips_ecoff_swap_reloc_in, | |
2574 | mips_ecoff_swap_reloc_out, | |
2575 | /* Backend reloc tweaking. */ | |
2576 | mips_adjust_reloc_in, | |
2577 | mips_adjust_reloc_out, | |
2578 | /* Relocate section contents while linking. */ | |
2579 | mips_relocate_section, | |
2580 | /* Do final adjustments to filehdr and aouthdr. */ | |
2581 | NULL, | |
2582 | /* Read an element from an archive at a given file position. */ | |
2583 | _bfd_get_elt_at_filepos | |
2584 | }; | |
2585 | ||
2586 | /* Looking up a reloc type is MIPS specific. */ | |
2587 | #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup | |
2588 | ||
2589 | /* Getting relocated section contents is generic. */ | |
2590 | #define _bfd_ecoff_bfd_get_relocated_section_contents \ | |
2591 | bfd_generic_get_relocated_section_contents | |
2592 | ||
2593 | /* Handling file windows is generic. */ | |
2594 | #define _bfd_ecoff_get_section_contents_in_window \ | |
2595 | _bfd_generic_get_section_contents_in_window | |
2596 | ||
2597 | /* Relaxing sections is MIPS specific. */ | |
2598 | #define _bfd_ecoff_bfd_relax_section mips_relax_section | |
2599 | ||
2600 | /* GC of sections is not done. */ | |
2601 | #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections | |
2602 | ||
c3c89269 NC |
2603 | extern const bfd_target ecoff_big_vec; |
2604 | ||
252b5132 RH |
2605 | const bfd_target ecoff_little_vec = |
2606 | { | |
2607 | "ecoff-littlemips", /* name */ | |
2608 | bfd_target_ecoff_flavour, | |
2609 | BFD_ENDIAN_LITTLE, /* data byte order is little */ | |
2610 | BFD_ENDIAN_LITTLE, /* header byte order is little */ | |
2611 | ||
2612 | (HAS_RELOC | EXEC_P | /* object flags */ | |
2613 | HAS_LINENO | HAS_DEBUG | | |
2614 | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), | |
2615 | ||
2616 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), | |
2617 | 0, /* leading underscore */ | |
2618 | ' ', /* ar_pad_char */ | |
2619 | 15, /* ar_max_namelen */ | |
2620 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, | |
2621 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, | |
2622 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ | |
2623 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, | |
2624 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, | |
2625 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ | |
2626 | ||
2627 | {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ | |
2628 | _bfd_ecoff_archive_p, _bfd_dummy_target}, | |
2629 | {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ | |
2630 | _bfd_generic_mkarchive, bfd_false}, | |
2631 | {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ | |
2632 | _bfd_write_archive_contents, bfd_false}, | |
2633 | ||
2634 | BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), | |
2635 | BFD_JUMP_TABLE_COPY (_bfd_ecoff), | |
2636 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
2637 | BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff), | |
2638 | BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), | |
2639 | BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), | |
2640 | BFD_JUMP_TABLE_WRITE (_bfd_ecoff), | |
2641 | BFD_JUMP_TABLE_LINK (_bfd_ecoff), | |
2642 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
2643 | ||
c3c89269 | 2644 | & ecoff_big_vec, |
b48499ec | 2645 | |
252b5132 RH |
2646 | (PTR) &mips_ecoff_backend_data |
2647 | }; | |
2648 | ||
2649 | const bfd_target ecoff_big_vec = | |
2650 | { | |
2651 | "ecoff-bigmips", /* name */ | |
2652 | bfd_target_ecoff_flavour, | |
2653 | BFD_ENDIAN_BIG, /* data byte order is big */ | |
2654 | BFD_ENDIAN_BIG, /* header byte order is big */ | |
2655 | ||
2656 | (HAS_RELOC | EXEC_P | /* object flags */ | |
2657 | HAS_LINENO | HAS_DEBUG | | |
2658 | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), | |
2659 | ||
2660 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), | |
2661 | 0, /* leading underscore */ | |
2662 | ' ', /* ar_pad_char */ | |
2663 | 15, /* ar_max_namelen */ | |
2664 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
2665 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
2666 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, | |
2667 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
2668 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
2669 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, | |
2670 | {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ | |
2671 | _bfd_ecoff_archive_p, _bfd_dummy_target}, | |
2672 | {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ | |
2673 | _bfd_generic_mkarchive, bfd_false}, | |
2674 | {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ | |
2675 | _bfd_write_archive_contents, bfd_false}, | |
2676 | ||
2677 | BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), | |
2678 | BFD_JUMP_TABLE_COPY (_bfd_ecoff), | |
2679 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
2680 | BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff), | |
2681 | BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), | |
2682 | BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), | |
2683 | BFD_JUMP_TABLE_WRITE (_bfd_ecoff), | |
2684 | BFD_JUMP_TABLE_LINK (_bfd_ecoff), | |
2685 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
2686 | ||
c3c89269 | 2687 | & ecoff_little_vec, |
b48499ec | 2688 | |
252b5132 RH |
2689 | (PTR) &mips_ecoff_backend_data |
2690 | }; | |
2691 | ||
2692 | const bfd_target ecoff_biglittle_vec = | |
2693 | { | |
2694 | "ecoff-biglittlemips", /* name */ | |
2695 | bfd_target_ecoff_flavour, | |
2696 | BFD_ENDIAN_LITTLE, /* data byte order is little */ | |
2697 | BFD_ENDIAN_BIG, /* header byte order is big */ | |
2698 | ||
2699 | (HAS_RELOC | EXEC_P | /* object flags */ | |
2700 | HAS_LINENO | HAS_DEBUG | | |
2701 | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), | |
2702 | ||
2703 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), | |
2704 | 0, /* leading underscore */ | |
2705 | ' ', /* ar_pad_char */ | |
2706 | 15, /* ar_max_namelen */ | |
2707 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, | |
2708 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, | |
2709 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ | |
2710 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
2711 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
2712 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ | |
2713 | ||
2714 | {_bfd_dummy_target, coff_object_p, /* bfd_check_format */ | |
2715 | _bfd_ecoff_archive_p, _bfd_dummy_target}, | |
2716 | {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ | |
2717 | _bfd_generic_mkarchive, bfd_false}, | |
2718 | {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ | |
2719 | _bfd_write_archive_contents, bfd_false}, | |
2720 | ||
2721 | BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), | |
2722 | BFD_JUMP_TABLE_COPY (_bfd_ecoff), | |
2723 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
2724 | BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff), | |
2725 | BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), | |
2726 | BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), | |
2727 | BFD_JUMP_TABLE_WRITE (_bfd_ecoff), | |
2728 | BFD_JUMP_TABLE_LINK (_bfd_ecoff), | |
2729 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
2730 | ||
c3c89269 | 2731 | NULL, |
b48499ec | 2732 | |
252b5132 RH |
2733 | (PTR) &mips_ecoff_backend_data |
2734 | }; |