]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* ELF linking support for BFD. |
4b95cf5c | 2 | Copyright (C) 1995-2014 Free Software Foundation, Inc. |
252b5132 | 3 | |
8fdd7217 | 4 | This file is part of BFD, the Binary File Descriptor library. |
252b5132 | 5 | |
8fdd7217 NC |
6 | This program is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8fdd7217 | 9 | (at your option) any later version. |
252b5132 | 10 | |
8fdd7217 NC |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
252b5132 | 15 | |
8fdd7217 NC |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
19 | MA 02110-1301, USA. */ | |
252b5132 | 20 | |
252b5132 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
252b5132 RH |
23 | #include "bfdlink.h" |
24 | #include "libbfd.h" | |
25 | #define ARCH_SIZE 0 | |
26 | #include "elf-bfd.h" | |
4ad4eba5 | 27 | #include "safe-ctype.h" |
ccf2f652 | 28 | #include "libiberty.h" |
66eb6687 | 29 | #include "objalloc.h" |
252b5132 | 30 | |
28caa186 AM |
31 | /* This struct is used to pass information to routines called via |
32 | elf_link_hash_traverse which must return failure. */ | |
33 | ||
34 | struct elf_info_failed | |
35 | { | |
36 | struct bfd_link_info *info; | |
28caa186 AM |
37 | bfd_boolean failed; |
38 | }; | |
39 | ||
40 | /* This structure is used to pass information to | |
41 | _bfd_elf_link_find_version_dependencies. */ | |
42 | ||
43 | struct elf_find_verdep_info | |
44 | { | |
45 | /* General link information. */ | |
46 | struct bfd_link_info *info; | |
47 | /* The number of dependencies. */ | |
48 | unsigned int vers; | |
49 | /* Whether we had a failure. */ | |
50 | bfd_boolean failed; | |
51 | }; | |
52 | ||
53 | static bfd_boolean _bfd_elf_fix_symbol_flags | |
54 | (struct elf_link_hash_entry *, struct elf_info_failed *); | |
55 | ||
d98685ac AM |
56 | /* Define a symbol in a dynamic linkage section. */ |
57 | ||
58 | struct elf_link_hash_entry * | |
59 | _bfd_elf_define_linkage_sym (bfd *abfd, | |
60 | struct bfd_link_info *info, | |
61 | asection *sec, | |
62 | const char *name) | |
63 | { | |
64 | struct elf_link_hash_entry *h; | |
65 | struct bfd_link_hash_entry *bh; | |
ccabcbe5 | 66 | const struct elf_backend_data *bed; |
d98685ac AM |
67 | |
68 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); | |
69 | if (h != NULL) | |
70 | { | |
71 | /* Zap symbol defined in an as-needed lib that wasn't linked. | |
72 | This is a symptom of a larger problem: Absolute symbols | |
73 | defined in shared libraries can't be overridden, because we | |
74 | lose the link to the bfd which is via the symbol section. */ | |
75 | h->root.type = bfd_link_hash_new; | |
76 | } | |
77 | ||
78 | bh = &h->root; | |
79 | if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, | |
80 | sec, 0, NULL, FALSE, | |
81 | get_elf_backend_data (abfd)->collect, | |
82 | &bh)) | |
83 | return NULL; | |
84 | h = (struct elf_link_hash_entry *) bh; | |
85 | h->def_regular = 1; | |
e28df02b | 86 | h->non_elf = 0; |
d98685ac | 87 | h->type = STT_OBJECT; |
00b7642b AM |
88 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
89 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | |
d98685ac | 90 | |
ccabcbe5 AM |
91 | bed = get_elf_backend_data (abfd); |
92 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
d98685ac AM |
93 | return h; |
94 | } | |
95 | ||
b34976b6 | 96 | bfd_boolean |
268b6b39 | 97 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
252b5132 RH |
98 | { |
99 | flagword flags; | |
aad5d350 | 100 | asection *s; |
252b5132 | 101 | struct elf_link_hash_entry *h; |
9c5bfbb7 | 102 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6de2ae4a | 103 | struct elf_link_hash_table *htab = elf_hash_table (info); |
252b5132 RH |
104 | |
105 | /* This function may be called more than once. */ | |
3d4d4302 AM |
106 | s = bfd_get_linker_section (abfd, ".got"); |
107 | if (s != NULL) | |
b34976b6 | 108 | return TRUE; |
252b5132 | 109 | |
e5a52504 | 110 | flags = bed->dynamic_sec_flags; |
252b5132 | 111 | |
14b2f831 AM |
112 | s = bfd_make_section_anyway_with_flags (abfd, |
113 | (bed->rela_plts_and_copies_p | |
114 | ? ".rela.got" : ".rel.got"), | |
115 | (bed->dynamic_sec_flags | |
116 | | SEC_READONLY)); | |
6de2ae4a L |
117 | if (s == NULL |
118 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
119 | return FALSE; | |
120 | htab->srelgot = s; | |
252b5132 | 121 | |
14b2f831 | 122 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
64e77c6d L |
123 | if (s == NULL |
124 | || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
125 | return FALSE; | |
126 | htab->sgot = s; | |
127 | ||
252b5132 RH |
128 | if (bed->want_got_plt) |
129 | { | |
14b2f831 | 130 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
252b5132 | 131 | if (s == NULL |
6de2ae4a L |
132 | || !bfd_set_section_alignment (abfd, s, |
133 | bed->s->log_file_align)) | |
b34976b6 | 134 | return FALSE; |
6de2ae4a | 135 | htab->sgotplt = s; |
252b5132 RH |
136 | } |
137 | ||
64e77c6d L |
138 | /* The first bit of the global offset table is the header. */ |
139 | s->size += bed->got_header_size; | |
140 | ||
2517a57f AM |
141 | if (bed->want_got_sym) |
142 | { | |
143 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
144 | (or .got.plt) section. We don't do this in the linker script | |
145 | because we don't want to define the symbol if we are not creating | |
146 | a global offset table. */ | |
6de2ae4a L |
147 | h = _bfd_elf_define_linkage_sym (abfd, info, s, |
148 | "_GLOBAL_OFFSET_TABLE_"); | |
2517a57f | 149 | elf_hash_table (info)->hgot = h; |
d98685ac AM |
150 | if (h == NULL) |
151 | return FALSE; | |
2517a57f | 152 | } |
252b5132 | 153 | |
b34976b6 | 154 | return TRUE; |
252b5132 RH |
155 | } |
156 | \f | |
7e9f0867 AM |
157 | /* Create a strtab to hold the dynamic symbol names. */ |
158 | static bfd_boolean | |
159 | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) | |
160 | { | |
161 | struct elf_link_hash_table *hash_table; | |
162 | ||
163 | hash_table = elf_hash_table (info); | |
164 | if (hash_table->dynobj == NULL) | |
165 | hash_table->dynobj = abfd; | |
166 | ||
167 | if (hash_table->dynstr == NULL) | |
168 | { | |
169 | hash_table->dynstr = _bfd_elf_strtab_init (); | |
170 | if (hash_table->dynstr == NULL) | |
171 | return FALSE; | |
172 | } | |
173 | return TRUE; | |
174 | } | |
175 | ||
45d6a902 AM |
176 | /* Create some sections which will be filled in with dynamic linking |
177 | information. ABFD is an input file which requires dynamic sections | |
178 | to be created. The dynamic sections take up virtual memory space | |
179 | when the final executable is run, so we need to create them before | |
180 | addresses are assigned to the output sections. We work out the | |
181 | actual contents and size of these sections later. */ | |
252b5132 | 182 | |
b34976b6 | 183 | bfd_boolean |
268b6b39 | 184 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
252b5132 | 185 | { |
45d6a902 | 186 | flagword flags; |
91d6fa6a | 187 | asection *s; |
9c5bfbb7 | 188 | const struct elf_backend_data *bed; |
9637f6ef | 189 | struct elf_link_hash_entry *h; |
252b5132 | 190 | |
0eddce27 | 191 | if (! is_elf_hash_table (info->hash)) |
45d6a902 AM |
192 | return FALSE; |
193 | ||
194 | if (elf_hash_table (info)->dynamic_sections_created) | |
195 | return TRUE; | |
196 | ||
7e9f0867 AM |
197 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
198 | return FALSE; | |
45d6a902 | 199 | |
7e9f0867 | 200 | abfd = elf_hash_table (info)->dynobj; |
e5a52504 MM |
201 | bed = get_elf_backend_data (abfd); |
202 | ||
203 | flags = bed->dynamic_sec_flags; | |
45d6a902 AM |
204 | |
205 | /* A dynamically linked executable has a .interp section, but a | |
206 | shared library does not. */ | |
36af4a4e | 207 | if (info->executable) |
252b5132 | 208 | { |
14b2f831 AM |
209 | s = bfd_make_section_anyway_with_flags (abfd, ".interp", |
210 | flags | SEC_READONLY); | |
3496cb2a | 211 | if (s == NULL) |
45d6a902 AM |
212 | return FALSE; |
213 | } | |
bb0deeff | 214 | |
45d6a902 AM |
215 | /* Create sections to hold version informations. These are removed |
216 | if they are not needed. */ | |
14b2f831 AM |
217 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", |
218 | flags | SEC_READONLY); | |
45d6a902 | 219 | if (s == NULL |
45d6a902 AM |
220 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
221 | return FALSE; | |
222 | ||
14b2f831 AM |
223 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", |
224 | flags | SEC_READONLY); | |
45d6a902 | 225 | if (s == NULL |
45d6a902 AM |
226 | || ! bfd_set_section_alignment (abfd, s, 1)) |
227 | return FALSE; | |
228 | ||
14b2f831 AM |
229 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", |
230 | flags | SEC_READONLY); | |
45d6a902 | 231 | if (s == NULL |
45d6a902 AM |
232 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
233 | return FALSE; | |
234 | ||
14b2f831 AM |
235 | s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", |
236 | flags | SEC_READONLY); | |
45d6a902 | 237 | if (s == NULL |
45d6a902 AM |
238 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
239 | return FALSE; | |
240 | ||
14b2f831 AM |
241 | s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", |
242 | flags | SEC_READONLY); | |
3496cb2a | 243 | if (s == NULL) |
45d6a902 AM |
244 | return FALSE; |
245 | ||
14b2f831 | 246 | s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); |
45d6a902 | 247 | if (s == NULL |
45d6a902 AM |
248 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
249 | return FALSE; | |
250 | ||
251 | /* The special symbol _DYNAMIC is always set to the start of the | |
77cfaee6 AM |
252 | .dynamic section. We could set _DYNAMIC in a linker script, but we |
253 | only want to define it if we are, in fact, creating a .dynamic | |
254 | section. We don't want to define it if there is no .dynamic | |
255 | section, since on some ELF platforms the start up code examines it | |
256 | to decide how to initialize the process. */ | |
9637f6ef L |
257 | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); |
258 | elf_hash_table (info)->hdynamic = h; | |
259 | if (h == NULL) | |
45d6a902 AM |
260 | return FALSE; |
261 | ||
fdc90cb4 JJ |
262 | if (info->emit_hash) |
263 | { | |
14b2f831 AM |
264 | s = bfd_make_section_anyway_with_flags (abfd, ".hash", |
265 | flags | SEC_READONLY); | |
fdc90cb4 JJ |
266 | if (s == NULL |
267 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
268 | return FALSE; | |
269 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |
270 | } | |
271 | ||
272 | if (info->emit_gnu_hash) | |
273 | { | |
14b2f831 AM |
274 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", |
275 | flags | SEC_READONLY); | |
fdc90cb4 JJ |
276 | if (s == NULL |
277 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) | |
278 | return FALSE; | |
279 | /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: | |
280 | 4 32-bit words followed by variable count of 64-bit words, then | |
281 | variable count of 32-bit words. */ | |
282 | if (bed->s->arch_size == 64) | |
283 | elf_section_data (s)->this_hdr.sh_entsize = 0; | |
284 | else | |
285 | elf_section_data (s)->this_hdr.sh_entsize = 4; | |
286 | } | |
45d6a902 AM |
287 | |
288 | /* Let the backend create the rest of the sections. This lets the | |
289 | backend set the right flags. The backend will normally create | |
290 | the .got and .plt sections. */ | |
894891db NC |
291 | if (bed->elf_backend_create_dynamic_sections == NULL |
292 | || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
45d6a902 AM |
293 | return FALSE; |
294 | ||
295 | elf_hash_table (info)->dynamic_sections_created = TRUE; | |
296 | ||
297 | return TRUE; | |
298 | } | |
299 | ||
300 | /* Create dynamic sections when linking against a dynamic object. */ | |
301 | ||
302 | bfd_boolean | |
268b6b39 | 303 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
45d6a902 AM |
304 | { |
305 | flagword flags, pltflags; | |
7325306f | 306 | struct elf_link_hash_entry *h; |
45d6a902 | 307 | asection *s; |
9c5bfbb7 | 308 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6de2ae4a | 309 | struct elf_link_hash_table *htab = elf_hash_table (info); |
45d6a902 | 310 | |
252b5132 RH |
311 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
312 | .rel[a].bss sections. */ | |
e5a52504 | 313 | flags = bed->dynamic_sec_flags; |
252b5132 RH |
314 | |
315 | pltflags = flags; | |
252b5132 | 316 | if (bed->plt_not_loaded) |
6df4d94c MM |
317 | /* We do not clear SEC_ALLOC here because we still want the OS to |
318 | allocate space for the section; it's just that there's nothing | |
319 | to read in from the object file. */ | |
5d1634d7 | 320 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
6df4d94c MM |
321 | else |
322 | pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; | |
252b5132 RH |
323 | if (bed->plt_readonly) |
324 | pltflags |= SEC_READONLY; | |
325 | ||
14b2f831 | 326 | s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
252b5132 | 327 | if (s == NULL |
252b5132 | 328 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) |
b34976b6 | 329 | return FALSE; |
6de2ae4a | 330 | htab->splt = s; |
252b5132 | 331 | |
d98685ac AM |
332 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
333 | .plt section. */ | |
7325306f RS |
334 | if (bed->want_plt_sym) |
335 | { | |
336 | h = _bfd_elf_define_linkage_sym (abfd, info, s, | |
337 | "_PROCEDURE_LINKAGE_TABLE_"); | |
338 | elf_hash_table (info)->hplt = h; | |
339 | if (h == NULL) | |
340 | return FALSE; | |
341 | } | |
252b5132 | 342 | |
14b2f831 AM |
343 | s = bfd_make_section_anyway_with_flags (abfd, |
344 | (bed->rela_plts_and_copies_p | |
345 | ? ".rela.plt" : ".rel.plt"), | |
346 | flags | SEC_READONLY); | |
252b5132 | 347 | if (s == NULL |
45d6a902 | 348 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 349 | return FALSE; |
6de2ae4a | 350 | htab->srelplt = s; |
252b5132 RH |
351 | |
352 | if (! _bfd_elf_create_got_section (abfd, info)) | |
b34976b6 | 353 | return FALSE; |
252b5132 | 354 | |
3018b441 RH |
355 | if (bed->want_dynbss) |
356 | { | |
357 | /* The .dynbss section is a place to put symbols which are defined | |
358 | by dynamic objects, are referenced by regular objects, and are | |
359 | not functions. We must allocate space for them in the process | |
360 | image and use a R_*_COPY reloc to tell the dynamic linker to | |
361 | initialize them at run time. The linker script puts the .dynbss | |
362 | section into the .bss section of the final image. */ | |
14b2f831 AM |
363 | s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
364 | (SEC_ALLOC | SEC_LINKER_CREATED)); | |
3496cb2a | 365 | if (s == NULL) |
b34976b6 | 366 | return FALSE; |
252b5132 | 367 | |
3018b441 | 368 | /* The .rel[a].bss section holds copy relocs. This section is not |
77cfaee6 AM |
369 | normally needed. We need to create it here, though, so that the |
370 | linker will map it to an output section. We can't just create it | |
371 | only if we need it, because we will not know whether we need it | |
372 | until we have seen all the input files, and the first time the | |
373 | main linker code calls BFD after examining all the input files | |
374 | (size_dynamic_sections) the input sections have already been | |
375 | mapped to the output sections. If the section turns out not to | |
376 | be needed, we can discard it later. We will never need this | |
377 | section when generating a shared object, since they do not use | |
378 | copy relocs. */ | |
3018b441 RH |
379 | if (! info->shared) |
380 | { | |
14b2f831 AM |
381 | s = bfd_make_section_anyway_with_flags (abfd, |
382 | (bed->rela_plts_and_copies_p | |
383 | ? ".rela.bss" : ".rel.bss"), | |
384 | flags | SEC_READONLY); | |
3018b441 | 385 | if (s == NULL |
45d6a902 | 386 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) |
b34976b6 | 387 | return FALSE; |
3018b441 | 388 | } |
252b5132 RH |
389 | } |
390 | ||
b34976b6 | 391 | return TRUE; |
252b5132 RH |
392 | } |
393 | \f | |
252b5132 RH |
394 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
395 | read the input files, since we need to have a list of all of them | |
396 | before we can determine the final sizes of the output sections. | |
397 | Note that we may actually call this function even though we are not | |
398 | going to output any dynamic symbols; in some cases we know that a | |
399 | symbol should be in the dynamic symbol table, but only if there is | |
400 | one. */ | |
401 | ||
b34976b6 | 402 | bfd_boolean |
c152c796 AM |
403 | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
404 | struct elf_link_hash_entry *h) | |
252b5132 RH |
405 | { |
406 | if (h->dynindx == -1) | |
407 | { | |
2b0f7ef9 | 408 | struct elf_strtab_hash *dynstr; |
68b6ddd0 | 409 | char *p; |
252b5132 | 410 | const char *name; |
252b5132 RH |
411 | bfd_size_type indx; |
412 | ||
7a13edea NC |
413 | /* XXX: The ABI draft says the linker must turn hidden and |
414 | internal symbols into STB_LOCAL symbols when producing the | |
415 | DSO. However, if ld.so honors st_other in the dynamic table, | |
416 | this would not be necessary. */ | |
417 | switch (ELF_ST_VISIBILITY (h->other)) | |
418 | { | |
419 | case STV_INTERNAL: | |
420 | case STV_HIDDEN: | |
9d6eee78 L |
421 | if (h->root.type != bfd_link_hash_undefined |
422 | && h->root.type != bfd_link_hash_undefweak) | |
38048eb9 | 423 | { |
f5385ebf | 424 | h->forced_local = 1; |
67687978 PB |
425 | if (!elf_hash_table (info)->is_relocatable_executable) |
426 | return TRUE; | |
7a13edea | 427 | } |
0444bdd4 | 428 | |
7a13edea NC |
429 | default: |
430 | break; | |
431 | } | |
432 | ||
252b5132 RH |
433 | h->dynindx = elf_hash_table (info)->dynsymcount; |
434 | ++elf_hash_table (info)->dynsymcount; | |
435 | ||
436 | dynstr = elf_hash_table (info)->dynstr; | |
437 | if (dynstr == NULL) | |
438 | { | |
439 | /* Create a strtab to hold the dynamic symbol names. */ | |
2b0f7ef9 | 440 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
252b5132 | 441 | if (dynstr == NULL) |
b34976b6 | 442 | return FALSE; |
252b5132 RH |
443 | } |
444 | ||
445 | /* We don't put any version information in the dynamic string | |
aad5d350 | 446 | table. */ |
252b5132 RH |
447 | name = h->root.root.string; |
448 | p = strchr (name, ELF_VER_CHR); | |
68b6ddd0 AM |
449 | if (p != NULL) |
450 | /* We know that the p points into writable memory. In fact, | |
451 | there are only a few symbols that have read-only names, being | |
452 | those like _GLOBAL_OFFSET_TABLE_ that are created specially | |
453 | by the backends. Most symbols will have names pointing into | |
454 | an ELF string table read from a file, or to objalloc memory. */ | |
455 | *p = 0; | |
456 | ||
457 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | |
458 | ||
459 | if (p != NULL) | |
460 | *p = ELF_VER_CHR; | |
252b5132 RH |
461 | |
462 | if (indx == (bfd_size_type) -1) | |
b34976b6 | 463 | return FALSE; |
252b5132 RH |
464 | h->dynstr_index = indx; |
465 | } | |
466 | ||
b34976b6 | 467 | return TRUE; |
252b5132 | 468 | } |
45d6a902 | 469 | \f |
55255dae L |
470 | /* Mark a symbol dynamic. */ |
471 | ||
28caa186 | 472 | static void |
55255dae | 473 | bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, |
40b36307 L |
474 | struct elf_link_hash_entry *h, |
475 | Elf_Internal_Sym *sym) | |
55255dae | 476 | { |
40b36307 | 477 | struct bfd_elf_dynamic_list *d = info->dynamic_list; |
55255dae | 478 | |
40b36307 L |
479 | /* It may be called more than once on the same H. */ |
480 | if(h->dynamic || info->relocatable) | |
55255dae L |
481 | return; |
482 | ||
40b36307 L |
483 | if ((info->dynamic_data |
484 | && (h->type == STT_OBJECT | |
485 | || (sym != NULL | |
486 | && ELF_ST_TYPE (sym->st_info) == STT_OBJECT))) | |
a0c8462f | 487 | || (d != NULL |
40b36307 L |
488 | && h->root.type == bfd_link_hash_new |
489 | && (*d->match) (&d->head, NULL, h->root.root.string))) | |
55255dae L |
490 | h->dynamic = 1; |
491 | } | |
492 | ||
45d6a902 AM |
493 | /* Record an assignment to a symbol made by a linker script. We need |
494 | this in case some dynamic object refers to this symbol. */ | |
495 | ||
496 | bfd_boolean | |
fe21a8fc L |
497 | bfd_elf_record_link_assignment (bfd *output_bfd, |
498 | struct bfd_link_info *info, | |
268b6b39 | 499 | const char *name, |
fe21a8fc L |
500 | bfd_boolean provide, |
501 | bfd_boolean hidden) | |
45d6a902 | 502 | { |
00cbee0a | 503 | struct elf_link_hash_entry *h, *hv; |
4ea42fb7 | 504 | struct elf_link_hash_table *htab; |
00cbee0a | 505 | const struct elf_backend_data *bed; |
45d6a902 | 506 | |
0eddce27 | 507 | if (!is_elf_hash_table (info->hash)) |
45d6a902 AM |
508 | return TRUE; |
509 | ||
4ea42fb7 AM |
510 | htab = elf_hash_table (info); |
511 | h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); | |
45d6a902 | 512 | if (h == NULL) |
4ea42fb7 | 513 | return provide; |
45d6a902 | 514 | |
00cbee0a | 515 | switch (h->root.type) |
77cfaee6 | 516 | { |
00cbee0a L |
517 | case bfd_link_hash_defined: |
518 | case bfd_link_hash_defweak: | |
519 | case bfd_link_hash_common: | |
520 | break; | |
521 | case bfd_link_hash_undefweak: | |
522 | case bfd_link_hash_undefined: | |
523 | /* Since we're defining the symbol, don't let it seem to have not | |
524 | been defined. record_dynamic_symbol and size_dynamic_sections | |
525 | may depend on this. */ | |
4ea42fb7 | 526 | h->root.type = bfd_link_hash_new; |
77cfaee6 AM |
527 | if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) |
528 | bfd_link_repair_undef_list (&htab->root); | |
00cbee0a L |
529 | break; |
530 | case bfd_link_hash_new: | |
40b36307 | 531 | bfd_elf_link_mark_dynamic_symbol (info, h, NULL); |
55255dae | 532 | h->non_elf = 0; |
00cbee0a L |
533 | break; |
534 | case bfd_link_hash_indirect: | |
535 | /* We had a versioned symbol in a dynamic library. We make the | |
a0c8462f | 536 | the versioned symbol point to this one. */ |
00cbee0a L |
537 | bed = get_elf_backend_data (output_bfd); |
538 | hv = h; | |
539 | while (hv->root.type == bfd_link_hash_indirect | |
540 | || hv->root.type == bfd_link_hash_warning) | |
541 | hv = (struct elf_link_hash_entry *) hv->root.u.i.link; | |
542 | /* We don't need to update h->root.u since linker will set them | |
543 | later. */ | |
544 | h->root.type = bfd_link_hash_undefined; | |
545 | hv->root.type = bfd_link_hash_indirect; | |
546 | hv->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
547 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); | |
548 | break; | |
549 | case bfd_link_hash_warning: | |
550 | abort (); | |
551 | break; | |
55255dae | 552 | } |
45d6a902 AM |
553 | |
554 | /* If this symbol is being provided by the linker script, and it is | |
555 | currently defined by a dynamic object, but not by a regular | |
556 | object, then mark it as undefined so that the generic linker will | |
557 | force the correct value. */ | |
558 | if (provide | |
f5385ebf AM |
559 | && h->def_dynamic |
560 | && !h->def_regular) | |
45d6a902 AM |
561 | h->root.type = bfd_link_hash_undefined; |
562 | ||
563 | /* If this symbol is not being provided by the linker script, and it is | |
564 | currently defined by a dynamic object, but not by a regular object, | |
565 | then clear out any version information because the symbol will not be | |
566 | associated with the dynamic object any more. */ | |
567 | if (!provide | |
f5385ebf AM |
568 | && h->def_dynamic |
569 | && !h->def_regular) | |
45d6a902 AM |
570 | h->verinfo.verdef = NULL; |
571 | ||
f5385ebf | 572 | h->def_regular = 1; |
45d6a902 | 573 | |
eb8476a6 | 574 | if (hidden) |
fe21a8fc | 575 | { |
91d6fa6a | 576 | bed = get_elf_backend_data (output_bfd); |
b8297068 AM |
577 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
578 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | |
fe21a8fc L |
579 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
580 | } | |
581 | ||
6fa3860b PB |
582 | /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects |
583 | and executables. */ | |
584 | if (!info->relocatable | |
585 | && h->dynindx != -1 | |
586 | && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
587 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) | |
588 | h->forced_local = 1; | |
589 | ||
f5385ebf AM |
590 | if ((h->def_dynamic |
591 | || h->ref_dynamic | |
67687978 PB |
592 | || info->shared |
593 | || (info->executable && elf_hash_table (info)->is_relocatable_executable)) | |
45d6a902 AM |
594 | && h->dynindx == -1) |
595 | { | |
c152c796 | 596 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
45d6a902 AM |
597 | return FALSE; |
598 | ||
599 | /* If this is a weak defined symbol, and we know a corresponding | |
600 | real symbol from the same dynamic object, make sure the real | |
601 | symbol is also made into a dynamic symbol. */ | |
f6e332e6 AM |
602 | if (h->u.weakdef != NULL |
603 | && h->u.weakdef->dynindx == -1) | |
45d6a902 | 604 | { |
f6e332e6 | 605 | if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) |
45d6a902 AM |
606 | return FALSE; |
607 | } | |
608 | } | |
609 | ||
610 | return TRUE; | |
611 | } | |
42751cf3 | 612 | |
8c58d23b AM |
613 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
614 | success, and 2 on a failure caused by attempting to record a symbol | |
615 | in a discarded section, eg. a discarded link-once section symbol. */ | |
616 | ||
617 | int | |
c152c796 AM |
618 | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
619 | bfd *input_bfd, | |
620 | long input_indx) | |
8c58d23b AM |
621 | { |
622 | bfd_size_type amt; | |
623 | struct elf_link_local_dynamic_entry *entry; | |
624 | struct elf_link_hash_table *eht; | |
625 | struct elf_strtab_hash *dynstr; | |
626 | unsigned long dynstr_index; | |
627 | char *name; | |
628 | Elf_External_Sym_Shndx eshndx; | |
629 | char esym[sizeof (Elf64_External_Sym)]; | |
630 | ||
0eddce27 | 631 | if (! is_elf_hash_table (info->hash)) |
8c58d23b AM |
632 | return 0; |
633 | ||
634 | /* See if the entry exists already. */ | |
635 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
636 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
637 | return 1; | |
638 | ||
639 | amt = sizeof (*entry); | |
a50b1753 | 640 | entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); |
8c58d23b AM |
641 | if (entry == NULL) |
642 | return 0; | |
643 | ||
644 | /* Go find the symbol, so that we can find it's name. */ | |
645 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | |
268b6b39 | 646 | 1, input_indx, &entry->isym, esym, &eshndx)) |
8c58d23b AM |
647 | { |
648 | bfd_release (input_bfd, entry); | |
649 | return 0; | |
650 | } | |
651 | ||
652 | if (entry->isym.st_shndx != SHN_UNDEF | |
4fbb74a6 | 653 | && entry->isym.st_shndx < SHN_LORESERVE) |
8c58d23b AM |
654 | { |
655 | asection *s; | |
656 | ||
657 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |
658 | if (s == NULL || bfd_is_abs_section (s->output_section)) | |
659 | { | |
660 | /* We can still bfd_release here as nothing has done another | |
661 | bfd_alloc. We can't do this later in this function. */ | |
662 | bfd_release (input_bfd, entry); | |
663 | return 2; | |
664 | } | |
665 | } | |
666 | ||
667 | name = (bfd_elf_string_from_elf_section | |
668 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
669 | entry->isym.st_name)); | |
670 | ||
671 | dynstr = elf_hash_table (info)->dynstr; | |
672 | if (dynstr == NULL) | |
673 | { | |
674 | /* Create a strtab to hold the dynamic symbol names. */ | |
675 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
676 | if (dynstr == NULL) | |
677 | return 0; | |
678 | } | |
679 | ||
b34976b6 | 680 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); |
8c58d23b AM |
681 | if (dynstr_index == (unsigned long) -1) |
682 | return 0; | |
683 | entry->isym.st_name = dynstr_index; | |
684 | ||
685 | eht = elf_hash_table (info); | |
686 | ||
687 | entry->next = eht->dynlocal; | |
688 | eht->dynlocal = entry; | |
689 | entry->input_bfd = input_bfd; | |
690 | entry->input_indx = input_indx; | |
691 | eht->dynsymcount++; | |
692 | ||
693 | /* Whatever binding the symbol had before, it's now local. */ | |
694 | entry->isym.st_info | |
695 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
696 | ||
697 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
698 | ||
699 | return 1; | |
700 | } | |
701 | ||
30b30c21 | 702 | /* Return the dynindex of a local dynamic symbol. */ |
42751cf3 | 703 | |
30b30c21 | 704 | long |
268b6b39 AM |
705 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
706 | bfd *input_bfd, | |
707 | long input_indx) | |
30b30c21 RH |
708 | { |
709 | struct elf_link_local_dynamic_entry *e; | |
710 | ||
711 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
712 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |
713 | return e->dynindx; | |
714 | return -1; | |
715 | } | |
716 | ||
717 | /* This function is used to renumber the dynamic symbols, if some of | |
718 | them are removed because they are marked as local. This is called | |
719 | via elf_link_hash_traverse. */ | |
720 | ||
b34976b6 | 721 | static bfd_boolean |
268b6b39 AM |
722 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
723 | void *data) | |
42751cf3 | 724 | { |
a50b1753 | 725 | size_t *count = (size_t *) data; |
30b30c21 | 726 | |
6fa3860b PB |
727 | if (h->forced_local) |
728 | return TRUE; | |
729 | ||
730 | if (h->dynindx != -1) | |
731 | h->dynindx = ++(*count); | |
732 | ||
733 | return TRUE; | |
734 | } | |
735 | ||
736 | ||
737 | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with | |
738 | STB_LOCAL binding. */ | |
739 | ||
740 | static bfd_boolean | |
741 | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, | |
742 | void *data) | |
743 | { | |
a50b1753 | 744 | size_t *count = (size_t *) data; |
6fa3860b | 745 | |
6fa3860b PB |
746 | if (!h->forced_local) |
747 | return TRUE; | |
748 | ||
42751cf3 | 749 | if (h->dynindx != -1) |
30b30c21 RH |
750 | h->dynindx = ++(*count); |
751 | ||
b34976b6 | 752 | return TRUE; |
42751cf3 | 753 | } |
30b30c21 | 754 | |
aee6f5b4 AO |
755 | /* Return true if the dynamic symbol for a given section should be |
756 | omitted when creating a shared library. */ | |
757 | bfd_boolean | |
758 | _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, | |
759 | struct bfd_link_info *info, | |
760 | asection *p) | |
761 | { | |
74541ad4 AM |
762 | struct elf_link_hash_table *htab; |
763 | ||
aee6f5b4 AO |
764 | switch (elf_section_data (p)->this_hdr.sh_type) |
765 | { | |
766 | case SHT_PROGBITS: | |
767 | case SHT_NOBITS: | |
768 | /* If sh_type is yet undecided, assume it could be | |
769 | SHT_PROGBITS/SHT_NOBITS. */ | |
770 | case SHT_NULL: | |
74541ad4 AM |
771 | htab = elf_hash_table (info); |
772 | if (p == htab->tls_sec) | |
773 | return FALSE; | |
774 | ||
775 | if (htab->text_index_section != NULL) | |
776 | return p != htab->text_index_section && p != htab->data_index_section; | |
777 | ||
aee6f5b4 AO |
778 | if (strcmp (p->name, ".got") == 0 |
779 | || strcmp (p->name, ".got.plt") == 0 | |
780 | || strcmp (p->name, ".plt") == 0) | |
781 | { | |
782 | asection *ip; | |
aee6f5b4 | 783 | |
74541ad4 | 784 | if (htab->dynobj != NULL |
3d4d4302 | 785 | && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL |
aee6f5b4 AO |
786 | && ip->output_section == p) |
787 | return TRUE; | |
788 | } | |
789 | return FALSE; | |
790 | ||
791 | /* There shouldn't be section relative relocations | |
792 | against any other section. */ | |
793 | default: | |
794 | return TRUE; | |
795 | } | |
796 | } | |
797 | ||
062e2358 | 798 | /* Assign dynsym indices. In a shared library we generate a section |
6fa3860b PB |
799 | symbol for each output section, which come first. Next come symbols |
800 | which have been forced to local binding. Then all of the back-end | |
801 | allocated local dynamic syms, followed by the rest of the global | |
802 | symbols. */ | |
30b30c21 | 803 | |
554220db AM |
804 | static unsigned long |
805 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, | |
806 | struct bfd_link_info *info, | |
807 | unsigned long *section_sym_count) | |
30b30c21 RH |
808 | { |
809 | unsigned long dynsymcount = 0; | |
810 | ||
67687978 | 811 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) |
30b30c21 | 812 | { |
aee6f5b4 | 813 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
30b30c21 RH |
814 | asection *p; |
815 | for (p = output_bfd->sections; p ; p = p->next) | |
8c37241b | 816 | if ((p->flags & SEC_EXCLUDE) == 0 |
aee6f5b4 AO |
817 | && (p->flags & SEC_ALLOC) != 0 |
818 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
819 | elf_section_data (p)->dynindx = ++dynsymcount; | |
74541ad4 AM |
820 | else |
821 | elf_section_data (p)->dynindx = 0; | |
30b30c21 | 822 | } |
554220db | 823 | *section_sym_count = dynsymcount; |
30b30c21 | 824 | |
6fa3860b PB |
825 | elf_link_hash_traverse (elf_hash_table (info), |
826 | elf_link_renumber_local_hash_table_dynsyms, | |
827 | &dynsymcount); | |
828 | ||
30b30c21 RH |
829 | if (elf_hash_table (info)->dynlocal) |
830 | { | |
831 | struct elf_link_local_dynamic_entry *p; | |
832 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | |
833 | p->dynindx = ++dynsymcount; | |
834 | } | |
835 | ||
836 | elf_link_hash_traverse (elf_hash_table (info), | |
837 | elf_link_renumber_hash_table_dynsyms, | |
838 | &dynsymcount); | |
839 | ||
840 | /* There is an unused NULL entry at the head of the table which | |
841 | we must account for in our count. Unless there weren't any | |
842 | symbols, which means we'll have no table at all. */ | |
843 | if (dynsymcount != 0) | |
844 | ++dynsymcount; | |
845 | ||
ccabcbe5 AM |
846 | elf_hash_table (info)->dynsymcount = dynsymcount; |
847 | return dynsymcount; | |
30b30c21 | 848 | } |
252b5132 | 849 | |
54ac0771 L |
850 | /* Merge st_other field. */ |
851 | ||
852 | static void | |
853 | elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, | |
cd3416da AM |
854 | const Elf_Internal_Sym *isym, |
855 | bfd_boolean definition, bfd_boolean dynamic) | |
54ac0771 L |
856 | { |
857 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
858 | ||
859 | /* If st_other has a processor-specific meaning, specific | |
cd3416da | 860 | code might be needed here. */ |
54ac0771 L |
861 | if (bed->elf_backend_merge_symbol_attribute) |
862 | (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, | |
863 | dynamic); | |
864 | ||
cd3416da | 865 | if (!dynamic) |
54ac0771 | 866 | { |
cd3416da AM |
867 | unsigned symvis = ELF_ST_VISIBILITY (isym->st_other); |
868 | unsigned hvis = ELF_ST_VISIBILITY (h->other); | |
54ac0771 | 869 | |
cd3416da AM |
870 | /* Keep the most constraining visibility. Leave the remainder |
871 | of the st_other field to elf_backend_merge_symbol_attribute. */ | |
872 | if (symvis - 1 < hvis - 1) | |
873 | h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); | |
54ac0771 L |
874 | } |
875 | } | |
876 | ||
4f3fedcf AM |
877 | /* This function is called when we want to merge a new symbol with an |
878 | existing symbol. It handles the various cases which arise when we | |
879 | find a definition in a dynamic object, or when there is already a | |
880 | definition in a dynamic object. The new symbol is described by | |
881 | NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table | |
882 | entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK | |
883 | if the old symbol was weak. We set POLD_ALIGNMENT to the alignment | |
884 | of an old common symbol. We set OVERRIDE if the old symbol is | |
885 | overriding a new definition. We set TYPE_CHANGE_OK if it is OK for | |
886 | the type to change. We set SIZE_CHANGE_OK if it is OK for the size | |
887 | to change. By OK to change, we mean that we shouldn't warn if the | |
888 | type or size does change. */ | |
45d6a902 | 889 | |
8a56bd02 | 890 | static bfd_boolean |
268b6b39 AM |
891 | _bfd_elf_merge_symbol (bfd *abfd, |
892 | struct bfd_link_info *info, | |
893 | const char *name, | |
894 | Elf_Internal_Sym *sym, | |
895 | asection **psec, | |
896 | bfd_vma *pvalue, | |
4f3fedcf AM |
897 | struct elf_link_hash_entry **sym_hash, |
898 | bfd **poldbfd, | |
37a9e49a | 899 | bfd_boolean *pold_weak, |
af44c138 | 900 | unsigned int *pold_alignment, |
268b6b39 AM |
901 | bfd_boolean *skip, |
902 | bfd_boolean *override, | |
903 | bfd_boolean *type_change_ok, | |
0f8a2703 | 904 | bfd_boolean *size_change_ok) |
252b5132 | 905 | { |
7479dfd4 | 906 | asection *sec, *oldsec; |
45d6a902 | 907 | struct elf_link_hash_entry *h; |
90c984fc | 908 | struct elf_link_hash_entry *hi; |
45d6a902 AM |
909 | struct elf_link_hash_entry *flip; |
910 | int bind; | |
911 | bfd *oldbfd; | |
912 | bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
0a36a439 | 913 | bfd_boolean newweak, oldweak, newfunc, oldfunc; |
a4d8e49b | 914 | const struct elf_backend_data *bed; |
45d6a902 AM |
915 | |
916 | *skip = FALSE; | |
917 | *override = FALSE; | |
918 | ||
919 | sec = *psec; | |
920 | bind = ELF_ST_BIND (sym->st_info); | |
921 | ||
922 | if (! bfd_is_und_section (sec)) | |
923 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); | |
924 | else | |
925 | h = ((struct elf_link_hash_entry *) | |
926 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); | |
927 | if (h == NULL) | |
928 | return FALSE; | |
929 | *sym_hash = h; | |
252b5132 | 930 | |
88ba32a0 L |
931 | bed = get_elf_backend_data (abfd); |
932 | ||
90c984fc L |
933 | /* For merging, we only care about real symbols. But we need to make |
934 | sure that indirect symbol dynamic flags are updated. */ | |
935 | hi = h; | |
45d6a902 AM |
936 | while (h->root.type == bfd_link_hash_indirect |
937 | || h->root.type == bfd_link_hash_warning) | |
938 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
939 | ||
934bce08 AM |
940 | /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the |
941 | existing symbol. */ | |
942 | ||
943 | oldbfd = NULL; | |
944 | oldsec = NULL; | |
945 | switch (h->root.type) | |
946 | { | |
947 | default: | |
948 | break; | |
949 | ||
950 | case bfd_link_hash_undefined: | |
951 | case bfd_link_hash_undefweak: | |
952 | oldbfd = h->root.u.undef.abfd; | |
953 | break; | |
954 | ||
955 | case bfd_link_hash_defined: | |
956 | case bfd_link_hash_defweak: | |
957 | oldbfd = h->root.u.def.section->owner; | |
958 | oldsec = h->root.u.def.section; | |
959 | break; | |
960 | ||
961 | case bfd_link_hash_common: | |
962 | oldbfd = h->root.u.c.p->section->owner; | |
963 | oldsec = h->root.u.c.p->section; | |
964 | if (pold_alignment) | |
965 | *pold_alignment = h->root.u.c.p->alignment_power; | |
966 | break; | |
967 | } | |
968 | if (poldbfd && *poldbfd == NULL) | |
969 | *poldbfd = oldbfd; | |
970 | ||
971 | /* Differentiate strong and weak symbols. */ | |
972 | newweak = bind == STB_WEAK; | |
973 | oldweak = (h->root.type == bfd_link_hash_defweak | |
974 | || h->root.type == bfd_link_hash_undefweak); | |
975 | if (pold_weak) | |
976 | *pold_weak = oldweak; | |
977 | ||
978 | /* This code is for coping with dynamic objects, and is only useful | |
979 | if we are doing an ELF link. */ | |
980 | if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) | |
981 | return TRUE; | |
982 | ||
40b36307 | 983 | /* We have to check it for every instance since the first few may be |
ee659f1f | 984 | references and not all compilers emit symbol type for undefined |
40b36307 L |
985 | symbols. */ |
986 | bfd_elf_link_mark_dynamic_symbol (info, h, sym); | |
987 | ||
ee659f1f AM |
988 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
989 | respectively, is from a dynamic object. */ | |
990 | ||
991 | newdyn = (abfd->flags & DYNAMIC) != 0; | |
992 | ||
993 | /* ref_dynamic_nonweak and dynamic_def flags track actual undefined | |
994 | syms and defined syms in dynamic libraries respectively. | |
995 | ref_dynamic on the other hand can be set for a symbol defined in | |
996 | a dynamic library, and def_dynamic may not be set; When the | |
997 | definition in a dynamic lib is overridden by a definition in the | |
998 | executable use of the symbol in the dynamic lib becomes a | |
999 | reference to the executable symbol. */ | |
1000 | if (newdyn) | |
1001 | { | |
1002 | if (bfd_is_und_section (sec)) | |
1003 | { | |
1004 | if (bind != STB_WEAK) | |
1005 | { | |
1006 | h->ref_dynamic_nonweak = 1; | |
1007 | hi->ref_dynamic_nonweak = 1; | |
1008 | } | |
1009 | } | |
1010 | else | |
1011 | { | |
1012 | h->dynamic_def = 1; | |
1013 | hi->dynamic_def = 1; | |
1014 | } | |
1015 | } | |
1016 | ||
45d6a902 AM |
1017 | /* If we just created the symbol, mark it as being an ELF symbol. |
1018 | Other than that, there is nothing to do--there is no merge issue | |
1019 | with a newly defined symbol--so we just return. */ | |
1020 | ||
1021 | if (h->root.type == bfd_link_hash_new) | |
252b5132 | 1022 | { |
f5385ebf | 1023 | h->non_elf = 0; |
45d6a902 AM |
1024 | return TRUE; |
1025 | } | |
252b5132 | 1026 | |
45d6a902 AM |
1027 | /* In cases involving weak versioned symbols, we may wind up trying |
1028 | to merge a symbol with itself. Catch that here, to avoid the | |
1029 | confusion that results if we try to override a symbol with | |
1030 | itself. The additional tests catch cases like | |
1031 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
1032 | dynamic object, which we do want to handle here. */ | |
1033 | if (abfd == oldbfd | |
895fa45f | 1034 | && (newweak || oldweak) |
45d6a902 | 1035 | && ((abfd->flags & DYNAMIC) == 0 |
f5385ebf | 1036 | || !h->def_regular)) |
45d6a902 AM |
1037 | return TRUE; |
1038 | ||
707bba77 | 1039 | olddyn = FALSE; |
45d6a902 AM |
1040 | if (oldbfd != NULL) |
1041 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
707bba77 | 1042 | else if (oldsec != NULL) |
45d6a902 | 1043 | { |
707bba77 | 1044 | /* This handles the special SHN_MIPS_{TEXT,DATA} section |
45d6a902 | 1045 | indices used by MIPS ELF. */ |
707bba77 | 1046 | olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; |
45d6a902 | 1047 | } |
252b5132 | 1048 | |
45d6a902 AM |
1049 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
1050 | respectively, appear to be a definition rather than reference. */ | |
1051 | ||
707bba77 | 1052 | newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); |
45d6a902 | 1053 | |
707bba77 AM |
1054 | olddef = (h->root.type != bfd_link_hash_undefined |
1055 | && h->root.type != bfd_link_hash_undefweak | |
1056 | && h->root.type != bfd_link_hash_common); | |
45d6a902 | 1057 | |
0a36a439 L |
1058 | /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, |
1059 | respectively, appear to be a function. */ | |
1060 | ||
1061 | newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
1062 | && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); | |
1063 | ||
1064 | oldfunc = (h->type != STT_NOTYPE | |
1065 | && bed->is_function_type (h->type)); | |
1066 | ||
580a2b6e L |
1067 | /* When we try to create a default indirect symbol from the dynamic |
1068 | definition with the default version, we skip it if its type and | |
40101021 | 1069 | the type of existing regular definition mismatch. */ |
580a2b6e | 1070 | if (pold_alignment == NULL |
580a2b6e L |
1071 | && newdyn |
1072 | && newdef | |
1073 | && !olddyn | |
4584ec12 L |
1074 | && (((olddef || h->root.type == bfd_link_hash_common) |
1075 | && ELF_ST_TYPE (sym->st_info) != h->type | |
1076 | && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
1077 | && h->type != STT_NOTYPE | |
1078 | && !(newfunc && oldfunc)) | |
1079 | || (olddef | |
1080 | && ((h->type == STT_GNU_IFUNC) | |
1081 | != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))))) | |
580a2b6e L |
1082 | { |
1083 | *skip = TRUE; | |
1084 | return TRUE; | |
1085 | } | |
1086 | ||
4c34aff8 AM |
1087 | /* Check TLS symbols. We don't check undefined symbols introduced |
1088 | by "ld -u" which have no type (and oldbfd NULL), and we don't | |
1089 | check symbols from plugins because they also have no type. */ | |
1090 | if (oldbfd != NULL | |
1091 | && (oldbfd->flags & BFD_PLUGIN) == 0 | |
1092 | && (abfd->flags & BFD_PLUGIN) == 0 | |
1093 | && ELF_ST_TYPE (sym->st_info) != h->type | |
1094 | && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) | |
7479dfd4 L |
1095 | { |
1096 | bfd *ntbfd, *tbfd; | |
1097 | bfd_boolean ntdef, tdef; | |
1098 | asection *ntsec, *tsec; | |
1099 | ||
1100 | if (h->type == STT_TLS) | |
1101 | { | |
3b36f7e6 | 1102 | ntbfd = abfd; |
7479dfd4 L |
1103 | ntsec = sec; |
1104 | ntdef = newdef; | |
1105 | tbfd = oldbfd; | |
1106 | tsec = oldsec; | |
1107 | tdef = olddef; | |
1108 | } | |
1109 | else | |
1110 | { | |
1111 | ntbfd = oldbfd; | |
1112 | ntsec = oldsec; | |
1113 | ntdef = olddef; | |
1114 | tbfd = abfd; | |
1115 | tsec = sec; | |
1116 | tdef = newdef; | |
1117 | } | |
1118 | ||
1119 | if (tdef && ntdef) | |
1120 | (*_bfd_error_handler) | |
191c0c42 AM |
1121 | (_("%s: TLS definition in %B section %A " |
1122 | "mismatches non-TLS definition in %B section %A"), | |
7479dfd4 L |
1123 | tbfd, tsec, ntbfd, ntsec, h->root.root.string); |
1124 | else if (!tdef && !ntdef) | |
1125 | (*_bfd_error_handler) | |
191c0c42 AM |
1126 | (_("%s: TLS reference in %B " |
1127 | "mismatches non-TLS reference in %B"), | |
7479dfd4 L |
1128 | tbfd, ntbfd, h->root.root.string); |
1129 | else if (tdef) | |
1130 | (*_bfd_error_handler) | |
191c0c42 AM |
1131 | (_("%s: TLS definition in %B section %A " |
1132 | "mismatches non-TLS reference in %B"), | |
7479dfd4 L |
1133 | tbfd, tsec, ntbfd, h->root.root.string); |
1134 | else | |
1135 | (*_bfd_error_handler) | |
191c0c42 AM |
1136 | (_("%s: TLS reference in %B " |
1137 | "mismatches non-TLS definition in %B section %A"), | |
7479dfd4 L |
1138 | tbfd, ntbfd, ntsec, h->root.root.string); |
1139 | ||
1140 | bfd_set_error (bfd_error_bad_value); | |
1141 | return FALSE; | |
1142 | } | |
1143 | ||
45d6a902 AM |
1144 | /* If the old symbol has non-default visibility, we ignore the new |
1145 | definition from a dynamic object. */ | |
1146 | if (newdyn | |
9c7a29a3 | 1147 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 AM |
1148 | && !bfd_is_und_section (sec)) |
1149 | { | |
1150 | *skip = TRUE; | |
1151 | /* Make sure this symbol is dynamic. */ | |
f5385ebf | 1152 | h->ref_dynamic = 1; |
90c984fc | 1153 | hi->ref_dynamic = 1; |
45d6a902 AM |
1154 | /* A protected symbol has external availability. Make sure it is |
1155 | recorded as dynamic. | |
1156 | ||
1157 | FIXME: Should we check type and size for protected symbol? */ | |
1158 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | |
c152c796 | 1159 | return bfd_elf_link_record_dynamic_symbol (info, h); |
45d6a902 AM |
1160 | else |
1161 | return TRUE; | |
1162 | } | |
1163 | else if (!newdyn | |
9c7a29a3 | 1164 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
f5385ebf | 1165 | && h->def_dynamic) |
45d6a902 AM |
1166 | { |
1167 | /* If the new symbol with non-default visibility comes from a | |
1168 | relocatable file and the old definition comes from a dynamic | |
1169 | object, we remove the old definition. */ | |
6c9b78e6 | 1170 | if (hi->root.type == bfd_link_hash_indirect) |
d2dee3b2 L |
1171 | { |
1172 | /* Handle the case where the old dynamic definition is | |
1173 | default versioned. We need to copy the symbol info from | |
1174 | the symbol with default version to the normal one if it | |
1175 | was referenced before. */ | |
1176 | if (h->ref_regular) | |
1177 | { | |
6c9b78e6 | 1178 | hi->root.type = h->root.type; |
d2dee3b2 | 1179 | h->root.type = bfd_link_hash_indirect; |
6c9b78e6 | 1180 | (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); |
aed81c4e | 1181 | |
6c9b78e6 | 1182 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
aed81c4e | 1183 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
d2dee3b2 | 1184 | { |
aed81c4e MR |
1185 | /* If the new symbol is hidden or internal, completely undo |
1186 | any dynamic link state. */ | |
1187 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1188 | h->forced_local = 0; | |
1189 | h->ref_dynamic = 0; | |
d2dee3b2 L |
1190 | } |
1191 | else | |
aed81c4e MR |
1192 | h->ref_dynamic = 1; |
1193 | ||
1194 | h->def_dynamic = 0; | |
aed81c4e MR |
1195 | /* FIXME: Should we check type and size for protected symbol? */ |
1196 | h->size = 0; | |
1197 | h->type = 0; | |
1198 | ||
6c9b78e6 | 1199 | h = hi; |
d2dee3b2 L |
1200 | } |
1201 | else | |
6c9b78e6 | 1202 | h = hi; |
d2dee3b2 | 1203 | } |
1de1a317 | 1204 | |
f5eda473 AM |
1205 | /* If the old symbol was undefined before, then it will still be |
1206 | on the undefs list. If the new symbol is undefined or | |
1207 | common, we can't make it bfd_link_hash_new here, because new | |
1208 | undefined or common symbols will be added to the undefs list | |
1209 | by _bfd_generic_link_add_one_symbol. Symbols may not be | |
1210 | added twice to the undefs list. Also, if the new symbol is | |
1211 | undefweak then we don't want to lose the strong undef. */ | |
1212 | if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) | |
1de1a317 | 1213 | { |
1de1a317 | 1214 | h->root.type = bfd_link_hash_undefined; |
1de1a317 L |
1215 | h->root.u.undef.abfd = abfd; |
1216 | } | |
1217 | else | |
1218 | { | |
1219 | h->root.type = bfd_link_hash_new; | |
1220 | h->root.u.undef.abfd = NULL; | |
1221 | } | |
1222 | ||
f5eda473 | 1223 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
252b5132 | 1224 | { |
f5eda473 AM |
1225 | /* If the new symbol is hidden or internal, completely undo |
1226 | any dynamic link state. */ | |
1227 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1228 | h->forced_local = 0; | |
1229 | h->ref_dynamic = 0; | |
45d6a902 | 1230 | } |
f5eda473 AM |
1231 | else |
1232 | h->ref_dynamic = 1; | |
1233 | h->def_dynamic = 0; | |
45d6a902 AM |
1234 | /* FIXME: Should we check type and size for protected symbol? */ |
1235 | h->size = 0; | |
1236 | h->type = 0; | |
1237 | return TRUE; | |
1238 | } | |
14a793b2 | 1239 | |
15b43f48 AM |
1240 | /* If a new weak symbol definition comes from a regular file and the |
1241 | old symbol comes from a dynamic library, we treat the new one as | |
1242 | strong. Similarly, an old weak symbol definition from a regular | |
1243 | file is treated as strong when the new symbol comes from a dynamic | |
1244 | library. Further, an old weak symbol from a dynamic library is | |
1245 | treated as strong if the new symbol is from a dynamic library. | |
1246 | This reflects the way glibc's ld.so works. | |
1247 | ||
1248 | Do this before setting *type_change_ok or *size_change_ok so that | |
1249 | we warn properly when dynamic library symbols are overridden. */ | |
1250 | ||
1251 | if (newdef && !newdyn && olddyn) | |
0f8a2703 | 1252 | newweak = FALSE; |
15b43f48 | 1253 | if (olddef && newdyn) |
0f8a2703 AM |
1254 | oldweak = FALSE; |
1255 | ||
d334575b | 1256 | /* Allow changes between different types of function symbol. */ |
0a36a439 | 1257 | if (newfunc && oldfunc) |
fcb93ecf PB |
1258 | *type_change_ok = TRUE; |
1259 | ||
79349b09 AM |
1260 | /* It's OK to change the type if either the existing symbol or the |
1261 | new symbol is weak. A type change is also OK if the old symbol | |
1262 | is undefined and the new symbol is defined. */ | |
252b5132 | 1263 | |
79349b09 AM |
1264 | if (oldweak |
1265 | || newweak | |
1266 | || (newdef | |
1267 | && h->root.type == bfd_link_hash_undefined)) | |
1268 | *type_change_ok = TRUE; | |
1269 | ||
1270 | /* It's OK to change the size if either the existing symbol or the | |
1271 | new symbol is weak, or if the old symbol is undefined. */ | |
1272 | ||
1273 | if (*type_change_ok | |
1274 | || h->root.type == bfd_link_hash_undefined) | |
1275 | *size_change_ok = TRUE; | |
45d6a902 | 1276 | |
45d6a902 AM |
1277 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
1278 | symbol, respectively, appears to be a common symbol in a dynamic | |
1279 | object. If a symbol appears in an uninitialized section, and is | |
1280 | not weak, and is not a function, then it may be a common symbol | |
1281 | which was resolved when the dynamic object was created. We want | |
1282 | to treat such symbols specially, because they raise special | |
1283 | considerations when setting the symbol size: if the symbol | |
1284 | appears as a common symbol in a regular object, and the size in | |
1285 | the regular object is larger, we must make sure that we use the | |
1286 | larger size. This problematic case can always be avoided in C, | |
1287 | but it must be handled correctly when using Fortran shared | |
1288 | libraries. | |
1289 | ||
1290 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
1291 | likewise for OLDDYNCOMMON and OLDDEF. | |
1292 | ||
1293 | Note that this test is just a heuristic, and that it is quite | |
1294 | possible to have an uninitialized symbol in a shared object which | |
1295 | is really a definition, rather than a common symbol. This could | |
1296 | lead to some minor confusion when the symbol really is a common | |
1297 | symbol in some regular object. However, I think it will be | |
1298 | harmless. */ | |
1299 | ||
1300 | if (newdyn | |
1301 | && newdef | |
79349b09 | 1302 | && !newweak |
45d6a902 AM |
1303 | && (sec->flags & SEC_ALLOC) != 0 |
1304 | && (sec->flags & SEC_LOAD) == 0 | |
1305 | && sym->st_size > 0 | |
0a36a439 | 1306 | && !newfunc) |
45d6a902 AM |
1307 | newdyncommon = TRUE; |
1308 | else | |
1309 | newdyncommon = FALSE; | |
1310 | ||
1311 | if (olddyn | |
1312 | && olddef | |
1313 | && h->root.type == bfd_link_hash_defined | |
f5385ebf | 1314 | && h->def_dynamic |
45d6a902 AM |
1315 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 |
1316 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
1317 | && h->size > 0 | |
0a36a439 | 1318 | && !oldfunc) |
45d6a902 AM |
1319 | olddyncommon = TRUE; |
1320 | else | |
1321 | olddyncommon = FALSE; | |
1322 | ||
a4d8e49b L |
1323 | /* We now know everything about the old and new symbols. We ask the |
1324 | backend to check if we can merge them. */ | |
5d13b3b3 AM |
1325 | if (bed->merge_symbol != NULL) |
1326 | { | |
1327 | if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) | |
1328 | return FALSE; | |
1329 | sec = *psec; | |
1330 | } | |
a4d8e49b | 1331 | |
45d6a902 AM |
1332 | /* If both the old and the new symbols look like common symbols in a |
1333 | dynamic object, set the size of the symbol to the larger of the | |
1334 | two. */ | |
1335 | ||
1336 | if (olddyncommon | |
1337 | && newdyncommon | |
1338 | && sym->st_size != h->size) | |
1339 | { | |
1340 | /* Since we think we have two common symbols, issue a multiple | |
1341 | common warning if desired. Note that we only warn if the | |
1342 | size is different. If the size is the same, we simply let | |
1343 | the old symbol override the new one as normally happens with | |
1344 | symbols defined in dynamic objects. */ | |
1345 | ||
1346 | if (! ((*info->callbacks->multiple_common) | |
24f58f47 | 1347 | (info, &h->root, abfd, bfd_link_hash_common, sym->st_size))) |
45d6a902 | 1348 | return FALSE; |
252b5132 | 1349 | |
45d6a902 AM |
1350 | if (sym->st_size > h->size) |
1351 | h->size = sym->st_size; | |
252b5132 | 1352 | |
45d6a902 | 1353 | *size_change_ok = TRUE; |
252b5132 RH |
1354 | } |
1355 | ||
45d6a902 AM |
1356 | /* If we are looking at a dynamic object, and we have found a |
1357 | definition, we need to see if the symbol was already defined by | |
1358 | some other object. If so, we want to use the existing | |
1359 | definition, and we do not want to report a multiple symbol | |
1360 | definition error; we do this by clobbering *PSEC to be | |
1361 | bfd_und_section_ptr. | |
1362 | ||
1363 | We treat a common symbol as a definition if the symbol in the | |
1364 | shared library is a function, since common symbols always | |
1365 | represent variables; this can cause confusion in principle, but | |
1366 | any such confusion would seem to indicate an erroneous program or | |
1367 | shared library. We also permit a common symbol in a regular | |
79349b09 | 1368 | object to override a weak symbol in a shared object. */ |
45d6a902 AM |
1369 | |
1370 | if (newdyn | |
1371 | && newdef | |
77cfaee6 | 1372 | && (olddef |
45d6a902 | 1373 | || (h->root.type == bfd_link_hash_common |
0a36a439 | 1374 | && (newweak || newfunc)))) |
45d6a902 AM |
1375 | { |
1376 | *override = TRUE; | |
1377 | newdef = FALSE; | |
1378 | newdyncommon = FALSE; | |
252b5132 | 1379 | |
45d6a902 AM |
1380 | *psec = sec = bfd_und_section_ptr; |
1381 | *size_change_ok = TRUE; | |
252b5132 | 1382 | |
45d6a902 AM |
1383 | /* If we get here when the old symbol is a common symbol, then |
1384 | we are explicitly letting it override a weak symbol or | |
1385 | function in a dynamic object, and we don't want to warn about | |
1386 | a type change. If the old symbol is a defined symbol, a type | |
1387 | change warning may still be appropriate. */ | |
252b5132 | 1388 | |
45d6a902 AM |
1389 | if (h->root.type == bfd_link_hash_common) |
1390 | *type_change_ok = TRUE; | |
1391 | } | |
1392 | ||
1393 | /* Handle the special case of an old common symbol merging with a | |
1394 | new symbol which looks like a common symbol in a shared object. | |
1395 | We change *PSEC and *PVALUE to make the new symbol look like a | |
91134c82 L |
1396 | common symbol, and let _bfd_generic_link_add_one_symbol do the |
1397 | right thing. */ | |
45d6a902 AM |
1398 | |
1399 | if (newdyncommon | |
1400 | && h->root.type == bfd_link_hash_common) | |
1401 | { | |
1402 | *override = TRUE; | |
1403 | newdef = FALSE; | |
1404 | newdyncommon = FALSE; | |
1405 | *pvalue = sym->st_size; | |
a4d8e49b | 1406 | *psec = sec = bed->common_section (oldsec); |
45d6a902 AM |
1407 | *size_change_ok = TRUE; |
1408 | } | |
1409 | ||
c5e2cead | 1410 | /* Skip weak definitions of symbols that are already defined. */ |
f41d945b | 1411 | if (newdef && olddef && newweak) |
54ac0771 | 1412 | { |
35ed3f94 | 1413 | /* Don't skip new non-IR weak syms. */ |
3a5dbfb2 AM |
1414 | if (!(oldbfd != NULL |
1415 | && (oldbfd->flags & BFD_PLUGIN) != 0 | |
35ed3f94 | 1416 | && (abfd->flags & BFD_PLUGIN) == 0)) |
57fa7b8c AM |
1417 | { |
1418 | newdef = FALSE; | |
1419 | *skip = TRUE; | |
1420 | } | |
54ac0771 L |
1421 | |
1422 | /* Merge st_other. If the symbol already has a dynamic index, | |
1423 | but visibility says it should not be visible, turn it into a | |
1424 | local symbol. */ | |
1425 | elf_merge_st_other (abfd, h, sym, newdef, newdyn); | |
1426 | if (h->dynindx != -1) | |
1427 | switch (ELF_ST_VISIBILITY (h->other)) | |
1428 | { | |
1429 | case STV_INTERNAL: | |
1430 | case STV_HIDDEN: | |
1431 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
1432 | break; | |
1433 | } | |
1434 | } | |
c5e2cead | 1435 | |
45d6a902 AM |
1436 | /* If the old symbol is from a dynamic object, and the new symbol is |
1437 | a definition which is not from a dynamic object, then the new | |
1438 | symbol overrides the old symbol. Symbols from regular files | |
1439 | always take precedence over symbols from dynamic objects, even if | |
1440 | they are defined after the dynamic object in the link. | |
1441 | ||
1442 | As above, we again permit a common symbol in a regular object to | |
1443 | override a definition in a shared object if the shared object | |
0f8a2703 | 1444 | symbol is a function or is weak. */ |
45d6a902 AM |
1445 | |
1446 | flip = NULL; | |
77cfaee6 | 1447 | if (!newdyn |
45d6a902 AM |
1448 | && (newdef |
1449 | || (bfd_is_com_section (sec) | |
0a36a439 | 1450 | && (oldweak || oldfunc))) |
45d6a902 AM |
1451 | && olddyn |
1452 | && olddef | |
f5385ebf | 1453 | && h->def_dynamic) |
45d6a902 AM |
1454 | { |
1455 | /* Change the hash table entry to undefined, and let | |
1456 | _bfd_generic_link_add_one_symbol do the right thing with the | |
1457 | new definition. */ | |
1458 | ||
1459 | h->root.type = bfd_link_hash_undefined; | |
1460 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1461 | *size_change_ok = TRUE; | |
1462 | ||
1463 | olddef = FALSE; | |
1464 | olddyncommon = FALSE; | |
1465 | ||
1466 | /* We again permit a type change when a common symbol may be | |
1467 | overriding a function. */ | |
1468 | ||
1469 | if (bfd_is_com_section (sec)) | |
0a36a439 L |
1470 | { |
1471 | if (oldfunc) | |
1472 | { | |
1473 | /* If a common symbol overrides a function, make sure | |
1474 | that it isn't defined dynamically nor has type | |
1475 | function. */ | |
1476 | h->def_dynamic = 0; | |
1477 | h->type = STT_NOTYPE; | |
1478 | } | |
1479 | *type_change_ok = TRUE; | |
1480 | } | |
45d6a902 | 1481 | |
6c9b78e6 AM |
1482 | if (hi->root.type == bfd_link_hash_indirect) |
1483 | flip = hi; | |
45d6a902 AM |
1484 | else |
1485 | /* This union may have been set to be non-NULL when this symbol | |
1486 | was seen in a dynamic object. We must force the union to be | |
1487 | NULL, so that it is correct for a regular symbol. */ | |
1488 | h->verinfo.vertree = NULL; | |
1489 | } | |
1490 | ||
1491 | /* Handle the special case of a new common symbol merging with an | |
1492 | old symbol that looks like it might be a common symbol defined in | |
1493 | a shared object. Note that we have already handled the case in | |
1494 | which a new common symbol should simply override the definition | |
1495 | in the shared library. */ | |
1496 | ||
1497 | if (! newdyn | |
1498 | && bfd_is_com_section (sec) | |
1499 | && olddyncommon) | |
1500 | { | |
1501 | /* It would be best if we could set the hash table entry to a | |
1502 | common symbol, but we don't know what to use for the section | |
1503 | or the alignment. */ | |
1504 | if (! ((*info->callbacks->multiple_common) | |
24f58f47 | 1505 | (info, &h->root, abfd, bfd_link_hash_common, sym->st_size))) |
45d6a902 AM |
1506 | return FALSE; |
1507 | ||
4cc11e76 | 1508 | /* If the presumed common symbol in the dynamic object is |
45d6a902 AM |
1509 | larger, pretend that the new symbol has its size. */ |
1510 | ||
1511 | if (h->size > *pvalue) | |
1512 | *pvalue = h->size; | |
1513 | ||
af44c138 L |
1514 | /* We need to remember the alignment required by the symbol |
1515 | in the dynamic object. */ | |
1516 | BFD_ASSERT (pold_alignment); | |
1517 | *pold_alignment = h->root.u.def.section->alignment_power; | |
45d6a902 AM |
1518 | |
1519 | olddef = FALSE; | |
1520 | olddyncommon = FALSE; | |
1521 | ||
1522 | h->root.type = bfd_link_hash_undefined; | |
1523 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1524 | ||
1525 | *size_change_ok = TRUE; | |
1526 | *type_change_ok = TRUE; | |
1527 | ||
6c9b78e6 AM |
1528 | if (hi->root.type == bfd_link_hash_indirect) |
1529 | flip = hi; | |
45d6a902 AM |
1530 | else |
1531 | h->verinfo.vertree = NULL; | |
1532 | } | |
1533 | ||
1534 | if (flip != NULL) | |
1535 | { | |
1536 | /* Handle the case where we had a versioned symbol in a dynamic | |
1537 | library and now find a definition in a normal object. In this | |
1538 | case, we make the versioned symbol point to the normal one. */ | |
45d6a902 | 1539 | flip->root.type = h->root.type; |
00cbee0a | 1540 | flip->root.u.undef.abfd = h->root.u.undef.abfd; |
45d6a902 AM |
1541 | h->root.type = bfd_link_hash_indirect; |
1542 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |
fcfa13d2 | 1543 | (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); |
f5385ebf | 1544 | if (h->def_dynamic) |
45d6a902 | 1545 | { |
f5385ebf AM |
1546 | h->def_dynamic = 0; |
1547 | flip->ref_dynamic = 1; | |
45d6a902 AM |
1548 | } |
1549 | } | |
1550 | ||
45d6a902 AM |
1551 | return TRUE; |
1552 | } | |
1553 | ||
1554 | /* This function is called to create an indirect symbol from the | |
1555 | default for the symbol with the default version if needed. The | |
4f3fedcf | 1556 | symbol is described by H, NAME, SYM, SEC, and VALUE. We |
0f8a2703 | 1557 | set DYNSYM if the new indirect symbol is dynamic. */ |
45d6a902 | 1558 | |
28caa186 | 1559 | static bfd_boolean |
268b6b39 AM |
1560 | _bfd_elf_add_default_symbol (bfd *abfd, |
1561 | struct bfd_link_info *info, | |
1562 | struct elf_link_hash_entry *h, | |
1563 | const char *name, | |
1564 | Elf_Internal_Sym *sym, | |
4f3fedcf AM |
1565 | asection *sec, |
1566 | bfd_vma value, | |
1567 | bfd **poldbfd, | |
e3c9d234 | 1568 | bfd_boolean *dynsym) |
45d6a902 AM |
1569 | { |
1570 | bfd_boolean type_change_ok; | |
1571 | bfd_boolean size_change_ok; | |
1572 | bfd_boolean skip; | |
1573 | char *shortname; | |
1574 | struct elf_link_hash_entry *hi; | |
1575 | struct bfd_link_hash_entry *bh; | |
9c5bfbb7 | 1576 | const struct elf_backend_data *bed; |
45d6a902 AM |
1577 | bfd_boolean collect; |
1578 | bfd_boolean dynamic; | |
e3c9d234 | 1579 | bfd_boolean override; |
45d6a902 AM |
1580 | char *p; |
1581 | size_t len, shortlen; | |
ffd65175 | 1582 | asection *tmp_sec; |
45d6a902 AM |
1583 | |
1584 | /* If this symbol has a version, and it is the default version, we | |
1585 | create an indirect symbol from the default name to the fully | |
1586 | decorated name. This will cause external references which do not | |
1587 | specify a version to be bound to this version of the symbol. */ | |
1588 | p = strchr (name, ELF_VER_CHR); | |
1589 | if (p == NULL || p[1] != ELF_VER_CHR) | |
1590 | return TRUE; | |
1591 | ||
45d6a902 AM |
1592 | bed = get_elf_backend_data (abfd); |
1593 | collect = bed->collect; | |
1594 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
1595 | ||
1596 | shortlen = p - name; | |
a50b1753 | 1597 | shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); |
45d6a902 AM |
1598 | if (shortname == NULL) |
1599 | return FALSE; | |
1600 | memcpy (shortname, name, shortlen); | |
1601 | shortname[shortlen] = '\0'; | |
1602 | ||
1603 | /* We are going to create a new symbol. Merge it with any existing | |
1604 | symbol with this name. For the purposes of the merge, act as | |
1605 | though we were defining the symbol we just defined, although we | |
1606 | actually going to define an indirect symbol. */ | |
1607 | type_change_ok = FALSE; | |
1608 | size_change_ok = FALSE; | |
ffd65175 AM |
1609 | tmp_sec = sec; |
1610 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | |
4f3fedcf | 1611 | &hi, poldbfd, NULL, NULL, &skip, &override, |
af44c138 | 1612 | &type_change_ok, &size_change_ok)) |
45d6a902 AM |
1613 | return FALSE; |
1614 | ||
1615 | if (skip) | |
1616 | goto nondefault; | |
1617 | ||
1618 | if (! override) | |
1619 | { | |
1620 | bh = &hi->root; | |
1621 | if (! (_bfd_generic_link_add_one_symbol | |
1622 | (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr, | |
268b6b39 | 1623 | 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1624 | return FALSE; |
1625 | hi = (struct elf_link_hash_entry *) bh; | |
1626 | } | |
1627 | else | |
1628 | { | |
1629 | /* In this case the symbol named SHORTNAME is overriding the | |
1630 | indirect symbol we want to add. We were planning on making | |
1631 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
1632 | is the name without a version. NAME is the fully versioned | |
1633 | name, and it is the default version. | |
1634 | ||
1635 | Overriding means that we already saw a definition for the | |
1636 | symbol SHORTNAME in a regular object, and it is overriding | |
1637 | the symbol defined in the dynamic object. | |
1638 | ||
1639 | When this happens, we actually want to change NAME, the | |
1640 | symbol we just added, to refer to SHORTNAME. This will cause | |
1641 | references to NAME in the shared object to become references | |
1642 | to SHORTNAME in the regular object. This is what we expect | |
1643 | when we override a function in a shared object: that the | |
1644 | references in the shared object will be mapped to the | |
1645 | definition in the regular object. */ | |
1646 | ||
1647 | while (hi->root.type == bfd_link_hash_indirect | |
1648 | || hi->root.type == bfd_link_hash_warning) | |
1649 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1650 | ||
1651 | h->root.type = bfd_link_hash_indirect; | |
1652 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
f5385ebf | 1653 | if (h->def_dynamic) |
45d6a902 | 1654 | { |
f5385ebf AM |
1655 | h->def_dynamic = 0; |
1656 | hi->ref_dynamic = 1; | |
1657 | if (hi->ref_regular | |
1658 | || hi->def_regular) | |
45d6a902 | 1659 | { |
c152c796 | 1660 | if (! bfd_elf_link_record_dynamic_symbol (info, hi)) |
45d6a902 AM |
1661 | return FALSE; |
1662 | } | |
1663 | } | |
1664 | ||
1665 | /* Now set HI to H, so that the following code will set the | |
1666 | other fields correctly. */ | |
1667 | hi = h; | |
1668 | } | |
1669 | ||
fab4a87f L |
1670 | /* Check if HI is a warning symbol. */ |
1671 | if (hi->root.type == bfd_link_hash_warning) | |
1672 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
1673 | ||
45d6a902 AM |
1674 | /* If there is a duplicate definition somewhere, then HI may not |
1675 | point to an indirect symbol. We will have reported an error to | |
1676 | the user in that case. */ | |
1677 | ||
1678 | if (hi->root.type == bfd_link_hash_indirect) | |
1679 | { | |
1680 | struct elf_link_hash_entry *ht; | |
1681 | ||
45d6a902 | 1682 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
fcfa13d2 | 1683 | (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); |
45d6a902 | 1684 | |
68c88cd4 AM |
1685 | /* A reference to the SHORTNAME symbol from a dynamic library |
1686 | will be satisfied by the versioned symbol at runtime. In | |
1687 | effect, we have a reference to the versioned symbol. */ | |
1688 | ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; | |
1689 | hi->dynamic_def |= ht->dynamic_def; | |
1690 | ||
45d6a902 AM |
1691 | /* See if the new flags lead us to realize that the symbol must |
1692 | be dynamic. */ | |
1693 | if (! *dynsym) | |
1694 | { | |
1695 | if (! dynamic) | |
1696 | { | |
ca4a656b | 1697 | if (! info->executable |
90c984fc | 1698 | || hi->def_dynamic |
f5385ebf | 1699 | || hi->ref_dynamic) |
45d6a902 AM |
1700 | *dynsym = TRUE; |
1701 | } | |
1702 | else | |
1703 | { | |
f5385ebf | 1704 | if (hi->ref_regular) |
45d6a902 AM |
1705 | *dynsym = TRUE; |
1706 | } | |
1707 | } | |
1708 | } | |
1709 | ||
1710 | /* We also need to define an indirection from the nondefault version | |
1711 | of the symbol. */ | |
1712 | ||
1713 | nondefault: | |
1714 | len = strlen (name); | |
a50b1753 | 1715 | shortname = (char *) bfd_hash_allocate (&info->hash->table, len); |
45d6a902 AM |
1716 | if (shortname == NULL) |
1717 | return FALSE; | |
1718 | memcpy (shortname, name, shortlen); | |
1719 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |
1720 | ||
1721 | /* Once again, merge with any existing symbol. */ | |
1722 | type_change_ok = FALSE; | |
1723 | size_change_ok = FALSE; | |
ffd65175 AM |
1724 | tmp_sec = sec; |
1725 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | |
115c6d5c | 1726 | &hi, poldbfd, NULL, NULL, &skip, &override, |
af44c138 | 1727 | &type_change_ok, &size_change_ok)) |
45d6a902 AM |
1728 | return FALSE; |
1729 | ||
1730 | if (skip) | |
1731 | return TRUE; | |
1732 | ||
1733 | if (override) | |
1734 | { | |
1735 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
1736 | the type of override we do in the case above unless it is | |
4cc11e76 | 1737 | overridden by a versioned definition. */ |
45d6a902 AM |
1738 | if (hi->root.type != bfd_link_hash_defined |
1739 | && hi->root.type != bfd_link_hash_defweak) | |
1740 | (*_bfd_error_handler) | |
d003868e AM |
1741 | (_("%B: unexpected redefinition of indirect versioned symbol `%s'"), |
1742 | abfd, shortname); | |
45d6a902 AM |
1743 | } |
1744 | else | |
1745 | { | |
1746 | bh = &hi->root; | |
1747 | if (! (_bfd_generic_link_add_one_symbol | |
1748 | (info, abfd, shortname, BSF_INDIRECT, | |
268b6b39 | 1749 | bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) |
45d6a902 AM |
1750 | return FALSE; |
1751 | hi = (struct elf_link_hash_entry *) bh; | |
1752 | ||
1753 | /* If there is a duplicate definition somewhere, then HI may not | |
1754 | point to an indirect symbol. We will have reported an error | |
1755 | to the user in that case. */ | |
1756 | ||
1757 | if (hi->root.type == bfd_link_hash_indirect) | |
1758 | { | |
fcfa13d2 | 1759 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
68c88cd4 AM |
1760 | h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; |
1761 | hi->dynamic_def |= h->dynamic_def; | |
45d6a902 AM |
1762 | |
1763 | /* See if the new flags lead us to realize that the symbol | |
1764 | must be dynamic. */ | |
1765 | if (! *dynsym) | |
1766 | { | |
1767 | if (! dynamic) | |
1768 | { | |
ca4a656b | 1769 | if (! info->executable |
f5385ebf | 1770 | || hi->ref_dynamic) |
45d6a902 AM |
1771 | *dynsym = TRUE; |
1772 | } | |
1773 | else | |
1774 | { | |
f5385ebf | 1775 | if (hi->ref_regular) |
45d6a902 AM |
1776 | *dynsym = TRUE; |
1777 | } | |
1778 | } | |
1779 | } | |
1780 | } | |
1781 | ||
1782 | return TRUE; | |
1783 | } | |
1784 | \f | |
1785 | /* This routine is used to export all defined symbols into the dynamic | |
1786 | symbol table. It is called via elf_link_hash_traverse. */ | |
1787 | ||
28caa186 | 1788 | static bfd_boolean |
268b6b39 | 1789 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1790 | { |
a50b1753 | 1791 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
45d6a902 AM |
1792 | |
1793 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
1794 | if (h->root.type == bfd_link_hash_indirect) | |
1795 | return TRUE; | |
1796 | ||
7686d77d AM |
1797 | /* Ignore this if we won't export it. */ |
1798 | if (!eif->info->export_dynamic && !h->dynamic) | |
1799 | return TRUE; | |
45d6a902 AM |
1800 | |
1801 | if (h->dynindx == -1 | |
fd91d419 L |
1802 | && (h->def_regular || h->ref_regular) |
1803 | && ! bfd_hide_sym_by_version (eif->info->version_info, | |
1804 | h->root.root.string)) | |
45d6a902 | 1805 | { |
fd91d419 | 1806 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
45d6a902 | 1807 | { |
fd91d419 L |
1808 | eif->failed = TRUE; |
1809 | return FALSE; | |
45d6a902 AM |
1810 | } |
1811 | } | |
1812 | ||
1813 | return TRUE; | |
1814 | } | |
1815 | \f | |
1816 | /* Look through the symbols which are defined in other shared | |
1817 | libraries and referenced here. Update the list of version | |
1818 | dependencies. This will be put into the .gnu.version_r section. | |
1819 | This function is called via elf_link_hash_traverse. */ | |
1820 | ||
28caa186 | 1821 | static bfd_boolean |
268b6b39 AM |
1822 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
1823 | void *data) | |
45d6a902 | 1824 | { |
a50b1753 | 1825 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; |
45d6a902 AM |
1826 | Elf_Internal_Verneed *t; |
1827 | Elf_Internal_Vernaux *a; | |
1828 | bfd_size_type amt; | |
1829 | ||
45d6a902 AM |
1830 | /* We only care about symbols defined in shared objects with version |
1831 | information. */ | |
f5385ebf AM |
1832 | if (!h->def_dynamic |
1833 | || h->def_regular | |
45d6a902 AM |
1834 | || h->dynindx == -1 |
1835 | || h->verinfo.verdef == NULL) | |
1836 | return TRUE; | |
1837 | ||
1838 | /* See if we already know about this version. */ | |
28caa186 AM |
1839 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; |
1840 | t != NULL; | |
1841 | t = t->vn_nextref) | |
45d6a902 AM |
1842 | { |
1843 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
1844 | continue; | |
1845 | ||
1846 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
1847 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
1848 | return TRUE; | |
1849 | ||
1850 | break; | |
1851 | } | |
1852 | ||
1853 | /* This is a new version. Add it to tree we are building. */ | |
1854 | ||
1855 | if (t == NULL) | |
1856 | { | |
1857 | amt = sizeof *t; | |
a50b1753 | 1858 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); |
45d6a902 AM |
1859 | if (t == NULL) |
1860 | { | |
1861 | rinfo->failed = TRUE; | |
1862 | return FALSE; | |
1863 | } | |
1864 | ||
1865 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
28caa186 AM |
1866 | t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; |
1867 | elf_tdata (rinfo->info->output_bfd)->verref = t; | |
45d6a902 AM |
1868 | } |
1869 | ||
1870 | amt = sizeof *a; | |
a50b1753 | 1871 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); |
14b1c01e AM |
1872 | if (a == NULL) |
1873 | { | |
1874 | rinfo->failed = TRUE; | |
1875 | return FALSE; | |
1876 | } | |
45d6a902 AM |
1877 | |
1878 | /* Note that we are copying a string pointer here, and testing it | |
1879 | above. If bfd_elf_string_from_elf_section is ever changed to | |
1880 | discard the string data when low in memory, this will have to be | |
1881 | fixed. */ | |
1882 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
1883 | ||
1884 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
1885 | a->vna_nextptr = t->vn_auxptr; | |
1886 | ||
1887 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
1888 | ++rinfo->vers; | |
1889 | ||
1890 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
1891 | ||
1892 | t->vn_auxptr = a; | |
1893 | ||
1894 | return TRUE; | |
1895 | } | |
1896 | ||
1897 | /* Figure out appropriate versions for all the symbols. We may not | |
1898 | have the version number script until we have read all of the input | |
1899 | files, so until that point we don't know which symbols should be | |
1900 | local. This function is called via elf_link_hash_traverse. */ | |
1901 | ||
28caa186 | 1902 | static bfd_boolean |
268b6b39 | 1903 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 1904 | { |
28caa186 | 1905 | struct elf_info_failed *sinfo; |
45d6a902 | 1906 | struct bfd_link_info *info; |
9c5bfbb7 | 1907 | const struct elf_backend_data *bed; |
45d6a902 AM |
1908 | struct elf_info_failed eif; |
1909 | char *p; | |
1910 | bfd_size_type amt; | |
1911 | ||
a50b1753 | 1912 | sinfo = (struct elf_info_failed *) data; |
45d6a902 AM |
1913 | info = sinfo->info; |
1914 | ||
45d6a902 AM |
1915 | /* Fix the symbol flags. */ |
1916 | eif.failed = FALSE; | |
1917 | eif.info = info; | |
1918 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |
1919 | { | |
1920 | if (eif.failed) | |
1921 | sinfo->failed = TRUE; | |
1922 | return FALSE; | |
1923 | } | |
1924 | ||
1925 | /* We only need version numbers for symbols defined in regular | |
1926 | objects. */ | |
f5385ebf | 1927 | if (!h->def_regular) |
45d6a902 AM |
1928 | return TRUE; |
1929 | ||
28caa186 | 1930 | bed = get_elf_backend_data (info->output_bfd); |
45d6a902 AM |
1931 | p = strchr (h->root.root.string, ELF_VER_CHR); |
1932 | if (p != NULL && h->verinfo.vertree == NULL) | |
1933 | { | |
1934 | struct bfd_elf_version_tree *t; | |
1935 | bfd_boolean hidden; | |
1936 | ||
1937 | hidden = TRUE; | |
1938 | ||
1939 | /* There are two consecutive ELF_VER_CHR characters if this is | |
1940 | not a hidden symbol. */ | |
1941 | ++p; | |
1942 | if (*p == ELF_VER_CHR) | |
1943 | { | |
1944 | hidden = FALSE; | |
1945 | ++p; | |
1946 | } | |
1947 | ||
1948 | /* If there is no version string, we can just return out. */ | |
1949 | if (*p == '\0') | |
1950 | { | |
1951 | if (hidden) | |
f5385ebf | 1952 | h->hidden = 1; |
45d6a902 AM |
1953 | return TRUE; |
1954 | } | |
1955 | ||
1956 | /* Look for the version. If we find it, it is no longer weak. */ | |
fd91d419 | 1957 | for (t = sinfo->info->version_info; t != NULL; t = t->next) |
45d6a902 AM |
1958 | { |
1959 | if (strcmp (t->name, p) == 0) | |
1960 | { | |
1961 | size_t len; | |
1962 | char *alc; | |
1963 | struct bfd_elf_version_expr *d; | |
1964 | ||
1965 | len = p - h->root.root.string; | |
a50b1753 | 1966 | alc = (char *) bfd_malloc (len); |
45d6a902 | 1967 | if (alc == NULL) |
14b1c01e AM |
1968 | { |
1969 | sinfo->failed = TRUE; | |
1970 | return FALSE; | |
1971 | } | |
45d6a902 AM |
1972 | memcpy (alc, h->root.root.string, len - 1); |
1973 | alc[len - 1] = '\0'; | |
1974 | if (alc[len - 2] == ELF_VER_CHR) | |
1975 | alc[len - 2] = '\0'; | |
1976 | ||
1977 | h->verinfo.vertree = t; | |
1978 | t->used = TRUE; | |
1979 | d = NULL; | |
1980 | ||
108ba305 JJ |
1981 | if (t->globals.list != NULL) |
1982 | d = (*t->match) (&t->globals, NULL, alc); | |
45d6a902 AM |
1983 | |
1984 | /* See if there is anything to force this symbol to | |
1985 | local scope. */ | |
108ba305 | 1986 | if (d == NULL && t->locals.list != NULL) |
45d6a902 | 1987 | { |
108ba305 JJ |
1988 | d = (*t->match) (&t->locals, NULL, alc); |
1989 | if (d != NULL | |
1990 | && h->dynindx != -1 | |
108ba305 JJ |
1991 | && ! info->export_dynamic) |
1992 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
1993 | } |
1994 | ||
1995 | free (alc); | |
1996 | break; | |
1997 | } | |
1998 | } | |
1999 | ||
2000 | /* If we are building an application, we need to create a | |
2001 | version node for this version. */ | |
36af4a4e | 2002 | if (t == NULL && info->executable) |
45d6a902 AM |
2003 | { |
2004 | struct bfd_elf_version_tree **pp; | |
2005 | int version_index; | |
2006 | ||
2007 | /* If we aren't going to export this symbol, we don't need | |
2008 | to worry about it. */ | |
2009 | if (h->dynindx == -1) | |
2010 | return TRUE; | |
2011 | ||
2012 | amt = sizeof *t; | |
a50b1753 | 2013 | t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt); |
45d6a902 AM |
2014 | if (t == NULL) |
2015 | { | |
2016 | sinfo->failed = TRUE; | |
2017 | return FALSE; | |
2018 | } | |
2019 | ||
45d6a902 | 2020 | t->name = p; |
45d6a902 AM |
2021 | t->name_indx = (unsigned int) -1; |
2022 | t->used = TRUE; | |
2023 | ||
2024 | version_index = 1; | |
2025 | /* Don't count anonymous version tag. */ | |
fd91d419 L |
2026 | if (sinfo->info->version_info != NULL |
2027 | && sinfo->info->version_info->vernum == 0) | |
45d6a902 | 2028 | version_index = 0; |
fd91d419 L |
2029 | for (pp = &sinfo->info->version_info; |
2030 | *pp != NULL; | |
2031 | pp = &(*pp)->next) | |
45d6a902 AM |
2032 | ++version_index; |
2033 | t->vernum = version_index; | |
2034 | ||
2035 | *pp = t; | |
2036 | ||
2037 | h->verinfo.vertree = t; | |
2038 | } | |
2039 | else if (t == NULL) | |
2040 | { | |
2041 | /* We could not find the version for a symbol when | |
2042 | generating a shared archive. Return an error. */ | |
2043 | (*_bfd_error_handler) | |
c55fe096 | 2044 | (_("%B: version node not found for symbol %s"), |
28caa186 | 2045 | info->output_bfd, h->root.root.string); |
45d6a902 AM |
2046 | bfd_set_error (bfd_error_bad_value); |
2047 | sinfo->failed = TRUE; | |
2048 | return FALSE; | |
2049 | } | |
2050 | ||
2051 | if (hidden) | |
f5385ebf | 2052 | h->hidden = 1; |
45d6a902 AM |
2053 | } |
2054 | ||
2055 | /* If we don't have a version for this symbol, see if we can find | |
2056 | something. */ | |
fd91d419 | 2057 | if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL) |
45d6a902 | 2058 | { |
1e8fa21e | 2059 | bfd_boolean hide; |
ae5a3597 | 2060 | |
fd91d419 L |
2061 | h->verinfo.vertree |
2062 | = bfd_find_version_for_sym (sinfo->info->version_info, | |
2063 | h->root.root.string, &hide); | |
1e8fa21e AM |
2064 | if (h->verinfo.vertree != NULL && hide) |
2065 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
45d6a902 AM |
2066 | } |
2067 | ||
2068 | return TRUE; | |
2069 | } | |
2070 | \f | |
45d6a902 AM |
2071 | /* Read and swap the relocs from the section indicated by SHDR. This |
2072 | may be either a REL or a RELA section. The relocations are | |
2073 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2074 | which should have already been allocated to contain enough space. | |
2075 | The EXTERNAL_RELOCS are a buffer where the external form of the | |
2076 | relocations should be stored. | |
2077 | ||
2078 | Returns FALSE if something goes wrong. */ | |
2079 | ||
2080 | static bfd_boolean | |
268b6b39 | 2081 | elf_link_read_relocs_from_section (bfd *abfd, |
243ef1e0 | 2082 | asection *sec, |
268b6b39 AM |
2083 | Elf_Internal_Shdr *shdr, |
2084 | void *external_relocs, | |
2085 | Elf_Internal_Rela *internal_relocs) | |
45d6a902 | 2086 | { |
9c5bfbb7 | 2087 | const struct elf_backend_data *bed; |
268b6b39 | 2088 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
45d6a902 AM |
2089 | const bfd_byte *erela; |
2090 | const bfd_byte *erelaend; | |
2091 | Elf_Internal_Rela *irela; | |
243ef1e0 L |
2092 | Elf_Internal_Shdr *symtab_hdr; |
2093 | size_t nsyms; | |
45d6a902 | 2094 | |
45d6a902 AM |
2095 | /* Position ourselves at the start of the section. */ |
2096 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2097 | return FALSE; | |
2098 | ||
2099 | /* Read the relocations. */ | |
2100 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | |
2101 | return FALSE; | |
2102 | ||
243ef1e0 | 2103 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
ce98a316 | 2104 | nsyms = NUM_SHDR_ENTRIES (symtab_hdr); |
243ef1e0 | 2105 | |
45d6a902 AM |
2106 | bed = get_elf_backend_data (abfd); |
2107 | ||
2108 | /* Convert the external relocations to the internal format. */ | |
2109 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |
2110 | swap_in = bed->s->swap_reloc_in; | |
2111 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |
2112 | swap_in = bed->s->swap_reloca_in; | |
2113 | else | |
2114 | { | |
2115 | bfd_set_error (bfd_error_wrong_format); | |
2116 | return FALSE; | |
2117 | } | |
2118 | ||
a50b1753 | 2119 | erela = (const bfd_byte *) external_relocs; |
51992aec | 2120 | erelaend = erela + shdr->sh_size; |
45d6a902 AM |
2121 | irela = internal_relocs; |
2122 | while (erela < erelaend) | |
2123 | { | |
243ef1e0 L |
2124 | bfd_vma r_symndx; |
2125 | ||
45d6a902 | 2126 | (*swap_in) (abfd, erela, irela); |
243ef1e0 L |
2127 | r_symndx = ELF32_R_SYM (irela->r_info); |
2128 | if (bed->s->arch_size == 64) | |
2129 | r_symndx >>= 24; | |
ce98a316 NC |
2130 | if (nsyms > 0) |
2131 | { | |
2132 | if ((size_t) r_symndx >= nsyms) | |
2133 | { | |
2134 | (*_bfd_error_handler) | |
2135 | (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)" | |
2136 | " for offset 0x%lx in section `%A'"), | |
2137 | abfd, sec, | |
2138 | (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset); | |
2139 | bfd_set_error (bfd_error_bad_value); | |
2140 | return FALSE; | |
2141 | } | |
2142 | } | |
cf35638d | 2143 | else if (r_symndx != STN_UNDEF) |
243ef1e0 L |
2144 | { |
2145 | (*_bfd_error_handler) | |
ce98a316 NC |
2146 | (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'" |
2147 | " when the object file has no symbol table"), | |
d003868e AM |
2148 | abfd, sec, |
2149 | (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset); | |
243ef1e0 L |
2150 | bfd_set_error (bfd_error_bad_value); |
2151 | return FALSE; | |
2152 | } | |
45d6a902 AM |
2153 | irela += bed->s->int_rels_per_ext_rel; |
2154 | erela += shdr->sh_entsize; | |
2155 | } | |
2156 | ||
2157 | return TRUE; | |
2158 | } | |
2159 | ||
2160 | /* Read and swap the relocs for a section O. They may have been | |
2161 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2162 | not NULL, they are used as buffers to read into. They are known to | |
2163 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2164 | the return value is allocated using either malloc or bfd_alloc, | |
2165 | according to the KEEP_MEMORY argument. If O has two relocation | |
2166 | sections (both REL and RELA relocations), then the REL_HDR | |
2167 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
d4730f92 | 2168 | RELA_HDR relocations. */ |
45d6a902 AM |
2169 | |
2170 | Elf_Internal_Rela * | |
268b6b39 AM |
2171 | _bfd_elf_link_read_relocs (bfd *abfd, |
2172 | asection *o, | |
2173 | void *external_relocs, | |
2174 | Elf_Internal_Rela *internal_relocs, | |
2175 | bfd_boolean keep_memory) | |
45d6a902 | 2176 | { |
268b6b39 | 2177 | void *alloc1 = NULL; |
45d6a902 | 2178 | Elf_Internal_Rela *alloc2 = NULL; |
9c5bfbb7 | 2179 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
d4730f92 BS |
2180 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
2181 | Elf_Internal_Rela *internal_rela_relocs; | |
45d6a902 | 2182 | |
d4730f92 BS |
2183 | if (esdo->relocs != NULL) |
2184 | return esdo->relocs; | |
45d6a902 AM |
2185 | |
2186 | if (o->reloc_count == 0) | |
2187 | return NULL; | |
2188 | ||
45d6a902 AM |
2189 | if (internal_relocs == NULL) |
2190 | { | |
2191 | bfd_size_type size; | |
2192 | ||
2193 | size = o->reloc_count; | |
2194 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |
2195 | if (keep_memory) | |
a50b1753 | 2196 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); |
45d6a902 | 2197 | else |
a50b1753 | 2198 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
45d6a902 AM |
2199 | if (internal_relocs == NULL) |
2200 | goto error_return; | |
2201 | } | |
2202 | ||
2203 | if (external_relocs == NULL) | |
2204 | { | |
d4730f92 BS |
2205 | bfd_size_type size = 0; |
2206 | ||
2207 | if (esdo->rel.hdr) | |
2208 | size += esdo->rel.hdr->sh_size; | |
2209 | if (esdo->rela.hdr) | |
2210 | size += esdo->rela.hdr->sh_size; | |
45d6a902 | 2211 | |
268b6b39 | 2212 | alloc1 = bfd_malloc (size); |
45d6a902 AM |
2213 | if (alloc1 == NULL) |
2214 | goto error_return; | |
2215 | external_relocs = alloc1; | |
2216 | } | |
2217 | ||
d4730f92 BS |
2218 | internal_rela_relocs = internal_relocs; |
2219 | if (esdo->rel.hdr) | |
2220 | { | |
2221 | if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, | |
2222 | external_relocs, | |
2223 | internal_relocs)) | |
2224 | goto error_return; | |
2225 | external_relocs = (((bfd_byte *) external_relocs) | |
2226 | + esdo->rel.hdr->sh_size); | |
2227 | internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) | |
2228 | * bed->s->int_rels_per_ext_rel); | |
2229 | } | |
2230 | ||
2231 | if (esdo->rela.hdr | |
2232 | && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, | |
2233 | external_relocs, | |
2234 | internal_rela_relocs))) | |
45d6a902 AM |
2235 | goto error_return; |
2236 | ||
2237 | /* Cache the results for next time, if we can. */ | |
2238 | if (keep_memory) | |
d4730f92 | 2239 | esdo->relocs = internal_relocs; |
45d6a902 AM |
2240 | |
2241 | if (alloc1 != NULL) | |
2242 | free (alloc1); | |
2243 | ||
2244 | /* Don't free alloc2, since if it was allocated we are passing it | |
2245 | back (under the name of internal_relocs). */ | |
2246 | ||
2247 | return internal_relocs; | |
2248 | ||
2249 | error_return: | |
2250 | if (alloc1 != NULL) | |
2251 | free (alloc1); | |
2252 | if (alloc2 != NULL) | |
4dd07732 AM |
2253 | { |
2254 | if (keep_memory) | |
2255 | bfd_release (abfd, alloc2); | |
2256 | else | |
2257 | free (alloc2); | |
2258 | } | |
45d6a902 AM |
2259 | return NULL; |
2260 | } | |
2261 | ||
2262 | /* Compute the size of, and allocate space for, REL_HDR which is the | |
2263 | section header for a section containing relocations for O. */ | |
2264 | ||
28caa186 | 2265 | static bfd_boolean |
268b6b39 | 2266 | _bfd_elf_link_size_reloc_section (bfd *abfd, |
d4730f92 | 2267 | struct bfd_elf_section_reloc_data *reldata) |
45d6a902 | 2268 | { |
d4730f92 | 2269 | Elf_Internal_Shdr *rel_hdr = reldata->hdr; |
45d6a902 AM |
2270 | |
2271 | /* That allows us to calculate the size of the section. */ | |
d4730f92 | 2272 | rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; |
45d6a902 AM |
2273 | |
2274 | /* The contents field must last into write_object_contents, so we | |
2275 | allocate it with bfd_alloc rather than malloc. Also since we | |
2276 | cannot be sure that the contents will actually be filled in, | |
2277 | we zero the allocated space. */ | |
a50b1753 | 2278 | rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); |
45d6a902 AM |
2279 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
2280 | return FALSE; | |
2281 | ||
d4730f92 | 2282 | if (reldata->hashes == NULL && reldata->count) |
45d6a902 AM |
2283 | { |
2284 | struct elf_link_hash_entry **p; | |
2285 | ||
a50b1753 | 2286 | p = (struct elf_link_hash_entry **) |
d4730f92 | 2287 | bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *)); |
45d6a902 AM |
2288 | if (p == NULL) |
2289 | return FALSE; | |
2290 | ||
d4730f92 | 2291 | reldata->hashes = p; |
45d6a902 AM |
2292 | } |
2293 | ||
2294 | return TRUE; | |
2295 | } | |
2296 | ||
2297 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |
2298 | originated from the section given by INPUT_REL_HDR) to the | |
2299 | OUTPUT_BFD. */ | |
2300 | ||
2301 | bfd_boolean | |
268b6b39 AM |
2302 | _bfd_elf_link_output_relocs (bfd *output_bfd, |
2303 | asection *input_section, | |
2304 | Elf_Internal_Shdr *input_rel_hdr, | |
eac338cf PB |
2305 | Elf_Internal_Rela *internal_relocs, |
2306 | struct elf_link_hash_entry **rel_hash | |
2307 | ATTRIBUTE_UNUSED) | |
45d6a902 AM |
2308 | { |
2309 | Elf_Internal_Rela *irela; | |
2310 | Elf_Internal_Rela *irelaend; | |
2311 | bfd_byte *erel; | |
d4730f92 | 2312 | struct bfd_elf_section_reloc_data *output_reldata; |
45d6a902 | 2313 | asection *output_section; |
9c5bfbb7 | 2314 | const struct elf_backend_data *bed; |
268b6b39 | 2315 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
d4730f92 | 2316 | struct bfd_elf_section_data *esdo; |
45d6a902 AM |
2317 | |
2318 | output_section = input_section->output_section; | |
45d6a902 | 2319 | |
d4730f92 BS |
2320 | bed = get_elf_backend_data (output_bfd); |
2321 | esdo = elf_section_data (output_section); | |
2322 | if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
45d6a902 | 2323 | { |
d4730f92 BS |
2324 | output_reldata = &esdo->rel; |
2325 | swap_out = bed->s->swap_reloc_out; | |
45d6a902 | 2326 | } |
d4730f92 BS |
2327 | else if (esdo->rela.hdr |
2328 | && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
45d6a902 | 2329 | { |
d4730f92 BS |
2330 | output_reldata = &esdo->rela; |
2331 | swap_out = bed->s->swap_reloca_out; | |
45d6a902 AM |
2332 | } |
2333 | else | |
2334 | { | |
2335 | (*_bfd_error_handler) | |
d003868e AM |
2336 | (_("%B: relocation size mismatch in %B section %A"), |
2337 | output_bfd, input_section->owner, input_section); | |
297d8443 | 2338 | bfd_set_error (bfd_error_wrong_format); |
45d6a902 AM |
2339 | return FALSE; |
2340 | } | |
2341 | ||
d4730f92 BS |
2342 | erel = output_reldata->hdr->contents; |
2343 | erel += output_reldata->count * input_rel_hdr->sh_entsize; | |
45d6a902 AM |
2344 | irela = internal_relocs; |
2345 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | |
2346 | * bed->s->int_rels_per_ext_rel); | |
2347 | while (irela < irelaend) | |
2348 | { | |
2349 | (*swap_out) (output_bfd, irela, erel); | |
2350 | irela += bed->s->int_rels_per_ext_rel; | |
2351 | erel += input_rel_hdr->sh_entsize; | |
2352 | } | |
2353 | ||
2354 | /* Bump the counter, so that we know where to add the next set of | |
2355 | relocations. */ | |
d4730f92 | 2356 | output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); |
45d6a902 AM |
2357 | |
2358 | return TRUE; | |
2359 | } | |
2360 | \f | |
508c3946 L |
2361 | /* Make weak undefined symbols in PIE dynamic. */ |
2362 | ||
2363 | bfd_boolean | |
2364 | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, | |
2365 | struct elf_link_hash_entry *h) | |
2366 | { | |
2367 | if (info->pie | |
2368 | && h->dynindx == -1 | |
2369 | && h->root.type == bfd_link_hash_undefweak) | |
2370 | return bfd_elf_link_record_dynamic_symbol (info, h); | |
2371 | ||
2372 | return TRUE; | |
2373 | } | |
2374 | ||
45d6a902 AM |
2375 | /* Fix up the flags for a symbol. This handles various cases which |
2376 | can only be fixed after all the input files are seen. This is | |
2377 | currently called by both adjust_dynamic_symbol and | |
2378 | assign_sym_version, which is unnecessary but perhaps more robust in | |
2379 | the face of future changes. */ | |
2380 | ||
28caa186 | 2381 | static bfd_boolean |
268b6b39 AM |
2382 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
2383 | struct elf_info_failed *eif) | |
45d6a902 | 2384 | { |
33774f08 | 2385 | const struct elf_backend_data *bed; |
508c3946 | 2386 | |
45d6a902 AM |
2387 | /* If this symbol was mentioned in a non-ELF file, try to set |
2388 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
2389 | permit a non-ELF file to correctly refer to a symbol defined in | |
2390 | an ELF dynamic object. */ | |
f5385ebf | 2391 | if (h->non_elf) |
45d6a902 AM |
2392 | { |
2393 | while (h->root.type == bfd_link_hash_indirect) | |
2394 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2395 | ||
2396 | if (h->root.type != bfd_link_hash_defined | |
2397 | && h->root.type != bfd_link_hash_defweak) | |
f5385ebf AM |
2398 | { |
2399 | h->ref_regular = 1; | |
2400 | h->ref_regular_nonweak = 1; | |
2401 | } | |
45d6a902 AM |
2402 | else |
2403 | { | |
2404 | if (h->root.u.def.section->owner != NULL | |
2405 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
2406 | == bfd_target_elf_flavour)) | |
f5385ebf AM |
2407 | { |
2408 | h->ref_regular = 1; | |
2409 | h->ref_regular_nonweak = 1; | |
2410 | } | |
45d6a902 | 2411 | else |
f5385ebf | 2412 | h->def_regular = 1; |
45d6a902 AM |
2413 | } |
2414 | ||
2415 | if (h->dynindx == -1 | |
f5385ebf AM |
2416 | && (h->def_dynamic |
2417 | || h->ref_dynamic)) | |
45d6a902 | 2418 | { |
c152c796 | 2419 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
45d6a902 AM |
2420 | { |
2421 | eif->failed = TRUE; | |
2422 | return FALSE; | |
2423 | } | |
2424 | } | |
2425 | } | |
2426 | else | |
2427 | { | |
f5385ebf | 2428 | /* Unfortunately, NON_ELF is only correct if the symbol |
45d6a902 AM |
2429 | was first seen in a non-ELF file. Fortunately, if the symbol |
2430 | was first seen in an ELF file, we're probably OK unless the | |
2431 | symbol was defined in a non-ELF file. Catch that case here. | |
2432 | FIXME: We're still in trouble if the symbol was first seen in | |
2433 | a dynamic object, and then later in a non-ELF regular object. */ | |
2434 | if ((h->root.type == bfd_link_hash_defined | |
2435 | || h->root.type == bfd_link_hash_defweak) | |
f5385ebf | 2436 | && !h->def_regular |
45d6a902 AM |
2437 | && (h->root.u.def.section->owner != NULL |
2438 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
2439 | != bfd_target_elf_flavour) | |
2440 | : (bfd_is_abs_section (h->root.u.def.section) | |
f5385ebf AM |
2441 | && !h->def_dynamic))) |
2442 | h->def_regular = 1; | |
45d6a902 AM |
2443 | } |
2444 | ||
508c3946 | 2445 | /* Backend specific symbol fixup. */ |
33774f08 AM |
2446 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
2447 | if (bed->elf_backend_fixup_symbol | |
2448 | && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) | |
2449 | return FALSE; | |
508c3946 | 2450 | |
45d6a902 AM |
2451 | /* If this is a final link, and the symbol was defined as a common |
2452 | symbol in a regular object file, and there was no definition in | |
2453 | any dynamic object, then the linker will have allocated space for | |
f5385ebf | 2454 | the symbol in a common section but the DEF_REGULAR |
45d6a902 AM |
2455 | flag will not have been set. */ |
2456 | if (h->root.type == bfd_link_hash_defined | |
f5385ebf AM |
2457 | && !h->def_regular |
2458 | && h->ref_regular | |
2459 | && !h->def_dynamic | |
96f29d96 | 2460 | && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) |
f5385ebf | 2461 | h->def_regular = 1; |
45d6a902 AM |
2462 | |
2463 | /* If -Bsymbolic was used (which means to bind references to global | |
2464 | symbols to the definition within the shared object), and this | |
2465 | symbol was defined in a regular object, then it actually doesn't | |
9c7a29a3 AM |
2466 | need a PLT entry. Likewise, if the symbol has non-default |
2467 | visibility. If the symbol has hidden or internal visibility, we | |
c1be741f | 2468 | will force it local. */ |
f5385ebf | 2469 | if (h->needs_plt |
45d6a902 | 2470 | && eif->info->shared |
0eddce27 | 2471 | && is_elf_hash_table (eif->info->hash) |
55255dae | 2472 | && (SYMBOLIC_BIND (eif->info, h) |
c1be741f | 2473 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
f5385ebf | 2474 | && h->def_regular) |
45d6a902 | 2475 | { |
45d6a902 AM |
2476 | bfd_boolean force_local; |
2477 | ||
45d6a902 AM |
2478 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
2479 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
2480 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
2481 | } | |
2482 | ||
2483 | /* If a weak undefined symbol has non-default visibility, we also | |
2484 | hide it from the dynamic linker. */ | |
9c7a29a3 | 2485 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
45d6a902 | 2486 | && h->root.type == bfd_link_hash_undefweak) |
33774f08 | 2487 | (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
45d6a902 AM |
2488 | |
2489 | /* If this is a weak defined symbol in a dynamic object, and we know | |
2490 | the real definition in the dynamic object, copy interesting flags | |
2491 | over to the real definition. */ | |
f6e332e6 | 2492 | if (h->u.weakdef != NULL) |
45d6a902 | 2493 | { |
45d6a902 AM |
2494 | /* If the real definition is defined by a regular object file, |
2495 | don't do anything special. See the longer description in | |
2496 | _bfd_elf_adjust_dynamic_symbol, below. */ | |
4e6b54a6 | 2497 | if (h->u.weakdef->def_regular) |
f6e332e6 | 2498 | h->u.weakdef = NULL; |
45d6a902 | 2499 | else |
a26587ba | 2500 | { |
4e6b54a6 AM |
2501 | struct elf_link_hash_entry *weakdef = h->u.weakdef; |
2502 | ||
2503 | while (h->root.type == bfd_link_hash_indirect) | |
2504 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2505 | ||
2506 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
2507 | || h->root.type == bfd_link_hash_defweak); | |
2508 | BFD_ASSERT (weakdef->def_dynamic); | |
a26587ba RS |
2509 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined |
2510 | || weakdef->root.type == bfd_link_hash_defweak); | |
2511 | (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h); | |
2512 | } | |
45d6a902 AM |
2513 | } |
2514 | ||
2515 | return TRUE; | |
2516 | } | |
2517 | ||
2518 | /* Make the backend pick a good value for a dynamic symbol. This is | |
2519 | called via elf_link_hash_traverse, and also calls itself | |
2520 | recursively. */ | |
2521 | ||
28caa186 | 2522 | static bfd_boolean |
268b6b39 | 2523 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
45d6a902 | 2524 | { |
a50b1753 | 2525 | struct elf_info_failed *eif = (struct elf_info_failed *) data; |
45d6a902 | 2526 | bfd *dynobj; |
9c5bfbb7 | 2527 | const struct elf_backend_data *bed; |
45d6a902 | 2528 | |
0eddce27 | 2529 | if (! is_elf_hash_table (eif->info->hash)) |
45d6a902 AM |
2530 | return FALSE; |
2531 | ||
45d6a902 AM |
2532 | /* Ignore indirect symbols. These are added by the versioning code. */ |
2533 | if (h->root.type == bfd_link_hash_indirect) | |
2534 | return TRUE; | |
2535 | ||
2536 | /* Fix the symbol flags. */ | |
2537 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |
2538 | return FALSE; | |
2539 | ||
2540 | /* If this symbol does not require a PLT entry, and it is not | |
2541 | defined by a dynamic object, or is not referenced by a regular | |
2542 | object, ignore it. We do have to handle a weak defined symbol, | |
2543 | even if no regular object refers to it, if we decided to add it | |
2544 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
2545 | about symbols which are defined by one dynamic object and | |
2546 | referenced by another one? */ | |
f5385ebf | 2547 | if (!h->needs_plt |
91e21fb7 | 2548 | && h->type != STT_GNU_IFUNC |
f5385ebf AM |
2549 | && (h->def_regular |
2550 | || !h->def_dynamic | |
2551 | || (!h->ref_regular | |
f6e332e6 | 2552 | && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1)))) |
45d6a902 | 2553 | { |
a6aa5195 | 2554 | h->plt = elf_hash_table (eif->info)->init_plt_offset; |
45d6a902 AM |
2555 | return TRUE; |
2556 | } | |
2557 | ||
2558 | /* If we've already adjusted this symbol, don't do it again. This | |
2559 | can happen via a recursive call. */ | |
f5385ebf | 2560 | if (h->dynamic_adjusted) |
45d6a902 AM |
2561 | return TRUE; |
2562 | ||
2563 | /* Don't look at this symbol again. Note that we must set this | |
2564 | after checking the above conditions, because we may look at a | |
2565 | symbol once, decide not to do anything, and then get called | |
2566 | recursively later after REF_REGULAR is set below. */ | |
f5385ebf | 2567 | h->dynamic_adjusted = 1; |
45d6a902 AM |
2568 | |
2569 | /* If this is a weak definition, and we know a real definition, and | |
2570 | the real symbol is not itself defined by a regular object file, | |
2571 | then get a good value for the real definition. We handle the | |
2572 | real symbol first, for the convenience of the backend routine. | |
2573 | ||
2574 | Note that there is a confusing case here. If the real definition | |
2575 | is defined by a regular object file, we don't get the real symbol | |
2576 | from the dynamic object, but we do get the weak symbol. If the | |
2577 | processor backend uses a COPY reloc, then if some routine in the | |
2578 | dynamic object changes the real symbol, we will not see that | |
2579 | change in the corresponding weak symbol. This is the way other | |
2580 | ELF linkers work as well, and seems to be a result of the shared | |
2581 | library model. | |
2582 | ||
2583 | I will clarify this issue. Most SVR4 shared libraries define the | |
2584 | variable _timezone and define timezone as a weak synonym. The | |
2585 | tzset call changes _timezone. If you write | |
2586 | extern int timezone; | |
2587 | int _timezone = 5; | |
2588 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
2589 | you might expect that, since timezone is a synonym for _timezone, | |
2590 | the same number will print both times. However, if the processor | |
2591 | backend uses a COPY reloc, then actually timezone will be copied | |
2592 | into your process image, and, since you define _timezone | |
2593 | yourself, _timezone will not. Thus timezone and _timezone will | |
2594 | wind up at different memory locations. The tzset call will set | |
2595 | _timezone, leaving timezone unchanged. */ | |
2596 | ||
f6e332e6 | 2597 | if (h->u.weakdef != NULL) |
45d6a902 | 2598 | { |
ec24dc88 AM |
2599 | /* If we get to this point, there is an implicit reference to |
2600 | H->U.WEAKDEF by a regular object file via the weak symbol H. */ | |
f6e332e6 | 2601 | h->u.weakdef->ref_regular = 1; |
45d6a902 | 2602 | |
ec24dc88 AM |
2603 | /* Ensure that the backend adjust_dynamic_symbol function sees |
2604 | H->U.WEAKDEF before H by recursively calling ourselves. */ | |
f6e332e6 | 2605 | if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif)) |
45d6a902 AM |
2606 | return FALSE; |
2607 | } | |
2608 | ||
2609 | /* If a symbol has no type and no size and does not require a PLT | |
2610 | entry, then we are probably about to do the wrong thing here: we | |
2611 | are probably going to create a COPY reloc for an empty object. | |
2612 | This case can arise when a shared object is built with assembly | |
2613 | code, and the assembly code fails to set the symbol type. */ | |
2614 | if (h->size == 0 | |
2615 | && h->type == STT_NOTYPE | |
f5385ebf | 2616 | && !h->needs_plt) |
45d6a902 AM |
2617 | (*_bfd_error_handler) |
2618 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
2619 | h->root.root.string); | |
2620 | ||
2621 | dynobj = elf_hash_table (eif->info)->dynobj; | |
2622 | bed = get_elf_backend_data (dynobj); | |
e7c33416 | 2623 | |
45d6a902 AM |
2624 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
2625 | { | |
2626 | eif->failed = TRUE; | |
2627 | return FALSE; | |
2628 | } | |
2629 | ||
2630 | return TRUE; | |
2631 | } | |
2632 | ||
027297b7 L |
2633 | /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, |
2634 | DYNBSS. */ | |
2635 | ||
2636 | bfd_boolean | |
2637 | _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h, | |
2638 | asection *dynbss) | |
2639 | { | |
91ac5911 | 2640 | unsigned int power_of_two; |
027297b7 L |
2641 | bfd_vma mask; |
2642 | asection *sec = h->root.u.def.section; | |
2643 | ||
2644 | /* The section aligment of definition is the maximum alignment | |
91ac5911 L |
2645 | requirement of symbols defined in the section. Since we don't |
2646 | know the symbol alignment requirement, we start with the | |
2647 | maximum alignment and check low bits of the symbol address | |
2648 | for the minimum alignment. */ | |
2649 | power_of_two = bfd_get_section_alignment (sec->owner, sec); | |
2650 | mask = ((bfd_vma) 1 << power_of_two) - 1; | |
2651 | while ((h->root.u.def.value & mask) != 0) | |
2652 | { | |
2653 | mask >>= 1; | |
2654 | --power_of_two; | |
2655 | } | |
027297b7 | 2656 | |
91ac5911 L |
2657 | if (power_of_two > bfd_get_section_alignment (dynbss->owner, |
2658 | dynbss)) | |
027297b7 L |
2659 | { |
2660 | /* Adjust the section alignment if needed. */ | |
2661 | if (! bfd_set_section_alignment (dynbss->owner, dynbss, | |
91ac5911 | 2662 | power_of_two)) |
027297b7 L |
2663 | return FALSE; |
2664 | } | |
2665 | ||
91ac5911 | 2666 | /* We make sure that the symbol will be aligned properly. */ |
027297b7 L |
2667 | dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); |
2668 | ||
2669 | /* Define the symbol as being at this point in DYNBSS. */ | |
2670 | h->root.u.def.section = dynbss; | |
2671 | h->root.u.def.value = dynbss->size; | |
2672 | ||
2673 | /* Increment the size of DYNBSS to make room for the symbol. */ | |
2674 | dynbss->size += h->size; | |
2675 | ||
2676 | return TRUE; | |
2677 | } | |
2678 | ||
45d6a902 AM |
2679 | /* Adjust all external symbols pointing into SEC_MERGE sections |
2680 | to reflect the object merging within the sections. */ | |
2681 | ||
28caa186 | 2682 | static bfd_boolean |
268b6b39 | 2683 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
45d6a902 AM |
2684 | { |
2685 | asection *sec; | |
2686 | ||
45d6a902 AM |
2687 | if ((h->root.type == bfd_link_hash_defined |
2688 | || h->root.type == bfd_link_hash_defweak) | |
2689 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
dbaa2011 | 2690 | && sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
45d6a902 | 2691 | { |
a50b1753 | 2692 | bfd *output_bfd = (bfd *) data; |
45d6a902 AM |
2693 | |
2694 | h->root.u.def.value = | |
2695 | _bfd_merged_section_offset (output_bfd, | |
2696 | &h->root.u.def.section, | |
2697 | elf_section_data (sec)->sec_info, | |
753731ee | 2698 | h->root.u.def.value); |
45d6a902 AM |
2699 | } |
2700 | ||
2701 | return TRUE; | |
2702 | } | |
986a241f RH |
2703 | |
2704 | /* Returns false if the symbol referred to by H should be considered | |
2705 | to resolve local to the current module, and true if it should be | |
2706 | considered to bind dynamically. */ | |
2707 | ||
2708 | bfd_boolean | |
268b6b39 AM |
2709 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
2710 | struct bfd_link_info *info, | |
89a2ee5a | 2711 | bfd_boolean not_local_protected) |
986a241f RH |
2712 | { |
2713 | bfd_boolean binding_stays_local_p; | |
fcb93ecf PB |
2714 | const struct elf_backend_data *bed; |
2715 | struct elf_link_hash_table *hash_table; | |
986a241f RH |
2716 | |
2717 | if (h == NULL) | |
2718 | return FALSE; | |
2719 | ||
2720 | while (h->root.type == bfd_link_hash_indirect | |
2721 | || h->root.type == bfd_link_hash_warning) | |
2722 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2723 | ||
2724 | /* If it was forced local, then clearly it's not dynamic. */ | |
2725 | if (h->dynindx == -1) | |
2726 | return FALSE; | |
f5385ebf | 2727 | if (h->forced_local) |
986a241f RH |
2728 | return FALSE; |
2729 | ||
2730 | /* Identify the cases where name binding rules say that a | |
2731 | visible symbol resolves locally. */ | |
55255dae | 2732 | binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h); |
986a241f RH |
2733 | |
2734 | switch (ELF_ST_VISIBILITY (h->other)) | |
2735 | { | |
2736 | case STV_INTERNAL: | |
2737 | case STV_HIDDEN: | |
2738 | return FALSE; | |
2739 | ||
2740 | case STV_PROTECTED: | |
fcb93ecf PB |
2741 | hash_table = elf_hash_table (info); |
2742 | if (!is_elf_hash_table (hash_table)) | |
2743 | return FALSE; | |
2744 | ||
2745 | bed = get_elf_backend_data (hash_table->dynobj); | |
2746 | ||
986a241f RH |
2747 | /* Proper resolution for function pointer equality may require |
2748 | that these symbols perhaps be resolved dynamically, even though | |
2749 | we should be resolving them to the current module. */ | |
89a2ee5a | 2750 | if (!not_local_protected || !bed->is_function_type (h->type)) |
986a241f RH |
2751 | binding_stays_local_p = TRUE; |
2752 | break; | |
2753 | ||
2754 | default: | |
986a241f RH |
2755 | break; |
2756 | } | |
2757 | ||
aa37626c | 2758 | /* If it isn't defined locally, then clearly it's dynamic. */ |
89a2ee5a | 2759 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
aa37626c L |
2760 | return TRUE; |
2761 | ||
986a241f RH |
2762 | /* Otherwise, the symbol is dynamic if binding rules don't tell |
2763 | us that it remains local. */ | |
2764 | return !binding_stays_local_p; | |
2765 | } | |
f6c52c13 AM |
2766 | |
2767 | /* Return true if the symbol referred to by H should be considered | |
2768 | to resolve local to the current module, and false otherwise. Differs | |
2769 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |
2e76e85a | 2770 | undefined symbols. The two functions are virtually identical except |
89a2ee5a AM |
2771 | for the place where forced_local and dynindx == -1 are tested. If |
2772 | either of those tests are true, _bfd_elf_dynamic_symbol_p will say | |
2773 | the symbol is local, while _bfd_elf_symbol_refs_local_p will say | |
2774 | the symbol is local only for defined symbols. | |
2775 | It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as | |
2776 | !_bfd_elf_symbol_refs_local_p, except that targets differ in their | |
2777 | treatment of undefined weak symbols. For those that do not make | |
2778 | undefined weak symbols dynamic, both functions may return false. */ | |
f6c52c13 AM |
2779 | |
2780 | bfd_boolean | |
268b6b39 AM |
2781 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
2782 | struct bfd_link_info *info, | |
2783 | bfd_boolean local_protected) | |
f6c52c13 | 2784 | { |
fcb93ecf PB |
2785 | const struct elf_backend_data *bed; |
2786 | struct elf_link_hash_table *hash_table; | |
2787 | ||
f6c52c13 AM |
2788 | /* If it's a local sym, of course we resolve locally. */ |
2789 | if (h == NULL) | |
2790 | return TRUE; | |
2791 | ||
d95edcac L |
2792 | /* STV_HIDDEN or STV_INTERNAL ones must be local. */ |
2793 | if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
2794 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
2795 | return TRUE; | |
2796 | ||
7e2294f9 AO |
2797 | /* Common symbols that become definitions don't get the DEF_REGULAR |
2798 | flag set, so test it first, and don't bail out. */ | |
2799 | if (ELF_COMMON_DEF_P (h)) | |
2800 | /* Do nothing. */; | |
f6c52c13 | 2801 | /* If we don't have a definition in a regular file, then we can't |
49ff44d6 L |
2802 | resolve locally. The sym is either undefined or dynamic. */ |
2803 | else if (!h->def_regular) | |
f6c52c13 AM |
2804 | return FALSE; |
2805 | ||
2806 | /* Forced local symbols resolve locally. */ | |
f5385ebf | 2807 | if (h->forced_local) |
f6c52c13 AM |
2808 | return TRUE; |
2809 | ||
2810 | /* As do non-dynamic symbols. */ | |
2811 | if (h->dynindx == -1) | |
2812 | return TRUE; | |
2813 | ||
2814 | /* At this point, we know the symbol is defined and dynamic. In an | |
2815 | executable it must resolve locally, likewise when building symbolic | |
2816 | shared libraries. */ | |
55255dae | 2817 | if (info->executable || SYMBOLIC_BIND (info, h)) |
f6c52c13 AM |
2818 | return TRUE; |
2819 | ||
2820 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |
2821 | with default visibility might not resolve locally. */ | |
2822 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
2823 | return FALSE; | |
2824 | ||
fcb93ecf PB |
2825 | hash_table = elf_hash_table (info); |
2826 | if (!is_elf_hash_table (hash_table)) | |
2827 | return TRUE; | |
2828 | ||
2829 | bed = get_elf_backend_data (hash_table->dynobj); | |
2830 | ||
1c16dfa5 | 2831 | /* STV_PROTECTED non-function symbols are local. */ |
fcb93ecf | 2832 | if (!bed->is_function_type (h->type)) |
1c16dfa5 L |
2833 | return TRUE; |
2834 | ||
f6c52c13 | 2835 | /* Function pointer equality tests may require that STV_PROTECTED |
2676a7d9 AM |
2836 | symbols be treated as dynamic symbols. If the address of a |
2837 | function not defined in an executable is set to that function's | |
2838 | plt entry in the executable, then the address of the function in | |
2839 | a shared library must also be the plt entry in the executable. */ | |
f6c52c13 AM |
2840 | return local_protected; |
2841 | } | |
e1918d23 AM |
2842 | |
2843 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |
2844 | aligned. Returns the first TLS output section. */ | |
2845 | ||
2846 | struct bfd_section * | |
2847 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |
2848 | { | |
2849 | struct bfd_section *sec, *tls; | |
2850 | unsigned int align = 0; | |
2851 | ||
2852 | for (sec = obfd->sections; sec != NULL; sec = sec->next) | |
2853 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) | |
2854 | break; | |
2855 | tls = sec; | |
2856 | ||
2857 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | |
2858 | if (sec->alignment_power > align) | |
2859 | align = sec->alignment_power; | |
2860 | ||
2861 | elf_hash_table (info)->tls_sec = tls; | |
2862 | ||
2863 | /* Ensure the alignment of the first section is the largest alignment, | |
2864 | so that the tls segment starts aligned. */ | |
2865 | if (tls != NULL) | |
2866 | tls->alignment_power = align; | |
2867 | ||
2868 | return tls; | |
2869 | } | |
0ad989f9 L |
2870 | |
2871 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |
2872 | static bfd_boolean | |
2873 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | |
2874 | Elf_Internal_Sym *sym) | |
2875 | { | |
a4d8e49b L |
2876 | const struct elf_backend_data *bed; |
2877 | ||
0ad989f9 L |
2878 | /* Local symbols do not count, but target specific ones might. */ |
2879 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
2880 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
2881 | return FALSE; | |
2882 | ||
fcb93ecf | 2883 | bed = get_elf_backend_data (abfd); |
0ad989f9 | 2884 | /* Function symbols do not count. */ |
fcb93ecf | 2885 | if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) |
0ad989f9 L |
2886 | return FALSE; |
2887 | ||
2888 | /* If the section is undefined, then so is the symbol. */ | |
2889 | if (sym->st_shndx == SHN_UNDEF) | |
2890 | return FALSE; | |
2891 | ||
2892 | /* If the symbol is defined in the common section, then | |
2893 | it is a common definition and so does not count. */ | |
a4d8e49b | 2894 | if (bed->common_definition (sym)) |
0ad989f9 L |
2895 | return FALSE; |
2896 | ||
2897 | /* If the symbol is in a target specific section then we | |
2898 | must rely upon the backend to tell us what it is. */ | |
2899 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
2900 | /* FIXME - this function is not coded yet: | |
2901 | ||
2902 | return _bfd_is_global_symbol_definition (abfd, sym); | |
2903 | ||
2904 | Instead for now assume that the definition is not global, | |
2905 | Even if this is wrong, at least the linker will behave | |
2906 | in the same way that it used to do. */ | |
2907 | return FALSE; | |
2908 | ||
2909 | return TRUE; | |
2910 | } | |
2911 | ||
2912 | /* Search the symbol table of the archive element of the archive ABFD | |
2913 | whose archive map contains a mention of SYMDEF, and determine if | |
2914 | the symbol is defined in this element. */ | |
2915 | static bfd_boolean | |
2916 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |
2917 | { | |
2918 | Elf_Internal_Shdr * hdr; | |
2919 | bfd_size_type symcount; | |
2920 | bfd_size_type extsymcount; | |
2921 | bfd_size_type extsymoff; | |
2922 | Elf_Internal_Sym *isymbuf; | |
2923 | Elf_Internal_Sym *isym; | |
2924 | Elf_Internal_Sym *isymend; | |
2925 | bfd_boolean result; | |
2926 | ||
2927 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
2928 | if (abfd == NULL) | |
2929 | return FALSE; | |
2930 | ||
2931 | if (! bfd_check_format (abfd, bfd_object)) | |
2932 | return FALSE; | |
2933 | ||
0ad989f9 L |
2934 | /* Select the appropriate symbol table. */ |
2935 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
2936 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
2937 | else | |
2938 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2939 | ||
2940 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
2941 | ||
2942 | /* The sh_info field of the symtab header tells us where the | |
2943 | external symbols start. We don't care about the local symbols. */ | |
2944 | if (elf_bad_symtab (abfd)) | |
2945 | { | |
2946 | extsymcount = symcount; | |
2947 | extsymoff = 0; | |
2948 | } | |
2949 | else | |
2950 | { | |
2951 | extsymcount = symcount - hdr->sh_info; | |
2952 | extsymoff = hdr->sh_info; | |
2953 | } | |
2954 | ||
2955 | if (extsymcount == 0) | |
2956 | return FALSE; | |
2957 | ||
2958 | /* Read in the symbol table. */ | |
2959 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
2960 | NULL, NULL, NULL); | |
2961 | if (isymbuf == NULL) | |
2962 | return FALSE; | |
2963 | ||
2964 | /* Scan the symbol table looking for SYMDEF. */ | |
2965 | result = FALSE; | |
2966 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |
2967 | { | |
2968 | const char *name; | |
2969 | ||
2970 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
2971 | isym->st_name); | |
2972 | if (name == NULL) | |
2973 | break; | |
2974 | ||
2975 | if (strcmp (name, symdef->name) == 0) | |
2976 | { | |
2977 | result = is_global_data_symbol_definition (abfd, isym); | |
2978 | break; | |
2979 | } | |
2980 | } | |
2981 | ||
2982 | free (isymbuf); | |
2983 | ||
2984 | return result; | |
2985 | } | |
2986 | \f | |
5a580b3a AM |
2987 | /* Add an entry to the .dynamic table. */ |
2988 | ||
2989 | bfd_boolean | |
2990 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | |
2991 | bfd_vma tag, | |
2992 | bfd_vma val) | |
2993 | { | |
2994 | struct elf_link_hash_table *hash_table; | |
2995 | const struct elf_backend_data *bed; | |
2996 | asection *s; | |
2997 | bfd_size_type newsize; | |
2998 | bfd_byte *newcontents; | |
2999 | Elf_Internal_Dyn dyn; | |
3000 | ||
3001 | hash_table = elf_hash_table (info); | |
3002 | if (! is_elf_hash_table (hash_table)) | |
3003 | return FALSE; | |
3004 | ||
3005 | bed = get_elf_backend_data (hash_table->dynobj); | |
3d4d4302 | 3006 | s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); |
5a580b3a AM |
3007 | BFD_ASSERT (s != NULL); |
3008 | ||
eea6121a | 3009 | newsize = s->size + bed->s->sizeof_dyn; |
a50b1753 | 3010 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
5a580b3a AM |
3011 | if (newcontents == NULL) |
3012 | return FALSE; | |
3013 | ||
3014 | dyn.d_tag = tag; | |
3015 | dyn.d_un.d_val = val; | |
eea6121a | 3016 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); |
5a580b3a | 3017 | |
eea6121a | 3018 | s->size = newsize; |
5a580b3a AM |
3019 | s->contents = newcontents; |
3020 | ||
3021 | return TRUE; | |
3022 | } | |
3023 | ||
3024 | /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, | |
3025 | otherwise just check whether one already exists. Returns -1 on error, | |
3026 | 1 if a DT_NEEDED tag already exists, and 0 on success. */ | |
3027 | ||
4ad4eba5 | 3028 | static int |
7e9f0867 AM |
3029 | elf_add_dt_needed_tag (bfd *abfd, |
3030 | struct bfd_link_info *info, | |
4ad4eba5 AM |
3031 | const char *soname, |
3032 | bfd_boolean do_it) | |
5a580b3a AM |
3033 | { |
3034 | struct elf_link_hash_table *hash_table; | |
5a580b3a AM |
3035 | bfd_size_type strindex; |
3036 | ||
7e9f0867 AM |
3037 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
3038 | return -1; | |
3039 | ||
5a580b3a | 3040 | hash_table = elf_hash_table (info); |
5a580b3a AM |
3041 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); |
3042 | if (strindex == (bfd_size_type) -1) | |
3043 | return -1; | |
3044 | ||
02be4619 | 3045 | if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) |
5a580b3a AM |
3046 | { |
3047 | asection *sdyn; | |
3048 | const struct elf_backend_data *bed; | |
3049 | bfd_byte *extdyn; | |
3050 | ||
3051 | bed = get_elf_backend_data (hash_table->dynobj); | |
3d4d4302 | 3052 | sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); |
7e9f0867 AM |
3053 | if (sdyn != NULL) |
3054 | for (extdyn = sdyn->contents; | |
3055 | extdyn < sdyn->contents + sdyn->size; | |
3056 | extdyn += bed->s->sizeof_dyn) | |
3057 | { | |
3058 | Elf_Internal_Dyn dyn; | |
5a580b3a | 3059 | |
7e9f0867 AM |
3060 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
3061 | if (dyn.d_tag == DT_NEEDED | |
3062 | && dyn.d_un.d_val == strindex) | |
3063 | { | |
3064 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
3065 | return 1; | |
3066 | } | |
3067 | } | |
5a580b3a AM |
3068 | } |
3069 | ||
3070 | if (do_it) | |
3071 | { | |
7e9f0867 AM |
3072 | if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) |
3073 | return -1; | |
3074 | ||
5a580b3a AM |
3075 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
3076 | return -1; | |
3077 | } | |
3078 | else | |
3079 | /* We were just checking for existence of the tag. */ | |
3080 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
3081 | ||
3082 | return 0; | |
3083 | } | |
3084 | ||
010e5ae2 AM |
3085 | static bfd_boolean |
3086 | on_needed_list (const char *soname, struct bfd_link_needed_list *needed) | |
3087 | { | |
3088 | for (; needed != NULL; needed = needed->next) | |
3089 | if (strcmp (soname, needed->name) == 0) | |
3090 | return TRUE; | |
3091 | ||
3092 | return FALSE; | |
3093 | } | |
3094 | ||
14160578 | 3095 | /* Sort symbol by value, section, and size. */ |
4ad4eba5 AM |
3096 | static int |
3097 | elf_sort_symbol (const void *arg1, const void *arg2) | |
5a580b3a AM |
3098 | { |
3099 | const struct elf_link_hash_entry *h1; | |
3100 | const struct elf_link_hash_entry *h2; | |
10b7e05b | 3101 | bfd_signed_vma vdiff; |
5a580b3a AM |
3102 | |
3103 | h1 = *(const struct elf_link_hash_entry **) arg1; | |
3104 | h2 = *(const struct elf_link_hash_entry **) arg2; | |
10b7e05b NC |
3105 | vdiff = h1->root.u.def.value - h2->root.u.def.value; |
3106 | if (vdiff != 0) | |
3107 | return vdiff > 0 ? 1 : -1; | |
3108 | else | |
3109 | { | |
3110 | long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; | |
3111 | if (sdiff != 0) | |
3112 | return sdiff > 0 ? 1 : -1; | |
3113 | } | |
14160578 AM |
3114 | vdiff = h1->size - h2->size; |
3115 | return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1; | |
5a580b3a | 3116 | } |
4ad4eba5 | 3117 | |
5a580b3a AM |
3118 | /* This function is used to adjust offsets into .dynstr for |
3119 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |
3120 | ||
3121 | static bfd_boolean | |
3122 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | |
3123 | { | |
a50b1753 | 3124 | struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; |
5a580b3a | 3125 | |
5a580b3a AM |
3126 | if (h->dynindx != -1) |
3127 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |
3128 | return TRUE; | |
3129 | } | |
3130 | ||
3131 | /* Assign string offsets in .dynstr, update all structures referencing | |
3132 | them. */ | |
3133 | ||
4ad4eba5 AM |
3134 | static bfd_boolean |
3135 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
5a580b3a AM |
3136 | { |
3137 | struct elf_link_hash_table *hash_table = elf_hash_table (info); | |
3138 | struct elf_link_local_dynamic_entry *entry; | |
3139 | struct elf_strtab_hash *dynstr = hash_table->dynstr; | |
3140 | bfd *dynobj = hash_table->dynobj; | |
3141 | asection *sdyn; | |
3142 | bfd_size_type size; | |
3143 | const struct elf_backend_data *bed; | |
3144 | bfd_byte *extdyn; | |
3145 | ||
3146 | _bfd_elf_strtab_finalize (dynstr); | |
3147 | size = _bfd_elf_strtab_size (dynstr); | |
3148 | ||
3149 | bed = get_elf_backend_data (dynobj); | |
3d4d4302 | 3150 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
5a580b3a AM |
3151 | BFD_ASSERT (sdyn != NULL); |
3152 | ||
3153 | /* Update all .dynamic entries referencing .dynstr strings. */ | |
3154 | for (extdyn = sdyn->contents; | |
eea6121a | 3155 | extdyn < sdyn->contents + sdyn->size; |
5a580b3a AM |
3156 | extdyn += bed->s->sizeof_dyn) |
3157 | { | |
3158 | Elf_Internal_Dyn dyn; | |
3159 | ||
3160 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | |
3161 | switch (dyn.d_tag) | |
3162 | { | |
3163 | case DT_STRSZ: | |
3164 | dyn.d_un.d_val = size; | |
3165 | break; | |
3166 | case DT_NEEDED: | |
3167 | case DT_SONAME: | |
3168 | case DT_RPATH: | |
3169 | case DT_RUNPATH: | |
3170 | case DT_FILTER: | |
3171 | case DT_AUXILIARY: | |
7ee314fa AM |
3172 | case DT_AUDIT: |
3173 | case DT_DEPAUDIT: | |
5a580b3a AM |
3174 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); |
3175 | break; | |
3176 | default: | |
3177 | continue; | |
3178 | } | |
3179 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | |
3180 | } | |
3181 | ||
3182 | /* Now update local dynamic symbols. */ | |
3183 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) | |
3184 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |
3185 | entry->isym.st_name); | |
3186 | ||
3187 | /* And the rest of dynamic symbols. */ | |
3188 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); | |
3189 | ||
3190 | /* Adjust version definitions. */ | |
3191 | if (elf_tdata (output_bfd)->cverdefs) | |
3192 | { | |
3193 | asection *s; | |
3194 | bfd_byte *p; | |
3195 | bfd_size_type i; | |
3196 | Elf_Internal_Verdef def; | |
3197 | Elf_Internal_Verdaux defaux; | |
3198 | ||
3d4d4302 | 3199 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
5a580b3a AM |
3200 | p = s->contents; |
3201 | do | |
3202 | { | |
3203 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |
3204 | &def); | |
3205 | p += sizeof (Elf_External_Verdef); | |
3e3b46e5 PB |
3206 | if (def.vd_aux != sizeof (Elf_External_Verdef)) |
3207 | continue; | |
5a580b3a AM |
3208 | for (i = 0; i < def.vd_cnt; ++i) |
3209 | { | |
3210 | _bfd_elf_swap_verdaux_in (output_bfd, | |
3211 | (Elf_External_Verdaux *) p, &defaux); | |
3212 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |
3213 | defaux.vda_name); | |
3214 | _bfd_elf_swap_verdaux_out (output_bfd, | |
3215 | &defaux, (Elf_External_Verdaux *) p); | |
3216 | p += sizeof (Elf_External_Verdaux); | |
3217 | } | |
3218 | } | |
3219 | while (def.vd_next); | |
3220 | } | |
3221 | ||
3222 | /* Adjust version references. */ | |
3223 | if (elf_tdata (output_bfd)->verref) | |
3224 | { | |
3225 | asection *s; | |
3226 | bfd_byte *p; | |
3227 | bfd_size_type i; | |
3228 | Elf_Internal_Verneed need; | |
3229 | Elf_Internal_Vernaux needaux; | |
3230 | ||
3d4d4302 | 3231 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
5a580b3a AM |
3232 | p = s->contents; |
3233 | do | |
3234 | { | |
3235 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |
3236 | &need); | |
3237 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |
3238 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |
3239 | (Elf_External_Verneed *) p); | |
3240 | p += sizeof (Elf_External_Verneed); | |
3241 | for (i = 0; i < need.vn_cnt; ++i) | |
3242 | { | |
3243 | _bfd_elf_swap_vernaux_in (output_bfd, | |
3244 | (Elf_External_Vernaux *) p, &needaux); | |
3245 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |
3246 | needaux.vna_name); | |
3247 | _bfd_elf_swap_vernaux_out (output_bfd, | |
3248 | &needaux, | |
3249 | (Elf_External_Vernaux *) p); | |
3250 | p += sizeof (Elf_External_Vernaux); | |
3251 | } | |
3252 | } | |
3253 | while (need.vn_next); | |
3254 | } | |
3255 | ||
3256 | return TRUE; | |
3257 | } | |
3258 | \f | |
13285a1b AM |
3259 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
3260 | The default is to only match when the INPUT and OUTPUT are exactly | |
3261 | the same target. */ | |
3262 | ||
3263 | bfd_boolean | |
3264 | _bfd_elf_default_relocs_compatible (const bfd_target *input, | |
3265 | const bfd_target *output) | |
3266 | { | |
3267 | return input == output; | |
3268 | } | |
3269 | ||
3270 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | |
3271 | This version is used when different targets for the same architecture | |
3272 | are virtually identical. */ | |
3273 | ||
3274 | bfd_boolean | |
3275 | _bfd_elf_relocs_compatible (const bfd_target *input, | |
3276 | const bfd_target *output) | |
3277 | { | |
3278 | const struct elf_backend_data *obed, *ibed; | |
3279 | ||
3280 | if (input == output) | |
3281 | return TRUE; | |
3282 | ||
3283 | ibed = xvec_get_elf_backend_data (input); | |
3284 | obed = xvec_get_elf_backend_data (output); | |
3285 | ||
3286 | if (ibed->arch != obed->arch) | |
3287 | return FALSE; | |
3288 | ||
3289 | /* If both backends are using this function, deem them compatible. */ | |
3290 | return ibed->relocs_compatible == obed->relocs_compatible; | |
3291 | } | |
3292 | ||
e5034e59 AM |
3293 | /* Make a special call to the linker "notice" function to tell it that |
3294 | we are about to handle an as-needed lib, or have finished | |
3295 | processing the lib. */ | |
3296 | ||
3297 | bfd_boolean | |
3298 | _bfd_elf_notice_as_needed (bfd *ibfd, | |
3299 | struct bfd_link_info *info, | |
3300 | enum notice_asneeded_action act) | |
3301 | { | |
46135103 | 3302 | return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); |
e5034e59 AM |
3303 | } |
3304 | ||
4ad4eba5 AM |
3305 | /* Add symbols from an ELF object file to the linker hash table. */ |
3306 | ||
3307 | static bfd_boolean | |
3308 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | |
3309 | { | |
a0c402a5 | 3310 | Elf_Internal_Ehdr *ehdr; |
4ad4eba5 AM |
3311 | Elf_Internal_Shdr *hdr; |
3312 | bfd_size_type symcount; | |
3313 | bfd_size_type extsymcount; | |
3314 | bfd_size_type extsymoff; | |
3315 | struct elf_link_hash_entry **sym_hash; | |
3316 | bfd_boolean dynamic; | |
3317 | Elf_External_Versym *extversym = NULL; | |
3318 | Elf_External_Versym *ever; | |
3319 | struct elf_link_hash_entry *weaks; | |
3320 | struct elf_link_hash_entry **nondeflt_vers = NULL; | |
3321 | bfd_size_type nondeflt_vers_cnt = 0; | |
3322 | Elf_Internal_Sym *isymbuf = NULL; | |
3323 | Elf_Internal_Sym *isym; | |
3324 | Elf_Internal_Sym *isymend; | |
3325 | const struct elf_backend_data *bed; | |
3326 | bfd_boolean add_needed; | |
66eb6687 | 3327 | struct elf_link_hash_table *htab; |
4ad4eba5 | 3328 | bfd_size_type amt; |
66eb6687 | 3329 | void *alloc_mark = NULL; |
4f87808c AM |
3330 | struct bfd_hash_entry **old_table = NULL; |
3331 | unsigned int old_size = 0; | |
3332 | unsigned int old_count = 0; | |
66eb6687 | 3333 | void *old_tab = NULL; |
66eb6687 AM |
3334 | void *old_ent; |
3335 | struct bfd_link_hash_entry *old_undefs = NULL; | |
3336 | struct bfd_link_hash_entry *old_undefs_tail = NULL; | |
3337 | long old_dynsymcount = 0; | |
a4542f1b | 3338 | bfd_size_type old_dynstr_size = 0; |
66eb6687 | 3339 | size_t tabsize = 0; |
db6a5d5f | 3340 | asection *s; |
4ad4eba5 | 3341 | |
66eb6687 | 3342 | htab = elf_hash_table (info); |
4ad4eba5 | 3343 | bed = get_elf_backend_data (abfd); |
4ad4eba5 AM |
3344 | |
3345 | if ((abfd->flags & DYNAMIC) == 0) | |
3346 | dynamic = FALSE; | |
3347 | else | |
3348 | { | |
3349 | dynamic = TRUE; | |
3350 | ||
3351 | /* You can't use -r against a dynamic object. Also, there's no | |
3352 | hope of using a dynamic object which does not exactly match | |
3353 | the format of the output file. */ | |
3354 | if (info->relocatable | |
66eb6687 | 3355 | || !is_elf_hash_table (htab) |
f13a99db | 3356 | || info->output_bfd->xvec != abfd->xvec) |
4ad4eba5 | 3357 | { |
9a0789ec NC |
3358 | if (info->relocatable) |
3359 | bfd_set_error (bfd_error_invalid_operation); | |
3360 | else | |
3361 | bfd_set_error (bfd_error_wrong_format); | |
4ad4eba5 AM |
3362 | goto error_return; |
3363 | } | |
3364 | } | |
3365 | ||
a0c402a5 L |
3366 | ehdr = elf_elfheader (abfd); |
3367 | if (info->warn_alternate_em | |
3368 | && bed->elf_machine_code != ehdr->e_machine | |
3369 | && ((bed->elf_machine_alt1 != 0 | |
3370 | && ehdr->e_machine == bed->elf_machine_alt1) | |
3371 | || (bed->elf_machine_alt2 != 0 | |
3372 | && ehdr->e_machine == bed->elf_machine_alt2))) | |
3373 | info->callbacks->einfo | |
3374 | (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"), | |
3375 | ehdr->e_machine, abfd, bed->elf_machine_code); | |
3376 | ||
4ad4eba5 AM |
3377 | /* As a GNU extension, any input sections which are named |
3378 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
3379 | symbol. This differs from .gnu.warning sections, which generate | |
3380 | warnings when they are included in an output file. */ | |
dd98f8d2 | 3381 | /* PR 12761: Also generate this warning when building shared libraries. */ |
db6a5d5f | 3382 | for (s = abfd->sections; s != NULL; s = s->next) |
4ad4eba5 | 3383 | { |
db6a5d5f | 3384 | const char *name; |
4ad4eba5 | 3385 | |
db6a5d5f AM |
3386 | name = bfd_get_section_name (abfd, s); |
3387 | if (CONST_STRNEQ (name, ".gnu.warning.")) | |
4ad4eba5 | 3388 | { |
db6a5d5f AM |
3389 | char *msg; |
3390 | bfd_size_type sz; | |
3391 | ||
3392 | name += sizeof ".gnu.warning." - 1; | |
3393 | ||
3394 | /* If this is a shared object, then look up the symbol | |
3395 | in the hash table. If it is there, and it is already | |
3396 | been defined, then we will not be using the entry | |
3397 | from this shared object, so we don't need to warn. | |
3398 | FIXME: If we see the definition in a regular object | |
3399 | later on, we will warn, but we shouldn't. The only | |
3400 | fix is to keep track of what warnings we are supposed | |
3401 | to emit, and then handle them all at the end of the | |
3402 | link. */ | |
3403 | if (dynamic) | |
4ad4eba5 | 3404 | { |
db6a5d5f AM |
3405 | struct elf_link_hash_entry *h; |
3406 | ||
3407 | h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); | |
3408 | ||
3409 | /* FIXME: What about bfd_link_hash_common? */ | |
3410 | if (h != NULL | |
3411 | && (h->root.type == bfd_link_hash_defined | |
3412 | || h->root.type == bfd_link_hash_defweak)) | |
3413 | continue; | |
3414 | } | |
4ad4eba5 | 3415 | |
db6a5d5f AM |
3416 | sz = s->size; |
3417 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
3418 | if (msg == NULL) | |
3419 | goto error_return; | |
4ad4eba5 | 3420 | |
db6a5d5f AM |
3421 | if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) |
3422 | goto error_return; | |
4ad4eba5 | 3423 | |
db6a5d5f | 3424 | msg[sz] = '\0'; |
4ad4eba5 | 3425 | |
db6a5d5f AM |
3426 | if (! (_bfd_generic_link_add_one_symbol |
3427 | (info, abfd, name, BSF_WARNING, s, 0, msg, | |
3428 | FALSE, bed->collect, NULL))) | |
3429 | goto error_return; | |
4ad4eba5 | 3430 | |
db6a5d5f AM |
3431 | if (!info->relocatable && info->executable) |
3432 | { | |
3433 | /* Clobber the section size so that the warning does | |
3434 | not get copied into the output file. */ | |
3435 | s->size = 0; | |
11d2f718 | 3436 | |
db6a5d5f AM |
3437 | /* Also set SEC_EXCLUDE, so that symbols defined in |
3438 | the warning section don't get copied to the output. */ | |
3439 | s->flags |= SEC_EXCLUDE; | |
4ad4eba5 AM |
3440 | } |
3441 | } | |
3442 | } | |
3443 | ||
3444 | add_needed = TRUE; | |
3445 | if (! dynamic) | |
3446 | { | |
3447 | /* If we are creating a shared library, create all the dynamic | |
3448 | sections immediately. We need to attach them to something, | |
3449 | so we attach them to this BFD, provided it is the right | |
3450 | format. FIXME: If there are no input BFD's of the same | |
3451 | format as the output, we can't make a shared library. */ | |
3452 | if (info->shared | |
66eb6687 | 3453 | && is_elf_hash_table (htab) |
f13a99db | 3454 | && info->output_bfd->xvec == abfd->xvec |
66eb6687 | 3455 | && !htab->dynamic_sections_created) |
4ad4eba5 AM |
3456 | { |
3457 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |
3458 | goto error_return; | |
3459 | } | |
3460 | } | |
66eb6687 | 3461 | else if (!is_elf_hash_table (htab)) |
4ad4eba5 AM |
3462 | goto error_return; |
3463 | else | |
3464 | { | |
4ad4eba5 | 3465 | const char *soname = NULL; |
7ee314fa | 3466 | char *audit = NULL; |
4ad4eba5 AM |
3467 | struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; |
3468 | int ret; | |
3469 | ||
3470 | /* ld --just-symbols and dynamic objects don't mix very well. | |
92fd189d | 3471 | ld shouldn't allow it. */ |
4ad4eba5 | 3472 | if ((s = abfd->sections) != NULL |
dbaa2011 | 3473 | && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
92fd189d | 3474 | abort (); |
4ad4eba5 AM |
3475 | |
3476 | /* If this dynamic lib was specified on the command line with | |
3477 | --as-needed in effect, then we don't want to add a DT_NEEDED | |
3478 | tag unless the lib is actually used. Similary for libs brought | |
e56f61be L |
3479 | in by another lib's DT_NEEDED. When --no-add-needed is used |
3480 | on a dynamic lib, we don't want to add a DT_NEEDED entry for | |
3481 | any dynamic library in DT_NEEDED tags in the dynamic lib at | |
3482 | all. */ | |
3483 | add_needed = (elf_dyn_lib_class (abfd) | |
3484 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | |
3485 | | DYN_NO_NEEDED)) == 0; | |
4ad4eba5 AM |
3486 | |
3487 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
3488 | if (s != NULL) | |
3489 | { | |
3490 | bfd_byte *dynbuf; | |
3491 | bfd_byte *extdyn; | |
cb33740c | 3492 | unsigned int elfsec; |
4ad4eba5 AM |
3493 | unsigned long shlink; |
3494 | ||
eea6121a | 3495 | if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
f8703194 L |
3496 | { |
3497 | error_free_dyn: | |
3498 | free (dynbuf); | |
3499 | goto error_return; | |
3500 | } | |
4ad4eba5 AM |
3501 | |
3502 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
cb33740c | 3503 | if (elfsec == SHN_BAD) |
4ad4eba5 AM |
3504 | goto error_free_dyn; |
3505 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
3506 | ||
3507 | for (extdyn = dynbuf; | |
eea6121a | 3508 | extdyn < dynbuf + s->size; |
4ad4eba5 AM |
3509 | extdyn += bed->s->sizeof_dyn) |
3510 | { | |
3511 | Elf_Internal_Dyn dyn; | |
3512 | ||
3513 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); | |
3514 | if (dyn.d_tag == DT_SONAME) | |
3515 | { | |
3516 | unsigned int tagv = dyn.d_un.d_val; | |
3517 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3518 | if (soname == NULL) | |
3519 | goto error_free_dyn; | |
3520 | } | |
3521 | if (dyn.d_tag == DT_NEEDED) | |
3522 | { | |
3523 | struct bfd_link_needed_list *n, **pn; | |
3524 | char *fnm, *anm; | |
3525 | unsigned int tagv = dyn.d_un.d_val; | |
3526 | ||
3527 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3528 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3529 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3530 | if (n == NULL || fnm == NULL) | |
3531 | goto error_free_dyn; | |
3532 | amt = strlen (fnm) + 1; | |
a50b1753 | 3533 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3534 | if (anm == NULL) |
3535 | goto error_free_dyn; | |
3536 | memcpy (anm, fnm, amt); | |
3537 | n->name = anm; | |
3538 | n->by = abfd; | |
3539 | n->next = NULL; | |
66eb6687 | 3540 | for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) |
4ad4eba5 AM |
3541 | ; |
3542 | *pn = n; | |
3543 | } | |
3544 | if (dyn.d_tag == DT_RUNPATH) | |
3545 | { | |
3546 | struct bfd_link_needed_list *n, **pn; | |
3547 | char *fnm, *anm; | |
3548 | unsigned int tagv = dyn.d_un.d_val; | |
3549 | ||
3550 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3551 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3552 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3553 | if (n == NULL || fnm == NULL) | |
3554 | goto error_free_dyn; | |
3555 | amt = strlen (fnm) + 1; | |
a50b1753 | 3556 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3557 | if (anm == NULL) |
3558 | goto error_free_dyn; | |
3559 | memcpy (anm, fnm, amt); | |
3560 | n->name = anm; | |
3561 | n->by = abfd; | |
3562 | n->next = NULL; | |
3563 | for (pn = & runpath; | |
3564 | *pn != NULL; | |
3565 | pn = &(*pn)->next) | |
3566 | ; | |
3567 | *pn = n; | |
3568 | } | |
3569 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ | |
3570 | if (!runpath && dyn.d_tag == DT_RPATH) | |
3571 | { | |
3572 | struct bfd_link_needed_list *n, **pn; | |
3573 | char *fnm, *anm; | |
3574 | unsigned int tagv = dyn.d_un.d_val; | |
3575 | ||
3576 | amt = sizeof (struct bfd_link_needed_list); | |
a50b1753 | 3577 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4ad4eba5 AM |
3578 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
3579 | if (n == NULL || fnm == NULL) | |
3580 | goto error_free_dyn; | |
3581 | amt = strlen (fnm) + 1; | |
a50b1753 | 3582 | anm = (char *) bfd_alloc (abfd, amt); |
4ad4eba5 | 3583 | if (anm == NULL) |
f8703194 | 3584 | goto error_free_dyn; |
4ad4eba5 AM |
3585 | memcpy (anm, fnm, amt); |
3586 | n->name = anm; | |
3587 | n->by = abfd; | |
3588 | n->next = NULL; | |
3589 | for (pn = & rpath; | |
3590 | *pn != NULL; | |
3591 | pn = &(*pn)->next) | |
3592 | ; | |
3593 | *pn = n; | |
3594 | } | |
7ee314fa AM |
3595 | if (dyn.d_tag == DT_AUDIT) |
3596 | { | |
3597 | unsigned int tagv = dyn.d_un.d_val; | |
3598 | audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
3599 | } | |
4ad4eba5 AM |
3600 | } |
3601 | ||
3602 | free (dynbuf); | |
3603 | } | |
3604 | ||
3605 | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that | |
3606 | frees all more recently bfd_alloc'd blocks as well. */ | |
3607 | if (runpath) | |
3608 | rpath = runpath; | |
3609 | ||
3610 | if (rpath) | |
3611 | { | |
3612 | struct bfd_link_needed_list **pn; | |
66eb6687 | 3613 | for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) |
4ad4eba5 AM |
3614 | ; |
3615 | *pn = rpath; | |
3616 | } | |
3617 | ||
3618 | /* We do not want to include any of the sections in a dynamic | |
3619 | object in the output file. We hack by simply clobbering the | |
3620 | list of sections in the BFD. This could be handled more | |
3621 | cleanly by, say, a new section flag; the existing | |
3622 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
3623 | still implies that the section takes up space in the output | |
3624 | file. */ | |
3625 | bfd_section_list_clear (abfd); | |
3626 | ||
4ad4eba5 AM |
3627 | /* Find the name to use in a DT_NEEDED entry that refers to this |
3628 | object. If the object has a DT_SONAME entry, we use it. | |
3629 | Otherwise, if the generic linker stuck something in | |
3630 | elf_dt_name, we use that. Otherwise, we just use the file | |
3631 | name. */ | |
3632 | if (soname == NULL || *soname == '\0') | |
3633 | { | |
3634 | soname = elf_dt_name (abfd); | |
3635 | if (soname == NULL || *soname == '\0') | |
3636 | soname = bfd_get_filename (abfd); | |
3637 | } | |
3638 | ||
3639 | /* Save the SONAME because sometimes the linker emulation code | |
3640 | will need to know it. */ | |
3641 | elf_dt_name (abfd) = soname; | |
3642 | ||
7e9f0867 | 3643 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); |
4ad4eba5 AM |
3644 | if (ret < 0) |
3645 | goto error_return; | |
3646 | ||
3647 | /* If we have already included this dynamic object in the | |
3648 | link, just ignore it. There is no reason to include a | |
3649 | particular dynamic object more than once. */ | |
3650 | if (ret > 0) | |
3651 | return TRUE; | |
7ee314fa AM |
3652 | |
3653 | /* Save the DT_AUDIT entry for the linker emulation code. */ | |
68ffbac6 | 3654 | elf_dt_audit (abfd) = audit; |
4ad4eba5 AM |
3655 | } |
3656 | ||
3657 | /* If this is a dynamic object, we always link against the .dynsym | |
3658 | symbol table, not the .symtab symbol table. The dynamic linker | |
3659 | will only see the .dynsym symbol table, so there is no reason to | |
3660 | look at .symtab for a dynamic object. */ | |
3661 | ||
3662 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
3663 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3664 | else | |
3665 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3666 | ||
3667 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
3668 | ||
3669 | /* The sh_info field of the symtab header tells us where the | |
3670 | external symbols start. We don't care about the local symbols at | |
3671 | this point. */ | |
3672 | if (elf_bad_symtab (abfd)) | |
3673 | { | |
3674 | extsymcount = symcount; | |
3675 | extsymoff = 0; | |
3676 | } | |
3677 | else | |
3678 | { | |
3679 | extsymcount = symcount - hdr->sh_info; | |
3680 | extsymoff = hdr->sh_info; | |
3681 | } | |
3682 | ||
f45794cb | 3683 | sym_hash = elf_sym_hashes (abfd); |
012b2306 | 3684 | if (extsymcount != 0) |
4ad4eba5 AM |
3685 | { |
3686 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
3687 | NULL, NULL, NULL); | |
3688 | if (isymbuf == NULL) | |
3689 | goto error_return; | |
3690 | ||
4ad4eba5 | 3691 | if (sym_hash == NULL) |
012b2306 AM |
3692 | { |
3693 | /* We store a pointer to the hash table entry for each | |
3694 | external symbol. */ | |
3695 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
3696 | sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); | |
3697 | if (sym_hash == NULL) | |
3698 | goto error_free_sym; | |
3699 | elf_sym_hashes (abfd) = sym_hash; | |
3700 | } | |
4ad4eba5 AM |
3701 | } |
3702 | ||
3703 | if (dynamic) | |
3704 | { | |
3705 | /* Read in any version definitions. */ | |
fc0e6df6 PB |
3706 | if (!_bfd_elf_slurp_version_tables (abfd, |
3707 | info->default_imported_symver)) | |
4ad4eba5 AM |
3708 | goto error_free_sym; |
3709 | ||
3710 | /* Read in the symbol versions, but don't bother to convert them | |
3711 | to internal format. */ | |
3712 | if (elf_dynversym (abfd) != 0) | |
3713 | { | |
3714 | Elf_Internal_Shdr *versymhdr; | |
3715 | ||
3716 | versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
a50b1753 | 3717 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
4ad4eba5 AM |
3718 | if (extversym == NULL) |
3719 | goto error_free_sym; | |
3720 | amt = versymhdr->sh_size; | |
3721 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 | |
3722 | || bfd_bread (extversym, amt, abfd) != amt) | |
3723 | goto error_free_vers; | |
3724 | } | |
3725 | } | |
3726 | ||
66eb6687 AM |
3727 | /* If we are loading an as-needed shared lib, save the symbol table |
3728 | state before we start adding symbols. If the lib turns out | |
3729 | to be unneeded, restore the state. */ | |
3730 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
3731 | { | |
3732 | unsigned int i; | |
3733 | size_t entsize; | |
3734 | ||
3735 | for (entsize = 0, i = 0; i < htab->root.table.size; i++) | |
3736 | { | |
3737 | struct bfd_hash_entry *p; | |
2de92251 | 3738 | struct elf_link_hash_entry *h; |
66eb6687 AM |
3739 | |
3740 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
2de92251 AM |
3741 | { |
3742 | h = (struct elf_link_hash_entry *) p; | |
3743 | entsize += htab->root.table.entsize; | |
3744 | if (h->root.type == bfd_link_hash_warning) | |
3745 | entsize += htab->root.table.entsize; | |
3746 | } | |
66eb6687 AM |
3747 | } |
3748 | ||
3749 | tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); | |
f45794cb | 3750 | old_tab = bfd_malloc (tabsize + entsize); |
66eb6687 AM |
3751 | if (old_tab == NULL) |
3752 | goto error_free_vers; | |
3753 | ||
3754 | /* Remember the current objalloc pointer, so that all mem for | |
3755 | symbols added can later be reclaimed. */ | |
3756 | alloc_mark = bfd_hash_allocate (&htab->root.table, 1); | |
3757 | if (alloc_mark == NULL) | |
3758 | goto error_free_vers; | |
3759 | ||
5061a885 AM |
3760 | /* Make a special call to the linker "notice" function to |
3761 | tell it that we are about to handle an as-needed lib. */ | |
e5034e59 | 3762 | if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) |
9af2a943 | 3763 | goto error_free_vers; |
5061a885 | 3764 | |
f45794cb AM |
3765 | /* Clone the symbol table. Remember some pointers into the |
3766 | symbol table, and dynamic symbol count. */ | |
3767 | old_ent = (char *) old_tab + tabsize; | |
66eb6687 | 3768 | memcpy (old_tab, htab->root.table.table, tabsize); |
66eb6687 AM |
3769 | old_undefs = htab->root.undefs; |
3770 | old_undefs_tail = htab->root.undefs_tail; | |
4f87808c AM |
3771 | old_table = htab->root.table.table; |
3772 | old_size = htab->root.table.size; | |
3773 | old_count = htab->root.table.count; | |
66eb6687 | 3774 | old_dynsymcount = htab->dynsymcount; |
a4542f1b | 3775 | old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr); |
66eb6687 AM |
3776 | |
3777 | for (i = 0; i < htab->root.table.size; i++) | |
3778 | { | |
3779 | struct bfd_hash_entry *p; | |
2de92251 | 3780 | struct elf_link_hash_entry *h; |
66eb6687 AM |
3781 | |
3782 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
3783 | { | |
3784 | memcpy (old_ent, p, htab->root.table.entsize); | |
3785 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
2de92251 AM |
3786 | h = (struct elf_link_hash_entry *) p; |
3787 | if (h->root.type == bfd_link_hash_warning) | |
3788 | { | |
3789 | memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); | |
3790 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
3791 | } | |
66eb6687 AM |
3792 | } |
3793 | } | |
3794 | } | |
4ad4eba5 | 3795 | |
66eb6687 | 3796 | weaks = NULL; |
4ad4eba5 AM |
3797 | ever = extversym != NULL ? extversym + extsymoff : NULL; |
3798 | for (isym = isymbuf, isymend = isymbuf + extsymcount; | |
3799 | isym < isymend; | |
3800 | isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
3801 | { | |
3802 | int bind; | |
3803 | bfd_vma value; | |
af44c138 | 3804 | asection *sec, *new_sec; |
4ad4eba5 AM |
3805 | flagword flags; |
3806 | const char *name; | |
3807 | struct elf_link_hash_entry *h; | |
90c984fc | 3808 | struct elf_link_hash_entry *hi; |
4ad4eba5 AM |
3809 | bfd_boolean definition; |
3810 | bfd_boolean size_change_ok; | |
3811 | bfd_boolean type_change_ok; | |
3812 | bfd_boolean new_weakdef; | |
37a9e49a L |
3813 | bfd_boolean new_weak; |
3814 | bfd_boolean old_weak; | |
4ad4eba5 | 3815 | bfd_boolean override; |
a4d8e49b | 3816 | bfd_boolean common; |
4ad4eba5 AM |
3817 | unsigned int old_alignment; |
3818 | bfd *old_bfd; | |
3819 | ||
3820 | override = FALSE; | |
3821 | ||
3822 | flags = BSF_NO_FLAGS; | |
3823 | sec = NULL; | |
3824 | value = isym->st_value; | |
a4d8e49b | 3825 | common = bed->common_definition (isym); |
4ad4eba5 AM |
3826 | |
3827 | bind = ELF_ST_BIND (isym->st_info); | |
3e7a7d11 | 3828 | switch (bind) |
4ad4eba5 | 3829 | { |
3e7a7d11 | 3830 | case STB_LOCAL: |
4ad4eba5 AM |
3831 | /* This should be impossible, since ELF requires that all |
3832 | global symbols follow all local symbols, and that sh_info | |
3833 | point to the first global symbol. Unfortunately, Irix 5 | |
3834 | screws this up. */ | |
3835 | continue; | |
3e7a7d11 NC |
3836 | |
3837 | case STB_GLOBAL: | |
a4d8e49b | 3838 | if (isym->st_shndx != SHN_UNDEF && !common) |
4ad4eba5 | 3839 | flags = BSF_GLOBAL; |
3e7a7d11 NC |
3840 | break; |
3841 | ||
3842 | case STB_WEAK: | |
3843 | flags = BSF_WEAK; | |
3844 | break; | |
3845 | ||
3846 | case STB_GNU_UNIQUE: | |
3847 | flags = BSF_GNU_UNIQUE; | |
3848 | break; | |
3849 | ||
3850 | default: | |
4ad4eba5 | 3851 | /* Leave it up to the processor backend. */ |
3e7a7d11 | 3852 | break; |
4ad4eba5 AM |
3853 | } |
3854 | ||
3855 | if (isym->st_shndx == SHN_UNDEF) | |
3856 | sec = bfd_und_section_ptr; | |
cb33740c AM |
3857 | else if (isym->st_shndx == SHN_ABS) |
3858 | sec = bfd_abs_section_ptr; | |
3859 | else if (isym->st_shndx == SHN_COMMON) | |
3860 | { | |
3861 | sec = bfd_com_section_ptr; | |
3862 | /* What ELF calls the size we call the value. What ELF | |
3863 | calls the value we call the alignment. */ | |
3864 | value = isym->st_size; | |
3865 | } | |
3866 | else | |
4ad4eba5 AM |
3867 | { |
3868 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
3869 | if (sec == NULL) | |
3870 | sec = bfd_abs_section_ptr; | |
dbaa2011 | 3871 | else if (discarded_section (sec)) |
529fcb95 | 3872 | { |
e5d08002 L |
3873 | /* Symbols from discarded section are undefined. We keep |
3874 | its visibility. */ | |
529fcb95 PB |
3875 | sec = bfd_und_section_ptr; |
3876 | isym->st_shndx = SHN_UNDEF; | |
3877 | } | |
4ad4eba5 AM |
3878 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
3879 | value -= sec->vma; | |
3880 | } | |
4ad4eba5 AM |
3881 | |
3882 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
3883 | isym->st_name); | |
3884 | if (name == NULL) | |
3885 | goto error_free_vers; | |
3886 | ||
3887 | if (isym->st_shndx == SHN_COMMON | |
02d00247 AM |
3888 | && (abfd->flags & BFD_PLUGIN) != 0) |
3889 | { | |
3890 | asection *xc = bfd_get_section_by_name (abfd, "COMMON"); | |
3891 | ||
3892 | if (xc == NULL) | |
3893 | { | |
3894 | flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP | |
3895 | | SEC_EXCLUDE); | |
3896 | xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); | |
3897 | if (xc == NULL) | |
3898 | goto error_free_vers; | |
3899 | } | |
3900 | sec = xc; | |
3901 | } | |
3902 | else if (isym->st_shndx == SHN_COMMON | |
3903 | && ELF_ST_TYPE (isym->st_info) == STT_TLS | |
3904 | && !info->relocatable) | |
4ad4eba5 AM |
3905 | { |
3906 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | |
3907 | ||
3908 | if (tcomm == NULL) | |
3909 | { | |
02d00247 AM |
3910 | flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON |
3911 | | SEC_LINKER_CREATED); | |
3912 | tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); | |
3496cb2a | 3913 | if (tcomm == NULL) |
4ad4eba5 AM |
3914 | goto error_free_vers; |
3915 | } | |
3916 | sec = tcomm; | |
3917 | } | |
66eb6687 | 3918 | else if (bed->elf_add_symbol_hook) |
4ad4eba5 | 3919 | { |
66eb6687 AM |
3920 | if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, |
3921 | &sec, &value)) | |
4ad4eba5 AM |
3922 | goto error_free_vers; |
3923 | ||
3924 | /* The hook function sets the name to NULL if this symbol | |
3925 | should be skipped for some reason. */ | |
3926 | if (name == NULL) | |
3927 | continue; | |
3928 | } | |
3929 | ||
3930 | /* Sanity check that all possibilities were handled. */ | |
3931 | if (sec == NULL) | |
3932 | { | |
3933 | bfd_set_error (bfd_error_bad_value); | |
3934 | goto error_free_vers; | |
3935 | } | |
3936 | ||
191c0c42 AM |
3937 | /* Silently discard TLS symbols from --just-syms. There's |
3938 | no way to combine a static TLS block with a new TLS block | |
3939 | for this executable. */ | |
3940 | if (ELF_ST_TYPE (isym->st_info) == STT_TLS | |
3941 | && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
3942 | continue; | |
3943 | ||
4ad4eba5 AM |
3944 | if (bfd_is_und_section (sec) |
3945 | || bfd_is_com_section (sec)) | |
3946 | definition = FALSE; | |
3947 | else | |
3948 | definition = TRUE; | |
3949 | ||
3950 | size_change_ok = FALSE; | |
66eb6687 | 3951 | type_change_ok = bed->type_change_ok; |
37a9e49a | 3952 | old_weak = FALSE; |
4ad4eba5 AM |
3953 | old_alignment = 0; |
3954 | old_bfd = NULL; | |
af44c138 | 3955 | new_sec = sec; |
4ad4eba5 | 3956 | |
66eb6687 | 3957 | if (is_elf_hash_table (htab)) |
4ad4eba5 AM |
3958 | { |
3959 | Elf_Internal_Versym iver; | |
3960 | unsigned int vernum = 0; | |
3961 | bfd_boolean skip; | |
3962 | ||
fc0e6df6 | 3963 | if (ever == NULL) |
4ad4eba5 | 3964 | { |
fc0e6df6 PB |
3965 | if (info->default_imported_symver) |
3966 | /* Use the default symbol version created earlier. */ | |
3967 | iver.vs_vers = elf_tdata (abfd)->cverdefs; | |
3968 | else | |
3969 | iver.vs_vers = 0; | |
3970 | } | |
3971 | else | |
3972 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
3973 | ||
3974 | vernum = iver.vs_vers & VERSYM_VERSION; | |
3975 | ||
3976 | /* If this is a hidden symbol, or if it is not version | |
3977 | 1, we append the version name to the symbol name. | |
cc86ff91 EB |
3978 | However, we do not modify a non-hidden absolute symbol |
3979 | if it is not a function, because it might be the version | |
3980 | symbol itself. FIXME: What if it isn't? */ | |
fc0e6df6 | 3981 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 |
fcb93ecf PB |
3982 | || (vernum > 1 |
3983 | && (!bfd_is_abs_section (sec) | |
3984 | || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) | |
fc0e6df6 PB |
3985 | { |
3986 | const char *verstr; | |
3987 | size_t namelen, verlen, newlen; | |
3988 | char *newname, *p; | |
3989 | ||
3990 | if (isym->st_shndx != SHN_UNDEF) | |
4ad4eba5 | 3991 | { |
fc0e6df6 PB |
3992 | if (vernum > elf_tdata (abfd)->cverdefs) |
3993 | verstr = NULL; | |
3994 | else if (vernum > 1) | |
3995 | verstr = | |
3996 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
3997 | else | |
3998 | verstr = ""; | |
4ad4eba5 | 3999 | |
fc0e6df6 | 4000 | if (verstr == NULL) |
4ad4eba5 | 4001 | { |
fc0e6df6 PB |
4002 | (*_bfd_error_handler) |
4003 | (_("%B: %s: invalid version %u (max %d)"), | |
4004 | abfd, name, vernum, | |
4005 | elf_tdata (abfd)->cverdefs); | |
4006 | bfd_set_error (bfd_error_bad_value); | |
4007 | goto error_free_vers; | |
4ad4eba5 | 4008 | } |
fc0e6df6 PB |
4009 | } |
4010 | else | |
4011 | { | |
4012 | /* We cannot simply test for the number of | |
4013 | entries in the VERNEED section since the | |
4014 | numbers for the needed versions do not start | |
4015 | at 0. */ | |
4016 | Elf_Internal_Verneed *t; | |
4017 | ||
4018 | verstr = NULL; | |
4019 | for (t = elf_tdata (abfd)->verref; | |
4020 | t != NULL; | |
4021 | t = t->vn_nextref) | |
4ad4eba5 | 4022 | { |
fc0e6df6 | 4023 | Elf_Internal_Vernaux *a; |
4ad4eba5 | 4024 | |
fc0e6df6 PB |
4025 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
4026 | { | |
4027 | if (a->vna_other == vernum) | |
4ad4eba5 | 4028 | { |
fc0e6df6 PB |
4029 | verstr = a->vna_nodename; |
4030 | break; | |
4ad4eba5 | 4031 | } |
4ad4eba5 | 4032 | } |
fc0e6df6 PB |
4033 | if (a != NULL) |
4034 | break; | |
4035 | } | |
4036 | if (verstr == NULL) | |
4037 | { | |
4038 | (*_bfd_error_handler) | |
4039 | (_("%B: %s: invalid needed version %d"), | |
4040 | abfd, name, vernum); | |
4041 | bfd_set_error (bfd_error_bad_value); | |
4042 | goto error_free_vers; | |
4ad4eba5 | 4043 | } |
4ad4eba5 | 4044 | } |
fc0e6df6 PB |
4045 | |
4046 | namelen = strlen (name); | |
4047 | verlen = strlen (verstr); | |
4048 | newlen = namelen + verlen + 2; | |
4049 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
4050 | && isym->st_shndx != SHN_UNDEF) | |
4051 | ++newlen; | |
4052 | ||
a50b1753 | 4053 | newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); |
fc0e6df6 PB |
4054 | if (newname == NULL) |
4055 | goto error_free_vers; | |
4056 | memcpy (newname, name, namelen); | |
4057 | p = newname + namelen; | |
4058 | *p++ = ELF_VER_CHR; | |
4059 | /* If this is a defined non-hidden version symbol, | |
4060 | we add another @ to the name. This indicates the | |
4061 | default version of the symbol. */ | |
4062 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
4063 | && isym->st_shndx != SHN_UNDEF) | |
4064 | *p++ = ELF_VER_CHR; | |
4065 | memcpy (p, verstr, verlen + 1); | |
4066 | ||
4067 | name = newname; | |
4ad4eba5 AM |
4068 | } |
4069 | ||
cd3416da AM |
4070 | /* If this symbol has default visibility and the user has |
4071 | requested we not re-export it, then mark it as hidden. */ | |
4072 | if (definition | |
4073 | && !dynamic | |
4074 | && (abfd->no_export | |
4075 | || (abfd->my_archive && abfd->my_archive->no_export)) | |
4076 | && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) | |
4077 | isym->st_other = (STV_HIDDEN | |
4078 | | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); | |
4079 | ||
4f3fedcf AM |
4080 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, |
4081 | sym_hash, &old_bfd, &old_weak, | |
4082 | &old_alignment, &skip, &override, | |
4ad4eba5 AM |
4083 | &type_change_ok, &size_change_ok)) |
4084 | goto error_free_vers; | |
4085 | ||
4086 | if (skip) | |
4087 | continue; | |
4088 | ||
4089 | if (override) | |
4090 | definition = FALSE; | |
4091 | ||
4092 | h = *sym_hash; | |
4093 | while (h->root.type == bfd_link_hash_indirect | |
4094 | || h->root.type == bfd_link_hash_warning) | |
4095 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4096 | ||
4ad4eba5 | 4097 | if (elf_tdata (abfd)->verdef != NULL |
4ad4eba5 AM |
4098 | && vernum > 1 |
4099 | && definition) | |
4100 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
4101 | } | |
4102 | ||
4103 | if (! (_bfd_generic_link_add_one_symbol | |
66eb6687 | 4104 | (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, |
4ad4eba5 AM |
4105 | (struct bfd_link_hash_entry **) sym_hash))) |
4106 | goto error_free_vers; | |
4107 | ||
4108 | h = *sym_hash; | |
90c984fc L |
4109 | /* We need to make sure that indirect symbol dynamic flags are |
4110 | updated. */ | |
4111 | hi = h; | |
4ad4eba5 AM |
4112 | while (h->root.type == bfd_link_hash_indirect |
4113 | || h->root.type == bfd_link_hash_warning) | |
4114 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3e7a7d11 | 4115 | |
4ad4eba5 AM |
4116 | *sym_hash = h; |
4117 | ||
37a9e49a | 4118 | new_weak = (flags & BSF_WEAK) != 0; |
4ad4eba5 AM |
4119 | new_weakdef = FALSE; |
4120 | if (dynamic | |
4121 | && definition | |
37a9e49a | 4122 | && new_weak |
fcb93ecf | 4123 | && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) |
66eb6687 | 4124 | && is_elf_hash_table (htab) |
f6e332e6 | 4125 | && h->u.weakdef == NULL) |
4ad4eba5 AM |
4126 | { |
4127 | /* Keep a list of all weak defined non function symbols from | |
4128 | a dynamic object, using the weakdef field. Later in this | |
4129 | function we will set the weakdef field to the correct | |
4130 | value. We only put non-function symbols from dynamic | |
4131 | objects on this list, because that happens to be the only | |
4132 | time we need to know the normal symbol corresponding to a | |
4133 | weak symbol, and the information is time consuming to | |
4134 | figure out. If the weakdef field is not already NULL, | |
4135 | then this symbol was already defined by some previous | |
4136 | dynamic object, and we will be using that previous | |
4137 | definition anyhow. */ | |
4138 | ||
f6e332e6 | 4139 | h->u.weakdef = weaks; |
4ad4eba5 AM |
4140 | weaks = h; |
4141 | new_weakdef = TRUE; | |
4142 | } | |
4143 | ||
4144 | /* Set the alignment of a common symbol. */ | |
a4d8e49b | 4145 | if ((common || bfd_is_com_section (sec)) |
4ad4eba5 AM |
4146 | && h->root.type == bfd_link_hash_common) |
4147 | { | |
4148 | unsigned int align; | |
4149 | ||
a4d8e49b | 4150 | if (common) |
af44c138 L |
4151 | align = bfd_log2 (isym->st_value); |
4152 | else | |
4153 | { | |
4154 | /* The new symbol is a common symbol in a shared object. | |
4155 | We need to get the alignment from the section. */ | |
4156 | align = new_sec->alignment_power; | |
4157 | } | |
595213d4 | 4158 | if (align > old_alignment) |
4ad4eba5 AM |
4159 | h->root.u.c.p->alignment_power = align; |
4160 | else | |
4161 | h->root.u.c.p->alignment_power = old_alignment; | |
4162 | } | |
4163 | ||
66eb6687 | 4164 | if (is_elf_hash_table (htab)) |
4ad4eba5 | 4165 | { |
4f3fedcf AM |
4166 | /* Set a flag in the hash table entry indicating the type of |
4167 | reference or definition we just found. A dynamic symbol | |
4168 | is one which is referenced or defined by both a regular | |
4169 | object and a shared object. */ | |
4170 | bfd_boolean dynsym = FALSE; | |
4171 | ||
4172 | /* Plugin symbols aren't normal. Don't set def_regular or | |
4173 | ref_regular for them, or make them dynamic. */ | |
4174 | if ((abfd->flags & BFD_PLUGIN) != 0) | |
4175 | ; | |
4176 | else if (! dynamic) | |
4177 | { | |
4178 | if (! definition) | |
4179 | { | |
4180 | h->ref_regular = 1; | |
4181 | if (bind != STB_WEAK) | |
4182 | h->ref_regular_nonweak = 1; | |
4183 | } | |
4184 | else | |
4185 | { | |
4186 | h->def_regular = 1; | |
4187 | if (h->def_dynamic) | |
4188 | { | |
4189 | h->def_dynamic = 0; | |
4190 | h->ref_dynamic = 1; | |
4191 | } | |
4192 | } | |
4193 | ||
4194 | /* If the indirect symbol has been forced local, don't | |
4195 | make the real symbol dynamic. */ | |
4196 | if ((h == hi || !hi->forced_local) | |
4197 | && (! info->executable | |
4198 | || h->def_dynamic | |
4199 | || h->ref_dynamic)) | |
4200 | dynsym = TRUE; | |
4201 | } | |
4202 | else | |
4203 | { | |
4204 | if (! definition) | |
4205 | { | |
4206 | h->ref_dynamic = 1; | |
4207 | hi->ref_dynamic = 1; | |
4208 | } | |
4209 | else | |
4210 | { | |
4211 | h->def_dynamic = 1; | |
4212 | hi->def_dynamic = 1; | |
4213 | } | |
4214 | ||
4215 | /* If the indirect symbol has been forced local, don't | |
4216 | make the real symbol dynamic. */ | |
4217 | if ((h == hi || !hi->forced_local) | |
4218 | && (h->def_regular | |
4219 | || h->ref_regular | |
4220 | || (h->u.weakdef != NULL | |
4221 | && ! new_weakdef | |
4222 | && h->u.weakdef->dynindx != -1))) | |
4223 | dynsym = TRUE; | |
4224 | } | |
4225 | ||
4226 | /* Check to see if we need to add an indirect symbol for | |
4227 | the default name. */ | |
4228 | if (definition | |
4229 | || (!override && h->root.type == bfd_link_hash_common)) | |
4230 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | |
4231 | sec, value, &old_bfd, &dynsym)) | |
4232 | goto error_free_vers; | |
4ad4eba5 AM |
4233 | |
4234 | /* Check the alignment when a common symbol is involved. This | |
4235 | can change when a common symbol is overridden by a normal | |
4236 | definition or a common symbol is ignored due to the old | |
4237 | normal definition. We need to make sure the maximum | |
4238 | alignment is maintained. */ | |
a4d8e49b | 4239 | if ((old_alignment || common) |
4ad4eba5 AM |
4240 | && h->root.type != bfd_link_hash_common) |
4241 | { | |
4242 | unsigned int common_align; | |
4243 | unsigned int normal_align; | |
4244 | unsigned int symbol_align; | |
4245 | bfd *normal_bfd; | |
4246 | bfd *common_bfd; | |
4247 | ||
3a81e825 AM |
4248 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
4249 | || h->root.type == bfd_link_hash_defweak); | |
4250 | ||
4ad4eba5 AM |
4251 | symbol_align = ffs (h->root.u.def.value) - 1; |
4252 | if (h->root.u.def.section->owner != NULL | |
4253 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
4254 | { | |
4255 | normal_align = h->root.u.def.section->alignment_power; | |
4256 | if (normal_align > symbol_align) | |
4257 | normal_align = symbol_align; | |
4258 | } | |
4259 | else | |
4260 | normal_align = symbol_align; | |
4261 | ||
4262 | if (old_alignment) | |
4263 | { | |
4264 | common_align = old_alignment; | |
4265 | common_bfd = old_bfd; | |
4266 | normal_bfd = abfd; | |
4267 | } | |
4268 | else | |
4269 | { | |
4270 | common_align = bfd_log2 (isym->st_value); | |
4271 | common_bfd = abfd; | |
4272 | normal_bfd = old_bfd; | |
4273 | } | |
4274 | ||
4275 | if (normal_align < common_align) | |
d07676f8 NC |
4276 | { |
4277 | /* PR binutils/2735 */ | |
4278 | if (normal_bfd == NULL) | |
4279 | (*_bfd_error_handler) | |
4f3fedcf AM |
4280 | (_("Warning: alignment %u of common symbol `%s' in %B is" |
4281 | " greater than the alignment (%u) of its section %A"), | |
d07676f8 NC |
4282 | common_bfd, h->root.u.def.section, |
4283 | 1 << common_align, name, 1 << normal_align); | |
4284 | else | |
4285 | (*_bfd_error_handler) | |
4286 | (_("Warning: alignment %u of symbol `%s' in %B" | |
4287 | " is smaller than %u in %B"), | |
4288 | normal_bfd, common_bfd, | |
4289 | 1 << normal_align, name, 1 << common_align); | |
4290 | } | |
4ad4eba5 AM |
4291 | } |
4292 | ||
83ad0046 | 4293 | /* Remember the symbol size if it isn't undefined. */ |
3a81e825 AM |
4294 | if (isym->st_size != 0 |
4295 | && isym->st_shndx != SHN_UNDEF | |
4ad4eba5 AM |
4296 | && (definition || h->size == 0)) |
4297 | { | |
83ad0046 L |
4298 | if (h->size != 0 |
4299 | && h->size != isym->st_size | |
4300 | && ! size_change_ok) | |
4ad4eba5 | 4301 | (*_bfd_error_handler) |
d003868e AM |
4302 | (_("Warning: size of symbol `%s' changed" |
4303 | " from %lu in %B to %lu in %B"), | |
4304 | old_bfd, abfd, | |
4ad4eba5 | 4305 | name, (unsigned long) h->size, |
d003868e | 4306 | (unsigned long) isym->st_size); |
4ad4eba5 AM |
4307 | |
4308 | h->size = isym->st_size; | |
4309 | } | |
4310 | ||
4311 | /* If this is a common symbol, then we always want H->SIZE | |
4312 | to be the size of the common symbol. The code just above | |
4313 | won't fix the size if a common symbol becomes larger. We | |
4314 | don't warn about a size change here, because that is | |
4f3fedcf | 4315 | covered by --warn-common. Allow changes between different |
fcb93ecf | 4316 | function types. */ |
4ad4eba5 AM |
4317 | if (h->root.type == bfd_link_hash_common) |
4318 | h->size = h->root.u.c.size; | |
4319 | ||
4320 | if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE | |
37a9e49a L |
4321 | && ((definition && !new_weak) |
4322 | || (old_weak && h->root.type == bfd_link_hash_common) | |
4323 | || h->type == STT_NOTYPE)) | |
4ad4eba5 | 4324 | { |
2955ec4c L |
4325 | unsigned int type = ELF_ST_TYPE (isym->st_info); |
4326 | ||
4327 | /* Turn an IFUNC symbol from a DSO into a normal FUNC | |
4328 | symbol. */ | |
4329 | if (type == STT_GNU_IFUNC | |
4330 | && (abfd->flags & DYNAMIC) != 0) | |
4331 | type = STT_FUNC; | |
4ad4eba5 | 4332 | |
2955ec4c L |
4333 | if (h->type != type) |
4334 | { | |
4335 | if (h->type != STT_NOTYPE && ! type_change_ok) | |
4336 | (*_bfd_error_handler) | |
4337 | (_("Warning: type of symbol `%s' changed" | |
4338 | " from %d to %d in %B"), | |
4339 | abfd, name, h->type, type); | |
4340 | ||
4341 | h->type = type; | |
4342 | } | |
4ad4eba5 AM |
4343 | } |
4344 | ||
54ac0771 L |
4345 | /* Merge st_other field. */ |
4346 | elf_merge_st_other (abfd, h, isym, definition, dynamic); | |
4ad4eba5 | 4347 | |
c3df8c14 | 4348 | /* We don't want to make debug symbol dynamic. */ |
b2064611 | 4349 | if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable) |
c3df8c14 AM |
4350 | dynsym = FALSE; |
4351 | ||
4f3fedcf AM |
4352 | /* Nor should we make plugin symbols dynamic. */ |
4353 | if ((abfd->flags & BFD_PLUGIN) != 0) | |
4354 | dynsym = FALSE; | |
4355 | ||
35fc36a8 | 4356 | if (definition) |
35399224 L |
4357 | { |
4358 | h->target_internal = isym->st_target_internal; | |
4359 | h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; | |
4360 | } | |
35fc36a8 | 4361 | |
4ad4eba5 AM |
4362 | if (definition && !dynamic) |
4363 | { | |
4364 | char *p = strchr (name, ELF_VER_CHR); | |
4365 | if (p != NULL && p[1] != ELF_VER_CHR) | |
4366 | { | |
4367 | /* Queue non-default versions so that .symver x, x@FOO | |
4368 | aliases can be checked. */ | |
66eb6687 | 4369 | if (!nondeflt_vers) |
4ad4eba5 | 4370 | { |
66eb6687 AM |
4371 | amt = ((isymend - isym + 1) |
4372 | * sizeof (struct elf_link_hash_entry *)); | |
a50b1753 NC |
4373 | nondeflt_vers = |
4374 | (struct elf_link_hash_entry **) bfd_malloc (amt); | |
14b1c01e AM |
4375 | if (!nondeflt_vers) |
4376 | goto error_free_vers; | |
4ad4eba5 | 4377 | } |
66eb6687 | 4378 | nondeflt_vers[nondeflt_vers_cnt++] = h; |
4ad4eba5 AM |
4379 | } |
4380 | } | |
4381 | ||
4382 | if (dynsym && h->dynindx == -1) | |
4383 | { | |
c152c796 | 4384 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
4ad4eba5 | 4385 | goto error_free_vers; |
f6e332e6 | 4386 | if (h->u.weakdef != NULL |
4ad4eba5 | 4387 | && ! new_weakdef |
f6e332e6 | 4388 | && h->u.weakdef->dynindx == -1) |
4ad4eba5 | 4389 | { |
66eb6687 | 4390 | if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) |
4ad4eba5 AM |
4391 | goto error_free_vers; |
4392 | } | |
4393 | } | |
4394 | else if (dynsym && h->dynindx != -1) | |
4395 | /* If the symbol already has a dynamic index, but | |
4396 | visibility says it should not be visible, turn it into | |
4397 | a local symbol. */ | |
4398 | switch (ELF_ST_VISIBILITY (h->other)) | |
4399 | { | |
4400 | case STV_INTERNAL: | |
4401 | case STV_HIDDEN: | |
4402 | (*bed->elf_backend_hide_symbol) (info, h, TRUE); | |
4403 | dynsym = FALSE; | |
4404 | break; | |
4405 | } | |
4406 | ||
3d5bef4c | 4407 | /* Don't add DT_NEEDED for references from the dummy bfd. */ |
4ad4eba5 AM |
4408 | if (!add_needed |
4409 | && definition | |
010e5ae2 | 4410 | && ((dynsym |
ffa9430d | 4411 | && h->ref_regular_nonweak |
4f3fedcf AM |
4412 | && (old_bfd == NULL |
4413 | || (old_bfd->flags & BFD_PLUGIN) == 0)) | |
ffa9430d | 4414 | || (h->ref_dynamic_nonweak |
010e5ae2 AM |
4415 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 |
4416 | && !on_needed_list (elf_dt_name (abfd), htab->needed)))) | |
4ad4eba5 AM |
4417 | { |
4418 | int ret; | |
4419 | const char *soname = elf_dt_name (abfd); | |
4420 | ||
16e4ecc0 AM |
4421 | info->callbacks->minfo ("%!", soname, old_bfd, |
4422 | h->root.root.string); | |
4423 | ||
4ad4eba5 AM |
4424 | /* A symbol from a library loaded via DT_NEEDED of some |
4425 | other library is referenced by a regular object. | |
e56f61be | 4426 | Add a DT_NEEDED entry for it. Issue an error if |
b918acf9 NC |
4427 | --no-add-needed is used and the reference was not |
4428 | a weak one. */ | |
4f3fedcf | 4429 | if (old_bfd != NULL |
b918acf9 | 4430 | && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) |
e56f61be L |
4431 | { |
4432 | (*_bfd_error_handler) | |
3cbc5de0 | 4433 | (_("%B: undefined reference to symbol '%s'"), |
4f3fedcf | 4434 | old_bfd, name); |
ff5ac77b | 4435 | bfd_set_error (bfd_error_missing_dso); |
e56f61be L |
4436 | goto error_free_vers; |
4437 | } | |
4438 | ||
a50b1753 NC |
4439 | elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) |
4440 | (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); | |
a5db907e | 4441 | |
4ad4eba5 | 4442 | add_needed = TRUE; |
7e9f0867 | 4443 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); |
4ad4eba5 AM |
4444 | if (ret < 0) |
4445 | goto error_free_vers; | |
4446 | ||
4447 | BFD_ASSERT (ret == 0); | |
4448 | } | |
4449 | } | |
4450 | } | |
4451 | ||
66eb6687 AM |
4452 | if (extversym != NULL) |
4453 | { | |
4454 | free (extversym); | |
4455 | extversym = NULL; | |
4456 | } | |
4457 | ||
4458 | if (isymbuf != NULL) | |
4459 | { | |
4460 | free (isymbuf); | |
4461 | isymbuf = NULL; | |
4462 | } | |
4463 | ||
4464 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
4465 | { | |
4466 | unsigned int i; | |
4467 | ||
4468 | /* Restore the symbol table. */ | |
f45794cb AM |
4469 | old_ent = (char *) old_tab + tabsize; |
4470 | memset (elf_sym_hashes (abfd), 0, | |
4471 | extsymcount * sizeof (struct elf_link_hash_entry *)); | |
4f87808c AM |
4472 | htab->root.table.table = old_table; |
4473 | htab->root.table.size = old_size; | |
4474 | htab->root.table.count = old_count; | |
66eb6687 | 4475 | memcpy (htab->root.table.table, old_tab, tabsize); |
66eb6687 AM |
4476 | htab->root.undefs = old_undefs; |
4477 | htab->root.undefs_tail = old_undefs_tail; | |
d45f8bda | 4478 | _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size); |
66eb6687 AM |
4479 | for (i = 0; i < htab->root.table.size; i++) |
4480 | { | |
4481 | struct bfd_hash_entry *p; | |
4482 | struct elf_link_hash_entry *h; | |
3e0882af L |
4483 | bfd_size_type size; |
4484 | unsigned int alignment_power; | |
66eb6687 AM |
4485 | |
4486 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
4487 | { | |
4488 | h = (struct elf_link_hash_entry *) p; | |
2de92251 AM |
4489 | if (h->root.type == bfd_link_hash_warning) |
4490 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
a4542f1b AM |
4491 | if (h->dynindx >= old_dynsymcount |
4492 | && h->dynstr_index < old_dynstr_size) | |
66eb6687 | 4493 | _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index); |
2de92251 | 4494 | |
3e0882af L |
4495 | /* Preserve the maximum alignment and size for common |
4496 | symbols even if this dynamic lib isn't on DT_NEEDED | |
a4542f1b | 4497 | since it can still be loaded at run time by another |
3e0882af L |
4498 | dynamic lib. */ |
4499 | if (h->root.type == bfd_link_hash_common) | |
4500 | { | |
4501 | size = h->root.u.c.size; | |
4502 | alignment_power = h->root.u.c.p->alignment_power; | |
4503 | } | |
4504 | else | |
4505 | { | |
4506 | size = 0; | |
4507 | alignment_power = 0; | |
4508 | } | |
66eb6687 AM |
4509 | memcpy (p, old_ent, htab->root.table.entsize); |
4510 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
2de92251 AM |
4511 | h = (struct elf_link_hash_entry *) p; |
4512 | if (h->root.type == bfd_link_hash_warning) | |
4513 | { | |
4514 | memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); | |
4515 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
a4542f1b | 4516 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
2de92251 | 4517 | } |
a4542f1b | 4518 | if (h->root.type == bfd_link_hash_common) |
3e0882af L |
4519 | { |
4520 | if (size > h->root.u.c.size) | |
4521 | h->root.u.c.size = size; | |
4522 | if (alignment_power > h->root.u.c.p->alignment_power) | |
4523 | h->root.u.c.p->alignment_power = alignment_power; | |
4524 | } | |
66eb6687 AM |
4525 | } |
4526 | } | |
4527 | ||
5061a885 AM |
4528 | /* Make a special call to the linker "notice" function to |
4529 | tell it that symbols added for crefs may need to be removed. */ | |
e5034e59 | 4530 | if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) |
9af2a943 | 4531 | goto error_free_vers; |
5061a885 | 4532 | |
66eb6687 AM |
4533 | free (old_tab); |
4534 | objalloc_free_block ((struct objalloc *) htab->root.table.memory, | |
4535 | alloc_mark); | |
4536 | if (nondeflt_vers != NULL) | |
4537 | free (nondeflt_vers); | |
4538 | return TRUE; | |
4539 | } | |
2de92251 | 4540 | |
66eb6687 AM |
4541 | if (old_tab != NULL) |
4542 | { | |
e5034e59 | 4543 | if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) |
9af2a943 | 4544 | goto error_free_vers; |
66eb6687 AM |
4545 | free (old_tab); |
4546 | old_tab = NULL; | |
4547 | } | |
4548 | ||
4ad4eba5 AM |
4549 | /* Now that all the symbols from this input file are created, handle |
4550 | .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */ | |
4551 | if (nondeflt_vers != NULL) | |
4552 | { | |
4553 | bfd_size_type cnt, symidx; | |
4554 | ||
4555 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | |
4556 | { | |
4557 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | |
4558 | char *shortname, *p; | |
4559 | ||
4560 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
4561 | if (p == NULL | |
4562 | || (h->root.type != bfd_link_hash_defined | |
4563 | && h->root.type != bfd_link_hash_defweak)) | |
4564 | continue; | |
4565 | ||
4566 | amt = p - h->root.root.string; | |
a50b1753 | 4567 | shortname = (char *) bfd_malloc (amt + 1); |
14b1c01e AM |
4568 | if (!shortname) |
4569 | goto error_free_vers; | |
4ad4eba5 AM |
4570 | memcpy (shortname, h->root.root.string, amt); |
4571 | shortname[amt] = '\0'; | |
4572 | ||
4573 | hi = (struct elf_link_hash_entry *) | |
66eb6687 | 4574 | bfd_link_hash_lookup (&htab->root, shortname, |
4ad4eba5 AM |
4575 | FALSE, FALSE, FALSE); |
4576 | if (hi != NULL | |
4577 | && hi->root.type == h->root.type | |
4578 | && hi->root.u.def.value == h->root.u.def.value | |
4579 | && hi->root.u.def.section == h->root.u.def.section) | |
4580 | { | |
4581 | (*bed->elf_backend_hide_symbol) (info, hi, TRUE); | |
4582 | hi->root.type = bfd_link_hash_indirect; | |
4583 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
fcfa13d2 | 4584 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
4ad4eba5 AM |
4585 | sym_hash = elf_sym_hashes (abfd); |
4586 | if (sym_hash) | |
4587 | for (symidx = 0; symidx < extsymcount; ++symidx) | |
4588 | if (sym_hash[symidx] == hi) | |
4589 | { | |
4590 | sym_hash[symidx] = h; | |
4591 | break; | |
4592 | } | |
4593 | } | |
4594 | free (shortname); | |
4595 | } | |
4596 | free (nondeflt_vers); | |
4597 | nondeflt_vers = NULL; | |
4598 | } | |
4599 | ||
4ad4eba5 AM |
4600 | /* Now set the weakdefs field correctly for all the weak defined |
4601 | symbols we found. The only way to do this is to search all the | |
4602 | symbols. Since we only need the information for non functions in | |
4603 | dynamic objects, that's the only time we actually put anything on | |
4604 | the list WEAKS. We need this information so that if a regular | |
4605 | object refers to a symbol defined weakly in a dynamic object, the | |
4606 | real symbol in the dynamic object is also put in the dynamic | |
4607 | symbols; we also must arrange for both symbols to point to the | |
4608 | same memory location. We could handle the general case of symbol | |
4609 | aliasing, but a general symbol alias can only be generated in | |
4610 | assembler code, handling it correctly would be very time | |
4611 | consuming, and other ELF linkers don't handle general aliasing | |
4612 | either. */ | |
4613 | if (weaks != NULL) | |
4614 | { | |
4615 | struct elf_link_hash_entry **hpp; | |
4616 | struct elf_link_hash_entry **hppend; | |
4617 | struct elf_link_hash_entry **sorted_sym_hash; | |
4618 | struct elf_link_hash_entry *h; | |
4619 | size_t sym_count; | |
4620 | ||
4621 | /* Since we have to search the whole symbol list for each weak | |
4622 | defined symbol, search time for N weak defined symbols will be | |
4623 | O(N^2). Binary search will cut it down to O(NlogN). */ | |
4624 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
a50b1753 | 4625 | sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt); |
4ad4eba5 AM |
4626 | if (sorted_sym_hash == NULL) |
4627 | goto error_return; | |
4628 | sym_hash = sorted_sym_hash; | |
4629 | hpp = elf_sym_hashes (abfd); | |
4630 | hppend = hpp + extsymcount; | |
4631 | sym_count = 0; | |
4632 | for (; hpp < hppend; hpp++) | |
4633 | { | |
4634 | h = *hpp; | |
4635 | if (h != NULL | |
4636 | && h->root.type == bfd_link_hash_defined | |
fcb93ecf | 4637 | && !bed->is_function_type (h->type)) |
4ad4eba5 AM |
4638 | { |
4639 | *sym_hash = h; | |
4640 | sym_hash++; | |
4641 | sym_count++; | |
4642 | } | |
4643 | } | |
4644 | ||
4645 | qsort (sorted_sym_hash, sym_count, | |
4646 | sizeof (struct elf_link_hash_entry *), | |
4647 | elf_sort_symbol); | |
4648 | ||
4649 | while (weaks != NULL) | |
4650 | { | |
4651 | struct elf_link_hash_entry *hlook; | |
4652 | asection *slook; | |
4653 | bfd_vma vlook; | |
ed54588d | 4654 | size_t i, j, idx = 0; |
4ad4eba5 AM |
4655 | |
4656 | hlook = weaks; | |
f6e332e6 AM |
4657 | weaks = hlook->u.weakdef; |
4658 | hlook->u.weakdef = NULL; | |
4ad4eba5 AM |
4659 | |
4660 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
4661 | || hlook->root.type == bfd_link_hash_defweak | |
4662 | || hlook->root.type == bfd_link_hash_common | |
4663 | || hlook->root.type == bfd_link_hash_indirect); | |
4664 | slook = hlook->root.u.def.section; | |
4665 | vlook = hlook->root.u.def.value; | |
4666 | ||
4ad4eba5 AM |
4667 | i = 0; |
4668 | j = sym_count; | |
14160578 | 4669 | while (i != j) |
4ad4eba5 AM |
4670 | { |
4671 | bfd_signed_vma vdiff; | |
4672 | idx = (i + j) / 2; | |
14160578 | 4673 | h = sorted_sym_hash[idx]; |
4ad4eba5 AM |
4674 | vdiff = vlook - h->root.u.def.value; |
4675 | if (vdiff < 0) | |
4676 | j = idx; | |
4677 | else if (vdiff > 0) | |
4678 | i = idx + 1; | |
4679 | else | |
4680 | { | |
a9b881be | 4681 | long sdiff = slook->id - h->root.u.def.section->id; |
4ad4eba5 AM |
4682 | if (sdiff < 0) |
4683 | j = idx; | |
4684 | else if (sdiff > 0) | |
4685 | i = idx + 1; | |
4686 | else | |
14160578 | 4687 | break; |
4ad4eba5 AM |
4688 | } |
4689 | } | |
4690 | ||
4691 | /* We didn't find a value/section match. */ | |
14160578 | 4692 | if (i == j) |
4ad4eba5 AM |
4693 | continue; |
4694 | ||
14160578 AM |
4695 | /* With multiple aliases, or when the weak symbol is already |
4696 | strongly defined, we have multiple matching symbols and | |
4697 | the binary search above may land on any of them. Step | |
4698 | one past the matching symbol(s). */ | |
4699 | while (++idx != j) | |
4700 | { | |
4701 | h = sorted_sym_hash[idx]; | |
4702 | if (h->root.u.def.section != slook | |
4703 | || h->root.u.def.value != vlook) | |
4704 | break; | |
4705 | } | |
4706 | ||
4707 | /* Now look back over the aliases. Since we sorted by size | |
4708 | as well as value and section, we'll choose the one with | |
4709 | the largest size. */ | |
4710 | while (idx-- != i) | |
4ad4eba5 | 4711 | { |
14160578 | 4712 | h = sorted_sym_hash[idx]; |
4ad4eba5 AM |
4713 | |
4714 | /* Stop if value or section doesn't match. */ | |
14160578 AM |
4715 | if (h->root.u.def.section != slook |
4716 | || h->root.u.def.value != vlook) | |
4ad4eba5 AM |
4717 | break; |
4718 | else if (h != hlook) | |
4719 | { | |
f6e332e6 | 4720 | hlook->u.weakdef = h; |
4ad4eba5 AM |
4721 | |
4722 | /* If the weak definition is in the list of dynamic | |
4723 | symbols, make sure the real definition is put | |
4724 | there as well. */ | |
4725 | if (hlook->dynindx != -1 && h->dynindx == -1) | |
4726 | { | |
c152c796 | 4727 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
4dd07732 AM |
4728 | { |
4729 | err_free_sym_hash: | |
4730 | free (sorted_sym_hash); | |
4731 | goto error_return; | |
4732 | } | |
4ad4eba5 AM |
4733 | } |
4734 | ||
4735 | /* If the real definition is in the list of dynamic | |
4736 | symbols, make sure the weak definition is put | |
4737 | there as well. If we don't do this, then the | |
4738 | dynamic loader might not merge the entries for the | |
4739 | real definition and the weak definition. */ | |
4740 | if (h->dynindx != -1 && hlook->dynindx == -1) | |
4741 | { | |
c152c796 | 4742 | if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) |
4dd07732 | 4743 | goto err_free_sym_hash; |
4ad4eba5 AM |
4744 | } |
4745 | break; | |
4746 | } | |
4747 | } | |
4748 | } | |
4749 | ||
4750 | free (sorted_sym_hash); | |
4751 | } | |
4752 | ||
33177bb1 AM |
4753 | if (bed->check_directives |
4754 | && !(*bed->check_directives) (abfd, info)) | |
4755 | return FALSE; | |
85fbca6a | 4756 | |
4ad4eba5 AM |
4757 | /* If this object is the same format as the output object, and it is |
4758 | not a shared library, then let the backend look through the | |
4759 | relocs. | |
4760 | ||
4761 | This is required to build global offset table entries and to | |
4762 | arrange for dynamic relocs. It is not required for the | |
4763 | particular common case of linking non PIC code, even when linking | |
4764 | against shared libraries, but unfortunately there is no way of | |
4765 | knowing whether an object file has been compiled PIC or not. | |
4766 | Looking through the relocs is not particularly time consuming. | |
4767 | The problem is that we must either (1) keep the relocs in memory, | |
4768 | which causes the linker to require additional runtime memory or | |
4769 | (2) read the relocs twice from the input file, which wastes time. | |
4770 | This would be a good case for using mmap. | |
4771 | ||
4772 | I have no idea how to handle linking PIC code into a file of a | |
4773 | different format. It probably can't be done. */ | |
4ad4eba5 | 4774 | if (! dynamic |
66eb6687 | 4775 | && is_elf_hash_table (htab) |
13285a1b | 4776 | && bed->check_relocs != NULL |
39334f3a | 4777 | && elf_object_id (abfd) == elf_hash_table_id (htab) |
f13a99db | 4778 | && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) |
4ad4eba5 AM |
4779 | { |
4780 | asection *o; | |
4781 | ||
4782 | for (o = abfd->sections; o != NULL; o = o->next) | |
4783 | { | |
4784 | Elf_Internal_Rela *internal_relocs; | |
4785 | bfd_boolean ok; | |
4786 | ||
4787 | if ((o->flags & SEC_RELOC) == 0 | |
4788 | || o->reloc_count == 0 | |
4789 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
4790 | && (o->flags & SEC_DEBUGGING) != 0) | |
4791 | || bfd_is_abs_section (o->output_section)) | |
4792 | continue; | |
4793 | ||
4794 | internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
4795 | info->keep_memory); | |
4796 | if (internal_relocs == NULL) | |
4797 | goto error_return; | |
4798 | ||
66eb6687 | 4799 | ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); |
4ad4eba5 AM |
4800 | |
4801 | if (elf_section_data (o)->relocs != internal_relocs) | |
4802 | free (internal_relocs); | |
4803 | ||
4804 | if (! ok) | |
4805 | goto error_return; | |
4806 | } | |
4807 | } | |
4808 | ||
4809 | /* If this is a non-traditional link, try to optimize the handling | |
4810 | of the .stab/.stabstr sections. */ | |
4811 | if (! dynamic | |
4812 | && ! info->traditional_format | |
66eb6687 | 4813 | && is_elf_hash_table (htab) |
4ad4eba5 AM |
4814 | && (info->strip != strip_all && info->strip != strip_debugger)) |
4815 | { | |
4816 | asection *stabstr; | |
4817 | ||
4818 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
4819 | if (stabstr != NULL) | |
4820 | { | |
4821 | bfd_size_type string_offset = 0; | |
4822 | asection *stab; | |
4823 | ||
4824 | for (stab = abfd->sections; stab; stab = stab->next) | |
0112cd26 | 4825 | if (CONST_STRNEQ (stab->name, ".stab") |
4ad4eba5 AM |
4826 | && (!stab->name[5] || |
4827 | (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) | |
4828 | && (stab->flags & SEC_MERGE) == 0 | |
4829 | && !bfd_is_abs_section (stab->output_section)) | |
4830 | { | |
4831 | struct bfd_elf_section_data *secdata; | |
4832 | ||
4833 | secdata = elf_section_data (stab); | |
66eb6687 AM |
4834 | if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, |
4835 | stabstr, &secdata->sec_info, | |
4ad4eba5 AM |
4836 | &string_offset)) |
4837 | goto error_return; | |
4838 | if (secdata->sec_info) | |
dbaa2011 | 4839 | stab->sec_info_type = SEC_INFO_TYPE_STABS; |
4ad4eba5 AM |
4840 | } |
4841 | } | |
4842 | } | |
4843 | ||
66eb6687 | 4844 | if (is_elf_hash_table (htab) && add_needed) |
4ad4eba5 AM |
4845 | { |
4846 | /* Add this bfd to the loaded list. */ | |
4847 | struct elf_link_loaded_list *n; | |
4848 | ||
a50b1753 NC |
4849 | n = (struct elf_link_loaded_list *) |
4850 | bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)); | |
4ad4eba5 AM |
4851 | if (n == NULL) |
4852 | goto error_return; | |
4853 | n->abfd = abfd; | |
66eb6687 AM |
4854 | n->next = htab->loaded; |
4855 | htab->loaded = n; | |
4ad4eba5 AM |
4856 | } |
4857 | ||
4858 | return TRUE; | |
4859 | ||
4860 | error_free_vers: | |
66eb6687 AM |
4861 | if (old_tab != NULL) |
4862 | free (old_tab); | |
4ad4eba5 AM |
4863 | if (nondeflt_vers != NULL) |
4864 | free (nondeflt_vers); | |
4865 | if (extversym != NULL) | |
4866 | free (extversym); | |
4867 | error_free_sym: | |
4868 | if (isymbuf != NULL) | |
4869 | free (isymbuf); | |
4870 | error_return: | |
4871 | return FALSE; | |
4872 | } | |
4873 | ||
8387904d AM |
4874 | /* Return the linker hash table entry of a symbol that might be |
4875 | satisfied by an archive symbol. Return -1 on error. */ | |
4876 | ||
4877 | struct elf_link_hash_entry * | |
4878 | _bfd_elf_archive_symbol_lookup (bfd *abfd, | |
4879 | struct bfd_link_info *info, | |
4880 | const char *name) | |
4881 | { | |
4882 | struct elf_link_hash_entry *h; | |
4883 | char *p, *copy; | |
4884 | size_t len, first; | |
4885 | ||
2a41f396 | 4886 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); |
8387904d AM |
4887 | if (h != NULL) |
4888 | return h; | |
4889 | ||
4890 | /* If this is a default version (the name contains @@), look up the | |
4891 | symbol again with only one `@' as well as without the version. | |
4892 | The effect is that references to the symbol with and without the | |
4893 | version will be matched by the default symbol in the archive. */ | |
4894 | ||
4895 | p = strchr (name, ELF_VER_CHR); | |
4896 | if (p == NULL || p[1] != ELF_VER_CHR) | |
4897 | return h; | |
4898 | ||
4899 | /* First check with only one `@'. */ | |
4900 | len = strlen (name); | |
a50b1753 | 4901 | copy = (char *) bfd_alloc (abfd, len); |
8387904d AM |
4902 | if (copy == NULL) |
4903 | return (struct elf_link_hash_entry *) 0 - 1; | |
4904 | ||
4905 | first = p - name + 1; | |
4906 | memcpy (copy, name, first); | |
4907 | memcpy (copy + first, name + first + 1, len - first); | |
4908 | ||
2a41f396 | 4909 | h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE); |
8387904d AM |
4910 | if (h == NULL) |
4911 | { | |
4912 | /* We also need to check references to the symbol without the | |
4913 | version. */ | |
4914 | copy[first - 1] = '\0'; | |
4915 | h = elf_link_hash_lookup (elf_hash_table (info), copy, | |
2a41f396 | 4916 | FALSE, FALSE, TRUE); |
8387904d AM |
4917 | } |
4918 | ||
4919 | bfd_release (abfd, copy); | |
4920 | return h; | |
4921 | } | |
4922 | ||
0ad989f9 | 4923 | /* Add symbols from an ELF archive file to the linker hash table. We |
13e570f8 AM |
4924 | don't use _bfd_generic_link_add_archive_symbols because we need to |
4925 | handle versioned symbols. | |
0ad989f9 L |
4926 | |
4927 | Fortunately, ELF archive handling is simpler than that done by | |
4928 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
4929 | oddities. In ELF, if we find a symbol in the archive map, and the | |
4930 | symbol is currently undefined, we know that we must pull in that | |
4931 | object file. | |
4932 | ||
4933 | Unfortunately, we do have to make multiple passes over the symbol | |
4934 | table until nothing further is resolved. */ | |
4935 | ||
4ad4eba5 AM |
4936 | static bfd_boolean |
4937 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | |
0ad989f9 L |
4938 | { |
4939 | symindex c; | |
13e570f8 | 4940 | unsigned char *included = NULL; |
0ad989f9 L |
4941 | carsym *symdefs; |
4942 | bfd_boolean loop; | |
4943 | bfd_size_type amt; | |
8387904d AM |
4944 | const struct elf_backend_data *bed; |
4945 | struct elf_link_hash_entry * (*archive_symbol_lookup) | |
4946 | (bfd *, struct bfd_link_info *, const char *); | |
0ad989f9 L |
4947 | |
4948 | if (! bfd_has_map (abfd)) | |
4949 | { | |
4950 | /* An empty archive is a special case. */ | |
4951 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | |
4952 | return TRUE; | |
4953 | bfd_set_error (bfd_error_no_armap); | |
4954 | return FALSE; | |
4955 | } | |
4956 | ||
4957 | /* Keep track of all symbols we know to be already defined, and all | |
4958 | files we know to be already included. This is to speed up the | |
4959 | second and subsequent passes. */ | |
4960 | c = bfd_ardata (abfd)->symdef_count; | |
4961 | if (c == 0) | |
4962 | return TRUE; | |
4963 | amt = c; | |
13e570f8 AM |
4964 | amt *= sizeof (*included); |
4965 | included = (unsigned char *) bfd_zmalloc (amt); | |
4966 | if (included == NULL) | |
4967 | return FALSE; | |
0ad989f9 L |
4968 | |
4969 | symdefs = bfd_ardata (abfd)->symdefs; | |
8387904d AM |
4970 | bed = get_elf_backend_data (abfd); |
4971 | archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; | |
0ad989f9 L |
4972 | |
4973 | do | |
4974 | { | |
4975 | file_ptr last; | |
4976 | symindex i; | |
4977 | carsym *symdef; | |
4978 | carsym *symdefend; | |
4979 | ||
4980 | loop = FALSE; | |
4981 | last = -1; | |
4982 | ||
4983 | symdef = symdefs; | |
4984 | symdefend = symdef + c; | |
4985 | for (i = 0; symdef < symdefend; symdef++, i++) | |
4986 | { | |
4987 | struct elf_link_hash_entry *h; | |
4988 | bfd *element; | |
4989 | struct bfd_link_hash_entry *undefs_tail; | |
4990 | symindex mark; | |
4991 | ||
13e570f8 | 4992 | if (included[i]) |
0ad989f9 L |
4993 | continue; |
4994 | if (symdef->file_offset == last) | |
4995 | { | |
4996 | included[i] = TRUE; | |
4997 | continue; | |
4998 | } | |
4999 | ||
8387904d AM |
5000 | h = archive_symbol_lookup (abfd, info, symdef->name); |
5001 | if (h == (struct elf_link_hash_entry *) 0 - 1) | |
5002 | goto error_return; | |
0ad989f9 L |
5003 | |
5004 | if (h == NULL) | |
5005 | continue; | |
5006 | ||
5007 | if (h->root.type == bfd_link_hash_common) | |
5008 | { | |
5009 | /* We currently have a common symbol. The archive map contains | |
5010 | a reference to this symbol, so we may want to include it. We | |
5011 | only want to include it however, if this archive element | |
5012 | contains a definition of the symbol, not just another common | |
5013 | declaration of it. | |
5014 | ||
5015 | Unfortunately some archivers (including GNU ar) will put | |
5016 | declarations of common symbols into their archive maps, as | |
5017 | well as real definitions, so we cannot just go by the archive | |
5018 | map alone. Instead we must read in the element's symbol | |
5019 | table and check that to see what kind of symbol definition | |
5020 | this is. */ | |
5021 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
5022 | continue; | |
5023 | } | |
5024 | else if (h->root.type != bfd_link_hash_undefined) | |
5025 | { | |
5026 | if (h->root.type != bfd_link_hash_undefweak) | |
13e570f8 AM |
5027 | /* Symbol must be defined. Don't check it again. */ |
5028 | included[i] = TRUE; | |
0ad989f9 L |
5029 | continue; |
5030 | } | |
5031 | ||
5032 | /* We need to include this archive member. */ | |
5033 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
5034 | if (element == NULL) | |
5035 | goto error_return; | |
5036 | ||
5037 | if (! bfd_check_format (element, bfd_object)) | |
5038 | goto error_return; | |
5039 | ||
0ad989f9 L |
5040 | undefs_tail = info->hash->undefs_tail; |
5041 | ||
0e144ba7 AM |
5042 | if (!(*info->callbacks |
5043 | ->add_archive_element) (info, element, symdef->name, &element)) | |
0ad989f9 | 5044 | goto error_return; |
0e144ba7 | 5045 | if (!bfd_link_add_symbols (element, info)) |
0ad989f9 L |
5046 | goto error_return; |
5047 | ||
5048 | /* If there are any new undefined symbols, we need to make | |
5049 | another pass through the archive in order to see whether | |
5050 | they can be defined. FIXME: This isn't perfect, because | |
5051 | common symbols wind up on undefs_tail and because an | |
5052 | undefined symbol which is defined later on in this pass | |
5053 | does not require another pass. This isn't a bug, but it | |
5054 | does make the code less efficient than it could be. */ | |
5055 | if (undefs_tail != info->hash->undefs_tail) | |
5056 | loop = TRUE; | |
5057 | ||
5058 | /* Look backward to mark all symbols from this object file | |
5059 | which we have already seen in this pass. */ | |
5060 | mark = i; | |
5061 | do | |
5062 | { | |
5063 | included[mark] = TRUE; | |
5064 | if (mark == 0) | |
5065 | break; | |
5066 | --mark; | |
5067 | } | |
5068 | while (symdefs[mark].file_offset == symdef->file_offset); | |
5069 | ||
5070 | /* We mark subsequent symbols from this object file as we go | |
5071 | on through the loop. */ | |
5072 | last = symdef->file_offset; | |
5073 | } | |
5074 | } | |
5075 | while (loop); | |
5076 | ||
0ad989f9 L |
5077 | free (included); |
5078 | ||
5079 | return TRUE; | |
5080 | ||
5081 | error_return: | |
0ad989f9 L |
5082 | if (included != NULL) |
5083 | free (included); | |
5084 | return FALSE; | |
5085 | } | |
4ad4eba5 AM |
5086 | |
5087 | /* Given an ELF BFD, add symbols to the global hash table as | |
5088 | appropriate. */ | |
5089 | ||
5090 | bfd_boolean | |
5091 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | |
5092 | { | |
5093 | switch (bfd_get_format (abfd)) | |
5094 | { | |
5095 | case bfd_object: | |
5096 | return elf_link_add_object_symbols (abfd, info); | |
5097 | case bfd_archive: | |
5098 | return elf_link_add_archive_symbols (abfd, info); | |
5099 | default: | |
5100 | bfd_set_error (bfd_error_wrong_format); | |
5101 | return FALSE; | |
5102 | } | |
5103 | } | |
5a580b3a | 5104 | \f |
14b1c01e AM |
5105 | struct hash_codes_info |
5106 | { | |
5107 | unsigned long *hashcodes; | |
5108 | bfd_boolean error; | |
5109 | }; | |
a0c8462f | 5110 | |
5a580b3a AM |
5111 | /* This function will be called though elf_link_hash_traverse to store |
5112 | all hash value of the exported symbols in an array. */ | |
5113 | ||
5114 | static bfd_boolean | |
5115 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | |
5116 | { | |
a50b1753 | 5117 | struct hash_codes_info *inf = (struct hash_codes_info *) data; |
5a580b3a AM |
5118 | const char *name; |
5119 | char *p; | |
5120 | unsigned long ha; | |
5121 | char *alc = NULL; | |
5122 | ||
5a580b3a AM |
5123 | /* Ignore indirect symbols. These are added by the versioning code. */ |
5124 | if (h->dynindx == -1) | |
5125 | return TRUE; | |
5126 | ||
5127 | name = h->root.root.string; | |
5128 | p = strchr (name, ELF_VER_CHR); | |
5129 | if (p != NULL) | |
5130 | { | |
a50b1753 | 5131 | alc = (char *) bfd_malloc (p - name + 1); |
14b1c01e AM |
5132 | if (alc == NULL) |
5133 | { | |
5134 | inf->error = TRUE; | |
5135 | return FALSE; | |
5136 | } | |
5a580b3a AM |
5137 | memcpy (alc, name, p - name); |
5138 | alc[p - name] = '\0'; | |
5139 | name = alc; | |
5140 | } | |
5141 | ||
5142 | /* Compute the hash value. */ | |
5143 | ha = bfd_elf_hash (name); | |
5144 | ||
5145 | /* Store the found hash value in the array given as the argument. */ | |
14b1c01e | 5146 | *(inf->hashcodes)++ = ha; |
5a580b3a AM |
5147 | |
5148 | /* And store it in the struct so that we can put it in the hash table | |
5149 | later. */ | |
f6e332e6 | 5150 | h->u.elf_hash_value = ha; |
5a580b3a AM |
5151 | |
5152 | if (alc != NULL) | |
5153 | free (alc); | |
5154 | ||
5155 | return TRUE; | |
5156 | } | |
5157 | ||
fdc90cb4 JJ |
5158 | struct collect_gnu_hash_codes |
5159 | { | |
5160 | bfd *output_bfd; | |
5161 | const struct elf_backend_data *bed; | |
5162 | unsigned long int nsyms; | |
5163 | unsigned long int maskbits; | |
5164 | unsigned long int *hashcodes; | |
5165 | unsigned long int *hashval; | |
5166 | unsigned long int *indx; | |
5167 | unsigned long int *counts; | |
5168 | bfd_vma *bitmask; | |
5169 | bfd_byte *contents; | |
5170 | long int min_dynindx; | |
5171 | unsigned long int bucketcount; | |
5172 | unsigned long int symindx; | |
5173 | long int local_indx; | |
5174 | long int shift1, shift2; | |
5175 | unsigned long int mask; | |
14b1c01e | 5176 | bfd_boolean error; |
fdc90cb4 JJ |
5177 | }; |
5178 | ||
5179 | /* This function will be called though elf_link_hash_traverse to store | |
5180 | all hash value of the exported symbols in an array. */ | |
5181 | ||
5182 | static bfd_boolean | |
5183 | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) | |
5184 | { | |
a50b1753 | 5185 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
fdc90cb4 JJ |
5186 | const char *name; |
5187 | char *p; | |
5188 | unsigned long ha; | |
5189 | char *alc = NULL; | |
5190 | ||
fdc90cb4 JJ |
5191 | /* Ignore indirect symbols. These are added by the versioning code. */ |
5192 | if (h->dynindx == -1) | |
5193 | return TRUE; | |
5194 | ||
5195 | /* Ignore also local symbols and undefined symbols. */ | |
5196 | if (! (*s->bed->elf_hash_symbol) (h)) | |
5197 | return TRUE; | |
5198 | ||
5199 | name = h->root.root.string; | |
5200 | p = strchr (name, ELF_VER_CHR); | |
5201 | if (p != NULL) | |
5202 | { | |
a50b1753 | 5203 | alc = (char *) bfd_malloc (p - name + 1); |
14b1c01e AM |
5204 | if (alc == NULL) |
5205 | { | |
5206 | s->error = TRUE; | |
5207 | return FALSE; | |
5208 | } | |
fdc90cb4 JJ |
5209 | memcpy (alc, name, p - name); |
5210 | alc[p - name] = '\0'; | |
5211 | name = alc; | |
5212 | } | |
5213 | ||
5214 | /* Compute the hash value. */ | |
5215 | ha = bfd_elf_gnu_hash (name); | |
5216 | ||
5217 | /* Store the found hash value in the array for compute_bucket_count, | |
5218 | and also for .dynsym reordering purposes. */ | |
5219 | s->hashcodes[s->nsyms] = ha; | |
5220 | s->hashval[h->dynindx] = ha; | |
5221 | ++s->nsyms; | |
5222 | if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) | |
5223 | s->min_dynindx = h->dynindx; | |
5224 | ||
5225 | if (alc != NULL) | |
5226 | free (alc); | |
5227 | ||
5228 | return TRUE; | |
5229 | } | |
5230 | ||
5231 | /* This function will be called though elf_link_hash_traverse to do | |
5232 | final dynaminc symbol renumbering. */ | |
5233 | ||
5234 | static bfd_boolean | |
5235 | elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data) | |
5236 | { | |
a50b1753 | 5237 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
fdc90cb4 JJ |
5238 | unsigned long int bucket; |
5239 | unsigned long int val; | |
5240 | ||
fdc90cb4 JJ |
5241 | /* Ignore indirect symbols. */ |
5242 | if (h->dynindx == -1) | |
5243 | return TRUE; | |
5244 | ||
5245 | /* Ignore also local symbols and undefined symbols. */ | |
5246 | if (! (*s->bed->elf_hash_symbol) (h)) | |
5247 | { | |
5248 | if (h->dynindx >= s->min_dynindx) | |
5249 | h->dynindx = s->local_indx++; | |
5250 | return TRUE; | |
5251 | } | |
5252 | ||
5253 | bucket = s->hashval[h->dynindx] % s->bucketcount; | |
5254 | val = (s->hashval[h->dynindx] >> s->shift1) | |
5255 | & ((s->maskbits >> s->shift1) - 1); | |
5256 | s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); | |
5257 | s->bitmask[val] | |
5258 | |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); | |
5259 | val = s->hashval[h->dynindx] & ~(unsigned long int) 1; | |
5260 | if (s->counts[bucket] == 1) | |
5261 | /* Last element terminates the chain. */ | |
5262 | val |= 1; | |
5263 | bfd_put_32 (s->output_bfd, val, | |
5264 | s->contents + (s->indx[bucket] - s->symindx) * 4); | |
5265 | --s->counts[bucket]; | |
5266 | h->dynindx = s->indx[bucket]++; | |
5267 | return TRUE; | |
5268 | } | |
5269 | ||
5270 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ | |
5271 | ||
5272 | bfd_boolean | |
5273 | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) | |
5274 | { | |
5275 | return !(h->forced_local | |
5276 | || h->root.type == bfd_link_hash_undefined | |
5277 | || h->root.type == bfd_link_hash_undefweak | |
5278 | || ((h->root.type == bfd_link_hash_defined | |
5279 | || h->root.type == bfd_link_hash_defweak) | |
5280 | && h->root.u.def.section->output_section == NULL)); | |
5281 | } | |
5282 | ||
5a580b3a AM |
5283 | /* Array used to determine the number of hash table buckets to use |
5284 | based on the number of symbols there are. If there are fewer than | |
5285 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
5286 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
5287 | than 32771 buckets. */ | |
5288 | ||
5289 | static const size_t elf_buckets[] = | |
5290 | { | |
5291 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
5292 | 16411, 32771, 0 | |
5293 | }; | |
5294 | ||
5295 | /* Compute bucket count for hashing table. We do not use a static set | |
5296 | of possible tables sizes anymore. Instead we determine for all | |
5297 | possible reasonable sizes of the table the outcome (i.e., the | |
5298 | number of collisions etc) and choose the best solution. The | |
5299 | weighting functions are not too simple to allow the table to grow | |
5300 | without bounds. Instead one of the weighting factors is the size. | |
5301 | Therefore the result is always a good payoff between few collisions | |
5302 | (= short chain lengths) and table size. */ | |
5303 | static size_t | |
b20dd2ce | 5304 | compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
d40f3da9 AM |
5305 | unsigned long int *hashcodes ATTRIBUTE_UNUSED, |
5306 | unsigned long int nsyms, | |
5307 | int gnu_hash) | |
5a580b3a | 5308 | { |
5a580b3a | 5309 | size_t best_size = 0; |
5a580b3a | 5310 | unsigned long int i; |
5a580b3a | 5311 | |
5a580b3a AM |
5312 | /* We have a problem here. The following code to optimize the table |
5313 | size requires an integer type with more the 32 bits. If | |
5314 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |
5315 | #ifdef BFD_HOST_U_64_BIT | |
5316 | if (info->optimize) | |
5317 | { | |
5a580b3a AM |
5318 | size_t minsize; |
5319 | size_t maxsize; | |
5320 | BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); | |
5a580b3a | 5321 | bfd *dynobj = elf_hash_table (info)->dynobj; |
d40f3da9 | 5322 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; |
5a580b3a | 5323 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
fdc90cb4 | 5324 | unsigned long int *counts; |
d40f3da9 | 5325 | bfd_size_type amt; |
0883b6e0 | 5326 | unsigned int no_improvement_count = 0; |
5a580b3a AM |
5327 | |
5328 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
5329 | that the hashing table must at least have NSYMS/4 and at most | |
5330 | 2*NSYMS buckets. */ | |
5331 | minsize = nsyms / 4; | |
5332 | if (minsize == 0) | |
5333 | minsize = 1; | |
5334 | best_size = maxsize = nsyms * 2; | |
fdc90cb4 JJ |
5335 | if (gnu_hash) |
5336 | { | |
5337 | if (minsize < 2) | |
5338 | minsize = 2; | |
5339 | if ((best_size & 31) == 0) | |
5340 | ++best_size; | |
5341 | } | |
5a580b3a AM |
5342 | |
5343 | /* Create array where we count the collisions in. We must use bfd_malloc | |
5344 | since the size could be large. */ | |
5345 | amt = maxsize; | |
5346 | amt *= sizeof (unsigned long int); | |
a50b1753 | 5347 | counts = (unsigned long int *) bfd_malloc (amt); |
5a580b3a | 5348 | if (counts == NULL) |
fdc90cb4 | 5349 | return 0; |
5a580b3a AM |
5350 | |
5351 | /* Compute the "optimal" size for the hash table. The criteria is a | |
5352 | minimal chain length. The minor criteria is (of course) the size | |
5353 | of the table. */ | |
5354 | for (i = minsize; i < maxsize; ++i) | |
5355 | { | |
5356 | /* Walk through the array of hashcodes and count the collisions. */ | |
5357 | BFD_HOST_U_64_BIT max; | |
5358 | unsigned long int j; | |
5359 | unsigned long int fact; | |
5360 | ||
fdc90cb4 JJ |
5361 | if (gnu_hash && (i & 31) == 0) |
5362 | continue; | |
5363 | ||
5a580b3a AM |
5364 | memset (counts, '\0', i * sizeof (unsigned long int)); |
5365 | ||
5366 | /* Determine how often each hash bucket is used. */ | |
5367 | for (j = 0; j < nsyms; ++j) | |
5368 | ++counts[hashcodes[j] % i]; | |
5369 | ||
5370 | /* For the weight function we need some information about the | |
5371 | pagesize on the target. This is information need not be 100% | |
5372 | accurate. Since this information is not available (so far) we | |
5373 | define it here to a reasonable default value. If it is crucial | |
5374 | to have a better value some day simply define this value. */ | |
5375 | # ifndef BFD_TARGET_PAGESIZE | |
5376 | # define BFD_TARGET_PAGESIZE (4096) | |
5377 | # endif | |
5378 | ||
fdc90cb4 JJ |
5379 | /* We in any case need 2 + DYNSYMCOUNT entries for the size values |
5380 | and the chains. */ | |
5381 | max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; | |
5a580b3a AM |
5382 | |
5383 | # if 1 | |
5384 | /* Variant 1: optimize for short chains. We add the squares | |
5385 | of all the chain lengths (which favors many small chain | |
5386 | over a few long chains). */ | |
5387 | for (j = 0; j < i; ++j) | |
5388 | max += counts[j] * counts[j]; | |
5389 | ||
5390 | /* This adds penalties for the overall size of the table. */ | |
fdc90cb4 | 5391 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
5a580b3a AM |
5392 | max *= fact * fact; |
5393 | # else | |
5394 | /* Variant 2: Optimize a lot more for small table. Here we | |
5395 | also add squares of the size but we also add penalties for | |
5396 | empty slots (the +1 term). */ | |
5397 | for (j = 0; j < i; ++j) | |
5398 | max += (1 + counts[j]) * (1 + counts[j]); | |
5399 | ||
5400 | /* The overall size of the table is considered, but not as | |
5401 | strong as in variant 1, where it is squared. */ | |
fdc90cb4 | 5402 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
5a580b3a AM |
5403 | max *= fact; |
5404 | # endif | |
5405 | ||
5406 | /* Compare with current best results. */ | |
5407 | if (max < best_chlen) | |
5408 | { | |
5409 | best_chlen = max; | |
5410 | best_size = i; | |
0883b6e0 | 5411 | no_improvement_count = 0; |
5a580b3a | 5412 | } |
0883b6e0 NC |
5413 | /* PR 11843: Avoid futile long searches for the best bucket size |
5414 | when there are a large number of symbols. */ | |
5415 | else if (++no_improvement_count == 100) | |
5416 | break; | |
5a580b3a AM |
5417 | } |
5418 | ||
5419 | free (counts); | |
5420 | } | |
5421 | else | |
5422 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |
5423 | { | |
5424 | /* This is the fallback solution if no 64bit type is available or if we | |
5425 | are not supposed to spend much time on optimizations. We select the | |
5426 | bucket count using a fixed set of numbers. */ | |
5427 | for (i = 0; elf_buckets[i] != 0; i++) | |
5428 | { | |
5429 | best_size = elf_buckets[i]; | |
fdc90cb4 | 5430 | if (nsyms < elf_buckets[i + 1]) |
5a580b3a AM |
5431 | break; |
5432 | } | |
fdc90cb4 JJ |
5433 | if (gnu_hash && best_size < 2) |
5434 | best_size = 2; | |
5a580b3a AM |
5435 | } |
5436 | ||
5a580b3a AM |
5437 | return best_size; |
5438 | } | |
5439 | ||
d0bf826b AM |
5440 | /* Size any SHT_GROUP section for ld -r. */ |
5441 | ||
5442 | bfd_boolean | |
5443 | _bfd_elf_size_group_sections (struct bfd_link_info *info) | |
5444 | { | |
5445 | bfd *ibfd; | |
5446 | ||
c72f2fb2 | 5447 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
d0bf826b AM |
5448 | if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
5449 | && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) | |
5450 | return FALSE; | |
5451 | return TRUE; | |
5452 | } | |
5453 | ||
04c3a755 NS |
5454 | /* Set a default stack segment size. The value in INFO wins. If it |
5455 | is unset, LEGACY_SYMBOL's value is used, and if that symbol is | |
5456 | undefined it is initialized. */ | |
5457 | ||
5458 | bfd_boolean | |
5459 | bfd_elf_stack_segment_size (bfd *output_bfd, | |
5460 | struct bfd_link_info *info, | |
5461 | const char *legacy_symbol, | |
5462 | bfd_vma default_size) | |
5463 | { | |
5464 | struct elf_link_hash_entry *h = NULL; | |
5465 | ||
5466 | /* Look for legacy symbol. */ | |
5467 | if (legacy_symbol) | |
5468 | h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, | |
5469 | FALSE, FALSE, FALSE); | |
5470 | if (h && (h->root.type == bfd_link_hash_defined | |
5471 | || h->root.type == bfd_link_hash_defweak) | |
5472 | && h->def_regular | |
5473 | && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) | |
5474 | { | |
5475 | /* The symbol has no type if specified on the command line. */ | |
5476 | h->type = STT_OBJECT; | |
5477 | if (info->stacksize) | |
5478 | (*_bfd_error_handler) (_("%B: stack size specified and %s set"), | |
5479 | output_bfd, legacy_symbol); | |
5480 | else if (h->root.u.def.section != bfd_abs_section_ptr) | |
5481 | (*_bfd_error_handler) (_("%B: %s not absolute"), | |
5482 | output_bfd, legacy_symbol); | |
5483 | else | |
5484 | info->stacksize = h->root.u.def.value; | |
5485 | } | |
5486 | ||
5487 | if (!info->stacksize) | |
5488 | /* If the user didn't set a size, or explicitly inhibit the | |
5489 | size, set it now. */ | |
5490 | info->stacksize = default_size; | |
5491 | ||
5492 | /* Provide the legacy symbol, if it is referenced. */ | |
5493 | if (h && (h->root.type == bfd_link_hash_undefined | |
5494 | || h->root.type == bfd_link_hash_undefweak)) | |
5495 | { | |
5496 | struct bfd_link_hash_entry *bh = NULL; | |
5497 | ||
5498 | if (!(_bfd_generic_link_add_one_symbol | |
5499 | (info, output_bfd, legacy_symbol, | |
5500 | BSF_GLOBAL, bfd_abs_section_ptr, | |
5501 | info->stacksize >= 0 ? info->stacksize : 0, | |
5502 | NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) | |
5503 | return FALSE; | |
5504 | ||
5505 | h = (struct elf_link_hash_entry *) bh; | |
5506 | h->def_regular = 1; | |
5507 | h->type = STT_OBJECT; | |
5508 | } | |
5509 | ||
5510 | return TRUE; | |
5511 | } | |
5512 | ||
5a580b3a AM |
5513 | /* Set up the sizes and contents of the ELF dynamic sections. This is |
5514 | called by the ELF linker emulation before_allocation routine. We | |
5515 | must set the sizes of the sections before the linker sets the | |
5516 | addresses of the various sections. */ | |
5517 | ||
5518 | bfd_boolean | |
5519 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | |
5520 | const char *soname, | |
5521 | const char *rpath, | |
5522 | const char *filter_shlib, | |
7ee314fa AM |
5523 | const char *audit, |
5524 | const char *depaudit, | |
5a580b3a AM |
5525 | const char * const *auxiliary_filters, |
5526 | struct bfd_link_info *info, | |
fd91d419 | 5527 | asection **sinterpptr) |
5a580b3a AM |
5528 | { |
5529 | bfd_size_type soname_indx; | |
5530 | bfd *dynobj; | |
5531 | const struct elf_backend_data *bed; | |
28caa186 | 5532 | struct elf_info_failed asvinfo; |
5a580b3a AM |
5533 | |
5534 | *sinterpptr = NULL; | |
5535 | ||
5536 | soname_indx = (bfd_size_type) -1; | |
5537 | ||
5538 | if (!is_elf_hash_table (info->hash)) | |
5539 | return TRUE; | |
5540 | ||
6bfdb61b | 5541 | bed = get_elf_backend_data (output_bfd); |
04c3a755 NS |
5542 | |
5543 | /* Any syms created from now on start with -1 in | |
5544 | got.refcount/offset and plt.refcount/offset. */ | |
5545 | elf_hash_table (info)->init_got_refcount | |
5546 | = elf_hash_table (info)->init_got_offset; | |
5547 | elf_hash_table (info)->init_plt_refcount | |
5548 | = elf_hash_table (info)->init_plt_offset; | |
5549 | ||
5550 | if (info->relocatable | |
5551 | && !_bfd_elf_size_group_sections (info)) | |
5552 | return FALSE; | |
5553 | ||
5554 | /* The backend may have to create some sections regardless of whether | |
5555 | we're dynamic or not. */ | |
5556 | if (bed->elf_backend_always_size_sections | |
5557 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
5558 | return FALSE; | |
5559 | ||
5560 | /* Determine any GNU_STACK segment requirements, after the backend | |
5561 | has had a chance to set a default segment size. */ | |
5a580b3a | 5562 | if (info->execstack) |
12bd6957 | 5563 | elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; |
5a580b3a | 5564 | else if (info->noexecstack) |
12bd6957 | 5565 | elf_stack_flags (output_bfd) = PF_R | PF_W; |
5a580b3a AM |
5566 | else |
5567 | { | |
5568 | bfd *inputobj; | |
5569 | asection *notesec = NULL; | |
5570 | int exec = 0; | |
5571 | ||
5572 | for (inputobj = info->input_bfds; | |
5573 | inputobj; | |
c72f2fb2 | 5574 | inputobj = inputobj->link.next) |
5a580b3a AM |
5575 | { |
5576 | asection *s; | |
5577 | ||
a92c088a L |
5578 | if (inputobj->flags |
5579 | & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) | |
5a580b3a AM |
5580 | continue; |
5581 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | |
5582 | if (s) | |
5583 | { | |
5584 | if (s->flags & SEC_CODE) | |
5585 | exec = PF_X; | |
5586 | notesec = s; | |
5587 | } | |
6bfdb61b | 5588 | else if (bed->default_execstack) |
5a580b3a AM |
5589 | exec = PF_X; |
5590 | } | |
04c3a755 | 5591 | if (notesec || info->stacksize > 0) |
12bd6957 | 5592 | elf_stack_flags (output_bfd) = PF_R | PF_W | exec; |
04c3a755 NS |
5593 | if (notesec && exec && info->relocatable |
5594 | && notesec->output_section != bfd_abs_section_ptr) | |
5595 | notesec->output_section->flags |= SEC_CODE; | |
5a580b3a AM |
5596 | } |
5597 | ||
5a580b3a AM |
5598 | dynobj = elf_hash_table (info)->dynobj; |
5599 | ||
9a2a56cc | 5600 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
5a580b3a AM |
5601 | { |
5602 | struct elf_info_failed eif; | |
5603 | struct elf_link_hash_entry *h; | |
5604 | asection *dynstr; | |
5605 | struct bfd_elf_version_tree *t; | |
5606 | struct bfd_elf_version_expr *d; | |
046183de | 5607 | asection *s; |
5a580b3a AM |
5608 | bfd_boolean all_defined; |
5609 | ||
3d4d4302 | 5610 | *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); |
5a580b3a AM |
5611 | BFD_ASSERT (*sinterpptr != NULL || !info->executable); |
5612 | ||
5613 | if (soname != NULL) | |
5614 | { | |
5615 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5616 | soname, TRUE); | |
5617 | if (soname_indx == (bfd_size_type) -1 | |
5618 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
5619 | return FALSE; | |
5620 | } | |
5621 | ||
5622 | if (info->symbolic) | |
5623 | { | |
5624 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
5625 | return FALSE; | |
5626 | info->flags |= DF_SYMBOLIC; | |
5627 | } | |
5628 | ||
5629 | if (rpath != NULL) | |
5630 | { | |
5631 | bfd_size_type indx; | |
b1b00fcc | 5632 | bfd_vma tag; |
5a580b3a AM |
5633 | |
5634 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, | |
5635 | TRUE); | |
b1b00fcc | 5636 | if (indx == (bfd_size_type) -1) |
5a580b3a AM |
5637 | return FALSE; |
5638 | ||
b1b00fcc MF |
5639 | tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; |
5640 | if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) | |
5641 | return FALSE; | |
5a580b3a AM |
5642 | } |
5643 | ||
5644 | if (filter_shlib != NULL) | |
5645 | { | |
5646 | bfd_size_type indx; | |
5647 | ||
5648 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5649 | filter_shlib, TRUE); | |
5650 | if (indx == (bfd_size_type) -1 | |
5651 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
5652 | return FALSE; | |
5653 | } | |
5654 | ||
5655 | if (auxiliary_filters != NULL) | |
5656 | { | |
5657 | const char * const *p; | |
5658 | ||
5659 | for (p = auxiliary_filters; *p != NULL; p++) | |
5660 | { | |
5661 | bfd_size_type indx; | |
5662 | ||
5663 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
5664 | *p, TRUE); | |
5665 | if (indx == (bfd_size_type) -1 | |
5666 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
5667 | return FALSE; | |
5668 | } | |
5669 | } | |
5670 | ||
7ee314fa AM |
5671 | if (audit != NULL) |
5672 | { | |
5673 | bfd_size_type indx; | |
5674 | ||
5675 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, | |
5676 | TRUE); | |
5677 | if (indx == (bfd_size_type) -1 | |
5678 | || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) | |
5679 | return FALSE; | |
5680 | } | |
5681 | ||
5682 | if (depaudit != NULL) | |
5683 | { | |
5684 | bfd_size_type indx; | |
5685 | ||
5686 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, | |
5687 | TRUE); | |
5688 | if (indx == (bfd_size_type) -1 | |
5689 | || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) | |
5690 | return FALSE; | |
5691 | } | |
5692 | ||
5a580b3a | 5693 | eif.info = info; |
5a580b3a AM |
5694 | eif.failed = FALSE; |
5695 | ||
5696 | /* If we are supposed to export all symbols into the dynamic symbol | |
5697 | table (this is not the normal case), then do so. */ | |
55255dae L |
5698 | if (info->export_dynamic |
5699 | || (info->executable && info->dynamic)) | |
5a580b3a AM |
5700 | { |
5701 | elf_link_hash_traverse (elf_hash_table (info), | |
5702 | _bfd_elf_export_symbol, | |
5703 | &eif); | |
5704 | if (eif.failed) | |
5705 | return FALSE; | |
5706 | } | |
5707 | ||
5708 | /* Make all global versions with definition. */ | |
fd91d419 | 5709 | for (t = info->version_info; t != NULL; t = t->next) |
5a580b3a | 5710 | for (d = t->globals.list; d != NULL; d = d->next) |
ae5a3597 | 5711 | if (!d->symver && d->literal) |
5a580b3a AM |
5712 | { |
5713 | const char *verstr, *name; | |
5714 | size_t namelen, verlen, newlen; | |
93252b1c | 5715 | char *newname, *p, leading_char; |
5a580b3a AM |
5716 | struct elf_link_hash_entry *newh; |
5717 | ||
93252b1c | 5718 | leading_char = bfd_get_symbol_leading_char (output_bfd); |
ae5a3597 | 5719 | name = d->pattern; |
93252b1c | 5720 | namelen = strlen (name) + (leading_char != '\0'); |
5a580b3a AM |
5721 | verstr = t->name; |
5722 | verlen = strlen (verstr); | |
5723 | newlen = namelen + verlen + 3; | |
5724 | ||
a50b1753 | 5725 | newname = (char *) bfd_malloc (newlen); |
5a580b3a AM |
5726 | if (newname == NULL) |
5727 | return FALSE; | |
93252b1c MF |
5728 | newname[0] = leading_char; |
5729 | memcpy (newname + (leading_char != '\0'), name, namelen); | |
5a580b3a AM |
5730 | |
5731 | /* Check the hidden versioned definition. */ | |
5732 | p = newname + namelen; | |
5733 | *p++ = ELF_VER_CHR; | |
5734 | memcpy (p, verstr, verlen + 1); | |
5735 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
5736 | newname, FALSE, FALSE, | |
5737 | FALSE); | |
5738 | if (newh == NULL | |
5739 | || (newh->root.type != bfd_link_hash_defined | |
5740 | && newh->root.type != bfd_link_hash_defweak)) | |
5741 | { | |
5742 | /* Check the default versioned definition. */ | |
5743 | *p++ = ELF_VER_CHR; | |
5744 | memcpy (p, verstr, verlen + 1); | |
5745 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
5746 | newname, FALSE, FALSE, | |
5747 | FALSE); | |
5748 | } | |
5749 | free (newname); | |
5750 | ||
5751 | /* Mark this version if there is a definition and it is | |
5752 | not defined in a shared object. */ | |
5753 | if (newh != NULL | |
f5385ebf | 5754 | && !newh->def_dynamic |
5a580b3a AM |
5755 | && (newh->root.type == bfd_link_hash_defined |
5756 | || newh->root.type == bfd_link_hash_defweak)) | |
5757 | d->symver = 1; | |
5758 | } | |
5759 | ||
5760 | /* Attach all the symbols to their version information. */ | |
5a580b3a | 5761 | asvinfo.info = info; |
5a580b3a AM |
5762 | asvinfo.failed = FALSE; |
5763 | ||
5764 | elf_link_hash_traverse (elf_hash_table (info), | |
5765 | _bfd_elf_link_assign_sym_version, | |
5766 | &asvinfo); | |
5767 | if (asvinfo.failed) | |
5768 | return FALSE; | |
5769 | ||
5770 | if (!info->allow_undefined_version) | |
5771 | { | |
5772 | /* Check if all global versions have a definition. */ | |
5773 | all_defined = TRUE; | |
fd91d419 | 5774 | for (t = info->version_info; t != NULL; t = t->next) |
5a580b3a | 5775 | for (d = t->globals.list; d != NULL; d = d->next) |
ae5a3597 | 5776 | if (d->literal && !d->symver && !d->script) |
5a580b3a AM |
5777 | { |
5778 | (*_bfd_error_handler) | |
5779 | (_("%s: undefined version: %s"), | |
5780 | d->pattern, t->name); | |
5781 | all_defined = FALSE; | |
5782 | } | |
5783 | ||
5784 | if (!all_defined) | |
5785 | { | |
5786 | bfd_set_error (bfd_error_bad_value); | |
5787 | return FALSE; | |
5788 | } | |
5789 | } | |
5790 | ||
5791 | /* Find all symbols which were defined in a dynamic object and make | |
5792 | the backend pick a reasonable value for them. */ | |
5793 | elf_link_hash_traverse (elf_hash_table (info), | |
5794 | _bfd_elf_adjust_dynamic_symbol, | |
5795 | &eif); | |
5796 | if (eif.failed) | |
5797 | return FALSE; | |
5798 | ||
5799 | /* Add some entries to the .dynamic section. We fill in some of the | |
ee75fd95 | 5800 | values later, in bfd_elf_final_link, but we must add the entries |
5a580b3a AM |
5801 | now so that we know the final size of the .dynamic section. */ |
5802 | ||
5803 | /* If there are initialization and/or finalization functions to | |
5804 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
5805 | h = (info->init_function | |
5806 | ? elf_link_hash_lookup (elf_hash_table (info), | |
5807 | info->init_function, FALSE, | |
5808 | FALSE, FALSE) | |
5809 | : NULL); | |
5810 | if (h != NULL | |
f5385ebf AM |
5811 | && (h->ref_regular |
5812 | || h->def_regular)) | |
5a580b3a AM |
5813 | { |
5814 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) | |
5815 | return FALSE; | |
5816 | } | |
5817 | h = (info->fini_function | |
5818 | ? elf_link_hash_lookup (elf_hash_table (info), | |
5819 | info->fini_function, FALSE, | |
5820 | FALSE, FALSE) | |
5821 | : NULL); | |
5822 | if (h != NULL | |
f5385ebf AM |
5823 | && (h->ref_regular |
5824 | || h->def_regular)) | |
5a580b3a AM |
5825 | { |
5826 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) | |
5827 | return FALSE; | |
5828 | } | |
5829 | ||
046183de AM |
5830 | s = bfd_get_section_by_name (output_bfd, ".preinit_array"); |
5831 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5832 | { |
5833 | /* DT_PREINIT_ARRAY is not allowed in shared library. */ | |
5834 | if (! info->executable) | |
5835 | { | |
5836 | bfd *sub; | |
5837 | asection *o; | |
5838 | ||
5839 | for (sub = info->input_bfds; sub != NULL; | |
c72f2fb2 | 5840 | sub = sub->link.next) |
3fcd97f1 JJ |
5841 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour) |
5842 | for (o = sub->sections; o != NULL; o = o->next) | |
5843 | if (elf_section_data (o)->this_hdr.sh_type | |
5844 | == SHT_PREINIT_ARRAY) | |
5845 | { | |
5846 | (*_bfd_error_handler) | |
5847 | (_("%B: .preinit_array section is not allowed in DSO"), | |
5848 | sub); | |
5849 | break; | |
5850 | } | |
5a580b3a AM |
5851 | |
5852 | bfd_set_error (bfd_error_nonrepresentable_section); | |
5853 | return FALSE; | |
5854 | } | |
5855 | ||
5856 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) | |
5857 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) | |
5858 | return FALSE; | |
5859 | } | |
046183de AM |
5860 | s = bfd_get_section_by_name (output_bfd, ".init_array"); |
5861 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5862 | { |
5863 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) | |
5864 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) | |
5865 | return FALSE; | |
5866 | } | |
046183de AM |
5867 | s = bfd_get_section_by_name (output_bfd, ".fini_array"); |
5868 | if (s != NULL && s->linker_has_input) | |
5a580b3a AM |
5869 | { |
5870 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) | |
5871 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) | |
5872 | return FALSE; | |
5873 | } | |
5874 | ||
3d4d4302 | 5875 | dynstr = bfd_get_linker_section (dynobj, ".dynstr"); |
5a580b3a AM |
5876 | /* If .dynstr is excluded from the link, we don't want any of |
5877 | these tags. Strictly, we should be checking each section | |
5878 | individually; This quick check covers for the case where | |
5879 | someone does a /DISCARD/ : { *(*) }. */ | |
5880 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | |
5881 | { | |
5882 | bfd_size_type strsize; | |
5883 | ||
5884 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
fdc90cb4 JJ |
5885 | if ((info->emit_hash |
5886 | && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) | |
5887 | || (info->emit_gnu_hash | |
5888 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)) | |
5a580b3a AM |
5889 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) |
5890 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
5891 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
5892 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, | |
5893 | bed->s->sizeof_sym)) | |
5894 | return FALSE; | |
5895 | } | |
5896 | } | |
5897 | ||
5898 | /* The backend must work out the sizes of all the other dynamic | |
5899 | sections. */ | |
9a2a56cc AM |
5900 | if (dynobj != NULL |
5901 | && bed->elf_backend_size_dynamic_sections != NULL | |
5a580b3a AM |
5902 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) |
5903 | return FALSE; | |
5904 | ||
9a2a56cc AM |
5905 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) |
5906 | return FALSE; | |
5907 | ||
5908 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | |
5a580b3a | 5909 | { |
554220db | 5910 | unsigned long section_sym_count; |
fd91d419 | 5911 | struct bfd_elf_version_tree *verdefs; |
5a580b3a | 5912 | asection *s; |
5a580b3a AM |
5913 | |
5914 | /* Set up the version definition section. */ | |
3d4d4302 | 5915 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
5a580b3a AM |
5916 | BFD_ASSERT (s != NULL); |
5917 | ||
5918 | /* We may have created additional version definitions if we are | |
5919 | just linking a regular application. */ | |
fd91d419 | 5920 | verdefs = info->version_info; |
5a580b3a AM |
5921 | |
5922 | /* Skip anonymous version tag. */ | |
5923 | if (verdefs != NULL && verdefs->vernum == 0) | |
5924 | verdefs = verdefs->next; | |
5925 | ||
3e3b46e5 | 5926 | if (verdefs == NULL && !info->create_default_symver) |
8423293d | 5927 | s->flags |= SEC_EXCLUDE; |
5a580b3a AM |
5928 | else |
5929 | { | |
5930 | unsigned int cdefs; | |
5931 | bfd_size_type size; | |
5932 | struct bfd_elf_version_tree *t; | |
5933 | bfd_byte *p; | |
5934 | Elf_Internal_Verdef def; | |
5935 | Elf_Internal_Verdaux defaux; | |
3e3b46e5 PB |
5936 | struct bfd_link_hash_entry *bh; |
5937 | struct elf_link_hash_entry *h; | |
5938 | const char *name; | |
5a580b3a AM |
5939 | |
5940 | cdefs = 0; | |
5941 | size = 0; | |
5942 | ||
5943 | /* Make space for the base version. */ | |
5944 | size += sizeof (Elf_External_Verdef); | |
5945 | size += sizeof (Elf_External_Verdaux); | |
5946 | ++cdefs; | |
5947 | ||
3e3b46e5 PB |
5948 | /* Make space for the default version. */ |
5949 | if (info->create_default_symver) | |
5950 | { | |
5951 | size += sizeof (Elf_External_Verdef); | |
5952 | ++cdefs; | |
5953 | } | |
5954 | ||
5a580b3a AM |
5955 | for (t = verdefs; t != NULL; t = t->next) |
5956 | { | |
5957 | struct bfd_elf_version_deps *n; | |
5958 | ||
a6cc6b3b RO |
5959 | /* Don't emit base version twice. */ |
5960 | if (t->vernum == 0) | |
5961 | continue; | |
5962 | ||
5a580b3a AM |
5963 | size += sizeof (Elf_External_Verdef); |
5964 | size += sizeof (Elf_External_Verdaux); | |
5965 | ++cdefs; | |
5966 | ||
5967 | for (n = t->deps; n != NULL; n = n->next) | |
5968 | size += sizeof (Elf_External_Verdaux); | |
5969 | } | |
5970 | ||
eea6121a | 5971 | s->size = size; |
a50b1753 | 5972 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
eea6121a | 5973 | if (s->contents == NULL && s->size != 0) |
5a580b3a AM |
5974 | return FALSE; |
5975 | ||
5976 | /* Fill in the version definition section. */ | |
5977 | ||
5978 | p = s->contents; | |
5979 | ||
5980 | def.vd_version = VER_DEF_CURRENT; | |
5981 | def.vd_flags = VER_FLG_BASE; | |
5982 | def.vd_ndx = 1; | |
5983 | def.vd_cnt = 1; | |
3e3b46e5 PB |
5984 | if (info->create_default_symver) |
5985 | { | |
5986 | def.vd_aux = 2 * sizeof (Elf_External_Verdef); | |
5987 | def.vd_next = sizeof (Elf_External_Verdef); | |
5988 | } | |
5989 | else | |
5990 | { | |
5991 | def.vd_aux = sizeof (Elf_External_Verdef); | |
5992 | def.vd_next = (sizeof (Elf_External_Verdef) | |
5993 | + sizeof (Elf_External_Verdaux)); | |
5994 | } | |
5a580b3a AM |
5995 | |
5996 | if (soname_indx != (bfd_size_type) -1) | |
5997 | { | |
5998 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
5999 | soname_indx); | |
6000 | def.vd_hash = bfd_elf_hash (soname); | |
6001 | defaux.vda_name = soname_indx; | |
3e3b46e5 | 6002 | name = soname; |
5a580b3a AM |
6003 | } |
6004 | else | |
6005 | { | |
5a580b3a AM |
6006 | bfd_size_type indx; |
6007 | ||
06084812 | 6008 | name = lbasename (output_bfd->filename); |
5a580b3a AM |
6009 | def.vd_hash = bfd_elf_hash (name); |
6010 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6011 | name, FALSE); | |
6012 | if (indx == (bfd_size_type) -1) | |
6013 | return FALSE; | |
6014 | defaux.vda_name = indx; | |
6015 | } | |
6016 | defaux.vda_next = 0; | |
6017 | ||
6018 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6019 | (Elf_External_Verdef *) p); | |
6020 | p += sizeof (Elf_External_Verdef); | |
3e3b46e5 PB |
6021 | if (info->create_default_symver) |
6022 | { | |
6023 | /* Add a symbol representing this version. */ | |
6024 | bh = NULL; | |
6025 | if (! (_bfd_generic_link_add_one_symbol | |
6026 | (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, | |
6027 | 0, NULL, FALSE, | |
6028 | get_elf_backend_data (dynobj)->collect, &bh))) | |
6029 | return FALSE; | |
6030 | h = (struct elf_link_hash_entry *) bh; | |
6031 | h->non_elf = 0; | |
6032 | h->def_regular = 1; | |
6033 | h->type = STT_OBJECT; | |
6034 | h->verinfo.vertree = NULL; | |
6035 | ||
6036 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
6037 | return FALSE; | |
6038 | ||
6039 | /* Create a duplicate of the base version with the same | |
6040 | aux block, but different flags. */ | |
6041 | def.vd_flags = 0; | |
6042 | def.vd_ndx = 2; | |
6043 | def.vd_aux = sizeof (Elf_External_Verdef); | |
6044 | if (verdefs) | |
6045 | def.vd_next = (sizeof (Elf_External_Verdef) | |
6046 | + sizeof (Elf_External_Verdaux)); | |
6047 | else | |
6048 | def.vd_next = 0; | |
6049 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6050 | (Elf_External_Verdef *) p); | |
6051 | p += sizeof (Elf_External_Verdef); | |
6052 | } | |
5a580b3a AM |
6053 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
6054 | (Elf_External_Verdaux *) p); | |
6055 | p += sizeof (Elf_External_Verdaux); | |
6056 | ||
6057 | for (t = verdefs; t != NULL; t = t->next) | |
6058 | { | |
6059 | unsigned int cdeps; | |
6060 | struct bfd_elf_version_deps *n; | |
5a580b3a | 6061 | |
a6cc6b3b RO |
6062 | /* Don't emit the base version twice. */ |
6063 | if (t->vernum == 0) | |
6064 | continue; | |
6065 | ||
5a580b3a AM |
6066 | cdeps = 0; |
6067 | for (n = t->deps; n != NULL; n = n->next) | |
6068 | ++cdeps; | |
6069 | ||
6070 | /* Add a symbol representing this version. */ | |
6071 | bh = NULL; | |
6072 | if (! (_bfd_generic_link_add_one_symbol | |
6073 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
6074 | 0, NULL, FALSE, | |
6075 | get_elf_backend_data (dynobj)->collect, &bh))) | |
6076 | return FALSE; | |
6077 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6078 | h->non_elf = 0; |
6079 | h->def_regular = 1; | |
5a580b3a AM |
6080 | h->type = STT_OBJECT; |
6081 | h->verinfo.vertree = t; | |
6082 | ||
c152c796 | 6083 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
5a580b3a AM |
6084 | return FALSE; |
6085 | ||
6086 | def.vd_version = VER_DEF_CURRENT; | |
6087 | def.vd_flags = 0; | |
6088 | if (t->globals.list == NULL | |
6089 | && t->locals.list == NULL | |
6090 | && ! t->used) | |
6091 | def.vd_flags |= VER_FLG_WEAK; | |
3e3b46e5 | 6092 | def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); |
5a580b3a AM |
6093 | def.vd_cnt = cdeps + 1; |
6094 | def.vd_hash = bfd_elf_hash (t->name); | |
6095 | def.vd_aux = sizeof (Elf_External_Verdef); | |
6096 | def.vd_next = 0; | |
a6cc6b3b RO |
6097 | |
6098 | /* If a basever node is next, it *must* be the last node in | |
6099 | the chain, otherwise Verdef construction breaks. */ | |
6100 | if (t->next != NULL && t->next->vernum == 0) | |
6101 | BFD_ASSERT (t->next->next == NULL); | |
6102 | ||
6103 | if (t->next != NULL && t->next->vernum != 0) | |
5a580b3a AM |
6104 | def.vd_next = (sizeof (Elf_External_Verdef) |
6105 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
6106 | ||
6107 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
6108 | (Elf_External_Verdef *) p); | |
6109 | p += sizeof (Elf_External_Verdef); | |
6110 | ||
6111 | defaux.vda_name = h->dynstr_index; | |
6112 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
6113 | h->dynstr_index); | |
6114 | defaux.vda_next = 0; | |
6115 | if (t->deps != NULL) | |
6116 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
6117 | t->name_indx = defaux.vda_name; | |
6118 | ||
6119 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
6120 | (Elf_External_Verdaux *) p); | |
6121 | p += sizeof (Elf_External_Verdaux); | |
6122 | ||
6123 | for (n = t->deps; n != NULL; n = n->next) | |
6124 | { | |
6125 | if (n->version_needed == NULL) | |
6126 | { | |
6127 | /* This can happen if there was an error in the | |
6128 | version script. */ | |
6129 | defaux.vda_name = 0; | |
6130 | } | |
6131 | else | |
6132 | { | |
6133 | defaux.vda_name = n->version_needed->name_indx; | |
6134 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
6135 | defaux.vda_name); | |
6136 | } | |
6137 | if (n->next == NULL) | |
6138 | defaux.vda_next = 0; | |
6139 | else | |
6140 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
6141 | ||
6142 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
6143 | (Elf_External_Verdaux *) p); | |
6144 | p += sizeof (Elf_External_Verdaux); | |
6145 | } | |
6146 | } | |
6147 | ||
6148 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
6149 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) | |
6150 | return FALSE; | |
6151 | ||
6152 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
6153 | } | |
6154 | ||
6155 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) | |
6156 | { | |
6157 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | |
6158 | return FALSE; | |
6159 | } | |
6160 | else if (info->flags & DF_BIND_NOW) | |
6161 | { | |
6162 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) | |
6163 | return FALSE; | |
6164 | } | |
6165 | ||
6166 | if (info->flags_1) | |
6167 | { | |
6168 | if (info->executable) | |
6169 | info->flags_1 &= ~ (DF_1_INITFIRST | |
6170 | | DF_1_NODELETE | |
6171 | | DF_1_NOOPEN); | |
6172 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | |
6173 | return FALSE; | |
6174 | } | |
6175 | ||
6176 | /* Work out the size of the version reference section. */ | |
6177 | ||
3d4d4302 | 6178 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
5a580b3a AM |
6179 | BFD_ASSERT (s != NULL); |
6180 | { | |
6181 | struct elf_find_verdep_info sinfo; | |
6182 | ||
5a580b3a AM |
6183 | sinfo.info = info; |
6184 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
6185 | if (sinfo.vers == 0) | |
6186 | sinfo.vers = 1; | |
6187 | sinfo.failed = FALSE; | |
6188 | ||
6189 | elf_link_hash_traverse (elf_hash_table (info), | |
6190 | _bfd_elf_link_find_version_dependencies, | |
6191 | &sinfo); | |
14b1c01e AM |
6192 | if (sinfo.failed) |
6193 | return FALSE; | |
5a580b3a AM |
6194 | |
6195 | if (elf_tdata (output_bfd)->verref == NULL) | |
8423293d | 6196 | s->flags |= SEC_EXCLUDE; |
5a580b3a AM |
6197 | else |
6198 | { | |
6199 | Elf_Internal_Verneed *t; | |
6200 | unsigned int size; | |
6201 | unsigned int crefs; | |
6202 | bfd_byte *p; | |
6203 | ||
a6cc6b3b | 6204 | /* Build the version dependency section. */ |
5a580b3a AM |
6205 | size = 0; |
6206 | crefs = 0; | |
6207 | for (t = elf_tdata (output_bfd)->verref; | |
6208 | t != NULL; | |
6209 | t = t->vn_nextref) | |
6210 | { | |
6211 | Elf_Internal_Vernaux *a; | |
6212 | ||
6213 | size += sizeof (Elf_External_Verneed); | |
6214 | ++crefs; | |
6215 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6216 | size += sizeof (Elf_External_Vernaux); | |
6217 | } | |
6218 | ||
eea6121a | 6219 | s->size = size; |
a50b1753 | 6220 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
5a580b3a AM |
6221 | if (s->contents == NULL) |
6222 | return FALSE; | |
6223 | ||
6224 | p = s->contents; | |
6225 | for (t = elf_tdata (output_bfd)->verref; | |
6226 | t != NULL; | |
6227 | t = t->vn_nextref) | |
6228 | { | |
6229 | unsigned int caux; | |
6230 | Elf_Internal_Vernaux *a; | |
6231 | bfd_size_type indx; | |
6232 | ||
6233 | caux = 0; | |
6234 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6235 | ++caux; | |
6236 | ||
6237 | t->vn_version = VER_NEED_CURRENT; | |
6238 | t->vn_cnt = caux; | |
6239 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6240 | elf_dt_name (t->vn_bfd) != NULL | |
6241 | ? elf_dt_name (t->vn_bfd) | |
06084812 | 6242 | : lbasename (t->vn_bfd->filename), |
5a580b3a AM |
6243 | FALSE); |
6244 | if (indx == (bfd_size_type) -1) | |
6245 | return FALSE; | |
6246 | t->vn_file = indx; | |
6247 | t->vn_aux = sizeof (Elf_External_Verneed); | |
6248 | if (t->vn_nextref == NULL) | |
6249 | t->vn_next = 0; | |
6250 | else | |
6251 | t->vn_next = (sizeof (Elf_External_Verneed) | |
6252 | + caux * sizeof (Elf_External_Vernaux)); | |
6253 | ||
6254 | _bfd_elf_swap_verneed_out (output_bfd, t, | |
6255 | (Elf_External_Verneed *) p); | |
6256 | p += sizeof (Elf_External_Verneed); | |
6257 | ||
6258 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
6259 | { | |
6260 | a->vna_hash = bfd_elf_hash (a->vna_nodename); | |
6261 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6262 | a->vna_nodename, FALSE); | |
6263 | if (indx == (bfd_size_type) -1) | |
6264 | return FALSE; | |
6265 | a->vna_name = indx; | |
6266 | if (a->vna_nextptr == NULL) | |
6267 | a->vna_next = 0; | |
6268 | else | |
6269 | a->vna_next = sizeof (Elf_External_Vernaux); | |
6270 | ||
6271 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
6272 | (Elf_External_Vernaux *) p); | |
6273 | p += sizeof (Elf_External_Vernaux); | |
6274 | } | |
6275 | } | |
6276 | ||
6277 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
6278 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
6279 | return FALSE; | |
6280 | ||
6281 | elf_tdata (output_bfd)->cverrefs = crefs; | |
6282 | } | |
6283 | } | |
6284 | ||
8423293d AM |
6285 | if ((elf_tdata (output_bfd)->cverrefs == 0 |
6286 | && elf_tdata (output_bfd)->cverdefs == 0) | |
6287 | || _bfd_elf_link_renumber_dynsyms (output_bfd, info, | |
6288 | §ion_sym_count) == 0) | |
6289 | { | |
3d4d4302 | 6290 | s = bfd_get_linker_section (dynobj, ".gnu.version"); |
8423293d AM |
6291 | s->flags |= SEC_EXCLUDE; |
6292 | } | |
6293 | } | |
6294 | return TRUE; | |
6295 | } | |
6296 | ||
74541ad4 AM |
6297 | /* Find the first non-excluded output section. We'll use its |
6298 | section symbol for some emitted relocs. */ | |
6299 | void | |
6300 | _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) | |
6301 | { | |
6302 | asection *s; | |
6303 | ||
6304 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
6305 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | |
6306 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) | |
6307 | { | |
6308 | elf_hash_table (info)->text_index_section = s; | |
6309 | break; | |
6310 | } | |
6311 | } | |
6312 | ||
6313 | /* Find two non-excluded output sections, one for code, one for data. | |
6314 | We'll use their section symbols for some emitted relocs. */ | |
6315 | void | |
6316 | _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) | |
6317 | { | |
6318 | asection *s; | |
6319 | ||
266b05cf DJ |
6320 | /* Data first, since setting text_index_section changes |
6321 | _bfd_elf_link_omit_section_dynsym. */ | |
74541ad4 | 6322 | for (s = output_bfd->sections; s != NULL; s = s->next) |
266b05cf | 6323 | if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC) |
74541ad4 AM |
6324 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) |
6325 | { | |
266b05cf | 6326 | elf_hash_table (info)->data_index_section = s; |
74541ad4 AM |
6327 | break; |
6328 | } | |
6329 | ||
6330 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
266b05cf DJ |
6331 | if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) |
6332 | == (SEC_ALLOC | SEC_READONLY)) | |
74541ad4 AM |
6333 | && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) |
6334 | { | |
266b05cf | 6335 | elf_hash_table (info)->text_index_section = s; |
74541ad4 AM |
6336 | break; |
6337 | } | |
6338 | ||
6339 | if (elf_hash_table (info)->text_index_section == NULL) | |
6340 | elf_hash_table (info)->text_index_section | |
6341 | = elf_hash_table (info)->data_index_section; | |
6342 | } | |
6343 | ||
8423293d AM |
6344 | bfd_boolean |
6345 | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
6346 | { | |
74541ad4 AM |
6347 | const struct elf_backend_data *bed; |
6348 | ||
8423293d AM |
6349 | if (!is_elf_hash_table (info->hash)) |
6350 | return TRUE; | |
6351 | ||
74541ad4 AM |
6352 | bed = get_elf_backend_data (output_bfd); |
6353 | (*bed->elf_backend_init_index_section) (output_bfd, info); | |
6354 | ||
8423293d AM |
6355 | if (elf_hash_table (info)->dynamic_sections_created) |
6356 | { | |
6357 | bfd *dynobj; | |
8423293d AM |
6358 | asection *s; |
6359 | bfd_size_type dynsymcount; | |
6360 | unsigned long section_sym_count; | |
8423293d AM |
6361 | unsigned int dtagcount; |
6362 | ||
6363 | dynobj = elf_hash_table (info)->dynobj; | |
6364 | ||
5a580b3a AM |
6365 | /* Assign dynsym indicies. In a shared library we generate a |
6366 | section symbol for each output section, which come first. | |
6367 | Next come all of the back-end allocated local dynamic syms, | |
6368 | followed by the rest of the global symbols. */ | |
6369 | ||
554220db AM |
6370 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, |
6371 | §ion_sym_count); | |
5a580b3a AM |
6372 | |
6373 | /* Work out the size of the symbol version section. */ | |
3d4d4302 | 6374 | s = bfd_get_linker_section (dynobj, ".gnu.version"); |
5a580b3a | 6375 | BFD_ASSERT (s != NULL); |
8423293d AM |
6376 | if (dynsymcount != 0 |
6377 | && (s->flags & SEC_EXCLUDE) == 0) | |
5a580b3a | 6378 | { |
eea6121a | 6379 | s->size = dynsymcount * sizeof (Elf_External_Versym); |
a50b1753 | 6380 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
5a580b3a AM |
6381 | if (s->contents == NULL) |
6382 | return FALSE; | |
6383 | ||
6384 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
6385 | return FALSE; | |
6386 | } | |
6387 | ||
6388 | /* Set the size of the .dynsym and .hash sections. We counted | |
6389 | the number of dynamic symbols in elf_link_add_object_symbols. | |
6390 | We will build the contents of .dynsym and .hash when we build | |
6391 | the final symbol table, because until then we do not know the | |
6392 | correct value to give the symbols. We built the .dynstr | |
6393 | section as we went along in elf_link_add_object_symbols. */ | |
3d4d4302 | 6394 | s = bfd_get_linker_section (dynobj, ".dynsym"); |
5a580b3a | 6395 | BFD_ASSERT (s != NULL); |
eea6121a | 6396 | s->size = dynsymcount * bed->s->sizeof_sym; |
5a580b3a AM |
6397 | |
6398 | if (dynsymcount != 0) | |
6399 | { | |
a50b1753 | 6400 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
554220db AM |
6401 | if (s->contents == NULL) |
6402 | return FALSE; | |
5a580b3a | 6403 | |
554220db AM |
6404 | /* The first entry in .dynsym is a dummy symbol. |
6405 | Clear all the section syms, in case we don't output them all. */ | |
6406 | ++section_sym_count; | |
6407 | memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); | |
5a580b3a AM |
6408 | } |
6409 | ||
fdc90cb4 JJ |
6410 | elf_hash_table (info)->bucketcount = 0; |
6411 | ||
5a580b3a AM |
6412 | /* Compute the size of the hashing table. As a side effect this |
6413 | computes the hash values for all the names we export. */ | |
fdc90cb4 JJ |
6414 | if (info->emit_hash) |
6415 | { | |
6416 | unsigned long int *hashcodes; | |
14b1c01e | 6417 | struct hash_codes_info hashinf; |
fdc90cb4 JJ |
6418 | bfd_size_type amt; |
6419 | unsigned long int nsyms; | |
6420 | size_t bucketcount; | |
6421 | size_t hash_entry_size; | |
6422 | ||
6423 | /* Compute the hash values for all exported symbols. At the same | |
6424 | time store the values in an array so that we could use them for | |
6425 | optimizations. */ | |
6426 | amt = dynsymcount * sizeof (unsigned long int); | |
a50b1753 | 6427 | hashcodes = (unsigned long int *) bfd_malloc (amt); |
fdc90cb4 JJ |
6428 | if (hashcodes == NULL) |
6429 | return FALSE; | |
14b1c01e AM |
6430 | hashinf.hashcodes = hashcodes; |
6431 | hashinf.error = FALSE; | |
5a580b3a | 6432 | |
fdc90cb4 JJ |
6433 | /* Put all hash values in HASHCODES. */ |
6434 | elf_link_hash_traverse (elf_hash_table (info), | |
14b1c01e AM |
6435 | elf_collect_hash_codes, &hashinf); |
6436 | if (hashinf.error) | |
4dd07732 AM |
6437 | { |
6438 | free (hashcodes); | |
6439 | return FALSE; | |
6440 | } | |
5a580b3a | 6441 | |
14b1c01e | 6442 | nsyms = hashinf.hashcodes - hashcodes; |
fdc90cb4 JJ |
6443 | bucketcount |
6444 | = compute_bucket_count (info, hashcodes, nsyms, 0); | |
6445 | free (hashcodes); | |
6446 | ||
6447 | if (bucketcount == 0) | |
6448 | return FALSE; | |
5a580b3a | 6449 | |
fdc90cb4 JJ |
6450 | elf_hash_table (info)->bucketcount = bucketcount; |
6451 | ||
3d4d4302 | 6452 | s = bfd_get_linker_section (dynobj, ".hash"); |
fdc90cb4 JJ |
6453 | BFD_ASSERT (s != NULL); |
6454 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; | |
6455 | s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
a50b1753 | 6456 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6457 | if (s->contents == NULL) |
6458 | return FALSE; | |
6459 | ||
6460 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); | |
6461 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
6462 | s->contents + hash_entry_size); | |
6463 | } | |
6464 | ||
6465 | if (info->emit_gnu_hash) | |
6466 | { | |
6467 | size_t i, cnt; | |
6468 | unsigned char *contents; | |
6469 | struct collect_gnu_hash_codes cinfo; | |
6470 | bfd_size_type amt; | |
6471 | size_t bucketcount; | |
6472 | ||
6473 | memset (&cinfo, 0, sizeof (cinfo)); | |
6474 | ||
6475 | /* Compute the hash values for all exported symbols. At the same | |
6476 | time store the values in an array so that we could use them for | |
6477 | optimizations. */ | |
6478 | amt = dynsymcount * 2 * sizeof (unsigned long int); | |
a50b1753 | 6479 | cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); |
fdc90cb4 JJ |
6480 | if (cinfo.hashcodes == NULL) |
6481 | return FALSE; | |
6482 | ||
6483 | cinfo.hashval = cinfo.hashcodes + dynsymcount; | |
6484 | cinfo.min_dynindx = -1; | |
6485 | cinfo.output_bfd = output_bfd; | |
6486 | cinfo.bed = bed; | |
6487 | ||
6488 | /* Put all hash values in HASHCODES. */ | |
6489 | elf_link_hash_traverse (elf_hash_table (info), | |
6490 | elf_collect_gnu_hash_codes, &cinfo); | |
14b1c01e | 6491 | if (cinfo.error) |
4dd07732 AM |
6492 | { |
6493 | free (cinfo.hashcodes); | |
6494 | return FALSE; | |
6495 | } | |
fdc90cb4 JJ |
6496 | |
6497 | bucketcount | |
6498 | = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); | |
6499 | ||
6500 | if (bucketcount == 0) | |
6501 | { | |
6502 | free (cinfo.hashcodes); | |
6503 | return FALSE; | |
6504 | } | |
6505 | ||
3d4d4302 | 6506 | s = bfd_get_linker_section (dynobj, ".gnu.hash"); |
fdc90cb4 JJ |
6507 | BFD_ASSERT (s != NULL); |
6508 | ||
6509 | if (cinfo.nsyms == 0) | |
6510 | { | |
6511 | /* Empty .gnu.hash section is special. */ | |
6512 | BFD_ASSERT (cinfo.min_dynindx == -1); | |
6513 | free (cinfo.hashcodes); | |
6514 | s->size = 5 * 4 + bed->s->arch_size / 8; | |
a50b1753 | 6515 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6516 | if (contents == NULL) |
6517 | return FALSE; | |
6518 | s->contents = contents; | |
6519 | /* 1 empty bucket. */ | |
6520 | bfd_put_32 (output_bfd, 1, contents); | |
6521 | /* SYMIDX above the special symbol 0. */ | |
6522 | bfd_put_32 (output_bfd, 1, contents + 4); | |
6523 | /* Just one word for bitmask. */ | |
6524 | bfd_put_32 (output_bfd, 1, contents + 8); | |
6525 | /* Only hash fn bloom filter. */ | |
6526 | bfd_put_32 (output_bfd, 0, contents + 12); | |
6527 | /* No hashes are valid - empty bitmask. */ | |
6528 | bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); | |
6529 | /* No hashes in the only bucket. */ | |
6530 | bfd_put_32 (output_bfd, 0, | |
6531 | contents + 16 + bed->s->arch_size / 8); | |
6532 | } | |
6533 | else | |
6534 | { | |
9e6619e2 | 6535 | unsigned long int maskwords, maskbitslog2, x; |
0b33793d | 6536 | BFD_ASSERT (cinfo.min_dynindx != -1); |
fdc90cb4 | 6537 | |
9e6619e2 AM |
6538 | x = cinfo.nsyms; |
6539 | maskbitslog2 = 1; | |
6540 | while ((x >>= 1) != 0) | |
6541 | ++maskbitslog2; | |
fdc90cb4 JJ |
6542 | if (maskbitslog2 < 3) |
6543 | maskbitslog2 = 5; | |
6544 | else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) | |
6545 | maskbitslog2 = maskbitslog2 + 3; | |
6546 | else | |
6547 | maskbitslog2 = maskbitslog2 + 2; | |
6548 | if (bed->s->arch_size == 64) | |
6549 | { | |
6550 | if (maskbitslog2 == 5) | |
6551 | maskbitslog2 = 6; | |
6552 | cinfo.shift1 = 6; | |
6553 | } | |
6554 | else | |
6555 | cinfo.shift1 = 5; | |
6556 | cinfo.mask = (1 << cinfo.shift1) - 1; | |
2ccdbfcc | 6557 | cinfo.shift2 = maskbitslog2; |
fdc90cb4 JJ |
6558 | cinfo.maskbits = 1 << maskbitslog2; |
6559 | maskwords = 1 << (maskbitslog2 - cinfo.shift1); | |
6560 | amt = bucketcount * sizeof (unsigned long int) * 2; | |
6561 | amt += maskwords * sizeof (bfd_vma); | |
a50b1753 | 6562 | cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); |
fdc90cb4 JJ |
6563 | if (cinfo.bitmask == NULL) |
6564 | { | |
6565 | free (cinfo.hashcodes); | |
6566 | return FALSE; | |
6567 | } | |
6568 | ||
a50b1753 | 6569 | cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); |
fdc90cb4 JJ |
6570 | cinfo.indx = cinfo.counts + bucketcount; |
6571 | cinfo.symindx = dynsymcount - cinfo.nsyms; | |
6572 | memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); | |
6573 | ||
6574 | /* Determine how often each hash bucket is used. */ | |
6575 | memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); | |
6576 | for (i = 0; i < cinfo.nsyms; ++i) | |
6577 | ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; | |
6578 | ||
6579 | for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) | |
6580 | if (cinfo.counts[i] != 0) | |
6581 | { | |
6582 | cinfo.indx[i] = cnt; | |
6583 | cnt += cinfo.counts[i]; | |
6584 | } | |
6585 | BFD_ASSERT (cnt == dynsymcount); | |
6586 | cinfo.bucketcount = bucketcount; | |
6587 | cinfo.local_indx = cinfo.min_dynindx; | |
6588 | ||
6589 | s->size = (4 + bucketcount + cinfo.nsyms) * 4; | |
6590 | s->size += cinfo.maskbits / 8; | |
a50b1753 | 6591 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
fdc90cb4 JJ |
6592 | if (contents == NULL) |
6593 | { | |
6594 | free (cinfo.bitmask); | |
6595 | free (cinfo.hashcodes); | |
6596 | return FALSE; | |
6597 | } | |
6598 | ||
6599 | s->contents = contents; | |
6600 | bfd_put_32 (output_bfd, bucketcount, contents); | |
6601 | bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); | |
6602 | bfd_put_32 (output_bfd, maskwords, contents + 8); | |
6603 | bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); | |
6604 | contents += 16 + cinfo.maskbits / 8; | |
6605 | ||
6606 | for (i = 0; i < bucketcount; ++i) | |
6607 | { | |
6608 | if (cinfo.counts[i] == 0) | |
6609 | bfd_put_32 (output_bfd, 0, contents); | |
6610 | else | |
6611 | bfd_put_32 (output_bfd, cinfo.indx[i], contents); | |
6612 | contents += 4; | |
6613 | } | |
6614 | ||
6615 | cinfo.contents = contents; | |
6616 | ||
6617 | /* Renumber dynamic symbols, populate .gnu.hash section. */ | |
6618 | elf_link_hash_traverse (elf_hash_table (info), | |
6619 | elf_renumber_gnu_hash_syms, &cinfo); | |
6620 | ||
6621 | contents = s->contents + 16; | |
6622 | for (i = 0; i < maskwords; ++i) | |
6623 | { | |
6624 | bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], | |
6625 | contents); | |
6626 | contents += bed->s->arch_size / 8; | |
6627 | } | |
6628 | ||
6629 | free (cinfo.bitmask); | |
6630 | free (cinfo.hashcodes); | |
6631 | } | |
6632 | } | |
5a580b3a | 6633 | |
3d4d4302 | 6634 | s = bfd_get_linker_section (dynobj, ".dynstr"); |
5a580b3a AM |
6635 | BFD_ASSERT (s != NULL); |
6636 | ||
4ad4eba5 | 6637 | elf_finalize_dynstr (output_bfd, info); |
5a580b3a | 6638 | |
eea6121a | 6639 | s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
5a580b3a AM |
6640 | |
6641 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | |
6642 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) | |
6643 | return FALSE; | |
6644 | } | |
6645 | ||
6646 | return TRUE; | |
6647 | } | |
4d269e42 | 6648 | \f |
4d269e42 AM |
6649 | /* Make sure sec_info_type is cleared if sec_info is cleared too. */ |
6650 | ||
6651 | static void | |
6652 | merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, | |
6653 | asection *sec) | |
6654 | { | |
dbaa2011 AM |
6655 | BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); |
6656 | sec->sec_info_type = SEC_INFO_TYPE_NONE; | |
4d269e42 AM |
6657 | } |
6658 | ||
6659 | /* Finish SHF_MERGE section merging. */ | |
6660 | ||
6661 | bfd_boolean | |
6662 | _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info) | |
6663 | { | |
6664 | bfd *ibfd; | |
6665 | asection *sec; | |
6666 | ||
6667 | if (!is_elf_hash_table (info->hash)) | |
6668 | return FALSE; | |
6669 | ||
c72f2fb2 | 6670 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
4d269e42 AM |
6671 | if ((ibfd->flags & DYNAMIC) == 0) |
6672 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
6673 | if ((sec->flags & SEC_MERGE) != 0 | |
6674 | && !bfd_is_abs_section (sec->output_section)) | |
6675 | { | |
6676 | struct bfd_elf_section_data *secdata; | |
6677 | ||
6678 | secdata = elf_section_data (sec); | |
6679 | if (! _bfd_add_merge_section (abfd, | |
6680 | &elf_hash_table (info)->merge_info, | |
6681 | sec, &secdata->sec_info)) | |
6682 | return FALSE; | |
6683 | else if (secdata->sec_info) | |
dbaa2011 | 6684 | sec->sec_info_type = SEC_INFO_TYPE_MERGE; |
4d269e42 AM |
6685 | } |
6686 | ||
6687 | if (elf_hash_table (info)->merge_info != NULL) | |
6688 | _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info, | |
6689 | merge_sections_remove_hook); | |
6690 | return TRUE; | |
6691 | } | |
6692 | ||
6693 | /* Create an entry in an ELF linker hash table. */ | |
6694 | ||
6695 | struct bfd_hash_entry * | |
6696 | _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | |
6697 | struct bfd_hash_table *table, | |
6698 | const char *string) | |
6699 | { | |
6700 | /* Allocate the structure if it has not already been allocated by a | |
6701 | subclass. */ | |
6702 | if (entry == NULL) | |
6703 | { | |
a50b1753 NC |
6704 | entry = (struct bfd_hash_entry *) |
6705 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); | |
4d269e42 AM |
6706 | if (entry == NULL) |
6707 | return entry; | |
6708 | } | |
6709 | ||
6710 | /* Call the allocation method of the superclass. */ | |
6711 | entry = _bfd_link_hash_newfunc (entry, table, string); | |
6712 | if (entry != NULL) | |
6713 | { | |
6714 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; | |
6715 | struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; | |
6716 | ||
6717 | /* Set local fields. */ | |
6718 | ret->indx = -1; | |
6719 | ret->dynindx = -1; | |
6720 | ret->got = htab->init_got_refcount; | |
6721 | ret->plt = htab->init_plt_refcount; | |
6722 | memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) | |
6723 | - offsetof (struct elf_link_hash_entry, size))); | |
6724 | /* Assume that we have been called by a non-ELF symbol reader. | |
6725 | This flag is then reset by the code which reads an ELF input | |
6726 | file. This ensures that a symbol created by a non-ELF symbol | |
6727 | reader will have the flag set correctly. */ | |
6728 | ret->non_elf = 1; | |
6729 | } | |
6730 | ||
6731 | return entry; | |
6732 | } | |
6733 | ||
6734 | /* Copy data from an indirect symbol to its direct symbol, hiding the | |
6735 | old indirect symbol. Also used for copying flags to a weakdef. */ | |
6736 | ||
6737 | void | |
6738 | _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, | |
6739 | struct elf_link_hash_entry *dir, | |
6740 | struct elf_link_hash_entry *ind) | |
6741 | { | |
6742 | struct elf_link_hash_table *htab; | |
6743 | ||
6744 | /* Copy down any references that we may have already seen to the | |
6745 | symbol which just became indirect. */ | |
6746 | ||
6747 | dir->ref_dynamic |= ind->ref_dynamic; | |
6748 | dir->ref_regular |= ind->ref_regular; | |
6749 | dir->ref_regular_nonweak |= ind->ref_regular_nonweak; | |
6750 | dir->non_got_ref |= ind->non_got_ref; | |
6751 | dir->needs_plt |= ind->needs_plt; | |
6752 | dir->pointer_equality_needed |= ind->pointer_equality_needed; | |
6753 | ||
6754 | if (ind->root.type != bfd_link_hash_indirect) | |
6755 | return; | |
6756 | ||
6757 | /* Copy over the global and procedure linkage table refcount entries. | |
6758 | These may have been already set up by a check_relocs routine. */ | |
6759 | htab = elf_hash_table (info); | |
6760 | if (ind->got.refcount > htab->init_got_refcount.refcount) | |
6761 | { | |
6762 | if (dir->got.refcount < 0) | |
6763 | dir->got.refcount = 0; | |
6764 | dir->got.refcount += ind->got.refcount; | |
6765 | ind->got.refcount = htab->init_got_refcount.refcount; | |
6766 | } | |
6767 | ||
6768 | if (ind->plt.refcount > htab->init_plt_refcount.refcount) | |
6769 | { | |
6770 | if (dir->plt.refcount < 0) | |
6771 | dir->plt.refcount = 0; | |
6772 | dir->plt.refcount += ind->plt.refcount; | |
6773 | ind->plt.refcount = htab->init_plt_refcount.refcount; | |
6774 | } | |
6775 | ||
6776 | if (ind->dynindx != -1) | |
6777 | { | |
6778 | if (dir->dynindx != -1) | |
6779 | _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); | |
6780 | dir->dynindx = ind->dynindx; | |
6781 | dir->dynstr_index = ind->dynstr_index; | |
6782 | ind->dynindx = -1; | |
6783 | ind->dynstr_index = 0; | |
6784 | } | |
6785 | } | |
6786 | ||
6787 | void | |
6788 | _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, | |
6789 | struct elf_link_hash_entry *h, | |
6790 | bfd_boolean force_local) | |
6791 | { | |
3aa14d16 L |
6792 | /* STT_GNU_IFUNC symbol must go through PLT. */ |
6793 | if (h->type != STT_GNU_IFUNC) | |
6794 | { | |
6795 | h->plt = elf_hash_table (info)->init_plt_offset; | |
6796 | h->needs_plt = 0; | |
6797 | } | |
4d269e42 AM |
6798 | if (force_local) |
6799 | { | |
6800 | h->forced_local = 1; | |
6801 | if (h->dynindx != -1) | |
6802 | { | |
6803 | h->dynindx = -1; | |
6804 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
6805 | h->dynstr_index); | |
6806 | } | |
6807 | } | |
6808 | } | |
6809 | ||
7bf52ea2 AM |
6810 | /* Initialize an ELF linker hash table. *TABLE has been zeroed by our |
6811 | caller. */ | |
4d269e42 AM |
6812 | |
6813 | bfd_boolean | |
6814 | _bfd_elf_link_hash_table_init | |
6815 | (struct elf_link_hash_table *table, | |
6816 | bfd *abfd, | |
6817 | struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, | |
6818 | struct bfd_hash_table *, | |
6819 | const char *), | |
4dfe6ac6 NC |
6820 | unsigned int entsize, |
6821 | enum elf_target_id target_id) | |
4d269e42 AM |
6822 | { |
6823 | bfd_boolean ret; | |
6824 | int can_refcount = get_elf_backend_data (abfd)->can_refcount; | |
6825 | ||
4d269e42 AM |
6826 | table->init_got_refcount.refcount = can_refcount - 1; |
6827 | table->init_plt_refcount.refcount = can_refcount - 1; | |
6828 | table->init_got_offset.offset = -(bfd_vma) 1; | |
6829 | table->init_plt_offset.offset = -(bfd_vma) 1; | |
6830 | /* The first dynamic symbol is a dummy. */ | |
6831 | table->dynsymcount = 1; | |
6832 | ||
6833 | ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); | |
4dfe6ac6 | 6834 | |
4d269e42 | 6835 | table->root.type = bfd_link_elf_hash_table; |
4dfe6ac6 | 6836 | table->hash_table_id = target_id; |
4d269e42 AM |
6837 | |
6838 | return ret; | |
6839 | } | |
6840 | ||
6841 | /* Create an ELF linker hash table. */ | |
6842 | ||
6843 | struct bfd_link_hash_table * | |
6844 | _bfd_elf_link_hash_table_create (bfd *abfd) | |
6845 | { | |
6846 | struct elf_link_hash_table *ret; | |
6847 | bfd_size_type amt = sizeof (struct elf_link_hash_table); | |
6848 | ||
7bf52ea2 | 6849 | ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); |
4d269e42 AM |
6850 | if (ret == NULL) |
6851 | return NULL; | |
6852 | ||
6853 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, | |
4dfe6ac6 NC |
6854 | sizeof (struct elf_link_hash_entry), |
6855 | GENERIC_ELF_DATA)) | |
4d269e42 AM |
6856 | { |
6857 | free (ret); | |
6858 | return NULL; | |
6859 | } | |
d495ab0d | 6860 | ret->root.hash_table_free = _bfd_elf_link_hash_table_free; |
4d269e42 AM |
6861 | |
6862 | return &ret->root; | |
6863 | } | |
6864 | ||
9f7c3e5e AM |
6865 | /* Destroy an ELF linker hash table. */ |
6866 | ||
6867 | void | |
d495ab0d | 6868 | _bfd_elf_link_hash_table_free (bfd *obfd) |
9f7c3e5e | 6869 | { |
d495ab0d AM |
6870 | struct elf_link_hash_table *htab; |
6871 | ||
6872 | htab = (struct elf_link_hash_table *) obfd->link.hash; | |
9f7c3e5e AM |
6873 | if (htab->dynstr != NULL) |
6874 | _bfd_elf_strtab_free (htab->dynstr); | |
6875 | _bfd_merge_sections_free (htab->merge_info); | |
d495ab0d | 6876 | _bfd_generic_link_hash_table_free (obfd); |
9f7c3e5e AM |
6877 | } |
6878 | ||
4d269e42 AM |
6879 | /* This is a hook for the ELF emulation code in the generic linker to |
6880 | tell the backend linker what file name to use for the DT_NEEDED | |
6881 | entry for a dynamic object. */ | |
6882 | ||
6883 | void | |
6884 | bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) | |
6885 | { | |
6886 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6887 | && bfd_get_format (abfd) == bfd_object) | |
6888 | elf_dt_name (abfd) = name; | |
6889 | } | |
6890 | ||
6891 | int | |
6892 | bfd_elf_get_dyn_lib_class (bfd *abfd) | |
6893 | { | |
6894 | int lib_class; | |
6895 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6896 | && bfd_get_format (abfd) == bfd_object) | |
6897 | lib_class = elf_dyn_lib_class (abfd); | |
6898 | else | |
6899 | lib_class = 0; | |
6900 | return lib_class; | |
6901 | } | |
6902 | ||
6903 | void | |
6904 | bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) | |
6905 | { | |
6906 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6907 | && bfd_get_format (abfd) == bfd_object) | |
6908 | elf_dyn_lib_class (abfd) = lib_class; | |
6909 | } | |
6910 | ||
6911 | /* Get the list of DT_NEEDED entries for a link. This is a hook for | |
6912 | the linker ELF emulation code. */ | |
6913 | ||
6914 | struct bfd_link_needed_list * | |
6915 | bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, | |
6916 | struct bfd_link_info *info) | |
6917 | { | |
6918 | if (! is_elf_hash_table (info->hash)) | |
6919 | return NULL; | |
6920 | return elf_hash_table (info)->needed; | |
6921 | } | |
6922 | ||
6923 | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a | |
6924 | hook for the linker ELF emulation code. */ | |
6925 | ||
6926 | struct bfd_link_needed_list * | |
6927 | bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, | |
6928 | struct bfd_link_info *info) | |
6929 | { | |
6930 | if (! is_elf_hash_table (info->hash)) | |
6931 | return NULL; | |
6932 | return elf_hash_table (info)->runpath; | |
6933 | } | |
6934 | ||
6935 | /* Get the name actually used for a dynamic object for a link. This | |
6936 | is the SONAME entry if there is one. Otherwise, it is the string | |
6937 | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ | |
6938 | ||
6939 | const char * | |
6940 | bfd_elf_get_dt_soname (bfd *abfd) | |
6941 | { | |
6942 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
6943 | && bfd_get_format (abfd) == bfd_object) | |
6944 | return elf_dt_name (abfd); | |
6945 | return NULL; | |
6946 | } | |
6947 | ||
6948 | /* Get the list of DT_NEEDED entries from a BFD. This is a hook for | |
6949 | the ELF linker emulation code. */ | |
6950 | ||
6951 | bfd_boolean | |
6952 | bfd_elf_get_bfd_needed_list (bfd *abfd, | |
6953 | struct bfd_link_needed_list **pneeded) | |
6954 | { | |
6955 | asection *s; | |
6956 | bfd_byte *dynbuf = NULL; | |
cb33740c | 6957 | unsigned int elfsec; |
4d269e42 AM |
6958 | unsigned long shlink; |
6959 | bfd_byte *extdyn, *extdynend; | |
6960 | size_t extdynsize; | |
6961 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | |
6962 | ||
6963 | *pneeded = NULL; | |
6964 | ||
6965 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour | |
6966 | || bfd_get_format (abfd) != bfd_object) | |
6967 | return TRUE; | |
6968 | ||
6969 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
6970 | if (s == NULL || s->size == 0) | |
6971 | return TRUE; | |
6972 | ||
6973 | if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) | |
6974 | goto error_return; | |
6975 | ||
6976 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
cb33740c | 6977 | if (elfsec == SHN_BAD) |
4d269e42 AM |
6978 | goto error_return; |
6979 | ||
6980 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
c152c796 | 6981 | |
4d269e42 AM |
6982 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
6983 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | |
6984 | ||
6985 | extdyn = dynbuf; | |
6986 | extdynend = extdyn + s->size; | |
6987 | for (; extdyn < extdynend; extdyn += extdynsize) | |
6988 | { | |
6989 | Elf_Internal_Dyn dyn; | |
6990 | ||
6991 | (*swap_dyn_in) (abfd, extdyn, &dyn); | |
6992 | ||
6993 | if (dyn.d_tag == DT_NULL) | |
6994 | break; | |
6995 | ||
6996 | if (dyn.d_tag == DT_NEEDED) | |
6997 | { | |
6998 | const char *string; | |
6999 | struct bfd_link_needed_list *l; | |
7000 | unsigned int tagv = dyn.d_un.d_val; | |
7001 | bfd_size_type amt; | |
7002 | ||
7003 | string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
7004 | if (string == NULL) | |
7005 | goto error_return; | |
7006 | ||
7007 | amt = sizeof *l; | |
a50b1753 | 7008 | l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
4d269e42 AM |
7009 | if (l == NULL) |
7010 | goto error_return; | |
7011 | ||
7012 | l->by = abfd; | |
7013 | l->name = string; | |
7014 | l->next = *pneeded; | |
7015 | *pneeded = l; | |
7016 | } | |
7017 | } | |
7018 | ||
7019 | free (dynbuf); | |
7020 | ||
7021 | return TRUE; | |
7022 | ||
7023 | error_return: | |
7024 | if (dynbuf != NULL) | |
7025 | free (dynbuf); | |
7026 | return FALSE; | |
7027 | } | |
7028 | ||
7029 | struct elf_symbuf_symbol | |
7030 | { | |
7031 | unsigned long st_name; /* Symbol name, index in string tbl */ | |
7032 | unsigned char st_info; /* Type and binding attributes */ | |
7033 | unsigned char st_other; /* Visibilty, and target specific */ | |
7034 | }; | |
7035 | ||
7036 | struct elf_symbuf_head | |
7037 | { | |
7038 | struct elf_symbuf_symbol *ssym; | |
7039 | bfd_size_type count; | |
7040 | unsigned int st_shndx; | |
7041 | }; | |
7042 | ||
7043 | struct elf_symbol | |
7044 | { | |
7045 | union | |
7046 | { | |
7047 | Elf_Internal_Sym *isym; | |
7048 | struct elf_symbuf_symbol *ssym; | |
7049 | } u; | |
7050 | const char *name; | |
7051 | }; | |
7052 | ||
7053 | /* Sort references to symbols by ascending section number. */ | |
7054 | ||
7055 | static int | |
7056 | elf_sort_elf_symbol (const void *arg1, const void *arg2) | |
7057 | { | |
7058 | const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; | |
7059 | const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; | |
7060 | ||
7061 | return s1->st_shndx - s2->st_shndx; | |
7062 | } | |
7063 | ||
7064 | static int | |
7065 | elf_sym_name_compare (const void *arg1, const void *arg2) | |
7066 | { | |
7067 | const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; | |
7068 | const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; | |
7069 | return strcmp (s1->name, s2->name); | |
7070 | } | |
7071 | ||
7072 | static struct elf_symbuf_head * | |
7073 | elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf) | |
7074 | { | |
14b1c01e | 7075 | Elf_Internal_Sym **ind, **indbufend, **indbuf; |
4d269e42 AM |
7076 | struct elf_symbuf_symbol *ssym; |
7077 | struct elf_symbuf_head *ssymbuf, *ssymhead; | |
3ae181ee | 7078 | bfd_size_type i, shndx_count, total_size; |
4d269e42 | 7079 | |
a50b1753 | 7080 | indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf)); |
4d269e42 AM |
7081 | if (indbuf == NULL) |
7082 | return NULL; | |
7083 | ||
7084 | for (ind = indbuf, i = 0; i < symcount; i++) | |
7085 | if (isymbuf[i].st_shndx != SHN_UNDEF) | |
7086 | *ind++ = &isymbuf[i]; | |
7087 | indbufend = ind; | |
7088 | ||
7089 | qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), | |
7090 | elf_sort_elf_symbol); | |
7091 | ||
7092 | shndx_count = 0; | |
7093 | if (indbufend > indbuf) | |
7094 | for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) | |
7095 | if (ind[0]->st_shndx != ind[1]->st_shndx) | |
7096 | shndx_count++; | |
7097 | ||
3ae181ee L |
7098 | total_size = ((shndx_count + 1) * sizeof (*ssymbuf) |
7099 | + (indbufend - indbuf) * sizeof (*ssym)); | |
a50b1753 | 7100 | ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); |
4d269e42 AM |
7101 | if (ssymbuf == NULL) |
7102 | { | |
7103 | free (indbuf); | |
7104 | return NULL; | |
7105 | } | |
7106 | ||
3ae181ee | 7107 | ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); |
4d269e42 AM |
7108 | ssymbuf->ssym = NULL; |
7109 | ssymbuf->count = shndx_count; | |
7110 | ssymbuf->st_shndx = 0; | |
7111 | for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) | |
7112 | { | |
7113 | if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) | |
7114 | { | |
7115 | ssymhead++; | |
7116 | ssymhead->ssym = ssym; | |
7117 | ssymhead->count = 0; | |
7118 | ssymhead->st_shndx = (*ind)->st_shndx; | |
7119 | } | |
7120 | ssym->st_name = (*ind)->st_name; | |
7121 | ssym->st_info = (*ind)->st_info; | |
7122 | ssym->st_other = (*ind)->st_other; | |
7123 | ssymhead->count++; | |
7124 | } | |
3ae181ee L |
7125 | BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count |
7126 | && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) | |
7127 | == total_size)); | |
4d269e42 AM |
7128 | |
7129 | free (indbuf); | |
7130 | return ssymbuf; | |
7131 | } | |
7132 | ||
7133 | /* Check if 2 sections define the same set of local and global | |
7134 | symbols. */ | |
7135 | ||
8f317e31 | 7136 | static bfd_boolean |
4d269e42 AM |
7137 | bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, |
7138 | struct bfd_link_info *info) | |
7139 | { | |
7140 | bfd *bfd1, *bfd2; | |
7141 | const struct elf_backend_data *bed1, *bed2; | |
7142 | Elf_Internal_Shdr *hdr1, *hdr2; | |
7143 | bfd_size_type symcount1, symcount2; | |
7144 | Elf_Internal_Sym *isymbuf1, *isymbuf2; | |
7145 | struct elf_symbuf_head *ssymbuf1, *ssymbuf2; | |
7146 | Elf_Internal_Sym *isym, *isymend; | |
7147 | struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; | |
7148 | bfd_size_type count1, count2, i; | |
cb33740c | 7149 | unsigned int shndx1, shndx2; |
4d269e42 AM |
7150 | bfd_boolean result; |
7151 | ||
7152 | bfd1 = sec1->owner; | |
7153 | bfd2 = sec2->owner; | |
7154 | ||
4d269e42 AM |
7155 | /* Both sections have to be in ELF. */ |
7156 | if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour | |
7157 | || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) | |
7158 | return FALSE; | |
7159 | ||
7160 | if (elf_section_type (sec1) != elf_section_type (sec2)) | |
7161 | return FALSE; | |
7162 | ||
4d269e42 AM |
7163 | shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); |
7164 | shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); | |
cb33740c | 7165 | if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) |
4d269e42 AM |
7166 | return FALSE; |
7167 | ||
7168 | bed1 = get_elf_backend_data (bfd1); | |
7169 | bed2 = get_elf_backend_data (bfd2); | |
7170 | hdr1 = &elf_tdata (bfd1)->symtab_hdr; | |
7171 | symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; | |
7172 | hdr2 = &elf_tdata (bfd2)->symtab_hdr; | |
7173 | symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; | |
7174 | ||
7175 | if (symcount1 == 0 || symcount2 == 0) | |
7176 | return FALSE; | |
7177 | ||
7178 | result = FALSE; | |
7179 | isymbuf1 = NULL; | |
7180 | isymbuf2 = NULL; | |
a50b1753 NC |
7181 | ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; |
7182 | ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; | |
4d269e42 AM |
7183 | |
7184 | if (ssymbuf1 == NULL) | |
7185 | { | |
7186 | isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, | |
7187 | NULL, NULL, NULL); | |
7188 | if (isymbuf1 == NULL) | |
7189 | goto done; | |
7190 | ||
7191 | if (!info->reduce_memory_overheads) | |
7192 | elf_tdata (bfd1)->symbuf = ssymbuf1 | |
7193 | = elf_create_symbuf (symcount1, isymbuf1); | |
7194 | } | |
7195 | ||
7196 | if (ssymbuf1 == NULL || ssymbuf2 == NULL) | |
7197 | { | |
7198 | isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, | |
7199 | NULL, NULL, NULL); | |
7200 | if (isymbuf2 == NULL) | |
7201 | goto done; | |
7202 | ||
7203 | if (ssymbuf1 != NULL && !info->reduce_memory_overheads) | |
7204 | elf_tdata (bfd2)->symbuf = ssymbuf2 | |
7205 | = elf_create_symbuf (symcount2, isymbuf2); | |
7206 | } | |
7207 | ||
7208 | if (ssymbuf1 != NULL && ssymbuf2 != NULL) | |
7209 | { | |
7210 | /* Optimized faster version. */ | |
7211 | bfd_size_type lo, hi, mid; | |
7212 | struct elf_symbol *symp; | |
7213 | struct elf_symbuf_symbol *ssym, *ssymend; | |
7214 | ||
7215 | lo = 0; | |
7216 | hi = ssymbuf1->count; | |
7217 | ssymbuf1++; | |
7218 | count1 = 0; | |
7219 | while (lo < hi) | |
7220 | { | |
7221 | mid = (lo + hi) / 2; | |
cb33740c | 7222 | if (shndx1 < ssymbuf1[mid].st_shndx) |
4d269e42 | 7223 | hi = mid; |
cb33740c | 7224 | else if (shndx1 > ssymbuf1[mid].st_shndx) |
4d269e42 AM |
7225 | lo = mid + 1; |
7226 | else | |
7227 | { | |
7228 | count1 = ssymbuf1[mid].count; | |
7229 | ssymbuf1 += mid; | |
7230 | break; | |
7231 | } | |
7232 | } | |
7233 | ||
7234 | lo = 0; | |
7235 | hi = ssymbuf2->count; | |
7236 | ssymbuf2++; | |
7237 | count2 = 0; | |
7238 | while (lo < hi) | |
7239 | { | |
7240 | mid = (lo + hi) / 2; | |
cb33740c | 7241 | if (shndx2 < ssymbuf2[mid].st_shndx) |
4d269e42 | 7242 | hi = mid; |
cb33740c | 7243 | else if (shndx2 > ssymbuf2[mid].st_shndx) |
4d269e42 AM |
7244 | lo = mid + 1; |
7245 | else | |
7246 | { | |
7247 | count2 = ssymbuf2[mid].count; | |
7248 | ssymbuf2 += mid; | |
7249 | break; | |
7250 | } | |
7251 | } | |
7252 | ||
7253 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
7254 | goto done; | |
7255 | ||
a50b1753 NC |
7256 | symtable1 = (struct elf_symbol *) |
7257 | bfd_malloc (count1 * sizeof (struct elf_symbol)); | |
7258 | symtable2 = (struct elf_symbol *) | |
7259 | bfd_malloc (count2 * sizeof (struct elf_symbol)); | |
4d269e42 AM |
7260 | if (symtable1 == NULL || symtable2 == NULL) |
7261 | goto done; | |
7262 | ||
7263 | symp = symtable1; | |
7264 | for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; | |
7265 | ssym < ssymend; ssym++, symp++) | |
7266 | { | |
7267 | symp->u.ssym = ssym; | |
7268 | symp->name = bfd_elf_string_from_elf_section (bfd1, | |
7269 | hdr1->sh_link, | |
7270 | ssym->st_name); | |
7271 | } | |
7272 | ||
7273 | symp = symtable2; | |
7274 | for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; | |
7275 | ssym < ssymend; ssym++, symp++) | |
7276 | { | |
7277 | symp->u.ssym = ssym; | |
7278 | symp->name = bfd_elf_string_from_elf_section (bfd2, | |
7279 | hdr2->sh_link, | |
7280 | ssym->st_name); | |
7281 | } | |
7282 | ||
7283 | /* Sort symbol by name. */ | |
7284 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
7285 | elf_sym_name_compare); | |
7286 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
7287 | elf_sym_name_compare); | |
7288 | ||
7289 | for (i = 0; i < count1; i++) | |
7290 | /* Two symbols must have the same binding, type and name. */ | |
7291 | if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info | |
7292 | || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other | |
7293 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
7294 | goto done; | |
7295 | ||
7296 | result = TRUE; | |
7297 | goto done; | |
7298 | } | |
7299 | ||
a50b1753 NC |
7300 | symtable1 = (struct elf_symbol *) |
7301 | bfd_malloc (symcount1 * sizeof (struct elf_symbol)); | |
7302 | symtable2 = (struct elf_symbol *) | |
7303 | bfd_malloc (symcount2 * sizeof (struct elf_symbol)); | |
4d269e42 AM |
7304 | if (symtable1 == NULL || symtable2 == NULL) |
7305 | goto done; | |
7306 | ||
7307 | /* Count definitions in the section. */ | |
7308 | count1 = 0; | |
7309 | for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) | |
cb33740c | 7310 | if (isym->st_shndx == shndx1) |
4d269e42 AM |
7311 | symtable1[count1++].u.isym = isym; |
7312 | ||
7313 | count2 = 0; | |
7314 | for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) | |
cb33740c | 7315 | if (isym->st_shndx == shndx2) |
4d269e42 AM |
7316 | symtable2[count2++].u.isym = isym; |
7317 | ||
7318 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
7319 | goto done; | |
7320 | ||
7321 | for (i = 0; i < count1; i++) | |
7322 | symtable1[i].name | |
7323 | = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, | |
7324 | symtable1[i].u.isym->st_name); | |
7325 | ||
7326 | for (i = 0; i < count2; i++) | |
7327 | symtable2[i].name | |
7328 | = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, | |
7329 | symtable2[i].u.isym->st_name); | |
7330 | ||
7331 | /* Sort symbol by name. */ | |
7332 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
7333 | elf_sym_name_compare); | |
7334 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
7335 | elf_sym_name_compare); | |
7336 | ||
7337 | for (i = 0; i < count1; i++) | |
7338 | /* Two symbols must have the same binding, type and name. */ | |
7339 | if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info | |
7340 | || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other | |
7341 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
7342 | goto done; | |
7343 | ||
7344 | result = TRUE; | |
7345 | ||
7346 | done: | |
7347 | if (symtable1) | |
7348 | free (symtable1); | |
7349 | if (symtable2) | |
7350 | free (symtable2); | |
7351 | if (isymbuf1) | |
7352 | free (isymbuf1); | |
7353 | if (isymbuf2) | |
7354 | free (isymbuf2); | |
7355 | ||
7356 | return result; | |
7357 | } | |
7358 | ||
7359 | /* Return TRUE if 2 section types are compatible. */ | |
7360 | ||
7361 | bfd_boolean | |
7362 | _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, | |
7363 | bfd *bbfd, const asection *bsec) | |
7364 | { | |
7365 | if (asec == NULL | |
7366 | || bsec == NULL | |
7367 | || abfd->xvec->flavour != bfd_target_elf_flavour | |
7368 | || bbfd->xvec->flavour != bfd_target_elf_flavour) | |
7369 | return TRUE; | |
7370 | ||
7371 | return elf_section_type (asec) == elf_section_type (bsec); | |
7372 | } | |
7373 | \f | |
c152c796 AM |
7374 | /* Final phase of ELF linker. */ |
7375 | ||
7376 | /* A structure we use to avoid passing large numbers of arguments. */ | |
7377 | ||
7378 | struct elf_final_link_info | |
7379 | { | |
7380 | /* General link information. */ | |
7381 | struct bfd_link_info *info; | |
7382 | /* Output BFD. */ | |
7383 | bfd *output_bfd; | |
7384 | /* Symbol string table. */ | |
7385 | struct bfd_strtab_hash *symstrtab; | |
7386 | /* .dynsym section. */ | |
7387 | asection *dynsym_sec; | |
7388 | /* .hash section. */ | |
7389 | asection *hash_sec; | |
7390 | /* symbol version section (.gnu.version). */ | |
7391 | asection *symver_sec; | |
7392 | /* Buffer large enough to hold contents of any section. */ | |
7393 | bfd_byte *contents; | |
7394 | /* Buffer large enough to hold external relocs of any section. */ | |
7395 | void *external_relocs; | |
7396 | /* Buffer large enough to hold internal relocs of any section. */ | |
7397 | Elf_Internal_Rela *internal_relocs; | |
7398 | /* Buffer large enough to hold external local symbols of any input | |
7399 | BFD. */ | |
7400 | bfd_byte *external_syms; | |
7401 | /* And a buffer for symbol section indices. */ | |
7402 | Elf_External_Sym_Shndx *locsym_shndx; | |
7403 | /* Buffer large enough to hold internal local symbols of any input | |
7404 | BFD. */ | |
7405 | Elf_Internal_Sym *internal_syms; | |
7406 | /* Array large enough to hold a symbol index for each local symbol | |
7407 | of any input BFD. */ | |
7408 | long *indices; | |
7409 | /* Array large enough to hold a section pointer for each local | |
7410 | symbol of any input BFD. */ | |
7411 | asection **sections; | |
7412 | /* Buffer to hold swapped out symbols. */ | |
7413 | bfd_byte *symbuf; | |
7414 | /* And one for symbol section indices. */ | |
7415 | Elf_External_Sym_Shndx *symshndxbuf; | |
7416 | /* Number of swapped out symbols in buffer. */ | |
7417 | size_t symbuf_count; | |
7418 | /* Number of symbols which fit in symbuf. */ | |
7419 | size_t symbuf_size; | |
7420 | /* And same for symshndxbuf. */ | |
7421 | size_t shndxbuf_size; | |
ffbc01cc AM |
7422 | /* Number of STT_FILE syms seen. */ |
7423 | size_t filesym_count; | |
c152c796 AM |
7424 | }; |
7425 | ||
7426 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
7427 | ||
7428 | struct elf_outext_info | |
7429 | { | |
7430 | bfd_boolean failed; | |
7431 | bfd_boolean localsyms; | |
ffbc01cc AM |
7432 | bfd_boolean need_second_pass; |
7433 | bfd_boolean second_pass; | |
34a79995 | 7434 | bfd_boolean file_sym_done; |
8b127cbc | 7435 | struct elf_final_link_info *flinfo; |
c152c796 AM |
7436 | }; |
7437 | ||
d9352518 DB |
7438 | |
7439 | /* Support for evaluating a complex relocation. | |
7440 | ||
7441 | Complex relocations are generalized, self-describing relocations. The | |
7442 | implementation of them consists of two parts: complex symbols, and the | |
a0c8462f | 7443 | relocations themselves. |
d9352518 DB |
7444 | |
7445 | The relocations are use a reserved elf-wide relocation type code (R_RELC | |
7446 | external / BFD_RELOC_RELC internal) and an encoding of relocation field | |
7447 | information (start bit, end bit, word width, etc) into the addend. This | |
7448 | information is extracted from CGEN-generated operand tables within gas. | |
7449 | ||
7450 | Complex symbols are mangled symbols (BSF_RELC external / STT_RELC | |
7451 | internal) representing prefix-notation expressions, including but not | |
7452 | limited to those sorts of expressions normally encoded as addends in the | |
7453 | addend field. The symbol mangling format is: | |
7454 | ||
7455 | <node> := <literal> | |
7456 | | <unary-operator> ':' <node> | |
7457 | | <binary-operator> ':' <node> ':' <node> | |
7458 | ; | |
7459 | ||
7460 | <literal> := 's' <digits=N> ':' <N character symbol name> | |
7461 | | 'S' <digits=N> ':' <N character section name> | |
7462 | | '#' <hexdigits> | |
7463 | ; | |
7464 | ||
7465 | <binary-operator> := as in C | |
7466 | <unary-operator> := as in C, plus "0-" for unambiguous negation. */ | |
7467 | ||
7468 | static void | |
a0c8462f AM |
7469 | set_symbol_value (bfd *bfd_with_globals, |
7470 | Elf_Internal_Sym *isymbuf, | |
7471 | size_t locsymcount, | |
7472 | size_t symidx, | |
7473 | bfd_vma val) | |
d9352518 | 7474 | { |
8977835c AM |
7475 | struct elf_link_hash_entry **sym_hashes; |
7476 | struct elf_link_hash_entry *h; | |
7477 | size_t extsymoff = locsymcount; | |
d9352518 | 7478 | |
8977835c | 7479 | if (symidx < locsymcount) |
d9352518 | 7480 | { |
8977835c AM |
7481 | Elf_Internal_Sym *sym; |
7482 | ||
7483 | sym = isymbuf + symidx; | |
7484 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | |
7485 | { | |
7486 | /* It is a local symbol: move it to the | |
7487 | "absolute" section and give it a value. */ | |
7488 | sym->st_shndx = SHN_ABS; | |
7489 | sym->st_value = val; | |
7490 | return; | |
7491 | } | |
7492 | BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); | |
7493 | extsymoff = 0; | |
d9352518 | 7494 | } |
8977835c AM |
7495 | |
7496 | /* It is a global symbol: set its link type | |
7497 | to "defined" and give it a value. */ | |
7498 | ||
7499 | sym_hashes = elf_sym_hashes (bfd_with_globals); | |
7500 | h = sym_hashes [symidx - extsymoff]; | |
7501 | while (h->root.type == bfd_link_hash_indirect | |
7502 | || h->root.type == bfd_link_hash_warning) | |
7503 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
7504 | h->root.type = bfd_link_hash_defined; | |
7505 | h->root.u.def.value = val; | |
7506 | h->root.u.def.section = bfd_abs_section_ptr; | |
d9352518 DB |
7507 | } |
7508 | ||
a0c8462f AM |
7509 | static bfd_boolean |
7510 | resolve_symbol (const char *name, | |
7511 | bfd *input_bfd, | |
8b127cbc | 7512 | struct elf_final_link_info *flinfo, |
a0c8462f AM |
7513 | bfd_vma *result, |
7514 | Elf_Internal_Sym *isymbuf, | |
7515 | size_t locsymcount) | |
d9352518 | 7516 | { |
a0c8462f AM |
7517 | Elf_Internal_Sym *sym; |
7518 | struct bfd_link_hash_entry *global_entry; | |
7519 | const char *candidate = NULL; | |
7520 | Elf_Internal_Shdr *symtab_hdr; | |
7521 | size_t i; | |
7522 | ||
d9352518 DB |
7523 | symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
7524 | ||
7525 | for (i = 0; i < locsymcount; ++ i) | |
7526 | { | |
8977835c | 7527 | sym = isymbuf + i; |
d9352518 DB |
7528 | |
7529 | if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) | |
7530 | continue; | |
7531 | ||
7532 | candidate = bfd_elf_string_from_elf_section (input_bfd, | |
7533 | symtab_hdr->sh_link, | |
7534 | sym->st_name); | |
7535 | #ifdef DEBUG | |
0f02bbd9 AM |
7536 | printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", |
7537 | name, candidate, (unsigned long) sym->st_value); | |
d9352518 DB |
7538 | #endif |
7539 | if (candidate && strcmp (candidate, name) == 0) | |
7540 | { | |
8b127cbc | 7541 | asection *sec = flinfo->sections [i]; |
d9352518 | 7542 | |
0f02bbd9 AM |
7543 | *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); |
7544 | *result += sec->output_offset + sec->output_section->vma; | |
d9352518 | 7545 | #ifdef DEBUG |
0f02bbd9 AM |
7546 | printf ("Found symbol with value %8.8lx\n", |
7547 | (unsigned long) *result); | |
d9352518 DB |
7548 | #endif |
7549 | return TRUE; | |
7550 | } | |
7551 | } | |
7552 | ||
7553 | /* Hmm, haven't found it yet. perhaps it is a global. */ | |
8b127cbc | 7554 | global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, |
a0c8462f | 7555 | FALSE, FALSE, TRUE); |
d9352518 DB |
7556 | if (!global_entry) |
7557 | return FALSE; | |
a0c8462f | 7558 | |
d9352518 DB |
7559 | if (global_entry->type == bfd_link_hash_defined |
7560 | || global_entry->type == bfd_link_hash_defweak) | |
7561 | { | |
a0c8462f AM |
7562 | *result = (global_entry->u.def.value |
7563 | + global_entry->u.def.section->output_section->vma | |
7564 | + global_entry->u.def.section->output_offset); | |
d9352518 | 7565 | #ifdef DEBUG |
0f02bbd9 AM |
7566 | printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", |
7567 | global_entry->root.string, (unsigned long) *result); | |
d9352518 DB |
7568 | #endif |
7569 | return TRUE; | |
a0c8462f | 7570 | } |
d9352518 | 7571 | |
d9352518 DB |
7572 | return FALSE; |
7573 | } | |
7574 | ||
7575 | static bfd_boolean | |
a0c8462f AM |
7576 | resolve_section (const char *name, |
7577 | asection *sections, | |
7578 | bfd_vma *result) | |
d9352518 | 7579 | { |
a0c8462f AM |
7580 | asection *curr; |
7581 | unsigned int len; | |
d9352518 | 7582 | |
a0c8462f | 7583 | for (curr = sections; curr; curr = curr->next) |
d9352518 DB |
7584 | if (strcmp (curr->name, name) == 0) |
7585 | { | |
7586 | *result = curr->vma; | |
7587 | return TRUE; | |
7588 | } | |
7589 | ||
7590 | /* Hmm. still haven't found it. try pseudo-section names. */ | |
a0c8462f | 7591 | for (curr = sections; curr; curr = curr->next) |
d9352518 DB |
7592 | { |
7593 | len = strlen (curr->name); | |
a0c8462f | 7594 | if (len > strlen (name)) |
d9352518 DB |
7595 | continue; |
7596 | ||
7597 | if (strncmp (curr->name, name, len) == 0) | |
7598 | { | |
7599 | if (strncmp (".end", name + len, 4) == 0) | |
7600 | { | |
7601 | *result = curr->vma + curr->size; | |
7602 | return TRUE; | |
7603 | } | |
7604 | ||
7605 | /* Insert more pseudo-section names here, if you like. */ | |
7606 | } | |
7607 | } | |
a0c8462f | 7608 | |
d9352518 DB |
7609 | return FALSE; |
7610 | } | |
7611 | ||
7612 | static void | |
a0c8462f | 7613 | undefined_reference (const char *reftype, const char *name) |
d9352518 | 7614 | { |
a0c8462f AM |
7615 | _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), |
7616 | reftype, name); | |
d9352518 DB |
7617 | } |
7618 | ||
7619 | static bfd_boolean | |
a0c8462f AM |
7620 | eval_symbol (bfd_vma *result, |
7621 | const char **symp, | |
7622 | bfd *input_bfd, | |
8b127cbc | 7623 | struct elf_final_link_info *flinfo, |
a0c8462f AM |
7624 | bfd_vma dot, |
7625 | Elf_Internal_Sym *isymbuf, | |
7626 | size_t locsymcount, | |
7627 | int signed_p) | |
d9352518 | 7628 | { |
4b93929b NC |
7629 | size_t len; |
7630 | size_t symlen; | |
a0c8462f AM |
7631 | bfd_vma a; |
7632 | bfd_vma b; | |
4b93929b | 7633 | char symbuf[4096]; |
0f02bbd9 | 7634 | const char *sym = *symp; |
a0c8462f AM |
7635 | const char *symend; |
7636 | bfd_boolean symbol_is_section = FALSE; | |
d9352518 DB |
7637 | |
7638 | len = strlen (sym); | |
7639 | symend = sym + len; | |
7640 | ||
4b93929b | 7641 | if (len < 1 || len > sizeof (symbuf)) |
d9352518 DB |
7642 | { |
7643 | bfd_set_error (bfd_error_invalid_operation); | |
7644 | return FALSE; | |
7645 | } | |
a0c8462f | 7646 | |
d9352518 DB |
7647 | switch (* sym) |
7648 | { | |
7649 | case '.': | |
0f02bbd9 AM |
7650 | *result = dot; |
7651 | *symp = sym + 1; | |
d9352518 DB |
7652 | return TRUE; |
7653 | ||
7654 | case '#': | |
0f02bbd9 AM |
7655 | ++sym; |
7656 | *result = strtoul (sym, (char **) symp, 16); | |
d9352518 DB |
7657 | return TRUE; |
7658 | ||
7659 | case 'S': | |
7660 | symbol_is_section = TRUE; | |
a0c8462f | 7661 | case 's': |
0f02bbd9 AM |
7662 | ++sym; |
7663 | symlen = strtol (sym, (char **) symp, 10); | |
7664 | sym = *symp + 1; /* Skip the trailing ':'. */ | |
d9352518 | 7665 | |
4b93929b | 7666 | if (symend < sym || symlen + 1 > sizeof (symbuf)) |
d9352518 DB |
7667 | { |
7668 | bfd_set_error (bfd_error_invalid_operation); | |
7669 | return FALSE; | |
7670 | } | |
7671 | ||
7672 | memcpy (symbuf, sym, symlen); | |
a0c8462f | 7673 | symbuf[symlen] = '\0'; |
0f02bbd9 | 7674 | *symp = sym + symlen; |
a0c8462f AM |
7675 | |
7676 | /* Is it always possible, with complex symbols, that gas "mis-guessed" | |
d9352518 DB |
7677 | the symbol as a section, or vice-versa. so we're pretty liberal in our |
7678 | interpretation here; section means "try section first", not "must be a | |
7679 | section", and likewise with symbol. */ | |
7680 | ||
a0c8462f | 7681 | if (symbol_is_section) |
d9352518 | 7682 | { |
8b127cbc AM |
7683 | if (!resolve_section (symbuf, flinfo->output_bfd->sections, result) |
7684 | && !resolve_symbol (symbuf, input_bfd, flinfo, result, | |
8977835c | 7685 | isymbuf, locsymcount)) |
d9352518 DB |
7686 | { |
7687 | undefined_reference ("section", symbuf); | |
7688 | return FALSE; | |
7689 | } | |
a0c8462f AM |
7690 | } |
7691 | else | |
d9352518 | 7692 | { |
8b127cbc | 7693 | if (!resolve_symbol (symbuf, input_bfd, flinfo, result, |
8977835c | 7694 | isymbuf, locsymcount) |
8b127cbc | 7695 | && !resolve_section (symbuf, flinfo->output_bfd->sections, |
8977835c | 7696 | result)) |
d9352518 DB |
7697 | { |
7698 | undefined_reference ("symbol", symbuf); | |
7699 | return FALSE; | |
7700 | } | |
7701 | } | |
7702 | ||
7703 | return TRUE; | |
a0c8462f | 7704 | |
d9352518 DB |
7705 | /* All that remains are operators. */ |
7706 | ||
7707 | #define UNARY_OP(op) \ | |
7708 | if (strncmp (sym, #op, strlen (#op)) == 0) \ | |
7709 | { \ | |
7710 | sym += strlen (#op); \ | |
a0c8462f AM |
7711 | if (*sym == ':') \ |
7712 | ++sym; \ | |
0f02bbd9 | 7713 | *symp = sym; \ |
8b127cbc | 7714 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
0f02bbd9 | 7715 | isymbuf, locsymcount, signed_p)) \ |
a0c8462f AM |
7716 | return FALSE; \ |
7717 | if (signed_p) \ | |
0f02bbd9 | 7718 | *result = op ((bfd_signed_vma) a); \ |
a0c8462f AM |
7719 | else \ |
7720 | *result = op a; \ | |
d9352518 DB |
7721 | return TRUE; \ |
7722 | } | |
7723 | ||
7724 | #define BINARY_OP(op) \ | |
7725 | if (strncmp (sym, #op, strlen (#op)) == 0) \ | |
7726 | { \ | |
7727 | sym += strlen (#op); \ | |
a0c8462f AM |
7728 | if (*sym == ':') \ |
7729 | ++sym; \ | |
0f02bbd9 | 7730 | *symp = sym; \ |
8b127cbc | 7731 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
0f02bbd9 | 7732 | isymbuf, locsymcount, signed_p)) \ |
a0c8462f | 7733 | return FALSE; \ |
0f02bbd9 | 7734 | ++*symp; \ |
8b127cbc | 7735 | if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ |
0f02bbd9 | 7736 | isymbuf, locsymcount, signed_p)) \ |
a0c8462f AM |
7737 | return FALSE; \ |
7738 | if (signed_p) \ | |
0f02bbd9 | 7739 | *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ |
a0c8462f AM |
7740 | else \ |
7741 | *result = a op b; \ | |
d9352518 DB |
7742 | return TRUE; \ |
7743 | } | |
7744 | ||
7745 | default: | |
7746 | UNARY_OP (0-); | |
7747 | BINARY_OP (<<); | |
7748 | BINARY_OP (>>); | |
7749 | BINARY_OP (==); | |
7750 | BINARY_OP (!=); | |
7751 | BINARY_OP (<=); | |
7752 | BINARY_OP (>=); | |
7753 | BINARY_OP (&&); | |
7754 | BINARY_OP (||); | |
7755 | UNARY_OP (~); | |
7756 | UNARY_OP (!); | |
7757 | BINARY_OP (*); | |
7758 | BINARY_OP (/); | |
7759 | BINARY_OP (%); | |
7760 | BINARY_OP (^); | |
7761 | BINARY_OP (|); | |
7762 | BINARY_OP (&); | |
7763 | BINARY_OP (+); | |
7764 | BINARY_OP (-); | |
7765 | BINARY_OP (<); | |
7766 | BINARY_OP (>); | |
7767 | #undef UNARY_OP | |
7768 | #undef BINARY_OP | |
7769 | _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); | |
7770 | bfd_set_error (bfd_error_invalid_operation); | |
7771 | return FALSE; | |
7772 | } | |
7773 | } | |
7774 | ||
d9352518 | 7775 | static void |
a0c8462f AM |
7776 | put_value (bfd_vma size, |
7777 | unsigned long chunksz, | |
7778 | bfd *input_bfd, | |
7779 | bfd_vma x, | |
7780 | bfd_byte *location) | |
d9352518 DB |
7781 | { |
7782 | location += (size - chunksz); | |
7783 | ||
a0c8462f | 7784 | for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8)) |
d9352518 DB |
7785 | { |
7786 | switch (chunksz) | |
7787 | { | |
7788 | default: | |
7789 | case 0: | |
7790 | abort (); | |
7791 | case 1: | |
7792 | bfd_put_8 (input_bfd, x, location); | |
7793 | break; | |
7794 | case 2: | |
7795 | bfd_put_16 (input_bfd, x, location); | |
7796 | break; | |
7797 | case 4: | |
7798 | bfd_put_32 (input_bfd, x, location); | |
7799 | break; | |
7800 | case 8: | |
7801 | #ifdef BFD64 | |
7802 | bfd_put_64 (input_bfd, x, location); | |
7803 | #else | |
7804 | abort (); | |
7805 | #endif | |
7806 | break; | |
7807 | } | |
7808 | } | |
7809 | } | |
7810 | ||
a0c8462f AM |
7811 | static bfd_vma |
7812 | get_value (bfd_vma size, | |
7813 | unsigned long chunksz, | |
7814 | bfd *input_bfd, | |
7815 | bfd_byte *location) | |
d9352518 | 7816 | { |
9b239e0e | 7817 | int shift; |
d9352518 DB |
7818 | bfd_vma x = 0; |
7819 | ||
9b239e0e NC |
7820 | /* Sanity checks. */ |
7821 | BFD_ASSERT (chunksz <= sizeof (x) | |
7822 | && size >= chunksz | |
7823 | && chunksz != 0 | |
7824 | && (size % chunksz) == 0 | |
7825 | && input_bfd != NULL | |
7826 | && location != NULL); | |
7827 | ||
7828 | if (chunksz == sizeof (x)) | |
7829 | { | |
7830 | BFD_ASSERT (size == chunksz); | |
7831 | ||
7832 | /* Make sure that we do not perform an undefined shift operation. | |
7833 | We know that size == chunksz so there will only be one iteration | |
7834 | of the loop below. */ | |
7835 | shift = 0; | |
7836 | } | |
7837 | else | |
7838 | shift = 8 * chunksz; | |
7839 | ||
a0c8462f | 7840 | for (; size; size -= chunksz, location += chunksz) |
d9352518 DB |
7841 | { |
7842 | switch (chunksz) | |
7843 | { | |
d9352518 | 7844 | case 1: |
9b239e0e | 7845 | x = (x << shift) | bfd_get_8 (input_bfd, location); |
d9352518 DB |
7846 | break; |
7847 | case 2: | |
9b239e0e | 7848 | x = (x << shift) | bfd_get_16 (input_bfd, location); |
d9352518 DB |
7849 | break; |
7850 | case 4: | |
9b239e0e | 7851 | x = (x << shift) | bfd_get_32 (input_bfd, location); |
d9352518 | 7852 | break; |
d9352518 | 7853 | #ifdef BFD64 |
9b239e0e NC |
7854 | case 8: |
7855 | x = (x << shift) | bfd_get_64 (input_bfd, location); | |
d9352518 | 7856 | break; |
9b239e0e NC |
7857 | #endif |
7858 | default: | |
7859 | abort (); | |
d9352518 DB |
7860 | } |
7861 | } | |
7862 | return x; | |
7863 | } | |
7864 | ||
a0c8462f AM |
7865 | static void |
7866 | decode_complex_addend (unsigned long *start, /* in bits */ | |
7867 | unsigned long *oplen, /* in bits */ | |
7868 | unsigned long *len, /* in bits */ | |
7869 | unsigned long *wordsz, /* in bytes */ | |
7870 | unsigned long *chunksz, /* in bytes */ | |
7871 | unsigned long *lsb0_p, | |
7872 | unsigned long *signed_p, | |
7873 | unsigned long *trunc_p, | |
7874 | unsigned long encoded) | |
d9352518 DB |
7875 | { |
7876 | * start = encoded & 0x3F; | |
7877 | * len = (encoded >> 6) & 0x3F; | |
7878 | * oplen = (encoded >> 12) & 0x3F; | |
7879 | * wordsz = (encoded >> 18) & 0xF; | |
7880 | * chunksz = (encoded >> 22) & 0xF; | |
7881 | * lsb0_p = (encoded >> 27) & 1; | |
7882 | * signed_p = (encoded >> 28) & 1; | |
7883 | * trunc_p = (encoded >> 29) & 1; | |
7884 | } | |
7885 | ||
cdfeee4f | 7886 | bfd_reloc_status_type |
0f02bbd9 | 7887 | bfd_elf_perform_complex_relocation (bfd *input_bfd, |
cdfeee4f | 7888 | asection *input_section ATTRIBUTE_UNUSED, |
0f02bbd9 AM |
7889 | bfd_byte *contents, |
7890 | Elf_Internal_Rela *rel, | |
7891 | bfd_vma relocation) | |
d9352518 | 7892 | { |
0f02bbd9 AM |
7893 | bfd_vma shift, x, mask; |
7894 | unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; | |
cdfeee4f | 7895 | bfd_reloc_status_type r; |
d9352518 DB |
7896 | |
7897 | /* Perform this reloc, since it is complex. | |
7898 | (this is not to say that it necessarily refers to a complex | |
7899 | symbol; merely that it is a self-describing CGEN based reloc. | |
7900 | i.e. the addend has the complete reloc information (bit start, end, | |
a0c8462f | 7901 | word size, etc) encoded within it.). */ |
d9352518 | 7902 | |
a0c8462f AM |
7903 | decode_complex_addend (&start, &oplen, &len, &wordsz, |
7904 | &chunksz, &lsb0_p, &signed_p, | |
7905 | &trunc_p, rel->r_addend); | |
d9352518 DB |
7906 | |
7907 | mask = (((1L << (len - 1)) - 1) << 1) | 1; | |
7908 | ||
7909 | if (lsb0_p) | |
7910 | shift = (start + 1) - len; | |
7911 | else | |
7912 | shift = (8 * wordsz) - (start + len); | |
7913 | ||
5dabe785 | 7914 | /* FIXME: octets_per_byte. */ |
a0c8462f | 7915 | x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset); |
d9352518 DB |
7916 | |
7917 | #ifdef DEBUG | |
7918 | printf ("Doing complex reloc: " | |
7919 | "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " | |
7920 | "chunksz %ld, start %ld, len %ld, oplen %ld\n" | |
7921 | " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", | |
7922 | lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, | |
9ccb8af9 AM |
7923 | oplen, (unsigned long) x, (unsigned long) mask, |
7924 | (unsigned long) relocation); | |
d9352518 DB |
7925 | #endif |
7926 | ||
cdfeee4f | 7927 | r = bfd_reloc_ok; |
d9352518 | 7928 | if (! trunc_p) |
cdfeee4f AM |
7929 | /* Now do an overflow check. */ |
7930 | r = bfd_check_overflow ((signed_p | |
7931 | ? complain_overflow_signed | |
7932 | : complain_overflow_unsigned), | |
7933 | len, 0, (8 * wordsz), | |
7934 | relocation); | |
a0c8462f | 7935 | |
d9352518 DB |
7936 | /* Do the deed. */ |
7937 | x = (x & ~(mask << shift)) | ((relocation & mask) << shift); | |
7938 | ||
7939 | #ifdef DEBUG | |
7940 | printf (" relocation: %8.8lx\n" | |
7941 | " shifted mask: %8.8lx\n" | |
7942 | " shifted/masked reloc: %8.8lx\n" | |
7943 | " result: %8.8lx\n", | |
9ccb8af9 AM |
7944 | (unsigned long) relocation, (unsigned long) (mask << shift), |
7945 | (unsigned long) ((relocation & mask) << shift), (unsigned long) x); | |
d9352518 | 7946 | #endif |
5dabe785 | 7947 | /* FIXME: octets_per_byte. */ |
d9352518 | 7948 | put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset); |
cdfeee4f | 7949 | return r; |
d9352518 DB |
7950 | } |
7951 | ||
c152c796 AM |
7952 | /* When performing a relocatable link, the input relocations are |
7953 | preserved. But, if they reference global symbols, the indices | |
d4730f92 BS |
7954 | referenced must be updated. Update all the relocations found in |
7955 | RELDATA. */ | |
c152c796 AM |
7956 | |
7957 | static void | |
7958 | elf_link_adjust_relocs (bfd *abfd, | |
d4730f92 | 7959 | struct bfd_elf_section_reloc_data *reldata) |
c152c796 AM |
7960 | { |
7961 | unsigned int i; | |
7962 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
7963 | bfd_byte *erela; | |
7964 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
7965 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
7966 | bfd_vma r_type_mask; | |
7967 | int r_sym_shift; | |
d4730f92 BS |
7968 | unsigned int count = reldata->count; |
7969 | struct elf_link_hash_entry **rel_hash = reldata->hashes; | |
c152c796 | 7970 | |
d4730f92 | 7971 | if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) |
c152c796 AM |
7972 | { |
7973 | swap_in = bed->s->swap_reloc_in; | |
7974 | swap_out = bed->s->swap_reloc_out; | |
7975 | } | |
d4730f92 | 7976 | else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) |
c152c796 AM |
7977 | { |
7978 | swap_in = bed->s->swap_reloca_in; | |
7979 | swap_out = bed->s->swap_reloca_out; | |
7980 | } | |
7981 | else | |
7982 | abort (); | |
7983 | ||
7984 | if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) | |
7985 | abort (); | |
7986 | ||
7987 | if (bed->s->arch_size == 32) | |
7988 | { | |
7989 | r_type_mask = 0xff; | |
7990 | r_sym_shift = 8; | |
7991 | } | |
7992 | else | |
7993 | { | |
7994 | r_type_mask = 0xffffffff; | |
7995 | r_sym_shift = 32; | |
7996 | } | |
7997 | ||
d4730f92 BS |
7998 | erela = reldata->hdr->contents; |
7999 | for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) | |
c152c796 AM |
8000 | { |
8001 | Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; | |
8002 | unsigned int j; | |
8003 | ||
8004 | if (*rel_hash == NULL) | |
8005 | continue; | |
8006 | ||
8007 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
8008 | ||
8009 | (*swap_in) (abfd, erela, irela); | |
8010 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |
8011 | irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift | |
8012 | | (irela[j].r_info & r_type_mask)); | |
8013 | (*swap_out) (abfd, irela, erela); | |
8014 | } | |
8015 | } | |
8016 | ||
8017 | struct elf_link_sort_rela | |
8018 | { | |
8019 | union { | |
8020 | bfd_vma offset; | |
8021 | bfd_vma sym_mask; | |
8022 | } u; | |
8023 | enum elf_reloc_type_class type; | |
8024 | /* We use this as an array of size int_rels_per_ext_rel. */ | |
8025 | Elf_Internal_Rela rela[1]; | |
8026 | }; | |
8027 | ||
8028 | static int | |
8029 | elf_link_sort_cmp1 (const void *A, const void *B) | |
8030 | { | |
a50b1753 NC |
8031 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
8032 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
c152c796 AM |
8033 | int relativea, relativeb; |
8034 | ||
8035 | relativea = a->type == reloc_class_relative; | |
8036 | relativeb = b->type == reloc_class_relative; | |
8037 | ||
8038 | if (relativea < relativeb) | |
8039 | return 1; | |
8040 | if (relativea > relativeb) | |
8041 | return -1; | |
8042 | if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) | |
8043 | return -1; | |
8044 | if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) | |
8045 | return 1; | |
8046 | if (a->rela->r_offset < b->rela->r_offset) | |
8047 | return -1; | |
8048 | if (a->rela->r_offset > b->rela->r_offset) | |
8049 | return 1; | |
8050 | return 0; | |
8051 | } | |
8052 | ||
8053 | static int | |
8054 | elf_link_sort_cmp2 (const void *A, const void *B) | |
8055 | { | |
a50b1753 NC |
8056 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
8057 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
c152c796 | 8058 | |
7e612e98 | 8059 | if (a->type < b->type) |
c152c796 | 8060 | return -1; |
7e612e98 | 8061 | if (a->type > b->type) |
c152c796 | 8062 | return 1; |
7e612e98 | 8063 | if (a->u.offset < b->u.offset) |
c152c796 | 8064 | return -1; |
7e612e98 | 8065 | if (a->u.offset > b->u.offset) |
c152c796 AM |
8066 | return 1; |
8067 | if (a->rela->r_offset < b->rela->r_offset) | |
8068 | return -1; | |
8069 | if (a->rela->r_offset > b->rela->r_offset) | |
8070 | return 1; | |
8071 | return 0; | |
8072 | } | |
8073 | ||
8074 | static size_t | |
8075 | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) | |
8076 | { | |
3410fea8 | 8077 | asection *dynamic_relocs; |
fc66a176 L |
8078 | asection *rela_dyn; |
8079 | asection *rel_dyn; | |
c152c796 AM |
8080 | bfd_size_type count, size; |
8081 | size_t i, ret, sort_elt, ext_size; | |
8082 | bfd_byte *sort, *s_non_relative, *p; | |
8083 | struct elf_link_sort_rela *sq; | |
8084 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
8085 | int i2e = bed->s->int_rels_per_ext_rel; | |
8086 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
8087 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
8088 | struct bfd_link_order *lo; | |
8089 | bfd_vma r_sym_mask; | |
3410fea8 | 8090 | bfd_boolean use_rela; |
c152c796 | 8091 | |
3410fea8 NC |
8092 | /* Find a dynamic reloc section. */ |
8093 | rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | |
8094 | rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); | |
8095 | if (rela_dyn != NULL && rela_dyn->size > 0 | |
8096 | && rel_dyn != NULL && rel_dyn->size > 0) | |
c152c796 | 8097 | { |
3410fea8 NC |
8098 | bfd_boolean use_rela_initialised = FALSE; |
8099 | ||
8100 | /* This is just here to stop gcc from complaining. | |
8101 | It's initialization checking code is not perfect. */ | |
8102 | use_rela = TRUE; | |
8103 | ||
8104 | /* Both sections are present. Examine the sizes | |
8105 | of the indirect sections to help us choose. */ | |
8106 | for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
8107 | if (lo->type == bfd_indirect_link_order) | |
8108 | { | |
8109 | asection *o = lo->u.indirect.section; | |
8110 | ||
8111 | if ((o->size % bed->s->sizeof_rela) == 0) | |
8112 | { | |
8113 | if ((o->size % bed->s->sizeof_rel) == 0) | |
8114 | /* Section size is divisible by both rel and rela sizes. | |
8115 | It is of no help to us. */ | |
8116 | ; | |
8117 | else | |
8118 | { | |
8119 | /* Section size is only divisible by rela. */ | |
8120 | if (use_rela_initialised && (use_rela == FALSE)) | |
8121 | { | |
8122 | _bfd_error_handler | |
8123 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8124 | bfd_set_error (bfd_error_invalid_operation); | |
8125 | return 0; | |
8126 | } | |
8127 | else | |
8128 | { | |
8129 | use_rela = TRUE; | |
8130 | use_rela_initialised = TRUE; | |
8131 | } | |
8132 | } | |
8133 | } | |
8134 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
8135 | { | |
8136 | /* Section size is only divisible by rel. */ | |
8137 | if (use_rela_initialised && (use_rela == TRUE)) | |
8138 | { | |
8139 | _bfd_error_handler | |
8140 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8141 | bfd_set_error (bfd_error_invalid_operation); | |
8142 | return 0; | |
8143 | } | |
8144 | else | |
8145 | { | |
8146 | use_rela = FALSE; | |
8147 | use_rela_initialised = TRUE; | |
8148 | } | |
8149 | } | |
8150 | else | |
8151 | { | |
8152 | /* The section size is not divisible by either - something is wrong. */ | |
8153 | _bfd_error_handler | |
8154 | (_("%B: Unable to sort relocs - they are of an unknown size"), abfd); | |
8155 | bfd_set_error (bfd_error_invalid_operation); | |
8156 | return 0; | |
8157 | } | |
8158 | } | |
8159 | ||
8160 | for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
8161 | if (lo->type == bfd_indirect_link_order) | |
8162 | { | |
8163 | asection *o = lo->u.indirect.section; | |
8164 | ||
8165 | if ((o->size % bed->s->sizeof_rela) == 0) | |
8166 | { | |
8167 | if ((o->size % bed->s->sizeof_rel) == 0) | |
8168 | /* Section size is divisible by both rel and rela sizes. | |
8169 | It is of no help to us. */ | |
8170 | ; | |
8171 | else | |
8172 | { | |
8173 | /* Section size is only divisible by rela. */ | |
8174 | if (use_rela_initialised && (use_rela == FALSE)) | |
8175 | { | |
8176 | _bfd_error_handler | |
8177 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8178 | bfd_set_error (bfd_error_invalid_operation); | |
8179 | return 0; | |
8180 | } | |
8181 | else | |
8182 | { | |
8183 | use_rela = TRUE; | |
8184 | use_rela_initialised = TRUE; | |
8185 | } | |
8186 | } | |
8187 | } | |
8188 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
8189 | { | |
8190 | /* Section size is only divisible by rel. */ | |
8191 | if (use_rela_initialised && (use_rela == TRUE)) | |
8192 | { | |
8193 | _bfd_error_handler | |
8194 | (_("%B: Unable to sort relocs - they are in more than one size"), abfd); | |
8195 | bfd_set_error (bfd_error_invalid_operation); | |
8196 | return 0; | |
8197 | } | |
8198 | else | |
8199 | { | |
8200 | use_rela = FALSE; | |
8201 | use_rela_initialised = TRUE; | |
8202 | } | |
8203 | } | |
8204 | else | |
8205 | { | |
8206 | /* The section size is not divisible by either - something is wrong. */ | |
8207 | _bfd_error_handler | |
8208 | (_("%B: Unable to sort relocs - they are of an unknown size"), abfd); | |
8209 | bfd_set_error (bfd_error_invalid_operation); | |
8210 | return 0; | |
8211 | } | |
8212 | } | |
8213 | ||
8214 | if (! use_rela_initialised) | |
8215 | /* Make a guess. */ | |
8216 | use_rela = TRUE; | |
c152c796 | 8217 | } |
fc66a176 L |
8218 | else if (rela_dyn != NULL && rela_dyn->size > 0) |
8219 | use_rela = TRUE; | |
8220 | else if (rel_dyn != NULL && rel_dyn->size > 0) | |
3410fea8 | 8221 | use_rela = FALSE; |
c152c796 | 8222 | else |
fc66a176 | 8223 | return 0; |
3410fea8 NC |
8224 | |
8225 | if (use_rela) | |
c152c796 | 8226 | { |
3410fea8 | 8227 | dynamic_relocs = rela_dyn; |
c152c796 AM |
8228 | ext_size = bed->s->sizeof_rela; |
8229 | swap_in = bed->s->swap_reloca_in; | |
8230 | swap_out = bed->s->swap_reloca_out; | |
8231 | } | |
3410fea8 NC |
8232 | else |
8233 | { | |
8234 | dynamic_relocs = rel_dyn; | |
8235 | ext_size = bed->s->sizeof_rel; | |
8236 | swap_in = bed->s->swap_reloc_in; | |
8237 | swap_out = bed->s->swap_reloc_out; | |
8238 | } | |
c152c796 AM |
8239 | |
8240 | size = 0; | |
3410fea8 | 8241 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 | 8242 | if (lo->type == bfd_indirect_link_order) |
3410fea8 | 8243 | size += lo->u.indirect.section->size; |
c152c796 | 8244 | |
3410fea8 | 8245 | if (size != dynamic_relocs->size) |
c152c796 AM |
8246 | return 0; |
8247 | ||
8248 | sort_elt = (sizeof (struct elf_link_sort_rela) | |
8249 | + (i2e - 1) * sizeof (Elf_Internal_Rela)); | |
3410fea8 NC |
8250 | |
8251 | count = dynamic_relocs->size / ext_size; | |
5e486aa1 NC |
8252 | if (count == 0) |
8253 | return 0; | |
a50b1753 | 8254 | sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); |
3410fea8 | 8255 | |
c152c796 AM |
8256 | if (sort == NULL) |
8257 | { | |
8258 | (*info->callbacks->warning) | |
8259 | (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0); | |
8260 | return 0; | |
8261 | } | |
8262 | ||
8263 | if (bed->s->arch_size == 32) | |
8264 | r_sym_mask = ~(bfd_vma) 0xff; | |
8265 | else | |
8266 | r_sym_mask = ~(bfd_vma) 0xffffffff; | |
8267 | ||
3410fea8 | 8268 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 AM |
8269 | if (lo->type == bfd_indirect_link_order) |
8270 | { | |
8271 | bfd_byte *erel, *erelend; | |
8272 | asection *o = lo->u.indirect.section; | |
8273 | ||
1da212d6 AM |
8274 | if (o->contents == NULL && o->size != 0) |
8275 | { | |
8276 | /* This is a reloc section that is being handled as a normal | |
8277 | section. See bfd_section_from_shdr. We can't combine | |
8278 | relocs in this case. */ | |
8279 | free (sort); | |
8280 | return 0; | |
8281 | } | |
c152c796 | 8282 | erel = o->contents; |
eea6121a | 8283 | erelend = o->contents + o->size; |
5dabe785 | 8284 | /* FIXME: octets_per_byte. */ |
c152c796 | 8285 | p = sort + o->output_offset / ext_size * sort_elt; |
3410fea8 | 8286 | |
c152c796 AM |
8287 | while (erel < erelend) |
8288 | { | |
8289 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
3410fea8 | 8290 | |
c152c796 | 8291 | (*swap_in) (abfd, erel, s->rela); |
7e612e98 | 8292 | s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); |
c152c796 AM |
8293 | s->u.sym_mask = r_sym_mask; |
8294 | p += sort_elt; | |
8295 | erel += ext_size; | |
8296 | } | |
8297 | } | |
8298 | ||
8299 | qsort (sort, count, sort_elt, elf_link_sort_cmp1); | |
8300 | ||
8301 | for (i = 0, p = sort; i < count; i++, p += sort_elt) | |
8302 | { | |
8303 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
8304 | if (s->type != reloc_class_relative) | |
8305 | break; | |
8306 | } | |
8307 | ret = i; | |
8308 | s_non_relative = p; | |
8309 | ||
8310 | sq = (struct elf_link_sort_rela *) s_non_relative; | |
8311 | for (; i < count; i++, p += sort_elt) | |
8312 | { | |
8313 | struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; | |
8314 | if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) | |
8315 | sq = sp; | |
8316 | sp->u.offset = sq->rela->r_offset; | |
8317 | } | |
8318 | ||
8319 | qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); | |
8320 | ||
3410fea8 | 8321 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
c152c796 AM |
8322 | if (lo->type == bfd_indirect_link_order) |
8323 | { | |
8324 | bfd_byte *erel, *erelend; | |
8325 | asection *o = lo->u.indirect.section; | |
8326 | ||
8327 | erel = o->contents; | |
eea6121a | 8328 | erelend = o->contents + o->size; |
5dabe785 | 8329 | /* FIXME: octets_per_byte. */ |
c152c796 AM |
8330 | p = sort + o->output_offset / ext_size * sort_elt; |
8331 | while (erel < erelend) | |
8332 | { | |
8333 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
8334 | (*swap_out) (abfd, s->rela, erel); | |
8335 | p += sort_elt; | |
8336 | erel += ext_size; | |
8337 | } | |
8338 | } | |
8339 | ||
8340 | free (sort); | |
3410fea8 | 8341 | *psec = dynamic_relocs; |
c152c796 AM |
8342 | return ret; |
8343 | } | |
8344 | ||
8345 | /* Flush the output symbols to the file. */ | |
8346 | ||
8347 | static bfd_boolean | |
8b127cbc | 8348 | elf_link_flush_output_syms (struct elf_final_link_info *flinfo, |
c152c796 AM |
8349 | const struct elf_backend_data *bed) |
8350 | { | |
8b127cbc | 8351 | if (flinfo->symbuf_count > 0) |
c152c796 AM |
8352 | { |
8353 | Elf_Internal_Shdr *hdr; | |
8354 | file_ptr pos; | |
8355 | bfd_size_type amt; | |
8356 | ||
8b127cbc | 8357 | hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; |
c152c796 | 8358 | pos = hdr->sh_offset + hdr->sh_size; |
8b127cbc AM |
8359 | amt = flinfo->symbuf_count * bed->s->sizeof_sym; |
8360 | if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0 | |
8361 | || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt) | |
c152c796 AM |
8362 | return FALSE; |
8363 | ||
8364 | hdr->sh_size += amt; | |
8b127cbc | 8365 | flinfo->symbuf_count = 0; |
c152c796 AM |
8366 | } |
8367 | ||
8368 | return TRUE; | |
8369 | } | |
8370 | ||
8371 | /* Add a symbol to the output symbol table. */ | |
8372 | ||
6e0b88f1 | 8373 | static int |
8b127cbc | 8374 | elf_link_output_sym (struct elf_final_link_info *flinfo, |
c152c796 AM |
8375 | const char *name, |
8376 | Elf_Internal_Sym *elfsym, | |
8377 | asection *input_sec, | |
8378 | struct elf_link_hash_entry *h) | |
8379 | { | |
8380 | bfd_byte *dest; | |
8381 | Elf_External_Sym_Shndx *destshndx; | |
6e0b88f1 | 8382 | int (*output_symbol_hook) |
c152c796 AM |
8383 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, |
8384 | struct elf_link_hash_entry *); | |
8385 | const struct elf_backend_data *bed; | |
8386 | ||
8b127cbc | 8387 | bed = get_elf_backend_data (flinfo->output_bfd); |
c152c796 AM |
8388 | output_symbol_hook = bed->elf_backend_link_output_symbol_hook; |
8389 | if (output_symbol_hook != NULL) | |
8390 | { | |
8b127cbc | 8391 | int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); |
6e0b88f1 AM |
8392 | if (ret != 1) |
8393 | return ret; | |
c152c796 AM |
8394 | } |
8395 | ||
8396 | if (name == NULL || *name == '\0') | |
8397 | elfsym->st_name = 0; | |
8398 | else if (input_sec->flags & SEC_EXCLUDE) | |
8399 | elfsym->st_name = 0; | |
8400 | else | |
8401 | { | |
8b127cbc | 8402 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab, |
c152c796 AM |
8403 | name, TRUE, FALSE); |
8404 | if (elfsym->st_name == (unsigned long) -1) | |
6e0b88f1 | 8405 | return 0; |
c152c796 AM |
8406 | } |
8407 | ||
8b127cbc | 8408 | if (flinfo->symbuf_count >= flinfo->symbuf_size) |
c152c796 | 8409 | { |
8b127cbc | 8410 | if (! elf_link_flush_output_syms (flinfo, bed)) |
6e0b88f1 | 8411 | return 0; |
c152c796 AM |
8412 | } |
8413 | ||
8b127cbc AM |
8414 | dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym; |
8415 | destshndx = flinfo->symshndxbuf; | |
c152c796 AM |
8416 | if (destshndx != NULL) |
8417 | { | |
8b127cbc | 8418 | if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size) |
c152c796 AM |
8419 | { |
8420 | bfd_size_type amt; | |
8421 | ||
8b127cbc | 8422 | amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx); |
a50b1753 NC |
8423 | destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx, |
8424 | amt * 2); | |
c152c796 | 8425 | if (destshndx == NULL) |
6e0b88f1 | 8426 | return 0; |
8b127cbc | 8427 | flinfo->symshndxbuf = destshndx; |
c152c796 | 8428 | memset ((char *) destshndx + amt, 0, amt); |
8b127cbc | 8429 | flinfo->shndxbuf_size *= 2; |
c152c796 | 8430 | } |
8b127cbc | 8431 | destshndx += bfd_get_symcount (flinfo->output_bfd); |
c152c796 AM |
8432 | } |
8433 | ||
8b127cbc AM |
8434 | bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx); |
8435 | flinfo->symbuf_count += 1; | |
8436 | bfd_get_symcount (flinfo->output_bfd) += 1; | |
c152c796 | 8437 | |
6e0b88f1 | 8438 | return 1; |
c152c796 AM |
8439 | } |
8440 | ||
c0d5a53d L |
8441 | /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ |
8442 | ||
8443 | static bfd_boolean | |
8444 | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) | |
8445 | { | |
4fbb74a6 AM |
8446 | if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) |
8447 | && sym->st_shndx < SHN_LORESERVE) | |
c0d5a53d L |
8448 | { |
8449 | /* The gABI doesn't support dynamic symbols in output sections | |
a0c8462f | 8450 | beyond 64k. */ |
c0d5a53d L |
8451 | (*_bfd_error_handler) |
8452 | (_("%B: Too many sections: %d (>= %d)"), | |
4fbb74a6 | 8453 | abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); |
c0d5a53d L |
8454 | bfd_set_error (bfd_error_nonrepresentable_section); |
8455 | return FALSE; | |
8456 | } | |
8457 | return TRUE; | |
8458 | } | |
8459 | ||
c152c796 AM |
8460 | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in |
8461 | allowing an unsatisfied unversioned symbol in the DSO to match a | |
8462 | versioned symbol that would normally require an explicit version. | |
8463 | We also handle the case that a DSO references a hidden symbol | |
8464 | which may be satisfied by a versioned symbol in another DSO. */ | |
8465 | ||
8466 | static bfd_boolean | |
8467 | elf_link_check_versioned_symbol (struct bfd_link_info *info, | |
8468 | const struct elf_backend_data *bed, | |
8469 | struct elf_link_hash_entry *h) | |
8470 | { | |
8471 | bfd *abfd; | |
8472 | struct elf_link_loaded_list *loaded; | |
8473 | ||
8474 | if (!is_elf_hash_table (info->hash)) | |
8475 | return FALSE; | |
8476 | ||
90c984fc L |
8477 | /* Check indirect symbol. */ |
8478 | while (h->root.type == bfd_link_hash_indirect) | |
8479 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8480 | ||
c152c796 AM |
8481 | switch (h->root.type) |
8482 | { | |
8483 | default: | |
8484 | abfd = NULL; | |
8485 | break; | |
8486 | ||
8487 | case bfd_link_hash_undefined: | |
8488 | case bfd_link_hash_undefweak: | |
8489 | abfd = h->root.u.undef.abfd; | |
8490 | if ((abfd->flags & DYNAMIC) == 0 | |
e56f61be | 8491 | || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) |
c152c796 AM |
8492 | return FALSE; |
8493 | break; | |
8494 | ||
8495 | case bfd_link_hash_defined: | |
8496 | case bfd_link_hash_defweak: | |
8497 | abfd = h->root.u.def.section->owner; | |
8498 | break; | |
8499 | ||
8500 | case bfd_link_hash_common: | |
8501 | abfd = h->root.u.c.p->section->owner; | |
8502 | break; | |
8503 | } | |
8504 | BFD_ASSERT (abfd != NULL); | |
8505 | ||
8506 | for (loaded = elf_hash_table (info)->loaded; | |
8507 | loaded != NULL; | |
8508 | loaded = loaded->next) | |
8509 | { | |
8510 | bfd *input; | |
8511 | Elf_Internal_Shdr *hdr; | |
8512 | bfd_size_type symcount; | |
8513 | bfd_size_type extsymcount; | |
8514 | bfd_size_type extsymoff; | |
8515 | Elf_Internal_Shdr *versymhdr; | |
8516 | Elf_Internal_Sym *isym; | |
8517 | Elf_Internal_Sym *isymend; | |
8518 | Elf_Internal_Sym *isymbuf; | |
8519 | Elf_External_Versym *ever; | |
8520 | Elf_External_Versym *extversym; | |
8521 | ||
8522 | input = loaded->abfd; | |
8523 | ||
8524 | /* We check each DSO for a possible hidden versioned definition. */ | |
8525 | if (input == abfd | |
8526 | || (input->flags & DYNAMIC) == 0 | |
8527 | || elf_dynversym (input) == 0) | |
8528 | continue; | |
8529 | ||
8530 | hdr = &elf_tdata (input)->dynsymtab_hdr; | |
8531 | ||
8532 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
8533 | if (elf_bad_symtab (input)) | |
8534 | { | |
8535 | extsymcount = symcount; | |
8536 | extsymoff = 0; | |
8537 | } | |
8538 | else | |
8539 | { | |
8540 | extsymcount = symcount - hdr->sh_info; | |
8541 | extsymoff = hdr->sh_info; | |
8542 | } | |
8543 | ||
8544 | if (extsymcount == 0) | |
8545 | continue; | |
8546 | ||
8547 | isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, | |
8548 | NULL, NULL, NULL); | |
8549 | if (isymbuf == NULL) | |
8550 | return FALSE; | |
8551 | ||
8552 | /* Read in any version definitions. */ | |
8553 | versymhdr = &elf_tdata (input)->dynversym_hdr; | |
a50b1753 | 8554 | extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); |
c152c796 AM |
8555 | if (extversym == NULL) |
8556 | goto error_ret; | |
8557 | ||
8558 | if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 | |
8559 | || (bfd_bread (extversym, versymhdr->sh_size, input) | |
8560 | != versymhdr->sh_size)) | |
8561 | { | |
8562 | free (extversym); | |
8563 | error_ret: | |
8564 | free (isymbuf); | |
8565 | return FALSE; | |
8566 | } | |
8567 | ||
8568 | ever = extversym + extsymoff; | |
8569 | isymend = isymbuf + extsymcount; | |
8570 | for (isym = isymbuf; isym < isymend; isym++, ever++) | |
8571 | { | |
8572 | const char *name; | |
8573 | Elf_Internal_Versym iver; | |
8574 | unsigned short version_index; | |
8575 | ||
8576 | if (ELF_ST_BIND (isym->st_info) == STB_LOCAL | |
8577 | || isym->st_shndx == SHN_UNDEF) | |
8578 | continue; | |
8579 | ||
8580 | name = bfd_elf_string_from_elf_section (input, | |
8581 | hdr->sh_link, | |
8582 | isym->st_name); | |
8583 | if (strcmp (name, h->root.root.string) != 0) | |
8584 | continue; | |
8585 | ||
8586 | _bfd_elf_swap_versym_in (input, ever, &iver); | |
8587 | ||
d023c380 L |
8588 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
8589 | && !(h->def_regular | |
8590 | && h->forced_local)) | |
c152c796 AM |
8591 | { |
8592 | /* If we have a non-hidden versioned sym, then it should | |
d023c380 L |
8593 | have provided a definition for the undefined sym unless |
8594 | it is defined in a non-shared object and forced local. | |
8595 | */ | |
c152c796 AM |
8596 | abort (); |
8597 | } | |
8598 | ||
8599 | version_index = iver.vs_vers & VERSYM_VERSION; | |
8600 | if (version_index == 1 || version_index == 2) | |
8601 | { | |
8602 | /* This is the base or first version. We can use it. */ | |
8603 | free (extversym); | |
8604 | free (isymbuf); | |
8605 | return TRUE; | |
8606 | } | |
8607 | } | |
8608 | ||
8609 | free (extversym); | |
8610 | free (isymbuf); | |
8611 | } | |
8612 | ||
8613 | return FALSE; | |
8614 | } | |
8615 | ||
8616 | /* Add an external symbol to the symbol table. This is called from | |
8617 | the hash table traversal routine. When generating a shared object, | |
8618 | we go through the symbol table twice. The first time we output | |
8619 | anything that might have been forced to local scope in a version | |
8620 | script. The second time we output the symbols that are still | |
8621 | global symbols. */ | |
8622 | ||
8623 | static bfd_boolean | |
7686d77d | 8624 | elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) |
c152c796 | 8625 | { |
7686d77d | 8626 | struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; |
a50b1753 | 8627 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; |
8b127cbc | 8628 | struct elf_final_link_info *flinfo = eoinfo->flinfo; |
c152c796 AM |
8629 | bfd_boolean strip; |
8630 | Elf_Internal_Sym sym; | |
8631 | asection *input_sec; | |
8632 | const struct elf_backend_data *bed; | |
6e0b88f1 AM |
8633 | long indx; |
8634 | int ret; | |
c152c796 AM |
8635 | |
8636 | if (h->root.type == bfd_link_hash_warning) | |
8637 | { | |
8638 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8639 | if (h->root.type == bfd_link_hash_new) | |
8640 | return TRUE; | |
8641 | } | |
8642 | ||
8643 | /* Decide whether to output this symbol in this pass. */ | |
8644 | if (eoinfo->localsyms) | |
8645 | { | |
f5385ebf | 8646 | if (!h->forced_local) |
c152c796 | 8647 | return TRUE; |
ffbc01cc AM |
8648 | if (eoinfo->second_pass |
8649 | && !((h->root.type == bfd_link_hash_defined | |
8650 | || h->root.type == bfd_link_hash_defweak) | |
8651 | && h->root.u.def.section->output_section != NULL)) | |
8652 | return TRUE; | |
34a79995 JB |
8653 | |
8654 | if (!eoinfo->file_sym_done | |
8655 | && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1 | |
8656 | : eoinfo->flinfo->filesym_count > 1)) | |
8657 | { | |
8658 | /* Output a FILE symbol so that following locals are not associated | |
8659 | with the wrong input file. */ | |
8660 | memset (&sym, 0, sizeof (sym)); | |
8661 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
8662 | sym.st_shndx = SHN_ABS; | |
8663 | if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym, | |
8664 | bfd_und_section_ptr, NULL)) | |
8665 | return FALSE; | |
8666 | ||
8667 | eoinfo->file_sym_done = TRUE; | |
8668 | } | |
c152c796 AM |
8669 | } |
8670 | else | |
8671 | { | |
f5385ebf | 8672 | if (h->forced_local) |
c152c796 AM |
8673 | return TRUE; |
8674 | } | |
8675 | ||
8b127cbc | 8676 | bed = get_elf_backend_data (flinfo->output_bfd); |
c152c796 | 8677 | |
12ac1cf5 | 8678 | if (h->root.type == bfd_link_hash_undefined) |
c152c796 | 8679 | { |
12ac1cf5 NC |
8680 | /* If we have an undefined symbol reference here then it must have |
8681 | come from a shared library that is being linked in. (Undefined | |
98da7939 L |
8682 | references in regular files have already been handled unless |
8683 | they are in unreferenced sections which are removed by garbage | |
8684 | collection). */ | |
12ac1cf5 NC |
8685 | bfd_boolean ignore_undef = FALSE; |
8686 | ||
8687 | /* Some symbols may be special in that the fact that they're | |
8688 | undefined can be safely ignored - let backend determine that. */ | |
8689 | if (bed->elf_backend_ignore_undef_symbol) | |
8690 | ignore_undef = bed->elf_backend_ignore_undef_symbol (h); | |
8691 | ||
8692 | /* If we are reporting errors for this situation then do so now. */ | |
89a2ee5a | 8693 | if (!ignore_undef |
12ac1cf5 | 8694 | && h->ref_dynamic |
8b127cbc AM |
8695 | && (!h->ref_regular || flinfo->info->gc_sections) |
8696 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h) | |
8697 | && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) | |
8698 | { | |
8699 | if (!(flinfo->info->callbacks->undefined_symbol | |
8700 | (flinfo->info, h->root.root.string, | |
8701 | h->ref_regular ? NULL : h->root.u.undef.abfd, | |
8702 | NULL, 0, | |
8703 | (flinfo->info->unresolved_syms_in_shared_libs | |
8704 | == RM_GENERATE_ERROR)))) | |
12ac1cf5 | 8705 | { |
17d078c5 | 8706 | bfd_set_error (bfd_error_bad_value); |
12ac1cf5 NC |
8707 | eoinfo->failed = TRUE; |
8708 | return FALSE; | |
8709 | } | |
c152c796 AM |
8710 | } |
8711 | } | |
8712 | ||
8713 | /* We should also warn if a forced local symbol is referenced from | |
8714 | shared libraries. */ | |
8b127cbc AM |
8715 | if (!flinfo->info->relocatable |
8716 | && flinfo->info->executable | |
f5385ebf AM |
8717 | && h->forced_local |
8718 | && h->ref_dynamic | |
371a5866 | 8719 | && h->def_regular |
f5385ebf | 8720 | && !h->dynamic_def |
ee659f1f | 8721 | && h->ref_dynamic_nonweak |
8b127cbc | 8722 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) |
c152c796 | 8723 | { |
17d078c5 AM |
8724 | bfd *def_bfd; |
8725 | const char *msg; | |
90c984fc L |
8726 | struct elf_link_hash_entry *hi = h; |
8727 | ||
8728 | /* Check indirect symbol. */ | |
8729 | while (hi->root.type == bfd_link_hash_indirect) | |
8730 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
17d078c5 AM |
8731 | |
8732 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
8733 | msg = _("%B: internal symbol `%s' in %B is referenced by DSO"); | |
8734 | else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | |
8735 | msg = _("%B: hidden symbol `%s' in %B is referenced by DSO"); | |
8736 | else | |
8737 | msg = _("%B: local symbol `%s' in %B is referenced by DSO"); | |
8b127cbc | 8738 | def_bfd = flinfo->output_bfd; |
90c984fc L |
8739 | if (hi->root.u.def.section != bfd_abs_section_ptr) |
8740 | def_bfd = hi->root.u.def.section->owner; | |
8b127cbc | 8741 | (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd, |
17d078c5 AM |
8742 | h->root.root.string); |
8743 | bfd_set_error (bfd_error_bad_value); | |
c152c796 AM |
8744 | eoinfo->failed = TRUE; |
8745 | return FALSE; | |
8746 | } | |
8747 | ||
8748 | /* We don't want to output symbols that have never been mentioned by | |
8749 | a regular file, or that we have been told to strip. However, if | |
8750 | h->indx is set to -2, the symbol is used by a reloc and we must | |
8751 | output it. */ | |
8752 | if (h->indx == -2) | |
8753 | strip = FALSE; | |
f5385ebf | 8754 | else if ((h->def_dynamic |
77cfaee6 AM |
8755 | || h->ref_dynamic |
8756 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
8757 | && !h->def_regular |
8758 | && !h->ref_regular) | |
c152c796 | 8759 | strip = TRUE; |
8b127cbc | 8760 | else if (flinfo->info->strip == strip_all) |
c152c796 | 8761 | strip = TRUE; |
8b127cbc AM |
8762 | else if (flinfo->info->strip == strip_some |
8763 | && bfd_hash_lookup (flinfo->info->keep_hash, | |
c152c796 AM |
8764 | h->root.root.string, FALSE, FALSE) == NULL) |
8765 | strip = TRUE; | |
d56d55e7 AM |
8766 | else if ((h->root.type == bfd_link_hash_defined |
8767 | || h->root.type == bfd_link_hash_defweak) | |
8b127cbc | 8768 | && ((flinfo->info->strip_discarded |
dbaa2011 | 8769 | && discarded_section (h->root.u.def.section)) |
d56d55e7 AM |
8770 | || (h->root.u.def.section->owner != NULL |
8771 | && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) | |
c152c796 | 8772 | strip = TRUE; |
9e2278f5 AM |
8773 | else if ((h->root.type == bfd_link_hash_undefined |
8774 | || h->root.type == bfd_link_hash_undefweak) | |
8775 | && h->root.u.undef.abfd != NULL | |
8776 | && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) | |
8777 | strip = TRUE; | |
c152c796 AM |
8778 | else |
8779 | strip = FALSE; | |
8780 | ||
8781 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
57ca8ac7 L |
8782 | nothing else to do unless it is a forced local symbol or a |
8783 | STT_GNU_IFUNC symbol. */ | |
c152c796 AM |
8784 | if (strip |
8785 | && h->dynindx == -1 | |
57ca8ac7 | 8786 | && h->type != STT_GNU_IFUNC |
f5385ebf | 8787 | && !h->forced_local) |
c152c796 AM |
8788 | return TRUE; |
8789 | ||
8790 | sym.st_value = 0; | |
8791 | sym.st_size = h->size; | |
8792 | sym.st_other = h->other; | |
f5385ebf | 8793 | if (h->forced_local) |
935bd1e0 L |
8794 | { |
8795 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); | |
8796 | /* Turn off visibility on local symbol. */ | |
8797 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); | |
8798 | } | |
02acbe22 L |
8799 | /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ |
8800 | else if (h->unique_global && h->def_regular) | |
3e7a7d11 | 8801 | sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type); |
c152c796 AM |
8802 | else if (h->root.type == bfd_link_hash_undefweak |
8803 | || h->root.type == bfd_link_hash_defweak) | |
8804 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
8805 | else | |
8806 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
35fc36a8 | 8807 | sym.st_target_internal = h->target_internal; |
c152c796 AM |
8808 | |
8809 | switch (h->root.type) | |
8810 | { | |
8811 | default: | |
8812 | case bfd_link_hash_new: | |
8813 | case bfd_link_hash_warning: | |
8814 | abort (); | |
8815 | return FALSE; | |
8816 | ||
8817 | case bfd_link_hash_undefined: | |
8818 | case bfd_link_hash_undefweak: | |
8819 | input_sec = bfd_und_section_ptr; | |
8820 | sym.st_shndx = SHN_UNDEF; | |
8821 | break; | |
8822 | ||
8823 | case bfd_link_hash_defined: | |
8824 | case bfd_link_hash_defweak: | |
8825 | { | |
8826 | input_sec = h->root.u.def.section; | |
8827 | if (input_sec->output_section != NULL) | |
8828 | { | |
ffbc01cc AM |
8829 | if (eoinfo->localsyms && flinfo->filesym_count == 1) |
8830 | { | |
8831 | bfd_boolean second_pass_sym | |
8832 | = (input_sec->owner == flinfo->output_bfd | |
8833 | || input_sec->owner == NULL | |
8834 | || (input_sec->flags & SEC_LINKER_CREATED) != 0 | |
8835 | || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0); | |
8836 | ||
8837 | eoinfo->need_second_pass |= second_pass_sym; | |
8838 | if (eoinfo->second_pass != second_pass_sym) | |
8839 | return TRUE; | |
8840 | } | |
8841 | ||
c152c796 | 8842 | sym.st_shndx = |
8b127cbc | 8843 | _bfd_elf_section_from_bfd_section (flinfo->output_bfd, |
c152c796 AM |
8844 | input_sec->output_section); |
8845 | if (sym.st_shndx == SHN_BAD) | |
8846 | { | |
8847 | (*_bfd_error_handler) | |
d003868e | 8848 | (_("%B: could not find output section %A for input section %A"), |
8b127cbc | 8849 | flinfo->output_bfd, input_sec->output_section, input_sec); |
17d078c5 | 8850 | bfd_set_error (bfd_error_nonrepresentable_section); |
c152c796 AM |
8851 | eoinfo->failed = TRUE; |
8852 | return FALSE; | |
8853 | } | |
8854 | ||
8855 | /* ELF symbols in relocatable files are section relative, | |
8856 | but in nonrelocatable files they are virtual | |
8857 | addresses. */ | |
8858 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
8b127cbc | 8859 | if (!flinfo->info->relocatable) |
c152c796 AM |
8860 | { |
8861 | sym.st_value += input_sec->output_section->vma; | |
8862 | if (h->type == STT_TLS) | |
8863 | { | |
8b127cbc | 8864 | asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; |
430a16a5 NC |
8865 | if (tls_sec != NULL) |
8866 | sym.st_value -= tls_sec->vma; | |
8867 | else | |
8868 | { | |
8869 | /* The TLS section may have been garbage collected. */ | |
8b127cbc | 8870 | BFD_ASSERT (flinfo->info->gc_sections |
430a16a5 NC |
8871 | && !input_sec->gc_mark); |
8872 | } | |
c152c796 AM |
8873 | } |
8874 | } | |
8875 | } | |
8876 | else | |
8877 | { | |
8878 | BFD_ASSERT (input_sec->owner == NULL | |
8879 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
8880 | sym.st_shndx = SHN_UNDEF; | |
8881 | input_sec = bfd_und_section_ptr; | |
8882 | } | |
8883 | } | |
8884 | break; | |
8885 | ||
8886 | case bfd_link_hash_common: | |
8887 | input_sec = h->root.u.c.p->section; | |
a4d8e49b | 8888 | sym.st_shndx = bed->common_section_index (input_sec); |
c152c796 AM |
8889 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
8890 | break; | |
8891 | ||
8892 | case bfd_link_hash_indirect: | |
8893 | /* These symbols are created by symbol versioning. They point | |
8894 | to the decorated version of the name. For example, if the | |
8895 | symbol foo@@GNU_1.2 is the default, which should be used when | |
8896 | foo is used with no version, then we add an indirect symbol | |
8897 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
8898 | since the indirected symbol is already in the hash table. */ | |
8899 | return TRUE; | |
8900 | } | |
8901 | ||
8902 | /* Give the processor backend a chance to tweak the symbol value, | |
8903 | and also to finish up anything that needs to be done for this | |
8904 | symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for | |
3aa14d16 | 8905 | forced local syms when non-shared is due to a historical quirk. |
5f35ea9c | 8906 | STT_GNU_IFUNC symbol must go through PLT. */ |
3aa14d16 | 8907 | if ((h->type == STT_GNU_IFUNC |
5f35ea9c | 8908 | && h->def_regular |
8b127cbc | 8909 | && !flinfo->info->relocatable) |
3aa14d16 L |
8910 | || ((h->dynindx != -1 |
8911 | || h->forced_local) | |
8b127cbc | 8912 | && ((flinfo->info->shared |
3aa14d16 L |
8913 | && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
8914 | || h->root.type != bfd_link_hash_undefweak)) | |
8915 | || !h->forced_local) | |
8b127cbc | 8916 | && elf_hash_table (flinfo->info)->dynamic_sections_created)) |
c152c796 AM |
8917 | { |
8918 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
8b127cbc | 8919 | (flinfo->output_bfd, flinfo->info, h, &sym))) |
c152c796 AM |
8920 | { |
8921 | eoinfo->failed = TRUE; | |
8922 | return FALSE; | |
8923 | } | |
8924 | } | |
8925 | ||
8926 | /* If we are marking the symbol as undefined, and there are no | |
8927 | non-weak references to this symbol from a regular object, then | |
8928 | mark the symbol as weak undefined; if there are non-weak | |
8929 | references, mark the symbol as strong. We can't do this earlier, | |
8930 | because it might not be marked as undefined until the | |
8931 | finish_dynamic_symbol routine gets through with it. */ | |
8932 | if (sym.st_shndx == SHN_UNDEF | |
f5385ebf | 8933 | && h->ref_regular |
c152c796 AM |
8934 | && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL |
8935 | || ELF_ST_BIND (sym.st_info) == STB_WEAK)) | |
8936 | { | |
8937 | int bindtype; | |
2955ec4c L |
8938 | unsigned int type = ELF_ST_TYPE (sym.st_info); |
8939 | ||
8940 | /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ | |
8941 | if (type == STT_GNU_IFUNC) | |
8942 | type = STT_FUNC; | |
c152c796 | 8943 | |
f5385ebf | 8944 | if (h->ref_regular_nonweak) |
c152c796 AM |
8945 | bindtype = STB_GLOBAL; |
8946 | else | |
8947 | bindtype = STB_WEAK; | |
2955ec4c | 8948 | sym.st_info = ELF_ST_INFO (bindtype, type); |
c152c796 AM |
8949 | } |
8950 | ||
bda987c2 CD |
8951 | /* If this is a symbol defined in a dynamic library, don't use the |
8952 | symbol size from the dynamic library. Relinking an executable | |
8953 | against a new library may introduce gratuitous changes in the | |
8954 | executable's symbols if we keep the size. */ | |
8955 | if (sym.st_shndx == SHN_UNDEF | |
8956 | && !h->def_regular | |
8957 | && h->def_dynamic) | |
8958 | sym.st_size = 0; | |
8959 | ||
c152c796 AM |
8960 | /* If a non-weak symbol with non-default visibility is not defined |
8961 | locally, it is a fatal error. */ | |
8b127cbc | 8962 | if (!flinfo->info->relocatable |
c152c796 AM |
8963 | && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT |
8964 | && ELF_ST_BIND (sym.st_info) != STB_WEAK | |
8965 | && h->root.type == bfd_link_hash_undefined | |
f5385ebf | 8966 | && !h->def_regular) |
c152c796 | 8967 | { |
17d078c5 AM |
8968 | const char *msg; |
8969 | ||
8970 | if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) | |
8971 | msg = _("%B: protected symbol `%s' isn't defined"); | |
8972 | else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) | |
8973 | msg = _("%B: internal symbol `%s' isn't defined"); | |
8974 | else | |
8975 | msg = _("%B: hidden symbol `%s' isn't defined"); | |
8b127cbc | 8976 | (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string); |
17d078c5 | 8977 | bfd_set_error (bfd_error_bad_value); |
c152c796 AM |
8978 | eoinfo->failed = TRUE; |
8979 | return FALSE; | |
8980 | } | |
8981 | ||
8982 | /* If this symbol should be put in the .dynsym section, then put it | |
8983 | there now. We already know the symbol index. We also fill in | |
8984 | the entry in the .hash section. */ | |
8b127cbc | 8985 | if (flinfo->dynsym_sec != NULL |
202e2356 | 8986 | && h->dynindx != -1 |
8b127cbc | 8987 | && elf_hash_table (flinfo->info)->dynamic_sections_created) |
c152c796 | 8988 | { |
c152c796 AM |
8989 | bfd_byte *esym; |
8990 | ||
90c984fc L |
8991 | /* Since there is no version information in the dynamic string, |
8992 | if there is no version info in symbol version section, we will | |
8993 | have a run-time problem. */ | |
8994 | if (h->verinfo.verdef == NULL) | |
8995 | { | |
8996 | char *p = strrchr (h->root.root.string, ELF_VER_CHR); | |
8997 | ||
8998 | if (p && p [1] != '\0') | |
8999 | { | |
9000 | (*_bfd_error_handler) | |
9001 | (_("%B: No symbol version section for versioned symbol `%s'"), | |
9002 | flinfo->output_bfd, h->root.root.string); | |
9003 | eoinfo->failed = TRUE; | |
9004 | return FALSE; | |
9005 | } | |
9006 | } | |
9007 | ||
c152c796 | 9008 | sym.st_name = h->dynstr_index; |
8b127cbc AM |
9009 | esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym; |
9010 | if (!check_dynsym (flinfo->output_bfd, &sym)) | |
c0d5a53d L |
9011 | { |
9012 | eoinfo->failed = TRUE; | |
9013 | return FALSE; | |
9014 | } | |
8b127cbc | 9015 | bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); |
c152c796 | 9016 | |
8b127cbc | 9017 | if (flinfo->hash_sec != NULL) |
fdc90cb4 JJ |
9018 | { |
9019 | size_t hash_entry_size; | |
9020 | bfd_byte *bucketpos; | |
9021 | bfd_vma chain; | |
41198d0c L |
9022 | size_t bucketcount; |
9023 | size_t bucket; | |
9024 | ||
8b127cbc | 9025 | bucketcount = elf_hash_table (flinfo->info)->bucketcount; |
41198d0c | 9026 | bucket = h->u.elf_hash_value % bucketcount; |
fdc90cb4 JJ |
9027 | |
9028 | hash_entry_size | |
8b127cbc AM |
9029 | = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; |
9030 | bucketpos = ((bfd_byte *) flinfo->hash_sec->contents | |
fdc90cb4 | 9031 | + (bucket + 2) * hash_entry_size); |
8b127cbc AM |
9032 | chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); |
9033 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, | |
9034 | bucketpos); | |
9035 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, | |
9036 | ((bfd_byte *) flinfo->hash_sec->contents | |
fdc90cb4 JJ |
9037 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); |
9038 | } | |
c152c796 | 9039 | |
8b127cbc | 9040 | if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) |
c152c796 AM |
9041 | { |
9042 | Elf_Internal_Versym iversym; | |
9043 | Elf_External_Versym *eversym; | |
9044 | ||
f5385ebf | 9045 | if (!h->def_regular) |
c152c796 AM |
9046 | { |
9047 | if (h->verinfo.verdef == NULL) | |
9048 | iversym.vs_vers = 0; | |
9049 | else | |
9050 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
9051 | } | |
9052 | else | |
9053 | { | |
9054 | if (h->verinfo.vertree == NULL) | |
9055 | iversym.vs_vers = 1; | |
9056 | else | |
9057 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
8b127cbc | 9058 | if (flinfo->info->create_default_symver) |
3e3b46e5 | 9059 | iversym.vs_vers++; |
c152c796 AM |
9060 | } |
9061 | ||
f5385ebf | 9062 | if (h->hidden) |
c152c796 AM |
9063 | iversym.vs_vers |= VERSYM_HIDDEN; |
9064 | ||
8b127cbc | 9065 | eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; |
c152c796 | 9066 | eversym += h->dynindx; |
8b127cbc | 9067 | _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); |
c152c796 AM |
9068 | } |
9069 | } | |
9070 | ||
9071 | /* If we're stripping it, then it was just a dynamic symbol, and | |
9072 | there's nothing else to do. */ | |
9073 | if (strip || (input_sec->flags & SEC_EXCLUDE) != 0) | |
9074 | return TRUE; | |
9075 | ||
8b127cbc AM |
9076 | indx = bfd_get_symcount (flinfo->output_bfd); |
9077 | ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h); | |
6e0b88f1 | 9078 | if (ret == 0) |
c152c796 AM |
9079 | { |
9080 | eoinfo->failed = TRUE; | |
9081 | return FALSE; | |
9082 | } | |
6e0b88f1 AM |
9083 | else if (ret == 1) |
9084 | h->indx = indx; | |
9085 | else if (h->indx == -2) | |
9086 | abort(); | |
c152c796 AM |
9087 | |
9088 | return TRUE; | |
9089 | } | |
9090 | ||
cdd3575c AM |
9091 | /* Return TRUE if special handling is done for relocs in SEC against |
9092 | symbols defined in discarded sections. */ | |
9093 | ||
c152c796 AM |
9094 | static bfd_boolean |
9095 | elf_section_ignore_discarded_relocs (asection *sec) | |
9096 | { | |
9097 | const struct elf_backend_data *bed; | |
9098 | ||
cdd3575c AM |
9099 | switch (sec->sec_info_type) |
9100 | { | |
dbaa2011 AM |
9101 | case SEC_INFO_TYPE_STABS: |
9102 | case SEC_INFO_TYPE_EH_FRAME: | |
cdd3575c AM |
9103 | return TRUE; |
9104 | default: | |
9105 | break; | |
9106 | } | |
c152c796 AM |
9107 | |
9108 | bed = get_elf_backend_data (sec->owner); | |
9109 | if (bed->elf_backend_ignore_discarded_relocs != NULL | |
9110 | && (*bed->elf_backend_ignore_discarded_relocs) (sec)) | |
9111 | return TRUE; | |
9112 | ||
9113 | return FALSE; | |
9114 | } | |
9115 | ||
9e66c942 AM |
9116 | /* Return a mask saying how ld should treat relocations in SEC against |
9117 | symbols defined in discarded sections. If this function returns | |
9118 | COMPLAIN set, ld will issue a warning message. If this function | |
9119 | returns PRETEND set, and the discarded section was link-once and the | |
9120 | same size as the kept link-once section, ld will pretend that the | |
9121 | symbol was actually defined in the kept section. Otherwise ld will | |
9122 | zero the reloc (at least that is the intent, but some cooperation by | |
9123 | the target dependent code is needed, particularly for REL targets). */ | |
9124 | ||
8a696751 AM |
9125 | unsigned int |
9126 | _bfd_elf_default_action_discarded (asection *sec) | |
cdd3575c | 9127 | { |
9e66c942 | 9128 | if (sec->flags & SEC_DEBUGGING) |
69d54b1b | 9129 | return PRETEND; |
cdd3575c AM |
9130 | |
9131 | if (strcmp (".eh_frame", sec->name) == 0) | |
9e66c942 | 9132 | return 0; |
cdd3575c AM |
9133 | |
9134 | if (strcmp (".gcc_except_table", sec->name) == 0) | |
9e66c942 | 9135 | return 0; |
cdd3575c | 9136 | |
9e66c942 | 9137 | return COMPLAIN | PRETEND; |
cdd3575c AM |
9138 | } |
9139 | ||
3d7f7666 L |
9140 | /* Find a match between a section and a member of a section group. */ |
9141 | ||
9142 | static asection * | |
c0f00686 L |
9143 | match_group_member (asection *sec, asection *group, |
9144 | struct bfd_link_info *info) | |
3d7f7666 L |
9145 | { |
9146 | asection *first = elf_next_in_group (group); | |
9147 | asection *s = first; | |
9148 | ||
9149 | while (s != NULL) | |
9150 | { | |
c0f00686 | 9151 | if (bfd_elf_match_symbols_in_sections (s, sec, info)) |
3d7f7666 L |
9152 | return s; |
9153 | ||
83180ade | 9154 | s = elf_next_in_group (s); |
3d7f7666 L |
9155 | if (s == first) |
9156 | break; | |
9157 | } | |
9158 | ||
9159 | return NULL; | |
9160 | } | |
9161 | ||
01b3c8ab | 9162 | /* Check if the kept section of a discarded section SEC can be used |
c2370991 AM |
9163 | to replace it. Return the replacement if it is OK. Otherwise return |
9164 | NULL. */ | |
01b3c8ab L |
9165 | |
9166 | asection * | |
c0f00686 | 9167 | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) |
01b3c8ab L |
9168 | { |
9169 | asection *kept; | |
9170 | ||
9171 | kept = sec->kept_section; | |
9172 | if (kept != NULL) | |
9173 | { | |
c2370991 | 9174 | if ((kept->flags & SEC_GROUP) != 0) |
c0f00686 | 9175 | kept = match_group_member (sec, kept, info); |
1dd2625f BW |
9176 | if (kept != NULL |
9177 | && ((sec->rawsize != 0 ? sec->rawsize : sec->size) | |
9178 | != (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
01b3c8ab | 9179 | kept = NULL; |
c2370991 | 9180 | sec->kept_section = kept; |
01b3c8ab L |
9181 | } |
9182 | return kept; | |
9183 | } | |
9184 | ||
c152c796 AM |
9185 | /* Link an input file into the linker output file. This function |
9186 | handles all the sections and relocations of the input file at once. | |
9187 | This is so that we only have to read the local symbols once, and | |
9188 | don't have to keep them in memory. */ | |
9189 | ||
9190 | static bfd_boolean | |
8b127cbc | 9191 | elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) |
c152c796 | 9192 | { |
ece5ef60 | 9193 | int (*relocate_section) |
c152c796 AM |
9194 | (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
9195 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); | |
9196 | bfd *output_bfd; | |
9197 | Elf_Internal_Shdr *symtab_hdr; | |
9198 | size_t locsymcount; | |
9199 | size_t extsymoff; | |
9200 | Elf_Internal_Sym *isymbuf; | |
9201 | Elf_Internal_Sym *isym; | |
9202 | Elf_Internal_Sym *isymend; | |
9203 | long *pindex; | |
9204 | asection **ppsection; | |
9205 | asection *o; | |
9206 | const struct elf_backend_data *bed; | |
c152c796 | 9207 | struct elf_link_hash_entry **sym_hashes; |
310fd250 L |
9208 | bfd_size_type address_size; |
9209 | bfd_vma r_type_mask; | |
9210 | int r_sym_shift; | |
ffbc01cc | 9211 | bfd_boolean have_file_sym = FALSE; |
c152c796 | 9212 | |
8b127cbc | 9213 | output_bfd = flinfo->output_bfd; |
c152c796 AM |
9214 | bed = get_elf_backend_data (output_bfd); |
9215 | relocate_section = bed->elf_backend_relocate_section; | |
9216 | ||
9217 | /* If this is a dynamic object, we don't want to do anything here: | |
9218 | we don't want the local symbols, and we don't want the section | |
9219 | contents. */ | |
9220 | if ((input_bfd->flags & DYNAMIC) != 0) | |
9221 | return TRUE; | |
9222 | ||
c152c796 AM |
9223 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
9224 | if (elf_bad_symtab (input_bfd)) | |
9225 | { | |
9226 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
9227 | extsymoff = 0; | |
9228 | } | |
9229 | else | |
9230 | { | |
9231 | locsymcount = symtab_hdr->sh_info; | |
9232 | extsymoff = symtab_hdr->sh_info; | |
9233 | } | |
9234 | ||
9235 | /* Read the local symbols. */ | |
9236 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
9237 | if (isymbuf == NULL && locsymcount != 0) | |
9238 | { | |
9239 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
8b127cbc AM |
9240 | flinfo->internal_syms, |
9241 | flinfo->external_syms, | |
9242 | flinfo->locsym_shndx); | |
c152c796 AM |
9243 | if (isymbuf == NULL) |
9244 | return FALSE; | |
9245 | } | |
9246 | ||
9247 | /* Find local symbol sections and adjust values of symbols in | |
9248 | SEC_MERGE sections. Write out those local symbols we know are | |
9249 | going into the output file. */ | |
9250 | isymend = isymbuf + locsymcount; | |
8b127cbc | 9251 | for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; |
c152c796 AM |
9252 | isym < isymend; |
9253 | isym++, pindex++, ppsection++) | |
9254 | { | |
9255 | asection *isec; | |
9256 | const char *name; | |
9257 | Elf_Internal_Sym osym; | |
6e0b88f1 AM |
9258 | long indx; |
9259 | int ret; | |
c152c796 AM |
9260 | |
9261 | *pindex = -1; | |
9262 | ||
9263 | if (elf_bad_symtab (input_bfd)) | |
9264 | { | |
9265 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
9266 | { | |
9267 | *ppsection = NULL; | |
9268 | continue; | |
9269 | } | |
9270 | } | |
9271 | ||
9272 | if (isym->st_shndx == SHN_UNDEF) | |
9273 | isec = bfd_und_section_ptr; | |
c152c796 AM |
9274 | else if (isym->st_shndx == SHN_ABS) |
9275 | isec = bfd_abs_section_ptr; | |
9276 | else if (isym->st_shndx == SHN_COMMON) | |
9277 | isec = bfd_com_section_ptr; | |
9278 | else | |
9279 | { | |
cb33740c AM |
9280 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
9281 | if (isec == NULL) | |
9282 | { | |
9283 | /* Don't attempt to output symbols with st_shnx in the | |
9284 | reserved range other than SHN_ABS and SHN_COMMON. */ | |
9285 | *ppsection = NULL; | |
9286 | continue; | |
9287 | } | |
dbaa2011 | 9288 | else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE |
cb33740c AM |
9289 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
9290 | isym->st_value = | |
9291 | _bfd_merged_section_offset (output_bfd, &isec, | |
9292 | elf_section_data (isec)->sec_info, | |
9293 | isym->st_value); | |
c152c796 AM |
9294 | } |
9295 | ||
9296 | *ppsection = isec; | |
9297 | ||
9298 | /* Don't output the first, undefined, symbol. */ | |
8b127cbc | 9299 | if (ppsection == flinfo->sections) |
c152c796 AM |
9300 | continue; |
9301 | ||
9302 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
9303 | { | |
9304 | /* We never output section symbols. Instead, we use the | |
9305 | section symbol of the corresponding section in the output | |
9306 | file. */ | |
9307 | continue; | |
9308 | } | |
9309 | ||
9310 | /* If we are stripping all symbols, we don't want to output this | |
9311 | one. */ | |
8b127cbc | 9312 | if (flinfo->info->strip == strip_all) |
c152c796 AM |
9313 | continue; |
9314 | ||
9315 | /* If we are discarding all local symbols, we don't want to | |
9316 | output this one. If we are generating a relocatable output | |
9317 | file, then some of the local symbols may be required by | |
9318 | relocs; we output them below as we discover that they are | |
9319 | needed. */ | |
8b127cbc | 9320 | if (flinfo->info->discard == discard_all) |
c152c796 AM |
9321 | continue; |
9322 | ||
9323 | /* If this symbol is defined in a section which we are | |
f02571c5 AM |
9324 | discarding, we don't need to keep it. */ |
9325 | if (isym->st_shndx != SHN_UNDEF | |
4fbb74a6 AM |
9326 | && isym->st_shndx < SHN_LORESERVE |
9327 | && bfd_section_removed_from_list (output_bfd, | |
9328 | isec->output_section)) | |
e75a280b L |
9329 | continue; |
9330 | ||
c152c796 AM |
9331 | /* Get the name of the symbol. */ |
9332 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
9333 | isym->st_name); | |
9334 | if (name == NULL) | |
9335 | return FALSE; | |
9336 | ||
9337 | /* See if we are discarding symbols with this name. */ | |
8b127cbc AM |
9338 | if ((flinfo->info->strip == strip_some |
9339 | && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE) | |
c152c796 | 9340 | == NULL)) |
8b127cbc AM |
9341 | || (((flinfo->info->discard == discard_sec_merge |
9342 | && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable) | |
9343 | || flinfo->info->discard == discard_l) | |
c152c796 AM |
9344 | && bfd_is_local_label_name (input_bfd, name))) |
9345 | continue; | |
9346 | ||
ffbc01cc AM |
9347 | if (ELF_ST_TYPE (isym->st_info) == STT_FILE) |
9348 | { | |
9349 | have_file_sym = TRUE; | |
9350 | flinfo->filesym_count += 1; | |
9351 | } | |
9352 | if (!have_file_sym) | |
9353 | { | |
9354 | /* In the absence of debug info, bfd_find_nearest_line uses | |
9355 | FILE symbols to determine the source file for local | |
9356 | function symbols. Provide a FILE symbol here if input | |
9357 | files lack such, so that their symbols won't be | |
9358 | associated with a previous input file. It's not the | |
9359 | source file, but the best we can do. */ | |
9360 | have_file_sym = TRUE; | |
9361 | flinfo->filesym_count += 1; | |
9362 | memset (&osym, 0, sizeof (osym)); | |
9363 | osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
9364 | osym.st_shndx = SHN_ABS; | |
9365 | if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym, | |
9366 | bfd_abs_section_ptr, NULL)) | |
9367 | return FALSE; | |
9368 | } | |
9369 | ||
c152c796 AM |
9370 | osym = *isym; |
9371 | ||
9372 | /* Adjust the section index for the output file. */ | |
9373 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
9374 | isec->output_section); | |
9375 | if (osym.st_shndx == SHN_BAD) | |
9376 | return FALSE; | |
9377 | ||
c152c796 AM |
9378 | /* ELF symbols in relocatable files are section relative, but |
9379 | in executable files they are virtual addresses. Note that | |
9380 | this code assumes that all ELF sections have an associated | |
9381 | BFD section with a reasonable value for output_offset; below | |
9382 | we assume that they also have a reasonable value for | |
9383 | output_section. Any special sections must be set up to meet | |
9384 | these requirements. */ | |
9385 | osym.st_value += isec->output_offset; | |
8b127cbc | 9386 | if (!flinfo->info->relocatable) |
c152c796 AM |
9387 | { |
9388 | osym.st_value += isec->output_section->vma; | |
9389 | if (ELF_ST_TYPE (osym.st_info) == STT_TLS) | |
9390 | { | |
9391 | /* STT_TLS symbols are relative to PT_TLS segment base. */ | |
8b127cbc AM |
9392 | BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL); |
9393 | osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; | |
c152c796 AM |
9394 | } |
9395 | } | |
9396 | ||
6e0b88f1 | 9397 | indx = bfd_get_symcount (output_bfd); |
8b127cbc | 9398 | ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL); |
6e0b88f1 | 9399 | if (ret == 0) |
c152c796 | 9400 | return FALSE; |
6e0b88f1 AM |
9401 | else if (ret == 1) |
9402 | *pindex = indx; | |
c152c796 AM |
9403 | } |
9404 | ||
310fd250 L |
9405 | if (bed->s->arch_size == 32) |
9406 | { | |
9407 | r_type_mask = 0xff; | |
9408 | r_sym_shift = 8; | |
9409 | address_size = 4; | |
9410 | } | |
9411 | else | |
9412 | { | |
9413 | r_type_mask = 0xffffffff; | |
9414 | r_sym_shift = 32; | |
9415 | address_size = 8; | |
9416 | } | |
9417 | ||
c152c796 AM |
9418 | /* Relocate the contents of each section. */ |
9419 | sym_hashes = elf_sym_hashes (input_bfd); | |
9420 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
9421 | { | |
9422 | bfd_byte *contents; | |
9423 | ||
9424 | if (! o->linker_mark) | |
9425 | { | |
9426 | /* This section was omitted from the link. */ | |
9427 | continue; | |
9428 | } | |
9429 | ||
8b127cbc | 9430 | if (flinfo->info->relocatable |
bcacc0f5 AM |
9431 | && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) |
9432 | { | |
9433 | /* Deal with the group signature symbol. */ | |
9434 | struct bfd_elf_section_data *sec_data = elf_section_data (o); | |
9435 | unsigned long symndx = sec_data->this_hdr.sh_info; | |
9436 | asection *osec = o->output_section; | |
9437 | ||
9438 | if (symndx >= locsymcount | |
9439 | || (elf_bad_symtab (input_bfd) | |
8b127cbc | 9440 | && flinfo->sections[symndx] == NULL)) |
bcacc0f5 AM |
9441 | { |
9442 | struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; | |
9443 | while (h->root.type == bfd_link_hash_indirect | |
9444 | || h->root.type == bfd_link_hash_warning) | |
9445 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9446 | /* Arrange for symbol to be output. */ | |
9447 | h->indx = -2; | |
9448 | elf_section_data (osec)->this_hdr.sh_info = -2; | |
9449 | } | |
9450 | else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) | |
9451 | { | |
9452 | /* We'll use the output section target_index. */ | |
8b127cbc | 9453 | asection *sec = flinfo->sections[symndx]->output_section; |
bcacc0f5 AM |
9454 | elf_section_data (osec)->this_hdr.sh_info = sec->target_index; |
9455 | } | |
9456 | else | |
9457 | { | |
8b127cbc | 9458 | if (flinfo->indices[symndx] == -1) |
bcacc0f5 AM |
9459 | { |
9460 | /* Otherwise output the local symbol now. */ | |
9461 | Elf_Internal_Sym sym = isymbuf[symndx]; | |
8b127cbc | 9462 | asection *sec = flinfo->sections[symndx]->output_section; |
bcacc0f5 | 9463 | const char *name; |
6e0b88f1 AM |
9464 | long indx; |
9465 | int ret; | |
bcacc0f5 AM |
9466 | |
9467 | name = bfd_elf_string_from_elf_section (input_bfd, | |
9468 | symtab_hdr->sh_link, | |
9469 | sym.st_name); | |
9470 | if (name == NULL) | |
9471 | return FALSE; | |
9472 | ||
9473 | sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
9474 | sec); | |
9475 | if (sym.st_shndx == SHN_BAD) | |
9476 | return FALSE; | |
9477 | ||
9478 | sym.st_value += o->output_offset; | |
9479 | ||
6e0b88f1 | 9480 | indx = bfd_get_symcount (output_bfd); |
8b127cbc | 9481 | ret = elf_link_output_sym (flinfo, name, &sym, o, NULL); |
6e0b88f1 | 9482 | if (ret == 0) |
bcacc0f5 | 9483 | return FALSE; |
6e0b88f1 | 9484 | else if (ret == 1) |
8b127cbc | 9485 | flinfo->indices[symndx] = indx; |
6e0b88f1 AM |
9486 | else |
9487 | abort (); | |
bcacc0f5 AM |
9488 | } |
9489 | elf_section_data (osec)->this_hdr.sh_info | |
8b127cbc | 9490 | = flinfo->indices[symndx]; |
bcacc0f5 AM |
9491 | } |
9492 | } | |
9493 | ||
c152c796 | 9494 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
eea6121a | 9495 | || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) |
c152c796 AM |
9496 | continue; |
9497 | ||
9498 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
9499 | { | |
9500 | /* Section was created by _bfd_elf_link_create_dynamic_sections | |
9501 | or somesuch. */ | |
9502 | continue; | |
9503 | } | |
9504 | ||
9505 | /* Get the contents of the section. They have been cached by a | |
9506 | relaxation routine. Note that o is a section in an input | |
9507 | file, so the contents field will not have been set by any of | |
9508 | the routines which work on output files. */ | |
9509 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
53291d1f AM |
9510 | { |
9511 | contents = elf_section_data (o)->this_hdr.contents; | |
9512 | if (bed->caches_rawsize | |
9513 | && o->rawsize != 0 | |
9514 | && o->rawsize < o->size) | |
9515 | { | |
9516 | memcpy (flinfo->contents, contents, o->rawsize); | |
9517 | contents = flinfo->contents; | |
9518 | } | |
9519 | } | |
c152c796 AM |
9520 | else |
9521 | { | |
8b127cbc | 9522 | contents = flinfo->contents; |
4a114e3e | 9523 | if (! bfd_get_full_section_contents (input_bfd, o, &contents)) |
c152c796 AM |
9524 | return FALSE; |
9525 | } | |
9526 | ||
9527 | if ((o->flags & SEC_RELOC) != 0) | |
9528 | { | |
9529 | Elf_Internal_Rela *internal_relocs; | |
0f02bbd9 | 9530 | Elf_Internal_Rela *rel, *relend; |
0f02bbd9 | 9531 | int action_discarded; |
ece5ef60 | 9532 | int ret; |
c152c796 AM |
9533 | |
9534 | /* Get the swapped relocs. */ | |
9535 | internal_relocs | |
8b127cbc AM |
9536 | = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs, |
9537 | flinfo->internal_relocs, FALSE); | |
c152c796 AM |
9538 | if (internal_relocs == NULL |
9539 | && o->reloc_count > 0) | |
9540 | return FALSE; | |
9541 | ||
310fd250 L |
9542 | /* We need to reverse-copy input .ctors/.dtors sections if |
9543 | they are placed in .init_array/.finit_array for output. */ | |
9544 | if (o->size > address_size | |
9545 | && ((strncmp (o->name, ".ctors", 6) == 0 | |
9546 | && strcmp (o->output_section->name, | |
9547 | ".init_array") == 0) | |
9548 | || (strncmp (o->name, ".dtors", 6) == 0 | |
9549 | && strcmp (o->output_section->name, | |
9550 | ".fini_array") == 0)) | |
9551 | && (o->name[6] == 0 || o->name[6] == '.')) | |
c152c796 | 9552 | { |
310fd250 L |
9553 | if (o->size != o->reloc_count * address_size) |
9554 | { | |
9555 | (*_bfd_error_handler) | |
9556 | (_("error: %B: size of section %A is not " | |
9557 | "multiple of address size"), | |
9558 | input_bfd, o); | |
9559 | bfd_set_error (bfd_error_on_input); | |
9560 | return FALSE; | |
9561 | } | |
9562 | o->flags |= SEC_ELF_REVERSE_COPY; | |
c152c796 AM |
9563 | } |
9564 | ||
0f02bbd9 | 9565 | action_discarded = -1; |
c152c796 | 9566 | if (!elf_section_ignore_discarded_relocs (o)) |
0f02bbd9 AM |
9567 | action_discarded = (*bed->action_discarded) (o); |
9568 | ||
9569 | /* Run through the relocs evaluating complex reloc symbols and | |
9570 | looking for relocs against symbols from discarded sections | |
9571 | or section symbols from removed link-once sections. | |
9572 | Complain about relocs against discarded sections. Zero | |
9573 | relocs against removed link-once sections. */ | |
9574 | ||
9575 | rel = internal_relocs; | |
9576 | relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
9577 | for ( ; rel < relend; rel++) | |
c152c796 | 9578 | { |
0f02bbd9 AM |
9579 | unsigned long r_symndx = rel->r_info >> r_sym_shift; |
9580 | unsigned int s_type; | |
9581 | asection **ps, *sec; | |
9582 | struct elf_link_hash_entry *h = NULL; | |
9583 | const char *sym_name; | |
c152c796 | 9584 | |
0f02bbd9 AM |
9585 | if (r_symndx == STN_UNDEF) |
9586 | continue; | |
c152c796 | 9587 | |
0f02bbd9 AM |
9588 | if (r_symndx >= locsymcount |
9589 | || (elf_bad_symtab (input_bfd) | |
8b127cbc | 9590 | && flinfo->sections[r_symndx] == NULL)) |
0f02bbd9 AM |
9591 | { |
9592 | h = sym_hashes[r_symndx - extsymoff]; | |
ee75fd95 | 9593 | |
0f02bbd9 AM |
9594 | /* Badly formatted input files can contain relocs that |
9595 | reference non-existant symbols. Check here so that | |
9596 | we do not seg fault. */ | |
9597 | if (h == NULL) | |
c152c796 | 9598 | { |
0f02bbd9 | 9599 | char buffer [32]; |
dce669a1 | 9600 | |
0f02bbd9 AM |
9601 | sprintf_vma (buffer, rel->r_info); |
9602 | (*_bfd_error_handler) | |
9603 | (_("error: %B contains a reloc (0x%s) for section %A " | |
9604 | "that references a non-existent global symbol"), | |
9605 | input_bfd, o, buffer); | |
9606 | bfd_set_error (bfd_error_bad_value); | |
9607 | return FALSE; | |
9608 | } | |
3b36f7e6 | 9609 | |
0f02bbd9 AM |
9610 | while (h->root.type == bfd_link_hash_indirect |
9611 | || h->root.type == bfd_link_hash_warning) | |
9612 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
c152c796 | 9613 | |
0f02bbd9 | 9614 | s_type = h->type; |
cdd3575c | 9615 | |
0f02bbd9 AM |
9616 | ps = NULL; |
9617 | if (h->root.type == bfd_link_hash_defined | |
9618 | || h->root.type == bfd_link_hash_defweak) | |
9619 | ps = &h->root.u.def.section; | |
9620 | ||
9621 | sym_name = h->root.root.string; | |
9622 | } | |
9623 | else | |
9624 | { | |
9625 | Elf_Internal_Sym *sym = isymbuf + r_symndx; | |
9626 | ||
9627 | s_type = ELF_ST_TYPE (sym->st_info); | |
8b127cbc | 9628 | ps = &flinfo->sections[r_symndx]; |
0f02bbd9 AM |
9629 | sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
9630 | sym, *ps); | |
9631 | } | |
c152c796 | 9632 | |
c301e700 | 9633 | if ((s_type == STT_RELC || s_type == STT_SRELC) |
8b127cbc | 9634 | && !flinfo->info->relocatable) |
0f02bbd9 AM |
9635 | { |
9636 | bfd_vma val; | |
9637 | bfd_vma dot = (rel->r_offset | |
9638 | + o->output_offset + o->output_section->vma); | |
9639 | #ifdef DEBUG | |
9640 | printf ("Encountered a complex symbol!"); | |
9641 | printf (" (input_bfd %s, section %s, reloc %ld\n", | |
9ccb8af9 AM |
9642 | input_bfd->filename, o->name, |
9643 | (long) (rel - internal_relocs)); | |
0f02bbd9 AM |
9644 | printf (" symbol: idx %8.8lx, name %s\n", |
9645 | r_symndx, sym_name); | |
9646 | printf (" reloc : info %8.8lx, addr %8.8lx\n", | |
9647 | (unsigned long) rel->r_info, | |
9648 | (unsigned long) rel->r_offset); | |
9649 | #endif | |
8b127cbc | 9650 | if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, |
0f02bbd9 AM |
9651 | isymbuf, locsymcount, s_type == STT_SRELC)) |
9652 | return FALSE; | |
9653 | ||
9654 | /* Symbol evaluated OK. Update to absolute value. */ | |
9655 | set_symbol_value (input_bfd, isymbuf, locsymcount, | |
9656 | r_symndx, val); | |
9657 | continue; | |
9658 | } | |
9659 | ||
9660 | if (action_discarded != -1 && ps != NULL) | |
9661 | { | |
cdd3575c AM |
9662 | /* Complain if the definition comes from a |
9663 | discarded section. */ | |
dbaa2011 | 9664 | if ((sec = *ps) != NULL && discarded_section (sec)) |
cdd3575c | 9665 | { |
cf35638d | 9666 | BFD_ASSERT (r_symndx != STN_UNDEF); |
0f02bbd9 | 9667 | if (action_discarded & COMPLAIN) |
8b127cbc | 9668 | (*flinfo->info->callbacks->einfo) |
e1fffbe6 | 9669 | (_("%X`%s' referenced in section `%A' of %B: " |
58ac56d0 | 9670 | "defined in discarded section `%A' of %B\n"), |
e1fffbe6 | 9671 | sym_name, o, input_bfd, sec, sec->owner); |
cdd3575c | 9672 | |
87e5235d | 9673 | /* Try to do the best we can to support buggy old |
e0ae6d6f | 9674 | versions of gcc. Pretend that the symbol is |
87e5235d AM |
9675 | really defined in the kept linkonce section. |
9676 | FIXME: This is quite broken. Modifying the | |
9677 | symbol here means we will be changing all later | |
e0ae6d6f | 9678 | uses of the symbol, not just in this section. */ |
0f02bbd9 | 9679 | if (action_discarded & PRETEND) |
87e5235d | 9680 | { |
01b3c8ab L |
9681 | asection *kept; |
9682 | ||
c0f00686 | 9683 | kept = _bfd_elf_check_kept_section (sec, |
8b127cbc | 9684 | flinfo->info); |
01b3c8ab | 9685 | if (kept != NULL) |
87e5235d AM |
9686 | { |
9687 | *ps = kept; | |
9688 | continue; | |
9689 | } | |
9690 | } | |
c152c796 AM |
9691 | } |
9692 | } | |
9693 | } | |
9694 | ||
9695 | /* Relocate the section by invoking a back end routine. | |
9696 | ||
9697 | The back end routine is responsible for adjusting the | |
9698 | section contents as necessary, and (if using Rela relocs | |
9699 | and generating a relocatable output file) adjusting the | |
9700 | reloc addend as necessary. | |
9701 | ||
9702 | The back end routine does not have to worry about setting | |
9703 | the reloc address or the reloc symbol index. | |
9704 | ||
9705 | The back end routine is given a pointer to the swapped in | |
9706 | internal symbols, and can access the hash table entries | |
9707 | for the external symbols via elf_sym_hashes (input_bfd). | |
9708 | ||
9709 | When generating relocatable output, the back end routine | |
9710 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
9711 | output symbol is going to be a section symbol | |
9712 | corresponding to the output section, which will require | |
9713 | the addend to be adjusted. */ | |
9714 | ||
8b127cbc | 9715 | ret = (*relocate_section) (output_bfd, flinfo->info, |
c152c796 AM |
9716 | input_bfd, o, contents, |
9717 | internal_relocs, | |
9718 | isymbuf, | |
8b127cbc | 9719 | flinfo->sections); |
ece5ef60 | 9720 | if (!ret) |
c152c796 AM |
9721 | return FALSE; |
9722 | ||
ece5ef60 | 9723 | if (ret == 2 |
8b127cbc AM |
9724 | || flinfo->info->relocatable |
9725 | || flinfo->info->emitrelocations) | |
c152c796 AM |
9726 | { |
9727 | Elf_Internal_Rela *irela; | |
d4730f92 | 9728 | Elf_Internal_Rela *irelaend, *irelamid; |
c152c796 AM |
9729 | bfd_vma last_offset; |
9730 | struct elf_link_hash_entry **rel_hash; | |
d4730f92 BS |
9731 | struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; |
9732 | Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; | |
c152c796 | 9733 | unsigned int next_erel; |
c152c796 | 9734 | bfd_boolean rela_normal; |
d4730f92 | 9735 | struct bfd_elf_section_data *esdi, *esdo; |
c152c796 | 9736 | |
d4730f92 BS |
9737 | esdi = elf_section_data (o); |
9738 | esdo = elf_section_data (o->output_section); | |
9739 | rela_normal = FALSE; | |
c152c796 AM |
9740 | |
9741 | /* Adjust the reloc addresses and symbol indices. */ | |
9742 | ||
9743 | irela = internal_relocs; | |
9744 | irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |
d4730f92 BS |
9745 | rel_hash = esdo->rel.hashes + esdo->rel.count; |
9746 | /* We start processing the REL relocs, if any. When we reach | |
9747 | IRELAMID in the loop, we switch to the RELA relocs. */ | |
9748 | irelamid = irela; | |
9749 | if (esdi->rel.hdr != NULL) | |
9750 | irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) | |
9751 | * bed->s->int_rels_per_ext_rel); | |
eac338cf | 9752 | rel_hash_list = rel_hash; |
d4730f92 | 9753 | rela_hash_list = NULL; |
c152c796 | 9754 | last_offset = o->output_offset; |
8b127cbc | 9755 | if (!flinfo->info->relocatable) |
c152c796 AM |
9756 | last_offset += o->output_section->vma; |
9757 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) | |
9758 | { | |
9759 | unsigned long r_symndx; | |
9760 | asection *sec; | |
9761 | Elf_Internal_Sym sym; | |
9762 | ||
9763 | if (next_erel == bed->s->int_rels_per_ext_rel) | |
9764 | { | |
9765 | rel_hash++; | |
9766 | next_erel = 0; | |
9767 | } | |
9768 | ||
d4730f92 BS |
9769 | if (irela == irelamid) |
9770 | { | |
9771 | rel_hash = esdo->rela.hashes + esdo->rela.count; | |
9772 | rela_hash_list = rel_hash; | |
9773 | rela_normal = bed->rela_normal; | |
9774 | } | |
9775 | ||
c152c796 | 9776 | irela->r_offset = _bfd_elf_section_offset (output_bfd, |
8b127cbc | 9777 | flinfo->info, o, |
c152c796 AM |
9778 | irela->r_offset); |
9779 | if (irela->r_offset >= (bfd_vma) -2) | |
9780 | { | |
9781 | /* This is a reloc for a deleted entry or somesuch. | |
9782 | Turn it into an R_*_NONE reloc, at the same | |
9783 | offset as the last reloc. elf_eh_frame.c and | |
e460dd0d | 9784 | bfd_elf_discard_info rely on reloc offsets |
c152c796 AM |
9785 | being ordered. */ |
9786 | irela->r_offset = last_offset; | |
9787 | irela->r_info = 0; | |
9788 | irela->r_addend = 0; | |
9789 | continue; | |
9790 | } | |
9791 | ||
9792 | irela->r_offset += o->output_offset; | |
9793 | ||
9794 | /* Relocs in an executable have to be virtual addresses. */ | |
8b127cbc | 9795 | if (!flinfo->info->relocatable) |
c152c796 AM |
9796 | irela->r_offset += o->output_section->vma; |
9797 | ||
9798 | last_offset = irela->r_offset; | |
9799 | ||
9800 | r_symndx = irela->r_info >> r_sym_shift; | |
9801 | if (r_symndx == STN_UNDEF) | |
9802 | continue; | |
9803 | ||
9804 | if (r_symndx >= locsymcount | |
9805 | || (elf_bad_symtab (input_bfd) | |
8b127cbc | 9806 | && flinfo->sections[r_symndx] == NULL)) |
c152c796 AM |
9807 | { |
9808 | struct elf_link_hash_entry *rh; | |
9809 | unsigned long indx; | |
9810 | ||
9811 | /* This is a reloc against a global symbol. We | |
9812 | have not yet output all the local symbols, so | |
9813 | we do not know the symbol index of any global | |
9814 | symbol. We set the rel_hash entry for this | |
9815 | reloc to point to the global hash table entry | |
9816 | for this symbol. The symbol index is then | |
ee75fd95 | 9817 | set at the end of bfd_elf_final_link. */ |
c152c796 AM |
9818 | indx = r_symndx - extsymoff; |
9819 | rh = elf_sym_hashes (input_bfd)[indx]; | |
9820 | while (rh->root.type == bfd_link_hash_indirect | |
9821 | || rh->root.type == bfd_link_hash_warning) | |
9822 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |
9823 | ||
9824 | /* Setting the index to -2 tells | |
9825 | elf_link_output_extsym that this symbol is | |
9826 | used by a reloc. */ | |
9827 | BFD_ASSERT (rh->indx < 0); | |
9828 | rh->indx = -2; | |
9829 | ||
9830 | *rel_hash = rh; | |
9831 | ||
9832 | continue; | |
9833 | } | |
9834 | ||
9835 | /* This is a reloc against a local symbol. */ | |
9836 | ||
9837 | *rel_hash = NULL; | |
9838 | sym = isymbuf[r_symndx]; | |
8b127cbc | 9839 | sec = flinfo->sections[r_symndx]; |
c152c796 AM |
9840 | if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) |
9841 | { | |
9842 | /* I suppose the backend ought to fill in the | |
9843 | section of any STT_SECTION symbol against a | |
6a8d1586 | 9844 | processor specific section. */ |
cf35638d | 9845 | r_symndx = STN_UNDEF; |
6a8d1586 AM |
9846 | if (bfd_is_abs_section (sec)) |
9847 | ; | |
c152c796 AM |
9848 | else if (sec == NULL || sec->owner == NULL) |
9849 | { | |
9850 | bfd_set_error (bfd_error_bad_value); | |
9851 | return FALSE; | |
9852 | } | |
9853 | else | |
9854 | { | |
6a8d1586 AM |
9855 | asection *osec = sec->output_section; |
9856 | ||
9857 | /* If we have discarded a section, the output | |
9858 | section will be the absolute section. In | |
ab96bf03 AM |
9859 | case of discarded SEC_MERGE sections, use |
9860 | the kept section. relocate_section should | |
9861 | have already handled discarded linkonce | |
9862 | sections. */ | |
6a8d1586 AM |
9863 | if (bfd_is_abs_section (osec) |
9864 | && sec->kept_section != NULL | |
9865 | && sec->kept_section->output_section != NULL) | |
9866 | { | |
9867 | osec = sec->kept_section->output_section; | |
9868 | irela->r_addend -= osec->vma; | |
9869 | } | |
9870 | ||
9871 | if (!bfd_is_abs_section (osec)) | |
9872 | { | |
9873 | r_symndx = osec->target_index; | |
cf35638d | 9874 | if (r_symndx == STN_UNDEF) |
74541ad4 | 9875 | { |
051d833a AM |
9876 | irela->r_addend += osec->vma; |
9877 | osec = _bfd_nearby_section (output_bfd, osec, | |
9878 | osec->vma); | |
9879 | irela->r_addend -= osec->vma; | |
9880 | r_symndx = osec->target_index; | |
74541ad4 | 9881 | } |
6a8d1586 | 9882 | } |
c152c796 AM |
9883 | } |
9884 | ||
9885 | /* Adjust the addend according to where the | |
9886 | section winds up in the output section. */ | |
9887 | if (rela_normal) | |
9888 | irela->r_addend += sec->output_offset; | |
9889 | } | |
9890 | else | |
9891 | { | |
8b127cbc | 9892 | if (flinfo->indices[r_symndx] == -1) |
c152c796 AM |
9893 | { |
9894 | unsigned long shlink; | |
9895 | const char *name; | |
9896 | asection *osec; | |
6e0b88f1 | 9897 | long indx; |
c152c796 | 9898 | |
8b127cbc | 9899 | if (flinfo->info->strip == strip_all) |
c152c796 AM |
9900 | { |
9901 | /* You can't do ld -r -s. */ | |
9902 | bfd_set_error (bfd_error_invalid_operation); | |
9903 | return FALSE; | |
9904 | } | |
9905 | ||
9906 | /* This symbol was skipped earlier, but | |
9907 | since it is needed by a reloc, we | |
9908 | must output it now. */ | |
9909 | shlink = symtab_hdr->sh_link; | |
9910 | name = (bfd_elf_string_from_elf_section | |
9911 | (input_bfd, shlink, sym.st_name)); | |
9912 | if (name == NULL) | |
9913 | return FALSE; | |
9914 | ||
9915 | osec = sec->output_section; | |
9916 | sym.st_shndx = | |
9917 | _bfd_elf_section_from_bfd_section (output_bfd, | |
9918 | osec); | |
9919 | if (sym.st_shndx == SHN_BAD) | |
9920 | return FALSE; | |
9921 | ||
9922 | sym.st_value += sec->output_offset; | |
8b127cbc | 9923 | if (!flinfo->info->relocatable) |
c152c796 AM |
9924 | { |
9925 | sym.st_value += osec->vma; | |
9926 | if (ELF_ST_TYPE (sym.st_info) == STT_TLS) | |
9927 | { | |
9928 | /* STT_TLS symbols are relative to PT_TLS | |
9929 | segment base. */ | |
8b127cbc | 9930 | BFD_ASSERT (elf_hash_table (flinfo->info) |
c152c796 | 9931 | ->tls_sec != NULL); |
8b127cbc | 9932 | sym.st_value -= (elf_hash_table (flinfo->info) |
c152c796 AM |
9933 | ->tls_sec->vma); |
9934 | } | |
9935 | } | |
9936 | ||
6e0b88f1 | 9937 | indx = bfd_get_symcount (output_bfd); |
8b127cbc | 9938 | ret = elf_link_output_sym (flinfo, name, &sym, sec, |
6e0b88f1 AM |
9939 | NULL); |
9940 | if (ret == 0) | |
c152c796 | 9941 | return FALSE; |
6e0b88f1 | 9942 | else if (ret == 1) |
8b127cbc | 9943 | flinfo->indices[r_symndx] = indx; |
6e0b88f1 AM |
9944 | else |
9945 | abort (); | |
c152c796 AM |
9946 | } |
9947 | ||
8b127cbc | 9948 | r_symndx = flinfo->indices[r_symndx]; |
c152c796 AM |
9949 | } |
9950 | ||
9951 | irela->r_info = ((bfd_vma) r_symndx << r_sym_shift | |
9952 | | (irela->r_info & r_type_mask)); | |
9953 | } | |
9954 | ||
9955 | /* Swap out the relocs. */ | |
d4730f92 BS |
9956 | input_rel_hdr = esdi->rel.hdr; |
9957 | if (input_rel_hdr && input_rel_hdr->sh_size != 0) | |
c152c796 | 9958 | { |
d4730f92 BS |
9959 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
9960 | input_rel_hdr, | |
9961 | internal_relocs, | |
9962 | rel_hash_list)) | |
9963 | return FALSE; | |
c152c796 AM |
9964 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) |
9965 | * bed->s->int_rels_per_ext_rel); | |
eac338cf | 9966 | rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); |
d4730f92 BS |
9967 | } |
9968 | ||
9969 | input_rela_hdr = esdi->rela.hdr; | |
9970 | if (input_rela_hdr && input_rela_hdr->sh_size != 0) | |
9971 | { | |
eac338cf | 9972 | if (!bed->elf_backend_emit_relocs (output_bfd, o, |
d4730f92 | 9973 | input_rela_hdr, |
eac338cf | 9974 | internal_relocs, |
d4730f92 | 9975 | rela_hash_list)) |
c152c796 AM |
9976 | return FALSE; |
9977 | } | |
9978 | } | |
9979 | } | |
9980 | ||
9981 | /* Write out the modified section contents. */ | |
9982 | if (bed->elf_backend_write_section | |
8b127cbc | 9983 | && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, |
c7b8f16e | 9984 | contents)) |
c152c796 AM |
9985 | { |
9986 | /* Section written out. */ | |
9987 | } | |
9988 | else switch (o->sec_info_type) | |
9989 | { | |
dbaa2011 | 9990 | case SEC_INFO_TYPE_STABS: |
c152c796 AM |
9991 | if (! (_bfd_write_section_stabs |
9992 | (output_bfd, | |
8b127cbc | 9993 | &elf_hash_table (flinfo->info)->stab_info, |
c152c796 AM |
9994 | o, &elf_section_data (o)->sec_info, contents))) |
9995 | return FALSE; | |
9996 | break; | |
dbaa2011 | 9997 | case SEC_INFO_TYPE_MERGE: |
c152c796 AM |
9998 | if (! _bfd_write_merged_section (output_bfd, o, |
9999 | elf_section_data (o)->sec_info)) | |
10000 | return FALSE; | |
10001 | break; | |
dbaa2011 | 10002 | case SEC_INFO_TYPE_EH_FRAME: |
c152c796 | 10003 | { |
8b127cbc | 10004 | if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, |
c152c796 AM |
10005 | o, contents)) |
10006 | return FALSE; | |
10007 | } | |
10008 | break; | |
10009 | default: | |
10010 | { | |
5dabe785 | 10011 | /* FIXME: octets_per_byte. */ |
310fd250 L |
10012 | if (! (o->flags & SEC_EXCLUDE)) |
10013 | { | |
10014 | file_ptr offset = (file_ptr) o->output_offset; | |
10015 | bfd_size_type todo = o->size; | |
10016 | if ((o->flags & SEC_ELF_REVERSE_COPY)) | |
10017 | { | |
10018 | /* Reverse-copy input section to output. */ | |
10019 | do | |
10020 | { | |
10021 | todo -= address_size; | |
10022 | if (! bfd_set_section_contents (output_bfd, | |
10023 | o->output_section, | |
10024 | contents + todo, | |
10025 | offset, | |
10026 | address_size)) | |
10027 | return FALSE; | |
10028 | if (todo == 0) | |
10029 | break; | |
10030 | offset += address_size; | |
10031 | } | |
10032 | while (1); | |
10033 | } | |
10034 | else if (! bfd_set_section_contents (output_bfd, | |
10035 | o->output_section, | |
10036 | contents, | |
10037 | offset, todo)) | |
10038 | return FALSE; | |
10039 | } | |
c152c796 AM |
10040 | } |
10041 | break; | |
10042 | } | |
10043 | } | |
10044 | ||
10045 | return TRUE; | |
10046 | } | |
10047 | ||
10048 | /* Generate a reloc when linking an ELF file. This is a reloc | |
3a800eb9 | 10049 | requested by the linker, and does not come from any input file. This |
c152c796 AM |
10050 | is used to build constructor and destructor tables when linking |
10051 | with -Ur. */ | |
10052 | ||
10053 | static bfd_boolean | |
10054 | elf_reloc_link_order (bfd *output_bfd, | |
10055 | struct bfd_link_info *info, | |
10056 | asection *output_section, | |
10057 | struct bfd_link_order *link_order) | |
10058 | { | |
10059 | reloc_howto_type *howto; | |
10060 | long indx; | |
10061 | bfd_vma offset; | |
10062 | bfd_vma addend; | |
d4730f92 | 10063 | struct bfd_elf_section_reloc_data *reldata; |
c152c796 AM |
10064 | struct elf_link_hash_entry **rel_hash_ptr; |
10065 | Elf_Internal_Shdr *rel_hdr; | |
10066 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
10067 | Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; | |
10068 | bfd_byte *erel; | |
10069 | unsigned int i; | |
d4730f92 | 10070 | struct bfd_elf_section_data *esdo = elf_section_data (output_section); |
c152c796 AM |
10071 | |
10072 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
10073 | if (howto == NULL) | |
10074 | { | |
10075 | bfd_set_error (bfd_error_bad_value); | |
10076 | return FALSE; | |
10077 | } | |
10078 | ||
10079 | addend = link_order->u.reloc.p->addend; | |
10080 | ||
d4730f92 BS |
10081 | if (esdo->rel.hdr) |
10082 | reldata = &esdo->rel; | |
10083 | else if (esdo->rela.hdr) | |
10084 | reldata = &esdo->rela; | |
10085 | else | |
10086 | { | |
10087 | reldata = NULL; | |
10088 | BFD_ASSERT (0); | |
10089 | } | |
10090 | ||
c152c796 | 10091 | /* Figure out the symbol index. */ |
d4730f92 | 10092 | rel_hash_ptr = reldata->hashes + reldata->count; |
c152c796 AM |
10093 | if (link_order->type == bfd_section_reloc_link_order) |
10094 | { | |
10095 | indx = link_order->u.reloc.p->u.section->target_index; | |
10096 | BFD_ASSERT (indx != 0); | |
10097 | *rel_hash_ptr = NULL; | |
10098 | } | |
10099 | else | |
10100 | { | |
10101 | struct elf_link_hash_entry *h; | |
10102 | ||
10103 | /* Treat a reloc against a defined symbol as though it were | |
10104 | actually against the section. */ | |
10105 | h = ((struct elf_link_hash_entry *) | |
10106 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
10107 | link_order->u.reloc.p->u.name, | |
10108 | FALSE, FALSE, TRUE)); | |
10109 | if (h != NULL | |
10110 | && (h->root.type == bfd_link_hash_defined | |
10111 | || h->root.type == bfd_link_hash_defweak)) | |
10112 | { | |
10113 | asection *section; | |
10114 | ||
10115 | section = h->root.u.def.section; | |
10116 | indx = section->output_section->target_index; | |
10117 | *rel_hash_ptr = NULL; | |
10118 | /* It seems that we ought to add the symbol value to the | |
10119 | addend here, but in practice it has already been added | |
10120 | because it was passed to constructor_callback. */ | |
10121 | addend += section->output_section->vma + section->output_offset; | |
10122 | } | |
10123 | else if (h != NULL) | |
10124 | { | |
10125 | /* Setting the index to -2 tells elf_link_output_extsym that | |
10126 | this symbol is used by a reloc. */ | |
10127 | h->indx = -2; | |
10128 | *rel_hash_ptr = h; | |
10129 | indx = 0; | |
10130 | } | |
10131 | else | |
10132 | { | |
10133 | if (! ((*info->callbacks->unattached_reloc) | |
10134 | (info, link_order->u.reloc.p->u.name, NULL, NULL, 0))) | |
10135 | return FALSE; | |
10136 | indx = 0; | |
10137 | } | |
10138 | } | |
10139 | ||
10140 | /* If this is an inplace reloc, we must write the addend into the | |
10141 | object file. */ | |
10142 | if (howto->partial_inplace && addend != 0) | |
10143 | { | |
10144 | bfd_size_type size; | |
10145 | bfd_reloc_status_type rstat; | |
10146 | bfd_byte *buf; | |
10147 | bfd_boolean ok; | |
10148 | const char *sym_name; | |
10149 | ||
a50b1753 NC |
10150 | size = (bfd_size_type) bfd_get_reloc_size (howto); |
10151 | buf = (bfd_byte *) bfd_zmalloc (size); | |
c152c796 AM |
10152 | if (buf == NULL) |
10153 | return FALSE; | |
10154 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
10155 | switch (rstat) | |
10156 | { | |
10157 | case bfd_reloc_ok: | |
10158 | break; | |
10159 | ||
10160 | default: | |
10161 | case bfd_reloc_outofrange: | |
10162 | abort (); | |
10163 | ||
10164 | case bfd_reloc_overflow: | |
10165 | if (link_order->type == bfd_section_reloc_link_order) | |
10166 | sym_name = bfd_section_name (output_bfd, | |
10167 | link_order->u.reloc.p->u.section); | |
10168 | else | |
10169 | sym_name = link_order->u.reloc.p->u.name; | |
10170 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f L |
10171 | (info, NULL, sym_name, howto->name, addend, NULL, |
10172 | NULL, (bfd_vma) 0))) | |
c152c796 AM |
10173 | { |
10174 | free (buf); | |
10175 | return FALSE; | |
10176 | } | |
10177 | break; | |
10178 | } | |
10179 | ok = bfd_set_section_contents (output_bfd, output_section, buf, | |
10180 | link_order->offset, size); | |
10181 | free (buf); | |
10182 | if (! ok) | |
10183 | return FALSE; | |
10184 | } | |
10185 | ||
10186 | /* The address of a reloc is relative to the section in a | |
10187 | relocatable file, and is a virtual address in an executable | |
10188 | file. */ | |
10189 | offset = link_order->offset; | |
10190 | if (! info->relocatable) | |
10191 | offset += output_section->vma; | |
10192 | ||
10193 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | |
10194 | { | |
10195 | irel[i].r_offset = offset; | |
10196 | irel[i].r_info = 0; | |
10197 | irel[i].r_addend = 0; | |
10198 | } | |
10199 | if (bed->s->arch_size == 32) | |
10200 | irel[0].r_info = ELF32_R_INFO (indx, howto->type); | |
10201 | else | |
10202 | irel[0].r_info = ELF64_R_INFO (indx, howto->type); | |
10203 | ||
d4730f92 | 10204 | rel_hdr = reldata->hdr; |
c152c796 AM |
10205 | erel = rel_hdr->contents; |
10206 | if (rel_hdr->sh_type == SHT_REL) | |
10207 | { | |
d4730f92 | 10208 | erel += reldata->count * bed->s->sizeof_rel; |
c152c796 AM |
10209 | (*bed->s->swap_reloc_out) (output_bfd, irel, erel); |
10210 | } | |
10211 | else | |
10212 | { | |
10213 | irel[0].r_addend = addend; | |
d4730f92 | 10214 | erel += reldata->count * bed->s->sizeof_rela; |
c152c796 AM |
10215 | (*bed->s->swap_reloca_out) (output_bfd, irel, erel); |
10216 | } | |
10217 | ||
d4730f92 | 10218 | ++reldata->count; |
c152c796 AM |
10219 | |
10220 | return TRUE; | |
10221 | } | |
10222 | ||
0b52efa6 PB |
10223 | |
10224 | /* Get the output vma of the section pointed to by the sh_link field. */ | |
10225 | ||
10226 | static bfd_vma | |
10227 | elf_get_linked_section_vma (struct bfd_link_order *p) | |
10228 | { | |
10229 | Elf_Internal_Shdr **elf_shdrp; | |
10230 | asection *s; | |
10231 | int elfsec; | |
10232 | ||
10233 | s = p->u.indirect.section; | |
10234 | elf_shdrp = elf_elfsections (s->owner); | |
10235 | elfsec = _bfd_elf_section_from_bfd_section (s->owner, s); | |
10236 | elfsec = elf_shdrp[elfsec]->sh_link; | |
185d09ad L |
10237 | /* PR 290: |
10238 | The Intel C compiler generates SHT_IA_64_UNWIND with | |
e04bcc6d | 10239 | SHF_LINK_ORDER. But it doesn't set the sh_link or |
185d09ad L |
10240 | sh_info fields. Hence we could get the situation |
10241 | where elfsec is 0. */ | |
10242 | if (elfsec == 0) | |
10243 | { | |
10244 | const struct elf_backend_data *bed | |
10245 | = get_elf_backend_data (s->owner); | |
10246 | if (bed->link_order_error_handler) | |
d003868e AM |
10247 | bed->link_order_error_handler |
10248 | (_("%B: warning: sh_link not set for section `%A'"), s->owner, s); | |
185d09ad L |
10249 | return 0; |
10250 | } | |
10251 | else | |
10252 | { | |
10253 | s = elf_shdrp[elfsec]->bfd_section; | |
10254 | return s->output_section->vma + s->output_offset; | |
10255 | } | |
0b52efa6 PB |
10256 | } |
10257 | ||
10258 | ||
10259 | /* Compare two sections based on the locations of the sections they are | |
10260 | linked to. Used by elf_fixup_link_order. */ | |
10261 | ||
10262 | static int | |
10263 | compare_link_order (const void * a, const void * b) | |
10264 | { | |
10265 | bfd_vma apos; | |
10266 | bfd_vma bpos; | |
10267 | ||
10268 | apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a); | |
10269 | bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b); | |
10270 | if (apos < bpos) | |
10271 | return -1; | |
10272 | return apos > bpos; | |
10273 | } | |
10274 | ||
10275 | ||
10276 | /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same | |
10277 | order as their linked sections. Returns false if this could not be done | |
10278 | because an output section includes both ordered and unordered | |
10279 | sections. Ideally we'd do this in the linker proper. */ | |
10280 | ||
10281 | static bfd_boolean | |
10282 | elf_fixup_link_order (bfd *abfd, asection *o) | |
10283 | { | |
10284 | int seen_linkorder; | |
10285 | int seen_other; | |
10286 | int n; | |
10287 | struct bfd_link_order *p; | |
10288 | bfd *sub; | |
10289 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
b761a207 | 10290 | unsigned elfsec; |
0b52efa6 | 10291 | struct bfd_link_order **sections; |
d33cdfe3 | 10292 | asection *s, *other_sec, *linkorder_sec; |
0b52efa6 | 10293 | bfd_vma offset; |
3b36f7e6 | 10294 | |
d33cdfe3 L |
10295 | other_sec = NULL; |
10296 | linkorder_sec = NULL; | |
0b52efa6 PB |
10297 | seen_other = 0; |
10298 | seen_linkorder = 0; | |
8423293d | 10299 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
0b52efa6 | 10300 | { |
d33cdfe3 | 10301 | if (p->type == bfd_indirect_link_order) |
0b52efa6 PB |
10302 | { |
10303 | s = p->u.indirect.section; | |
d33cdfe3 L |
10304 | sub = s->owner; |
10305 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour | |
10306 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass | |
b761a207 BE |
10307 | && (elfsec = _bfd_elf_section_from_bfd_section (sub, s)) |
10308 | && elfsec < elf_numsections (sub) | |
4fbb74a6 AM |
10309 | && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER |
10310 | && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub)) | |
d33cdfe3 L |
10311 | { |
10312 | seen_linkorder++; | |
10313 | linkorder_sec = s; | |
10314 | } | |
0b52efa6 | 10315 | else |
d33cdfe3 L |
10316 | { |
10317 | seen_other++; | |
10318 | other_sec = s; | |
10319 | } | |
0b52efa6 PB |
10320 | } |
10321 | else | |
10322 | seen_other++; | |
d33cdfe3 L |
10323 | |
10324 | if (seen_other && seen_linkorder) | |
10325 | { | |
10326 | if (other_sec && linkorder_sec) | |
10327 | (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"), | |
10328 | o, linkorder_sec, | |
10329 | linkorder_sec->owner, other_sec, | |
10330 | other_sec->owner); | |
10331 | else | |
10332 | (*_bfd_error_handler) (_("%A has both ordered and unordered sections"), | |
10333 | o); | |
10334 | bfd_set_error (bfd_error_bad_value); | |
10335 | return FALSE; | |
10336 | } | |
0b52efa6 PB |
10337 | } |
10338 | ||
10339 | if (!seen_linkorder) | |
10340 | return TRUE; | |
10341 | ||
0b52efa6 | 10342 | sections = (struct bfd_link_order **) |
14b1c01e AM |
10343 | bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *)); |
10344 | if (sections == NULL) | |
10345 | return FALSE; | |
0b52efa6 | 10346 | seen_linkorder = 0; |
3b36f7e6 | 10347 | |
8423293d | 10348 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
0b52efa6 PB |
10349 | { |
10350 | sections[seen_linkorder++] = p; | |
10351 | } | |
10352 | /* Sort the input sections in the order of their linked section. */ | |
10353 | qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *), | |
10354 | compare_link_order); | |
10355 | ||
10356 | /* Change the offsets of the sections. */ | |
10357 | offset = 0; | |
10358 | for (n = 0; n < seen_linkorder; n++) | |
10359 | { | |
10360 | s = sections[n]->u.indirect.section; | |
461686a3 | 10361 | offset &= ~(bfd_vma) 0 << s->alignment_power; |
0b52efa6 PB |
10362 | s->output_offset = offset; |
10363 | sections[n]->offset = offset; | |
5dabe785 | 10364 | /* FIXME: octets_per_byte. */ |
0b52efa6 PB |
10365 | offset += sections[n]->size; |
10366 | } | |
10367 | ||
4dd07732 | 10368 | free (sections); |
0b52efa6 PB |
10369 | return TRUE; |
10370 | } | |
10371 | ||
9f7c3e5e AM |
10372 | static void |
10373 | elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) | |
10374 | { | |
10375 | asection *o; | |
10376 | ||
10377 | if (flinfo->symstrtab != NULL) | |
10378 | _bfd_stringtab_free (flinfo->symstrtab); | |
10379 | if (flinfo->contents != NULL) | |
10380 | free (flinfo->contents); | |
10381 | if (flinfo->external_relocs != NULL) | |
10382 | free (flinfo->external_relocs); | |
10383 | if (flinfo->internal_relocs != NULL) | |
10384 | free (flinfo->internal_relocs); | |
10385 | if (flinfo->external_syms != NULL) | |
10386 | free (flinfo->external_syms); | |
10387 | if (flinfo->locsym_shndx != NULL) | |
10388 | free (flinfo->locsym_shndx); | |
10389 | if (flinfo->internal_syms != NULL) | |
10390 | free (flinfo->internal_syms); | |
10391 | if (flinfo->indices != NULL) | |
10392 | free (flinfo->indices); | |
10393 | if (flinfo->sections != NULL) | |
10394 | free (flinfo->sections); | |
10395 | if (flinfo->symbuf != NULL) | |
10396 | free (flinfo->symbuf); | |
10397 | if (flinfo->symshndxbuf != NULL) | |
10398 | free (flinfo->symshndxbuf); | |
10399 | for (o = obfd->sections; o != NULL; o = o->next) | |
10400 | { | |
10401 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
10402 | if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) | |
10403 | free (esdo->rel.hashes); | |
10404 | if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) | |
10405 | free (esdo->rela.hashes); | |
10406 | } | |
10407 | } | |
0b52efa6 | 10408 | |
c152c796 AM |
10409 | /* Do the final step of an ELF link. */ |
10410 | ||
10411 | bfd_boolean | |
10412 | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) | |
10413 | { | |
10414 | bfd_boolean dynamic; | |
10415 | bfd_boolean emit_relocs; | |
10416 | bfd *dynobj; | |
8b127cbc | 10417 | struct elf_final_link_info flinfo; |
91d6fa6a NC |
10418 | asection *o; |
10419 | struct bfd_link_order *p; | |
10420 | bfd *sub; | |
c152c796 AM |
10421 | bfd_size_type max_contents_size; |
10422 | bfd_size_type max_external_reloc_size; | |
10423 | bfd_size_type max_internal_reloc_count; | |
10424 | bfd_size_type max_sym_count; | |
10425 | bfd_size_type max_sym_shndx_count; | |
10426 | file_ptr off; | |
10427 | Elf_Internal_Sym elfsym; | |
10428 | unsigned int i; | |
10429 | Elf_Internal_Shdr *symtab_hdr; | |
10430 | Elf_Internal_Shdr *symtab_shndx_hdr; | |
10431 | Elf_Internal_Shdr *symstrtab_hdr; | |
10432 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
10433 | struct elf_outext_info eoinfo; | |
10434 | bfd_boolean merged; | |
10435 | size_t relativecount = 0; | |
10436 | asection *reldyn = 0; | |
10437 | bfd_size_type amt; | |
104d59d1 JM |
10438 | asection *attr_section = NULL; |
10439 | bfd_vma attr_size = 0; | |
10440 | const char *std_attrs_section; | |
c152c796 AM |
10441 | |
10442 | if (! is_elf_hash_table (info->hash)) | |
10443 | return FALSE; | |
10444 | ||
10445 | if (info->shared) | |
10446 | abfd->flags |= DYNAMIC; | |
10447 | ||
10448 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
10449 | dynobj = elf_hash_table (info)->dynobj; | |
10450 | ||
10451 | emit_relocs = (info->relocatable | |
a4676736 | 10452 | || info->emitrelocations); |
c152c796 | 10453 | |
8b127cbc AM |
10454 | flinfo.info = info; |
10455 | flinfo.output_bfd = abfd; | |
10456 | flinfo.symstrtab = _bfd_elf_stringtab_init (); | |
10457 | if (flinfo.symstrtab == NULL) | |
c152c796 AM |
10458 | return FALSE; |
10459 | ||
10460 | if (! dynamic) | |
10461 | { | |
8b127cbc AM |
10462 | flinfo.dynsym_sec = NULL; |
10463 | flinfo.hash_sec = NULL; | |
10464 | flinfo.symver_sec = NULL; | |
c152c796 AM |
10465 | } |
10466 | else | |
10467 | { | |
3d4d4302 AM |
10468 | flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym"); |
10469 | flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); | |
202e2356 | 10470 | /* Note that dynsym_sec can be NULL (on VMS). */ |
3d4d4302 | 10471 | flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); |
c152c796 AM |
10472 | /* Note that it is OK if symver_sec is NULL. */ |
10473 | } | |
10474 | ||
8b127cbc AM |
10475 | flinfo.contents = NULL; |
10476 | flinfo.external_relocs = NULL; | |
10477 | flinfo.internal_relocs = NULL; | |
10478 | flinfo.external_syms = NULL; | |
10479 | flinfo.locsym_shndx = NULL; | |
10480 | flinfo.internal_syms = NULL; | |
10481 | flinfo.indices = NULL; | |
10482 | flinfo.sections = NULL; | |
10483 | flinfo.symbuf = NULL; | |
10484 | flinfo.symshndxbuf = NULL; | |
10485 | flinfo.symbuf_count = 0; | |
10486 | flinfo.shndxbuf_size = 0; | |
ffbc01cc | 10487 | flinfo.filesym_count = 0; |
c152c796 | 10488 | |
104d59d1 JM |
10489 | /* The object attributes have been merged. Remove the input |
10490 | sections from the link, and set the contents of the output | |
10491 | secton. */ | |
10492 | std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; | |
10493 | for (o = abfd->sections; o != NULL; o = o->next) | |
10494 | { | |
10495 | if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) | |
10496 | || strcmp (o->name, ".gnu.attributes") == 0) | |
10497 | { | |
10498 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
10499 | { | |
10500 | asection *input_section; | |
10501 | ||
10502 | if (p->type != bfd_indirect_link_order) | |
10503 | continue; | |
10504 | input_section = p->u.indirect.section; | |
10505 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10506 | elf_link_input_bfd ignores this section. */ | |
10507 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10508 | } | |
a0c8462f | 10509 | |
104d59d1 JM |
10510 | attr_size = bfd_elf_obj_attr_size (abfd); |
10511 | if (attr_size) | |
10512 | { | |
10513 | bfd_set_section_size (abfd, o, attr_size); | |
10514 | attr_section = o; | |
10515 | /* Skip this section later on. */ | |
10516 | o->map_head.link_order = NULL; | |
10517 | } | |
10518 | else | |
10519 | o->flags |= SEC_EXCLUDE; | |
10520 | } | |
10521 | } | |
10522 | ||
c152c796 AM |
10523 | /* Count up the number of relocations we will output for each output |
10524 | section, so that we know the sizes of the reloc sections. We | |
10525 | also figure out some maximum sizes. */ | |
10526 | max_contents_size = 0; | |
10527 | max_external_reloc_size = 0; | |
10528 | max_internal_reloc_count = 0; | |
10529 | max_sym_count = 0; | |
10530 | max_sym_shndx_count = 0; | |
10531 | merged = FALSE; | |
10532 | for (o = abfd->sections; o != NULL; o = o->next) | |
10533 | { | |
10534 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
10535 | o->reloc_count = 0; | |
10536 | ||
8423293d | 10537 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
c152c796 AM |
10538 | { |
10539 | unsigned int reloc_count = 0; | |
10540 | struct bfd_elf_section_data *esdi = NULL; | |
c152c796 AM |
10541 | |
10542 | if (p->type == bfd_section_reloc_link_order | |
10543 | || p->type == bfd_symbol_reloc_link_order) | |
10544 | reloc_count = 1; | |
10545 | else if (p->type == bfd_indirect_link_order) | |
10546 | { | |
10547 | asection *sec; | |
10548 | ||
10549 | sec = p->u.indirect.section; | |
10550 | esdi = elf_section_data (sec); | |
10551 | ||
10552 | /* Mark all sections which are to be included in the | |
10553 | link. This will normally be every section. We need | |
10554 | to do this so that we can identify any sections which | |
10555 | the linker has decided to not include. */ | |
10556 | sec->linker_mark = TRUE; | |
10557 | ||
10558 | if (sec->flags & SEC_MERGE) | |
10559 | merged = TRUE; | |
10560 | ||
aed64b35 L |
10561 | if (esdo->this_hdr.sh_type == SHT_REL |
10562 | || esdo->this_hdr.sh_type == SHT_RELA) | |
10563 | /* Some backends use reloc_count in relocation sections | |
10564 | to count particular types of relocs. Of course, | |
10565 | reloc sections themselves can't have relocations. */ | |
10566 | reloc_count = 0; | |
10567 | else if (info->relocatable || info->emitrelocations) | |
c152c796 AM |
10568 | reloc_count = sec->reloc_count; |
10569 | else if (bed->elf_backend_count_relocs) | |
58217f29 | 10570 | reloc_count = (*bed->elf_backend_count_relocs) (info, sec); |
c152c796 | 10571 | |
eea6121a AM |
10572 | if (sec->rawsize > max_contents_size) |
10573 | max_contents_size = sec->rawsize; | |
10574 | if (sec->size > max_contents_size) | |
10575 | max_contents_size = sec->size; | |
c152c796 AM |
10576 | |
10577 | /* We are interested in just local symbols, not all | |
10578 | symbols. */ | |
10579 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
10580 | && (sec->owner->flags & DYNAMIC) == 0) | |
10581 | { | |
10582 | size_t sym_count; | |
10583 | ||
10584 | if (elf_bad_symtab (sec->owner)) | |
10585 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
10586 | / bed->s->sizeof_sym); | |
10587 | else | |
10588 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
10589 | ||
10590 | if (sym_count > max_sym_count) | |
10591 | max_sym_count = sym_count; | |
10592 | ||
10593 | if (sym_count > max_sym_shndx_count | |
10594 | && elf_symtab_shndx (sec->owner) != 0) | |
10595 | max_sym_shndx_count = sym_count; | |
10596 | ||
10597 | if ((sec->flags & SEC_RELOC) != 0) | |
10598 | { | |
d4730f92 | 10599 | size_t ext_size = 0; |
c152c796 | 10600 | |
d4730f92 BS |
10601 | if (esdi->rel.hdr != NULL) |
10602 | ext_size = esdi->rel.hdr->sh_size; | |
10603 | if (esdi->rela.hdr != NULL) | |
10604 | ext_size += esdi->rela.hdr->sh_size; | |
7326c758 | 10605 | |
c152c796 AM |
10606 | if (ext_size > max_external_reloc_size) |
10607 | max_external_reloc_size = ext_size; | |
10608 | if (sec->reloc_count > max_internal_reloc_count) | |
10609 | max_internal_reloc_count = sec->reloc_count; | |
10610 | } | |
10611 | } | |
10612 | } | |
10613 | ||
10614 | if (reloc_count == 0) | |
10615 | continue; | |
10616 | ||
10617 | o->reloc_count += reloc_count; | |
10618 | ||
d4730f92 BS |
10619 | if (p->type == bfd_indirect_link_order |
10620 | && (info->relocatable || info->emitrelocations)) | |
c152c796 | 10621 | { |
d4730f92 BS |
10622 | if (esdi->rel.hdr) |
10623 | esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); | |
10624 | if (esdi->rela.hdr) | |
10625 | esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); | |
10626 | } | |
10627 | else | |
10628 | { | |
10629 | if (o->use_rela_p) | |
10630 | esdo->rela.count += reloc_count; | |
2c2b4ed4 | 10631 | else |
d4730f92 | 10632 | esdo->rel.count += reloc_count; |
c152c796 | 10633 | } |
c152c796 AM |
10634 | } |
10635 | ||
10636 | if (o->reloc_count > 0) | |
10637 | o->flags |= SEC_RELOC; | |
10638 | else | |
10639 | { | |
10640 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
10641 | set it (this is probably a bug) and if it is set | |
10642 | assign_section_numbers will create a reloc section. */ | |
10643 | o->flags &=~ SEC_RELOC; | |
10644 | } | |
10645 | ||
10646 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
10647 | zero. This is done in elf_fake_sections as well, but forcing | |
10648 | the VMA to 0 here will ensure that relocs against these | |
10649 | sections are handled correctly. */ | |
10650 | if ((o->flags & SEC_ALLOC) == 0 | |
10651 | && ! o->user_set_vma) | |
10652 | o->vma = 0; | |
10653 | } | |
10654 | ||
10655 | if (! info->relocatable && merged) | |
10656 | elf_link_hash_traverse (elf_hash_table (info), | |
10657 | _bfd_elf_link_sec_merge_syms, abfd); | |
10658 | ||
10659 | /* Figure out the file positions for everything but the symbol table | |
10660 | and the relocs. We set symcount to force assign_section_numbers | |
10661 | to create a symbol table. */ | |
10662 | bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; | |
10663 | BFD_ASSERT (! abfd->output_has_begun); | |
10664 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
10665 | goto error_return; | |
10666 | ||
ee75fd95 | 10667 | /* Set sizes, and assign file positions for reloc sections. */ |
c152c796 AM |
10668 | for (o = abfd->sections; o != NULL; o = o->next) |
10669 | { | |
d4730f92 | 10670 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
c152c796 AM |
10671 | if ((o->flags & SEC_RELOC) != 0) |
10672 | { | |
d4730f92 BS |
10673 | if (esdo->rel.hdr |
10674 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) | |
c152c796 AM |
10675 | goto error_return; |
10676 | ||
d4730f92 BS |
10677 | if (esdo->rela.hdr |
10678 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) | |
c152c796 AM |
10679 | goto error_return; |
10680 | } | |
10681 | ||
10682 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |
10683 | to count upwards while actually outputting the relocations. */ | |
d4730f92 BS |
10684 | esdo->rel.count = 0; |
10685 | esdo->rela.count = 0; | |
c152c796 AM |
10686 | } |
10687 | ||
10688 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
10689 | ||
10690 | /* We have now assigned file positions for all the sections except | |
10691 | .symtab and .strtab. We start the .symtab section at the current | |
10692 | file position, and write directly to it. We build the .strtab | |
10693 | section in memory. */ | |
10694 | bfd_get_symcount (abfd) = 0; | |
10695 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10696 | /* sh_name is set in prep_headers. */ | |
10697 | symtab_hdr->sh_type = SHT_SYMTAB; | |
10698 | /* sh_flags, sh_addr and sh_size all start off zero. */ | |
10699 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | |
10700 | /* sh_link is set in assign_section_numbers. */ | |
10701 | /* sh_info is set below. */ | |
10702 | /* sh_offset is set just below. */ | |
72de5009 | 10703 | symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
c152c796 | 10704 | |
12bd6957 | 10705 | off = elf_next_file_pos (abfd); |
c152c796 AM |
10706 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); |
10707 | ||
12bd6957 | 10708 | /* Note that at this point elf_next_file_pos (abfd) is |
c152c796 AM |
10709 | incorrect. We do not yet know the size of the .symtab section. |
10710 | We correct next_file_pos below, after we do know the size. */ | |
10711 | ||
10712 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
10713 | continuously seeking to the right position in the file. */ | |
10714 | if (! info->keep_memory || max_sym_count < 20) | |
8b127cbc | 10715 | flinfo.symbuf_size = 20; |
c152c796 | 10716 | else |
8b127cbc AM |
10717 | flinfo.symbuf_size = max_sym_count; |
10718 | amt = flinfo.symbuf_size; | |
c152c796 | 10719 | amt *= bed->s->sizeof_sym; |
8b127cbc AM |
10720 | flinfo.symbuf = (bfd_byte *) bfd_malloc (amt); |
10721 | if (flinfo.symbuf == NULL) | |
c152c796 | 10722 | goto error_return; |
4fbb74a6 | 10723 | if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) |
c152c796 AM |
10724 | { |
10725 | /* Wild guess at number of output symbols. realloc'd as needed. */ | |
10726 | amt = 2 * max_sym_count + elf_numsections (abfd) + 1000; | |
8b127cbc | 10727 | flinfo.shndxbuf_size = amt; |
c152c796 | 10728 | amt *= sizeof (Elf_External_Sym_Shndx); |
8b127cbc AM |
10729 | flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); |
10730 | if (flinfo.symshndxbuf == NULL) | |
c152c796 AM |
10731 | goto error_return; |
10732 | } | |
10733 | ||
10734 | /* Start writing out the symbol table. The first symbol is always a | |
10735 | dummy symbol. */ | |
10736 | if (info->strip != strip_all | |
10737 | || emit_relocs) | |
10738 | { | |
10739 | elfsym.st_value = 0; | |
10740 | elfsym.st_size = 0; | |
10741 | elfsym.st_info = 0; | |
10742 | elfsym.st_other = 0; | |
10743 | elfsym.st_shndx = SHN_UNDEF; | |
35fc36a8 | 10744 | elfsym.st_target_internal = 0; |
8b127cbc | 10745 | if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr, |
6e0b88f1 | 10746 | NULL) != 1) |
c152c796 AM |
10747 | goto error_return; |
10748 | } | |
10749 | ||
c152c796 AM |
10750 | /* Output a symbol for each section. We output these even if we are |
10751 | discarding local symbols, since they are used for relocs. These | |
10752 | symbols have no names. We store the index of each one in the | |
10753 | index field of the section, so that we can find it again when | |
10754 | outputting relocs. */ | |
10755 | if (info->strip != strip_all | |
10756 | || emit_relocs) | |
10757 | { | |
10758 | elfsym.st_size = 0; | |
10759 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
10760 | elfsym.st_other = 0; | |
f0b5bb34 | 10761 | elfsym.st_value = 0; |
35fc36a8 | 10762 | elfsym.st_target_internal = 0; |
c152c796 AM |
10763 | for (i = 1; i < elf_numsections (abfd); i++) |
10764 | { | |
10765 | o = bfd_section_from_elf_index (abfd, i); | |
10766 | if (o != NULL) | |
f0b5bb34 AM |
10767 | { |
10768 | o->target_index = bfd_get_symcount (abfd); | |
10769 | elfsym.st_shndx = i; | |
10770 | if (!info->relocatable) | |
10771 | elfsym.st_value = o->vma; | |
8b127cbc | 10772 | if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1) |
f0b5bb34 AM |
10773 | goto error_return; |
10774 | } | |
c152c796 AM |
10775 | } |
10776 | } | |
10777 | ||
10778 | /* Allocate some memory to hold information read in from the input | |
10779 | files. */ | |
10780 | if (max_contents_size != 0) | |
10781 | { | |
8b127cbc AM |
10782 | flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
10783 | if (flinfo.contents == NULL) | |
c152c796 AM |
10784 | goto error_return; |
10785 | } | |
10786 | ||
10787 | if (max_external_reloc_size != 0) | |
10788 | { | |
8b127cbc AM |
10789 | flinfo.external_relocs = bfd_malloc (max_external_reloc_size); |
10790 | if (flinfo.external_relocs == NULL) | |
c152c796 AM |
10791 | goto error_return; |
10792 | } | |
10793 | ||
10794 | if (max_internal_reloc_count != 0) | |
10795 | { | |
10796 | amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; | |
10797 | amt *= sizeof (Elf_Internal_Rela); | |
8b127cbc AM |
10798 | flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); |
10799 | if (flinfo.internal_relocs == NULL) | |
c152c796 AM |
10800 | goto error_return; |
10801 | } | |
10802 | ||
10803 | if (max_sym_count != 0) | |
10804 | { | |
10805 | amt = max_sym_count * bed->s->sizeof_sym; | |
8b127cbc AM |
10806 | flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); |
10807 | if (flinfo.external_syms == NULL) | |
c152c796 AM |
10808 | goto error_return; |
10809 | ||
10810 | amt = max_sym_count * sizeof (Elf_Internal_Sym); | |
8b127cbc AM |
10811 | flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); |
10812 | if (flinfo.internal_syms == NULL) | |
c152c796 AM |
10813 | goto error_return; |
10814 | ||
10815 | amt = max_sym_count * sizeof (long); | |
8b127cbc AM |
10816 | flinfo.indices = (long int *) bfd_malloc (amt); |
10817 | if (flinfo.indices == NULL) | |
c152c796 AM |
10818 | goto error_return; |
10819 | ||
10820 | amt = max_sym_count * sizeof (asection *); | |
8b127cbc AM |
10821 | flinfo.sections = (asection **) bfd_malloc (amt); |
10822 | if (flinfo.sections == NULL) | |
c152c796 AM |
10823 | goto error_return; |
10824 | } | |
10825 | ||
10826 | if (max_sym_shndx_count != 0) | |
10827 | { | |
10828 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | |
8b127cbc AM |
10829 | flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); |
10830 | if (flinfo.locsym_shndx == NULL) | |
c152c796 AM |
10831 | goto error_return; |
10832 | } | |
10833 | ||
10834 | if (elf_hash_table (info)->tls_sec) | |
10835 | { | |
10836 | bfd_vma base, end = 0; | |
10837 | asection *sec; | |
10838 | ||
10839 | for (sec = elf_hash_table (info)->tls_sec; | |
10840 | sec && (sec->flags & SEC_THREAD_LOCAL); | |
10841 | sec = sec->next) | |
10842 | { | |
3a800eb9 | 10843 | bfd_size_type size = sec->size; |
c152c796 | 10844 | |
3a800eb9 AM |
10845 | if (size == 0 |
10846 | && (sec->flags & SEC_HAS_CONTENTS) == 0) | |
c152c796 | 10847 | { |
91d6fa6a NC |
10848 | struct bfd_link_order *ord = sec->map_tail.link_order; |
10849 | ||
10850 | if (ord != NULL) | |
10851 | size = ord->offset + ord->size; | |
c152c796 AM |
10852 | } |
10853 | end = sec->vma + size; | |
10854 | } | |
10855 | base = elf_hash_table (info)->tls_sec->vma; | |
7dc98aea RO |
10856 | /* Only align end of TLS section if static TLS doesn't have special |
10857 | alignment requirements. */ | |
10858 | if (bed->static_tls_alignment == 1) | |
10859 | end = align_power (end, | |
10860 | elf_hash_table (info)->tls_sec->alignment_power); | |
c152c796 AM |
10861 | elf_hash_table (info)->tls_size = end - base; |
10862 | } | |
10863 | ||
0b52efa6 PB |
10864 | /* Reorder SHF_LINK_ORDER sections. */ |
10865 | for (o = abfd->sections; o != NULL; o = o->next) | |
10866 | { | |
10867 | if (!elf_fixup_link_order (abfd, o)) | |
10868 | return FALSE; | |
10869 | } | |
10870 | ||
c152c796 AM |
10871 | /* Since ELF permits relocations to be against local symbols, we |
10872 | must have the local symbols available when we do the relocations. | |
10873 | Since we would rather only read the local symbols once, and we | |
10874 | would rather not keep them in memory, we handle all the | |
10875 | relocations for a single input file at the same time. | |
10876 | ||
10877 | Unfortunately, there is no way to know the total number of local | |
10878 | symbols until we have seen all of them, and the local symbol | |
10879 | indices precede the global symbol indices. This means that when | |
10880 | we are generating relocatable output, and we see a reloc against | |
10881 | a global symbol, we can not know the symbol index until we have | |
10882 | finished examining all the local symbols to see which ones we are | |
10883 | going to output. To deal with this, we keep the relocations in | |
10884 | memory, and don't output them until the end of the link. This is | |
10885 | an unfortunate waste of memory, but I don't see a good way around | |
10886 | it. Fortunately, it only happens when performing a relocatable | |
10887 | link, which is not the common case. FIXME: If keep_memory is set | |
10888 | we could write the relocs out and then read them again; I don't | |
10889 | know how bad the memory loss will be. */ | |
10890 | ||
c72f2fb2 | 10891 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
c152c796 AM |
10892 | sub->output_has_begun = FALSE; |
10893 | for (o = abfd->sections; o != NULL; o = o->next) | |
10894 | { | |
8423293d | 10895 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
c152c796 AM |
10896 | { |
10897 | if (p->type == bfd_indirect_link_order | |
10898 | && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) | |
10899 | == bfd_target_elf_flavour) | |
10900 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) | |
10901 | { | |
10902 | if (! sub->output_has_begun) | |
10903 | { | |
8b127cbc | 10904 | if (! elf_link_input_bfd (&flinfo, sub)) |
c152c796 AM |
10905 | goto error_return; |
10906 | sub->output_has_begun = TRUE; | |
10907 | } | |
10908 | } | |
10909 | else if (p->type == bfd_section_reloc_link_order | |
10910 | || p->type == bfd_symbol_reloc_link_order) | |
10911 | { | |
10912 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
10913 | goto error_return; | |
10914 | } | |
10915 | else | |
10916 | { | |
10917 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
351f65ca L |
10918 | { |
10919 | if (p->type == bfd_indirect_link_order | |
10920 | && (bfd_get_flavour (sub) | |
10921 | == bfd_target_elf_flavour) | |
10922 | && (elf_elfheader (sub)->e_ident[EI_CLASS] | |
10923 | != bed->s->elfclass)) | |
10924 | { | |
10925 | const char *iclass, *oclass; | |
10926 | ||
10927 | if (bed->s->elfclass == ELFCLASS64) | |
10928 | { | |
10929 | iclass = "ELFCLASS32"; | |
10930 | oclass = "ELFCLASS64"; | |
10931 | } | |
10932 | else | |
10933 | { | |
10934 | iclass = "ELFCLASS64"; | |
10935 | oclass = "ELFCLASS32"; | |
10936 | } | |
10937 | ||
10938 | bfd_set_error (bfd_error_wrong_format); | |
10939 | (*_bfd_error_handler) | |
10940 | (_("%B: file class %s incompatible with %s"), | |
10941 | sub, iclass, oclass); | |
10942 | } | |
10943 | ||
10944 | goto error_return; | |
10945 | } | |
c152c796 AM |
10946 | } |
10947 | } | |
10948 | } | |
10949 | ||
c0f00686 L |
10950 | /* Free symbol buffer if needed. */ |
10951 | if (!info->reduce_memory_overheads) | |
10952 | { | |
c72f2fb2 | 10953 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
3fcd97f1 JJ |
10954 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour |
10955 | && elf_tdata (sub)->symbuf) | |
c0f00686 L |
10956 | { |
10957 | free (elf_tdata (sub)->symbuf); | |
10958 | elf_tdata (sub)->symbuf = NULL; | |
10959 | } | |
10960 | } | |
10961 | ||
c152c796 AM |
10962 | /* Output any global symbols that got converted to local in a |
10963 | version script or due to symbol visibility. We do this in a | |
10964 | separate step since ELF requires all local symbols to appear | |
10965 | prior to any global symbols. FIXME: We should only do this if | |
10966 | some global symbols were, in fact, converted to become local. | |
10967 | FIXME: Will this work correctly with the Irix 5 linker? */ | |
10968 | eoinfo.failed = FALSE; | |
8b127cbc | 10969 | eoinfo.flinfo = &flinfo; |
c152c796 | 10970 | eoinfo.localsyms = TRUE; |
ffbc01cc AM |
10971 | eoinfo.need_second_pass = FALSE; |
10972 | eoinfo.second_pass = FALSE; | |
34a79995 | 10973 | eoinfo.file_sym_done = FALSE; |
7686d77d | 10974 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
c152c796 AM |
10975 | if (eoinfo.failed) |
10976 | return FALSE; | |
10977 | ||
ffbc01cc AM |
10978 | if (eoinfo.need_second_pass) |
10979 | { | |
10980 | eoinfo.second_pass = TRUE; | |
10981 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); | |
10982 | if (eoinfo.failed) | |
10983 | return FALSE; | |
10984 | } | |
10985 | ||
4e617b1e PB |
10986 | /* If backend needs to output some local symbols not present in the hash |
10987 | table, do it now. */ | |
10988 | if (bed->elf_backend_output_arch_local_syms) | |
10989 | { | |
6e0b88f1 | 10990 | typedef int (*out_sym_func) |
4e617b1e PB |
10991 | (void *, const char *, Elf_Internal_Sym *, asection *, |
10992 | struct elf_link_hash_entry *); | |
10993 | ||
10994 | if (! ((*bed->elf_backend_output_arch_local_syms) | |
8b127cbc | 10995 | (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym))) |
4e617b1e PB |
10996 | return FALSE; |
10997 | } | |
10998 | ||
c152c796 AM |
10999 | /* That wrote out all the local symbols. Finish up the symbol table |
11000 | with the global symbols. Even if we want to strip everything we | |
11001 | can, we still need to deal with those global symbols that got | |
11002 | converted to local in a version script. */ | |
11003 | ||
11004 | /* The sh_info field records the index of the first non local symbol. */ | |
11005 | symtab_hdr->sh_info = bfd_get_symcount (abfd); | |
11006 | ||
11007 | if (dynamic | |
8b127cbc AM |
11008 | && flinfo.dynsym_sec != NULL |
11009 | && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr) | |
c152c796 AM |
11010 | { |
11011 | Elf_Internal_Sym sym; | |
8b127cbc | 11012 | bfd_byte *dynsym = flinfo.dynsym_sec->contents; |
c152c796 AM |
11013 | long last_local = 0; |
11014 | ||
11015 | /* Write out the section symbols for the output sections. */ | |
67687978 | 11016 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) |
c152c796 AM |
11017 | { |
11018 | asection *s; | |
11019 | ||
11020 | sym.st_size = 0; | |
11021 | sym.st_name = 0; | |
11022 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
11023 | sym.st_other = 0; | |
35fc36a8 | 11024 | sym.st_target_internal = 0; |
c152c796 AM |
11025 | |
11026 | for (s = abfd->sections; s != NULL; s = s->next) | |
11027 | { | |
11028 | int indx; | |
11029 | bfd_byte *dest; | |
11030 | long dynindx; | |
11031 | ||
c152c796 | 11032 | dynindx = elf_section_data (s)->dynindx; |
8c37241b JJ |
11033 | if (dynindx <= 0) |
11034 | continue; | |
11035 | indx = elf_section_data (s)->this_idx; | |
c152c796 AM |
11036 | BFD_ASSERT (indx > 0); |
11037 | sym.st_shndx = indx; | |
c0d5a53d L |
11038 | if (! check_dynsym (abfd, &sym)) |
11039 | return FALSE; | |
c152c796 AM |
11040 | sym.st_value = s->vma; |
11041 | dest = dynsym + dynindx * bed->s->sizeof_sym; | |
8c37241b JJ |
11042 | if (last_local < dynindx) |
11043 | last_local = dynindx; | |
c152c796 AM |
11044 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
11045 | } | |
c152c796 AM |
11046 | } |
11047 | ||
11048 | /* Write out the local dynsyms. */ | |
11049 | if (elf_hash_table (info)->dynlocal) | |
11050 | { | |
11051 | struct elf_link_local_dynamic_entry *e; | |
11052 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
11053 | { | |
11054 | asection *s; | |
11055 | bfd_byte *dest; | |
11056 | ||
935bd1e0 | 11057 | /* Copy the internal symbol and turn off visibility. |
c152c796 AM |
11058 | Note that we saved a word of storage and overwrote |
11059 | the original st_name with the dynstr_index. */ | |
11060 | sym = e->isym; | |
935bd1e0 | 11061 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
c152c796 | 11062 | |
cb33740c AM |
11063 | s = bfd_section_from_elf_index (e->input_bfd, |
11064 | e->isym.st_shndx); | |
11065 | if (s != NULL) | |
c152c796 | 11066 | { |
c152c796 AM |
11067 | sym.st_shndx = |
11068 | elf_section_data (s->output_section)->this_idx; | |
c0d5a53d L |
11069 | if (! check_dynsym (abfd, &sym)) |
11070 | return FALSE; | |
c152c796 AM |
11071 | sym.st_value = (s->output_section->vma |
11072 | + s->output_offset | |
11073 | + e->isym.st_value); | |
11074 | } | |
11075 | ||
11076 | if (last_local < e->dynindx) | |
11077 | last_local = e->dynindx; | |
11078 | ||
11079 | dest = dynsym + e->dynindx * bed->s->sizeof_sym; | |
11080 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |
11081 | } | |
11082 | } | |
11083 | ||
8b127cbc | 11084 | elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info = |
c152c796 AM |
11085 | last_local + 1; |
11086 | } | |
11087 | ||
11088 | /* We get the global symbols from the hash table. */ | |
11089 | eoinfo.failed = FALSE; | |
11090 | eoinfo.localsyms = FALSE; | |
8b127cbc | 11091 | eoinfo.flinfo = &flinfo; |
7686d77d | 11092 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
c152c796 AM |
11093 | if (eoinfo.failed) |
11094 | return FALSE; | |
11095 | ||
11096 | /* If backend needs to output some symbols not present in the hash | |
11097 | table, do it now. */ | |
11098 | if (bed->elf_backend_output_arch_syms) | |
11099 | { | |
6e0b88f1 | 11100 | typedef int (*out_sym_func) |
c152c796 AM |
11101 | (void *, const char *, Elf_Internal_Sym *, asection *, |
11102 | struct elf_link_hash_entry *); | |
11103 | ||
11104 | if (! ((*bed->elf_backend_output_arch_syms) | |
8b127cbc | 11105 | (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym))) |
c152c796 AM |
11106 | return FALSE; |
11107 | } | |
11108 | ||
11109 | /* Flush all symbols to the file. */ | |
8b127cbc | 11110 | if (! elf_link_flush_output_syms (&flinfo, bed)) |
c152c796 AM |
11111 | return FALSE; |
11112 | ||
11113 | /* Now we know the size of the symtab section. */ | |
11114 | off += symtab_hdr->sh_size; | |
11115 | ||
11116 | symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; | |
11117 | if (symtab_shndx_hdr->sh_name != 0) | |
11118 | { | |
11119 | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; | |
11120 | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | |
11121 | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | |
11122 | amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); | |
11123 | symtab_shndx_hdr->sh_size = amt; | |
11124 | ||
11125 | off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, | |
11126 | off, TRUE); | |
11127 | ||
11128 | if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 | |
8b127cbc | 11129 | || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) |
c152c796 AM |
11130 | return FALSE; |
11131 | } | |
11132 | ||
11133 | ||
11134 | /* Finish up and write out the symbol string table (.strtab) | |
11135 | section. */ | |
11136 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
11137 | /* sh_name was set in prep_headers. */ | |
11138 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
11139 | symstrtab_hdr->sh_flags = 0; | |
11140 | symstrtab_hdr->sh_addr = 0; | |
8b127cbc | 11141 | symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab); |
c152c796 AM |
11142 | symstrtab_hdr->sh_entsize = 0; |
11143 | symstrtab_hdr->sh_link = 0; | |
11144 | symstrtab_hdr->sh_info = 0; | |
11145 | /* sh_offset is set just below. */ | |
11146 | symstrtab_hdr->sh_addralign = 1; | |
11147 | ||
11148 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE); | |
12bd6957 | 11149 | elf_next_file_pos (abfd) = off; |
c152c796 AM |
11150 | |
11151 | if (bfd_get_symcount (abfd) > 0) | |
11152 | { | |
11153 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
8b127cbc | 11154 | || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab)) |
c152c796 AM |
11155 | return FALSE; |
11156 | } | |
11157 | ||
11158 | /* Adjust the relocs to have the correct symbol indices. */ | |
11159 | for (o = abfd->sections; o != NULL; o = o->next) | |
11160 | { | |
d4730f92 | 11161 | struct bfd_elf_section_data *esdo = elf_section_data (o); |
c152c796 AM |
11162 | if ((o->flags & SEC_RELOC) == 0) |
11163 | continue; | |
11164 | ||
d4730f92 BS |
11165 | if (esdo->rel.hdr != NULL) |
11166 | elf_link_adjust_relocs (abfd, &esdo->rel); | |
11167 | if (esdo->rela.hdr != NULL) | |
11168 | elf_link_adjust_relocs (abfd, &esdo->rela); | |
c152c796 AM |
11169 | |
11170 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
11171 | trying to swap the relocs out itself. */ | |
11172 | o->reloc_count = 0; | |
11173 | } | |
11174 | ||
11175 | if (dynamic && info->combreloc && dynobj != NULL) | |
11176 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | |
11177 | ||
11178 | /* If we are linking against a dynamic object, or generating a | |
11179 | shared library, finish up the dynamic linking information. */ | |
11180 | if (dynamic) | |
11181 | { | |
11182 | bfd_byte *dyncon, *dynconend; | |
11183 | ||
11184 | /* Fix up .dynamic entries. */ | |
3d4d4302 | 11185 | o = bfd_get_linker_section (dynobj, ".dynamic"); |
c152c796 AM |
11186 | BFD_ASSERT (o != NULL); |
11187 | ||
11188 | dyncon = o->contents; | |
eea6121a | 11189 | dynconend = o->contents + o->size; |
c152c796 AM |
11190 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
11191 | { | |
11192 | Elf_Internal_Dyn dyn; | |
11193 | const char *name; | |
11194 | unsigned int type; | |
11195 | ||
11196 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
11197 | ||
11198 | switch (dyn.d_tag) | |
11199 | { | |
11200 | default: | |
11201 | continue; | |
11202 | case DT_NULL: | |
11203 | if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) | |
11204 | { | |
11205 | switch (elf_section_data (reldyn)->this_hdr.sh_type) | |
11206 | { | |
11207 | case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; | |
11208 | case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; | |
11209 | default: continue; | |
11210 | } | |
11211 | dyn.d_un.d_val = relativecount; | |
11212 | relativecount = 0; | |
11213 | break; | |
11214 | } | |
11215 | continue; | |
11216 | ||
11217 | case DT_INIT: | |
11218 | name = info->init_function; | |
11219 | goto get_sym; | |
11220 | case DT_FINI: | |
11221 | name = info->fini_function; | |
11222 | get_sym: | |
11223 | { | |
11224 | struct elf_link_hash_entry *h; | |
11225 | ||
11226 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
11227 | FALSE, FALSE, TRUE); | |
11228 | if (h != NULL | |
11229 | && (h->root.type == bfd_link_hash_defined | |
11230 | || h->root.type == bfd_link_hash_defweak)) | |
11231 | { | |
bef26483 | 11232 | dyn.d_un.d_ptr = h->root.u.def.value; |
c152c796 AM |
11233 | o = h->root.u.def.section; |
11234 | if (o->output_section != NULL) | |
bef26483 | 11235 | dyn.d_un.d_ptr += (o->output_section->vma |
c152c796 AM |
11236 | + o->output_offset); |
11237 | else | |
11238 | { | |
11239 | /* The symbol is imported from another shared | |
11240 | library and does not apply to this one. */ | |
bef26483 | 11241 | dyn.d_un.d_ptr = 0; |
c152c796 AM |
11242 | } |
11243 | break; | |
11244 | } | |
11245 | } | |
11246 | continue; | |
11247 | ||
11248 | case DT_PREINIT_ARRAYSZ: | |
11249 | name = ".preinit_array"; | |
11250 | goto get_size; | |
11251 | case DT_INIT_ARRAYSZ: | |
11252 | name = ".init_array"; | |
11253 | goto get_size; | |
11254 | case DT_FINI_ARRAYSZ: | |
11255 | name = ".fini_array"; | |
11256 | get_size: | |
11257 | o = bfd_get_section_by_name (abfd, name); | |
11258 | if (o == NULL) | |
11259 | { | |
11260 | (*_bfd_error_handler) | |
d003868e | 11261 | (_("%B: could not find output section %s"), abfd, name); |
c152c796 AM |
11262 | goto error_return; |
11263 | } | |
eea6121a | 11264 | if (o->size == 0) |
c152c796 AM |
11265 | (*_bfd_error_handler) |
11266 | (_("warning: %s section has zero size"), name); | |
eea6121a | 11267 | dyn.d_un.d_val = o->size; |
c152c796 AM |
11268 | break; |
11269 | ||
11270 | case DT_PREINIT_ARRAY: | |
11271 | name = ".preinit_array"; | |
11272 | goto get_vma; | |
11273 | case DT_INIT_ARRAY: | |
11274 | name = ".init_array"; | |
11275 | goto get_vma; | |
11276 | case DT_FINI_ARRAY: | |
11277 | name = ".fini_array"; | |
11278 | goto get_vma; | |
11279 | ||
11280 | case DT_HASH: | |
11281 | name = ".hash"; | |
11282 | goto get_vma; | |
fdc90cb4 JJ |
11283 | case DT_GNU_HASH: |
11284 | name = ".gnu.hash"; | |
11285 | goto get_vma; | |
c152c796 AM |
11286 | case DT_STRTAB: |
11287 | name = ".dynstr"; | |
11288 | goto get_vma; | |
11289 | case DT_SYMTAB: | |
11290 | name = ".dynsym"; | |
11291 | goto get_vma; | |
11292 | case DT_VERDEF: | |
11293 | name = ".gnu.version_d"; | |
11294 | goto get_vma; | |
11295 | case DT_VERNEED: | |
11296 | name = ".gnu.version_r"; | |
11297 | goto get_vma; | |
11298 | case DT_VERSYM: | |
11299 | name = ".gnu.version"; | |
11300 | get_vma: | |
11301 | o = bfd_get_section_by_name (abfd, name); | |
11302 | if (o == NULL) | |
11303 | { | |
11304 | (*_bfd_error_handler) | |
d003868e | 11305 | (_("%B: could not find output section %s"), abfd, name); |
c152c796 AM |
11306 | goto error_return; |
11307 | } | |
894891db NC |
11308 | if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) |
11309 | { | |
11310 | (*_bfd_error_handler) | |
11311 | (_("warning: section '%s' is being made into a note"), name); | |
11312 | bfd_set_error (bfd_error_nonrepresentable_section); | |
11313 | goto error_return; | |
11314 | } | |
c152c796 AM |
11315 | dyn.d_un.d_ptr = o->vma; |
11316 | break; | |
11317 | ||
11318 | case DT_REL: | |
11319 | case DT_RELA: | |
11320 | case DT_RELSZ: | |
11321 | case DT_RELASZ: | |
11322 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
11323 | type = SHT_REL; | |
11324 | else | |
11325 | type = SHT_RELA; | |
11326 | dyn.d_un.d_val = 0; | |
bef26483 | 11327 | dyn.d_un.d_ptr = 0; |
c152c796 AM |
11328 | for (i = 1; i < elf_numsections (abfd); i++) |
11329 | { | |
11330 | Elf_Internal_Shdr *hdr; | |
11331 | ||
11332 | hdr = elf_elfsections (abfd)[i]; | |
11333 | if (hdr->sh_type == type | |
11334 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
11335 | { | |
11336 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
11337 | dyn.d_un.d_val += hdr->sh_size; | |
11338 | else | |
11339 | { | |
bef26483 AM |
11340 | if (dyn.d_un.d_ptr == 0 |
11341 | || hdr->sh_addr < dyn.d_un.d_ptr) | |
11342 | dyn.d_un.d_ptr = hdr->sh_addr; | |
c152c796 AM |
11343 | } |
11344 | } | |
11345 | } | |
11346 | break; | |
11347 | } | |
11348 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |
11349 | } | |
11350 | } | |
11351 | ||
11352 | /* If we have created any dynamic sections, then output them. */ | |
11353 | if (dynobj != NULL) | |
11354 | { | |
11355 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
11356 | goto error_return; | |
11357 | ||
943284cc | 11358 | /* Check for DT_TEXTREL (late, in case the backend removes it). */ |
be7b303d AM |
11359 | if (((info->warn_shared_textrel && info->shared) |
11360 | || info->error_textrel) | |
3d4d4302 | 11361 | && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL) |
943284cc DJ |
11362 | { |
11363 | bfd_byte *dyncon, *dynconend; | |
11364 | ||
943284cc DJ |
11365 | dyncon = o->contents; |
11366 | dynconend = o->contents + o->size; | |
11367 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |
11368 | { | |
11369 | Elf_Internal_Dyn dyn; | |
11370 | ||
11371 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
11372 | ||
11373 | if (dyn.d_tag == DT_TEXTREL) | |
11374 | { | |
c192a133 AM |
11375 | if (info->error_textrel) |
11376 | info->callbacks->einfo | |
11377 | (_("%P%X: read-only segment has dynamic relocations.\n")); | |
11378 | else | |
11379 | info->callbacks->einfo | |
11380 | (_("%P: warning: creating a DT_TEXTREL in a shared object.\n")); | |
943284cc DJ |
11381 | break; |
11382 | } | |
11383 | } | |
11384 | } | |
11385 | ||
c152c796 AM |
11386 | for (o = dynobj->sections; o != NULL; o = o->next) |
11387 | { | |
11388 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
eea6121a | 11389 | || o->size == 0 |
c152c796 AM |
11390 | || o->output_section == bfd_abs_section_ptr) |
11391 | continue; | |
11392 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
11393 | { | |
11394 | /* At this point, we are only interested in sections | |
11395 | created by _bfd_elf_link_create_dynamic_sections. */ | |
11396 | continue; | |
11397 | } | |
3722b82f AM |
11398 | if (elf_hash_table (info)->stab_info.stabstr == o) |
11399 | continue; | |
eea6121a AM |
11400 | if (elf_hash_table (info)->eh_info.hdr_sec == o) |
11401 | continue; | |
3d4d4302 | 11402 | if (strcmp (o->name, ".dynstr") != 0) |
c152c796 | 11403 | { |
5dabe785 | 11404 | /* FIXME: octets_per_byte. */ |
c152c796 AM |
11405 | if (! bfd_set_section_contents (abfd, o->output_section, |
11406 | o->contents, | |
11407 | (file_ptr) o->output_offset, | |
eea6121a | 11408 | o->size)) |
c152c796 AM |
11409 | goto error_return; |
11410 | } | |
11411 | else | |
11412 | { | |
11413 | /* The contents of the .dynstr section are actually in a | |
11414 | stringtab. */ | |
11415 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
11416 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
11417 | || ! _bfd_elf_strtab_emit (abfd, | |
11418 | elf_hash_table (info)->dynstr)) | |
11419 | goto error_return; | |
11420 | } | |
11421 | } | |
11422 | } | |
11423 | ||
11424 | if (info->relocatable) | |
11425 | { | |
11426 | bfd_boolean failed = FALSE; | |
11427 | ||
11428 | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | |
11429 | if (failed) | |
11430 | goto error_return; | |
11431 | } | |
11432 | ||
11433 | /* If we have optimized stabs strings, output them. */ | |
3722b82f | 11434 | if (elf_hash_table (info)->stab_info.stabstr != NULL) |
c152c796 AM |
11435 | { |
11436 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
11437 | goto error_return; | |
11438 | } | |
11439 | ||
9f7c3e5e AM |
11440 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) |
11441 | goto error_return; | |
c152c796 | 11442 | |
9f7c3e5e | 11443 | elf_final_link_free (abfd, &flinfo); |
c152c796 | 11444 | |
12bd6957 | 11445 | elf_linker (abfd) = TRUE; |
c152c796 | 11446 | |
104d59d1 JM |
11447 | if (attr_section) |
11448 | { | |
a50b1753 | 11449 | bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); |
104d59d1 | 11450 | if (contents == NULL) |
d0f16d5e | 11451 | return FALSE; /* Bail out and fail. */ |
104d59d1 JM |
11452 | bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); |
11453 | bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); | |
11454 | free (contents); | |
11455 | } | |
11456 | ||
c152c796 AM |
11457 | return TRUE; |
11458 | ||
11459 | error_return: | |
9f7c3e5e | 11460 | elf_final_link_free (abfd, &flinfo); |
c152c796 AM |
11461 | return FALSE; |
11462 | } | |
11463 | \f | |
5241d853 RS |
11464 | /* Initialize COOKIE for input bfd ABFD. */ |
11465 | ||
11466 | static bfd_boolean | |
11467 | init_reloc_cookie (struct elf_reloc_cookie *cookie, | |
11468 | struct bfd_link_info *info, bfd *abfd) | |
11469 | { | |
11470 | Elf_Internal_Shdr *symtab_hdr; | |
11471 | const struct elf_backend_data *bed; | |
11472 | ||
11473 | bed = get_elf_backend_data (abfd); | |
11474 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11475 | ||
11476 | cookie->abfd = abfd; | |
11477 | cookie->sym_hashes = elf_sym_hashes (abfd); | |
11478 | cookie->bad_symtab = elf_bad_symtab (abfd); | |
11479 | if (cookie->bad_symtab) | |
11480 | { | |
11481 | cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
11482 | cookie->extsymoff = 0; | |
11483 | } | |
11484 | else | |
11485 | { | |
11486 | cookie->locsymcount = symtab_hdr->sh_info; | |
11487 | cookie->extsymoff = symtab_hdr->sh_info; | |
11488 | } | |
11489 | ||
11490 | if (bed->s->arch_size == 32) | |
11491 | cookie->r_sym_shift = 8; | |
11492 | else | |
11493 | cookie->r_sym_shift = 32; | |
11494 | ||
11495 | cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
11496 | if (cookie->locsyms == NULL && cookie->locsymcount != 0) | |
11497 | { | |
11498 | cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
11499 | cookie->locsymcount, 0, | |
11500 | NULL, NULL, NULL); | |
11501 | if (cookie->locsyms == NULL) | |
11502 | { | |
11503 | info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); | |
11504 | return FALSE; | |
11505 | } | |
11506 | if (info->keep_memory) | |
11507 | symtab_hdr->contents = (bfd_byte *) cookie->locsyms; | |
11508 | } | |
11509 | return TRUE; | |
11510 | } | |
11511 | ||
11512 | /* Free the memory allocated by init_reloc_cookie, if appropriate. */ | |
11513 | ||
11514 | static void | |
11515 | fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) | |
11516 | { | |
11517 | Elf_Internal_Shdr *symtab_hdr; | |
11518 | ||
11519 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
11520 | if (cookie->locsyms != NULL | |
11521 | && symtab_hdr->contents != (unsigned char *) cookie->locsyms) | |
11522 | free (cookie->locsyms); | |
11523 | } | |
11524 | ||
11525 | /* Initialize the relocation information in COOKIE for input section SEC | |
11526 | of input bfd ABFD. */ | |
11527 | ||
11528 | static bfd_boolean | |
11529 | init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
11530 | struct bfd_link_info *info, bfd *abfd, | |
11531 | asection *sec) | |
11532 | { | |
11533 | const struct elf_backend_data *bed; | |
11534 | ||
11535 | if (sec->reloc_count == 0) | |
11536 | { | |
11537 | cookie->rels = NULL; | |
11538 | cookie->relend = NULL; | |
11539 | } | |
11540 | else | |
11541 | { | |
11542 | bed = get_elf_backend_data (abfd); | |
11543 | ||
11544 | cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | |
11545 | info->keep_memory); | |
11546 | if (cookie->rels == NULL) | |
11547 | return FALSE; | |
11548 | cookie->rel = cookie->rels; | |
11549 | cookie->relend = (cookie->rels | |
11550 | + sec->reloc_count * bed->s->int_rels_per_ext_rel); | |
11551 | } | |
11552 | cookie->rel = cookie->rels; | |
11553 | return TRUE; | |
11554 | } | |
11555 | ||
11556 | /* Free the memory allocated by init_reloc_cookie_rels, | |
11557 | if appropriate. */ | |
11558 | ||
11559 | static void | |
11560 | fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
11561 | asection *sec) | |
11562 | { | |
11563 | if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels) | |
11564 | free (cookie->rels); | |
11565 | } | |
11566 | ||
11567 | /* Initialize the whole of COOKIE for input section SEC. */ | |
11568 | ||
11569 | static bfd_boolean | |
11570 | init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
11571 | struct bfd_link_info *info, | |
11572 | asection *sec) | |
11573 | { | |
11574 | if (!init_reloc_cookie (cookie, info, sec->owner)) | |
11575 | goto error1; | |
11576 | if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) | |
11577 | goto error2; | |
11578 | return TRUE; | |
11579 | ||
11580 | error2: | |
11581 | fini_reloc_cookie (cookie, sec->owner); | |
11582 | error1: | |
11583 | return FALSE; | |
11584 | } | |
11585 | ||
11586 | /* Free the memory allocated by init_reloc_cookie_for_section, | |
11587 | if appropriate. */ | |
11588 | ||
11589 | static void | |
11590 | fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
11591 | asection *sec) | |
11592 | { | |
11593 | fini_reloc_cookie_rels (cookie, sec); | |
11594 | fini_reloc_cookie (cookie, sec->owner); | |
11595 | } | |
11596 | \f | |
c152c796 AM |
11597 | /* Garbage collect unused sections. */ |
11598 | ||
07adf181 AM |
11599 | /* Default gc_mark_hook. */ |
11600 | ||
11601 | asection * | |
11602 | _bfd_elf_gc_mark_hook (asection *sec, | |
11603 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
11604 | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | |
11605 | struct elf_link_hash_entry *h, | |
11606 | Elf_Internal_Sym *sym) | |
11607 | { | |
bde6f3eb L |
11608 | const char *sec_name; |
11609 | ||
07adf181 AM |
11610 | if (h != NULL) |
11611 | { | |
11612 | switch (h->root.type) | |
11613 | { | |
11614 | case bfd_link_hash_defined: | |
11615 | case bfd_link_hash_defweak: | |
11616 | return h->root.u.def.section; | |
11617 | ||
11618 | case bfd_link_hash_common: | |
11619 | return h->root.u.c.p->section; | |
11620 | ||
bde6f3eb L |
11621 | case bfd_link_hash_undefined: |
11622 | case bfd_link_hash_undefweak: | |
11623 | /* To work around a glibc bug, keep all XXX input sections | |
11624 | when there is an as yet undefined reference to __start_XXX | |
11625 | or __stop_XXX symbols. The linker will later define such | |
11626 | symbols for orphan input sections that have a name | |
11627 | representable as a C identifier. */ | |
11628 | if (strncmp (h->root.root.string, "__start_", 8) == 0) | |
11629 | sec_name = h->root.root.string + 8; | |
11630 | else if (strncmp (h->root.root.string, "__stop_", 7) == 0) | |
11631 | sec_name = h->root.root.string + 7; | |
11632 | else | |
11633 | sec_name = NULL; | |
11634 | ||
11635 | if (sec_name && *sec_name != '\0') | |
11636 | { | |
11637 | bfd *i; | |
68ffbac6 | 11638 | |
c72f2fb2 | 11639 | for (i = info->input_bfds; i; i = i->link.next) |
bde6f3eb L |
11640 | { |
11641 | sec = bfd_get_section_by_name (i, sec_name); | |
11642 | if (sec) | |
11643 | sec->flags |= SEC_KEEP; | |
11644 | } | |
11645 | } | |
11646 | break; | |
11647 | ||
07adf181 AM |
11648 | default: |
11649 | break; | |
11650 | } | |
11651 | } | |
11652 | else | |
11653 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
11654 | ||
11655 | return NULL; | |
11656 | } | |
11657 | ||
5241d853 RS |
11658 | /* COOKIE->rel describes a relocation against section SEC, which is |
11659 | a section we've decided to keep. Return the section that contains | |
11660 | the relocation symbol, or NULL if no section contains it. */ | |
11661 | ||
11662 | asection * | |
11663 | _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, | |
11664 | elf_gc_mark_hook_fn gc_mark_hook, | |
11665 | struct elf_reloc_cookie *cookie) | |
11666 | { | |
11667 | unsigned long r_symndx; | |
11668 | struct elf_link_hash_entry *h; | |
11669 | ||
11670 | r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; | |
cf35638d | 11671 | if (r_symndx == STN_UNDEF) |
5241d853 RS |
11672 | return NULL; |
11673 | ||
11674 | if (r_symndx >= cookie->locsymcount | |
11675 | || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) | |
11676 | { | |
11677 | h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; | |
11678 | while (h->root.type == bfd_link_hash_indirect | |
11679 | || h->root.type == bfd_link_hash_warning) | |
11680 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1d5316ab | 11681 | h->mark = 1; |
4e6b54a6 AM |
11682 | /* If this symbol is weak and there is a non-weak definition, we |
11683 | keep the non-weak definition because many backends put | |
11684 | dynamic reloc info on the non-weak definition for code | |
11685 | handling copy relocs. */ | |
11686 | if (h->u.weakdef != NULL) | |
11687 | h->u.weakdef->mark = 1; | |
5241d853 RS |
11688 | return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); |
11689 | } | |
11690 | ||
11691 | return (*gc_mark_hook) (sec, info, cookie->rel, NULL, | |
11692 | &cookie->locsyms[r_symndx]); | |
11693 | } | |
11694 | ||
11695 | /* COOKIE->rel describes a relocation against section SEC, which is | |
11696 | a section we've decided to keep. Mark the section that contains | |
9d0a14d3 | 11697 | the relocation symbol. */ |
5241d853 RS |
11698 | |
11699 | bfd_boolean | |
11700 | _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, | |
11701 | asection *sec, | |
11702 | elf_gc_mark_hook_fn gc_mark_hook, | |
9d0a14d3 | 11703 | struct elf_reloc_cookie *cookie) |
5241d853 RS |
11704 | { |
11705 | asection *rsec; | |
11706 | ||
11707 | rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie); | |
11708 | if (rsec && !rsec->gc_mark) | |
11709 | { | |
a66eed7a AM |
11710 | if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour |
11711 | || (rsec->owner->flags & DYNAMIC) != 0) | |
5241d853 | 11712 | rsec->gc_mark = 1; |
5241d853 RS |
11713 | else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) |
11714 | return FALSE; | |
11715 | } | |
11716 | return TRUE; | |
11717 | } | |
11718 | ||
07adf181 AM |
11719 | /* The mark phase of garbage collection. For a given section, mark |
11720 | it and any sections in this section's group, and all the sections | |
11721 | which define symbols to which it refers. */ | |
11722 | ||
ccfa59ea AM |
11723 | bfd_boolean |
11724 | _bfd_elf_gc_mark (struct bfd_link_info *info, | |
11725 | asection *sec, | |
6a5bb875 | 11726 | elf_gc_mark_hook_fn gc_mark_hook) |
c152c796 AM |
11727 | { |
11728 | bfd_boolean ret; | |
9d0a14d3 | 11729 | asection *group_sec, *eh_frame; |
c152c796 AM |
11730 | |
11731 | sec->gc_mark = 1; | |
11732 | ||
11733 | /* Mark all the sections in the group. */ | |
11734 | group_sec = elf_section_data (sec)->next_in_group; | |
11735 | if (group_sec && !group_sec->gc_mark) | |
ccfa59ea | 11736 | if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) |
c152c796 AM |
11737 | return FALSE; |
11738 | ||
11739 | /* Look through the section relocs. */ | |
11740 | ret = TRUE; | |
9d0a14d3 RS |
11741 | eh_frame = elf_eh_frame_section (sec->owner); |
11742 | if ((sec->flags & SEC_RELOC) != 0 | |
11743 | && sec->reloc_count > 0 | |
11744 | && sec != eh_frame) | |
c152c796 | 11745 | { |
5241d853 | 11746 | struct elf_reloc_cookie cookie; |
c152c796 | 11747 | |
5241d853 RS |
11748 | if (!init_reloc_cookie_for_section (&cookie, info, sec)) |
11749 | ret = FALSE; | |
c152c796 | 11750 | else |
c152c796 | 11751 | { |
5241d853 | 11752 | for (; cookie.rel < cookie.relend; cookie.rel++) |
9d0a14d3 | 11753 | if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) |
5241d853 RS |
11754 | { |
11755 | ret = FALSE; | |
11756 | break; | |
11757 | } | |
11758 | fini_reloc_cookie_for_section (&cookie, sec); | |
c152c796 AM |
11759 | } |
11760 | } | |
9d0a14d3 RS |
11761 | |
11762 | if (ret && eh_frame && elf_fde_list (sec)) | |
11763 | { | |
11764 | struct elf_reloc_cookie cookie; | |
11765 | ||
11766 | if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) | |
11767 | ret = FALSE; | |
11768 | else | |
11769 | { | |
11770 | if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, | |
11771 | gc_mark_hook, &cookie)) | |
11772 | ret = FALSE; | |
11773 | fini_reloc_cookie_for_section (&cookie, eh_frame); | |
11774 | } | |
11775 | } | |
11776 | ||
c152c796 AM |
11777 | return ret; |
11778 | } | |
11779 | ||
7f6ab9f8 AM |
11780 | /* Keep debug and special sections. */ |
11781 | ||
11782 | bfd_boolean | |
11783 | _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, | |
11784 | elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED) | |
11785 | { | |
11786 | bfd *ibfd; | |
11787 | ||
c72f2fb2 | 11788 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
7f6ab9f8 AM |
11789 | { |
11790 | asection *isec; | |
11791 | bfd_boolean some_kept; | |
b40bf0a2 | 11792 | bfd_boolean debug_frag_seen; |
7f6ab9f8 AM |
11793 | |
11794 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | |
11795 | continue; | |
11796 | ||
b40bf0a2 NC |
11797 | /* Ensure all linker created sections are kept, |
11798 | see if any other section is already marked, | |
11799 | and note if we have any fragmented debug sections. */ | |
11800 | debug_frag_seen = some_kept = FALSE; | |
7f6ab9f8 AM |
11801 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
11802 | { | |
11803 | if ((isec->flags & SEC_LINKER_CREATED) != 0) | |
11804 | isec->gc_mark = 1; | |
11805 | else if (isec->gc_mark) | |
11806 | some_kept = TRUE; | |
b40bf0a2 NC |
11807 | |
11808 | if (debug_frag_seen == FALSE | |
11809 | && (isec->flags & SEC_DEBUGGING) | |
11810 | && CONST_STRNEQ (isec->name, ".debug_line.")) | |
11811 | debug_frag_seen = TRUE; | |
7f6ab9f8 AM |
11812 | } |
11813 | ||
11814 | /* If no section in this file will be kept, then we can | |
b40bf0a2 | 11815 | toss out the debug and special sections. */ |
7f6ab9f8 AM |
11816 | if (!some_kept) |
11817 | continue; | |
11818 | ||
11819 | /* Keep debug and special sections like .comment when they are | |
c227efa6 | 11820 | not part of a group, or when we have single-member groups. */ |
7f6ab9f8 | 11821 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
c227efa6 AM |
11822 | if ((elf_next_in_group (isec) == NULL |
11823 | || elf_next_in_group (isec) == isec) | |
7f6ab9f8 AM |
11824 | && ((isec->flags & SEC_DEBUGGING) != 0 |
11825 | || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)) | |
11826 | isec->gc_mark = 1; | |
b40bf0a2 NC |
11827 | |
11828 | if (! debug_frag_seen) | |
11829 | continue; | |
11830 | ||
11831 | /* Look for CODE sections which are going to be discarded, | |
11832 | and find and discard any fragmented debug sections which | |
11833 | are associated with that code section. */ | |
11834 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | |
11835 | if ((isec->flags & SEC_CODE) != 0 | |
11836 | && isec->gc_mark == 0) | |
11837 | { | |
11838 | unsigned int ilen; | |
11839 | asection *dsec; | |
11840 | ||
11841 | ilen = strlen (isec->name); | |
11842 | ||
11843 | /* Association is determined by the name of the debug section | |
11844 | containing the name of the code section as a suffix. For | |
11845 | example .debug_line.text.foo is a debug section associated | |
11846 | with .text.foo. */ | |
11847 | for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) | |
11848 | { | |
11849 | unsigned int dlen; | |
11850 | ||
11851 | if (dsec->gc_mark == 0 | |
11852 | || (dsec->flags & SEC_DEBUGGING) == 0) | |
11853 | continue; | |
11854 | ||
11855 | dlen = strlen (dsec->name); | |
11856 | ||
11857 | if (dlen > ilen | |
11858 | && strncmp (dsec->name + (dlen - ilen), | |
11859 | isec->name, ilen) == 0) | |
11860 | { | |
11861 | dsec->gc_mark = 0; | |
11862 | break; | |
11863 | } | |
11864 | } | |
11865 | } | |
7f6ab9f8 AM |
11866 | } |
11867 | return TRUE; | |
11868 | } | |
11869 | ||
c152c796 AM |
11870 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ |
11871 | ||
c17d87de NC |
11872 | struct elf_gc_sweep_symbol_info |
11873 | { | |
ccabcbe5 AM |
11874 | struct bfd_link_info *info; |
11875 | void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, | |
11876 | bfd_boolean); | |
11877 | }; | |
11878 | ||
c152c796 | 11879 | static bfd_boolean |
ccabcbe5 | 11880 | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) |
c152c796 | 11881 | { |
1d5316ab AM |
11882 | if (!h->mark |
11883 | && (((h->root.type == bfd_link_hash_defined | |
11884 | || h->root.type == bfd_link_hash_defweak) | |
6673f753 AM |
11885 | && !(h->def_regular |
11886 | && h->root.u.def.section->gc_mark)) | |
1d5316ab AM |
11887 | || h->root.type == bfd_link_hash_undefined |
11888 | || h->root.type == bfd_link_hash_undefweak)) | |
11889 | { | |
11890 | struct elf_gc_sweep_symbol_info *inf; | |
11891 | ||
11892 | inf = (struct elf_gc_sweep_symbol_info *) data; | |
ccabcbe5 | 11893 | (*inf->hide_symbol) (inf->info, h, TRUE); |
1d5316ab AM |
11894 | h->def_regular = 0; |
11895 | h->ref_regular = 0; | |
11896 | h->ref_regular_nonweak = 0; | |
ccabcbe5 | 11897 | } |
c152c796 AM |
11898 | |
11899 | return TRUE; | |
11900 | } | |
11901 | ||
11902 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |
11903 | ||
11904 | typedef bfd_boolean (*gc_sweep_hook_fn) | |
11905 | (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); | |
11906 | ||
11907 | static bfd_boolean | |
ccabcbe5 | 11908 | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) |
c152c796 AM |
11909 | { |
11910 | bfd *sub; | |
ccabcbe5 AM |
11911 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
11912 | gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook; | |
11913 | unsigned long section_sym_count; | |
11914 | struct elf_gc_sweep_symbol_info sweep_info; | |
c152c796 | 11915 | |
c72f2fb2 | 11916 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
c152c796 AM |
11917 | { |
11918 | asection *o; | |
11919 | ||
11920 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
11921 | continue; | |
11922 | ||
11923 | for (o = sub->sections; o != NULL; o = o->next) | |
11924 | { | |
a33dafc3 L |
11925 | /* When any section in a section group is kept, we keep all |
11926 | sections in the section group. If the first member of | |
11927 | the section group is excluded, we will also exclude the | |
11928 | group section. */ | |
11929 | if (o->flags & SEC_GROUP) | |
11930 | { | |
11931 | asection *first = elf_next_in_group (o); | |
11932 | o->gc_mark = first->gc_mark; | |
11933 | } | |
c152c796 AM |
11934 | |
11935 | if (o->gc_mark) | |
11936 | continue; | |
11937 | ||
11938 | /* Skip sweeping sections already excluded. */ | |
11939 | if (o->flags & SEC_EXCLUDE) | |
11940 | continue; | |
11941 | ||
11942 | /* Since this is early in the link process, it is simple | |
11943 | to remove a section from the output. */ | |
11944 | o->flags |= SEC_EXCLUDE; | |
11945 | ||
c55fe096 | 11946 | if (info->print_gc_sections && o->size != 0) |
c17d87de NC |
11947 | _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name); |
11948 | ||
c152c796 AM |
11949 | /* But we also have to update some of the relocation |
11950 | info we collected before. */ | |
11951 | if (gc_sweep_hook | |
e8aaee2a | 11952 | && (o->flags & SEC_RELOC) != 0 |
9850436d AM |
11953 | && o->reloc_count != 0 |
11954 | && !((info->strip == strip_all || info->strip == strip_debugger) | |
11955 | && (o->flags & SEC_DEBUGGING) != 0) | |
e8aaee2a | 11956 | && !bfd_is_abs_section (o->output_section)) |
c152c796 AM |
11957 | { |
11958 | Elf_Internal_Rela *internal_relocs; | |
11959 | bfd_boolean r; | |
11960 | ||
11961 | internal_relocs | |
11962 | = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL, | |
11963 | info->keep_memory); | |
11964 | if (internal_relocs == NULL) | |
11965 | return FALSE; | |
11966 | ||
11967 | r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); | |
11968 | ||
11969 | if (elf_section_data (o)->relocs != internal_relocs) | |
11970 | free (internal_relocs); | |
11971 | ||
11972 | if (!r) | |
11973 | return FALSE; | |
11974 | } | |
11975 | } | |
11976 | } | |
11977 | ||
11978 | /* Remove the symbols that were in the swept sections from the dynamic | |
11979 | symbol table. GCFIXME: Anyone know how to get them out of the | |
11980 | static symbol table as well? */ | |
ccabcbe5 AM |
11981 | sweep_info.info = info; |
11982 | sweep_info.hide_symbol = bed->elf_backend_hide_symbol; | |
11983 | elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, | |
11984 | &sweep_info); | |
c152c796 | 11985 | |
ccabcbe5 | 11986 | _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count); |
c152c796 AM |
11987 | return TRUE; |
11988 | } | |
11989 | ||
11990 | /* Propagate collected vtable information. This is called through | |
11991 | elf_link_hash_traverse. */ | |
11992 | ||
11993 | static bfd_boolean | |
11994 | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) | |
11995 | { | |
c152c796 | 11996 | /* Those that are not vtables. */ |
f6e332e6 | 11997 | if (h->vtable == NULL || h->vtable->parent == NULL) |
c152c796 AM |
11998 | return TRUE; |
11999 | ||
12000 | /* Those vtables that do not have parents, we cannot merge. */ | |
f6e332e6 | 12001 | if (h->vtable->parent == (struct elf_link_hash_entry *) -1) |
c152c796 AM |
12002 | return TRUE; |
12003 | ||
12004 | /* If we've already been done, exit. */ | |
f6e332e6 | 12005 | if (h->vtable->used && h->vtable->used[-1]) |
c152c796 AM |
12006 | return TRUE; |
12007 | ||
12008 | /* Make sure the parent's table is up to date. */ | |
f6e332e6 | 12009 | elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp); |
c152c796 | 12010 | |
f6e332e6 | 12011 | if (h->vtable->used == NULL) |
c152c796 AM |
12012 | { |
12013 | /* None of this table's entries were referenced. Re-use the | |
12014 | parent's table. */ | |
f6e332e6 AM |
12015 | h->vtable->used = h->vtable->parent->vtable->used; |
12016 | h->vtable->size = h->vtable->parent->vtable->size; | |
c152c796 AM |
12017 | } |
12018 | else | |
12019 | { | |
12020 | size_t n; | |
12021 | bfd_boolean *cu, *pu; | |
12022 | ||
12023 | /* Or the parent's entries into ours. */ | |
f6e332e6 | 12024 | cu = h->vtable->used; |
c152c796 | 12025 | cu[-1] = TRUE; |
f6e332e6 | 12026 | pu = h->vtable->parent->vtable->used; |
c152c796 AM |
12027 | if (pu != NULL) |
12028 | { | |
12029 | const struct elf_backend_data *bed; | |
12030 | unsigned int log_file_align; | |
12031 | ||
12032 | bed = get_elf_backend_data (h->root.u.def.section->owner); | |
12033 | log_file_align = bed->s->log_file_align; | |
f6e332e6 | 12034 | n = h->vtable->parent->vtable->size >> log_file_align; |
c152c796 AM |
12035 | while (n--) |
12036 | { | |
12037 | if (*pu) | |
12038 | *cu = TRUE; | |
12039 | pu++; | |
12040 | cu++; | |
12041 | } | |
12042 | } | |
12043 | } | |
12044 | ||
12045 | return TRUE; | |
12046 | } | |
12047 | ||
12048 | static bfd_boolean | |
12049 | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) | |
12050 | { | |
12051 | asection *sec; | |
12052 | bfd_vma hstart, hend; | |
12053 | Elf_Internal_Rela *relstart, *relend, *rel; | |
12054 | const struct elf_backend_data *bed; | |
12055 | unsigned int log_file_align; | |
12056 | ||
c152c796 AM |
12057 | /* Take care of both those symbols that do not describe vtables as |
12058 | well as those that are not loaded. */ | |
f6e332e6 | 12059 | if (h->vtable == NULL || h->vtable->parent == NULL) |
c152c796 AM |
12060 | return TRUE; |
12061 | ||
12062 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
12063 | || h->root.type == bfd_link_hash_defweak); | |
12064 | ||
12065 | sec = h->root.u.def.section; | |
12066 | hstart = h->root.u.def.value; | |
12067 | hend = hstart + h->size; | |
12068 | ||
12069 | relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); | |
12070 | if (!relstart) | |
12071 | return *(bfd_boolean *) okp = FALSE; | |
12072 | bed = get_elf_backend_data (sec->owner); | |
12073 | log_file_align = bed->s->log_file_align; | |
12074 | ||
12075 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
12076 | ||
12077 | for (rel = relstart; rel < relend; ++rel) | |
12078 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
12079 | { | |
12080 | /* If the entry is in use, do nothing. */ | |
f6e332e6 AM |
12081 | if (h->vtable->used |
12082 | && (rel->r_offset - hstart) < h->vtable->size) | |
c152c796 AM |
12083 | { |
12084 | bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; | |
f6e332e6 | 12085 | if (h->vtable->used[entry]) |
c152c796 AM |
12086 | continue; |
12087 | } | |
12088 | /* Otherwise, kill it. */ | |
12089 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
12090 | } | |
12091 | ||
12092 | return TRUE; | |
12093 | } | |
12094 | ||
87538722 AM |
12095 | /* Mark sections containing dynamically referenced symbols. When |
12096 | building shared libraries, we must assume that any visible symbol is | |
12097 | referenced. */ | |
715df9b8 | 12098 | |
64d03ab5 AM |
12099 | bfd_boolean |
12100 | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) | |
715df9b8 | 12101 | { |
87538722 | 12102 | struct bfd_link_info *info = (struct bfd_link_info *) inf; |
d6f6f455 | 12103 | struct bfd_elf_dynamic_list *d = info->dynamic_list; |
87538722 | 12104 | |
715df9b8 EB |
12105 | if ((h->root.type == bfd_link_hash_defined |
12106 | || h->root.type == bfd_link_hash_defweak) | |
87538722 | 12107 | && (h->ref_dynamic |
b407645f | 12108 | || (h->def_regular |
87538722 | 12109 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
fd91d419 | 12110 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
b407645f AM |
12111 | && (!info->executable |
12112 | || info->export_dynamic | |
12113 | || (h->dynamic | |
12114 | && d != NULL | |
12115 | && (*d->match) (&d->head, NULL, h->root.root.string))) | |
54e8959c L |
12116 | && (strchr (h->root.root.string, ELF_VER_CHR) != NULL |
12117 | || !bfd_hide_sym_by_version (info->version_info, | |
12118 | h->root.root.string))))) | |
715df9b8 EB |
12119 | h->root.u.def.section->flags |= SEC_KEEP; |
12120 | ||
12121 | return TRUE; | |
12122 | } | |
3b36f7e6 | 12123 | |
74f0fb50 AM |
12124 | /* Keep all sections containing symbols undefined on the command-line, |
12125 | and the section containing the entry symbol. */ | |
12126 | ||
12127 | void | |
12128 | _bfd_elf_gc_keep (struct bfd_link_info *info) | |
12129 | { | |
12130 | struct bfd_sym_chain *sym; | |
12131 | ||
12132 | for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) | |
12133 | { | |
12134 | struct elf_link_hash_entry *h; | |
12135 | ||
12136 | h = elf_link_hash_lookup (elf_hash_table (info), sym->name, | |
12137 | FALSE, FALSE, FALSE); | |
12138 | ||
12139 | if (h != NULL | |
12140 | && (h->root.type == bfd_link_hash_defined | |
12141 | || h->root.type == bfd_link_hash_defweak) | |
12142 | && !bfd_is_abs_section (h->root.u.def.section)) | |
12143 | h->root.u.def.section->flags |= SEC_KEEP; | |
12144 | } | |
12145 | } | |
12146 | ||
c152c796 AM |
12147 | /* Do mark and sweep of unused sections. */ |
12148 | ||
12149 | bfd_boolean | |
12150 | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) | |
12151 | { | |
12152 | bfd_boolean ok = TRUE; | |
12153 | bfd *sub; | |
6a5bb875 | 12154 | elf_gc_mark_hook_fn gc_mark_hook; |
64d03ab5 | 12155 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
c152c796 | 12156 | |
64d03ab5 | 12157 | if (!bed->can_gc_sections |
715df9b8 | 12158 | || !is_elf_hash_table (info->hash)) |
c152c796 AM |
12159 | { |
12160 | (*_bfd_error_handler)(_("Warning: gc-sections option ignored")); | |
12161 | return TRUE; | |
12162 | } | |
12163 | ||
74f0fb50 AM |
12164 | bed->gc_keep (info); |
12165 | ||
9d0a14d3 RS |
12166 | /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section |
12167 | at the .eh_frame section if we can mark the FDEs individually. */ | |
12168 | _bfd_elf_begin_eh_frame_parsing (info); | |
c72f2fb2 | 12169 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
9d0a14d3 RS |
12170 | { |
12171 | asection *sec; | |
12172 | struct elf_reloc_cookie cookie; | |
12173 | ||
12174 | sec = bfd_get_section_by_name (sub, ".eh_frame"); | |
9a2a56cc | 12175 | while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) |
9d0a14d3 RS |
12176 | { |
12177 | _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); | |
9a2a56cc AM |
12178 | if (elf_section_data (sec)->sec_info |
12179 | && (sec->flags & SEC_LINKER_CREATED) == 0) | |
9d0a14d3 RS |
12180 | elf_eh_frame_section (sub) = sec; |
12181 | fini_reloc_cookie_for_section (&cookie, sec); | |
9a2a56cc | 12182 | sec = bfd_get_next_section_by_name (sec); |
9d0a14d3 RS |
12183 | } |
12184 | } | |
12185 | _bfd_elf_end_eh_frame_parsing (info); | |
12186 | ||
c152c796 AM |
12187 | /* Apply transitive closure to the vtable entry usage info. */ |
12188 | elf_link_hash_traverse (elf_hash_table (info), | |
12189 | elf_gc_propagate_vtable_entries_used, | |
12190 | &ok); | |
12191 | if (!ok) | |
12192 | return FALSE; | |
12193 | ||
12194 | /* Kill the vtable relocations that were not used. */ | |
12195 | elf_link_hash_traverse (elf_hash_table (info), | |
12196 | elf_gc_smash_unused_vtentry_relocs, | |
12197 | &ok); | |
12198 | if (!ok) | |
12199 | return FALSE; | |
12200 | ||
715df9b8 EB |
12201 | /* Mark dynamically referenced symbols. */ |
12202 | if (elf_hash_table (info)->dynamic_sections_created) | |
12203 | elf_link_hash_traverse (elf_hash_table (info), | |
64d03ab5 | 12204 | bed->gc_mark_dynamic_ref, |
87538722 | 12205 | info); |
c152c796 | 12206 | |
715df9b8 | 12207 | /* Grovel through relocs to find out who stays ... */ |
64d03ab5 | 12208 | gc_mark_hook = bed->gc_mark_hook; |
c72f2fb2 | 12209 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
c152c796 AM |
12210 | { |
12211 | asection *o; | |
12212 | ||
12213 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour) | |
12214 | continue; | |
12215 | ||
7f6ab9f8 AM |
12216 | /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). |
12217 | Also treat note sections as a root, if the section is not part | |
12218 | of a group. */ | |
c152c796 | 12219 | for (o = sub->sections; o != NULL; o = o->next) |
7f6ab9f8 AM |
12220 | if (!o->gc_mark |
12221 | && (o->flags & SEC_EXCLUDE) == 0 | |
24007750 | 12222 | && ((o->flags & SEC_KEEP) != 0 |
7f6ab9f8 AM |
12223 | || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE |
12224 | && elf_next_in_group (o) == NULL ))) | |
12225 | { | |
12226 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | |
12227 | return FALSE; | |
12228 | } | |
c152c796 AM |
12229 | } |
12230 | ||
6a5bb875 | 12231 | /* Allow the backend to mark additional target specific sections. */ |
7f6ab9f8 | 12232 | bed->gc_mark_extra_sections (info, gc_mark_hook); |
6a5bb875 | 12233 | |
c152c796 | 12234 | /* ... and mark SEC_EXCLUDE for those that go. */ |
ccabcbe5 | 12235 | return elf_gc_sweep (abfd, info); |
c152c796 AM |
12236 | } |
12237 | \f | |
12238 | /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ | |
12239 | ||
12240 | bfd_boolean | |
12241 | bfd_elf_gc_record_vtinherit (bfd *abfd, | |
12242 | asection *sec, | |
12243 | struct elf_link_hash_entry *h, | |
12244 | bfd_vma offset) | |
12245 | { | |
12246 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
12247 | struct elf_link_hash_entry **search, *child; | |
12248 | bfd_size_type extsymcount; | |
12249 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12250 | ||
12251 | /* The sh_info field of the symtab header tells us where the | |
12252 | external symbols start. We don't care about the local symbols at | |
12253 | this point. */ | |
12254 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; | |
12255 | if (!elf_bad_symtab (abfd)) | |
12256 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
12257 | ||
12258 | sym_hashes = elf_sym_hashes (abfd); | |
12259 | sym_hashes_end = sym_hashes + extsymcount; | |
12260 | ||
12261 | /* Hunt down the child symbol, which is in this section at the same | |
12262 | offset as the relocation. */ | |
12263 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
12264 | { | |
12265 | if ((child = *search) != NULL | |
12266 | && (child->root.type == bfd_link_hash_defined | |
12267 | || child->root.type == bfd_link_hash_defweak) | |
12268 | && child->root.u.def.section == sec | |
12269 | && child->root.u.def.value == offset) | |
12270 | goto win; | |
12271 | } | |
12272 | ||
d003868e AM |
12273 | (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT", |
12274 | abfd, sec, (unsigned long) offset); | |
c152c796 AM |
12275 | bfd_set_error (bfd_error_invalid_operation); |
12276 | return FALSE; | |
12277 | ||
12278 | win: | |
f6e332e6 AM |
12279 | if (!child->vtable) |
12280 | { | |
a50b1753 NC |
12281 | child->vtable = (struct elf_link_virtual_table_entry *) |
12282 | bfd_zalloc (abfd, sizeof (*child->vtable)); | |
f6e332e6 AM |
12283 | if (!child->vtable) |
12284 | return FALSE; | |
12285 | } | |
c152c796 AM |
12286 | if (!h) |
12287 | { | |
12288 | /* This *should* only be the absolute section. It could potentially | |
12289 | be that someone has defined a non-global vtable though, which | |
12290 | would be bad. It isn't worth paging in the local symbols to be | |
12291 | sure though; that case should simply be handled by the assembler. */ | |
12292 | ||
f6e332e6 | 12293 | child->vtable->parent = (struct elf_link_hash_entry *) -1; |
c152c796 AM |
12294 | } |
12295 | else | |
f6e332e6 | 12296 | child->vtable->parent = h; |
c152c796 AM |
12297 | |
12298 | return TRUE; | |
12299 | } | |
12300 | ||
12301 | /* Called from check_relocs to record the existence of a VTENTRY reloc. */ | |
12302 | ||
12303 | bfd_boolean | |
12304 | bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED, | |
12305 | asection *sec ATTRIBUTE_UNUSED, | |
12306 | struct elf_link_hash_entry *h, | |
12307 | bfd_vma addend) | |
12308 | { | |
12309 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12310 | unsigned int log_file_align = bed->s->log_file_align; | |
12311 | ||
f6e332e6 AM |
12312 | if (!h->vtable) |
12313 | { | |
a50b1753 NC |
12314 | h->vtable = (struct elf_link_virtual_table_entry *) |
12315 | bfd_zalloc (abfd, sizeof (*h->vtable)); | |
f6e332e6 AM |
12316 | if (!h->vtable) |
12317 | return FALSE; | |
12318 | } | |
12319 | ||
12320 | if (addend >= h->vtable->size) | |
c152c796 AM |
12321 | { |
12322 | size_t size, bytes, file_align; | |
f6e332e6 | 12323 | bfd_boolean *ptr = h->vtable->used; |
c152c796 AM |
12324 | |
12325 | /* While the symbol is undefined, we have to be prepared to handle | |
12326 | a zero size. */ | |
12327 | file_align = 1 << log_file_align; | |
12328 | if (h->root.type == bfd_link_hash_undefined) | |
12329 | size = addend + file_align; | |
12330 | else | |
12331 | { | |
12332 | size = h->size; | |
12333 | if (addend >= size) | |
12334 | { | |
12335 | /* Oops! We've got a reference past the defined end of | |
12336 | the table. This is probably a bug -- shall we warn? */ | |
12337 | size = addend + file_align; | |
12338 | } | |
12339 | } | |
12340 | size = (size + file_align - 1) & -file_align; | |
12341 | ||
12342 | /* Allocate one extra entry for use as a "done" flag for the | |
12343 | consolidation pass. */ | |
12344 | bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); | |
12345 | ||
12346 | if (ptr) | |
12347 | { | |
a50b1753 | 12348 | ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); |
c152c796 AM |
12349 | |
12350 | if (ptr != NULL) | |
12351 | { | |
12352 | size_t oldbytes; | |
12353 | ||
f6e332e6 | 12354 | oldbytes = (((h->vtable->size >> log_file_align) + 1) |
c152c796 AM |
12355 | * sizeof (bfd_boolean)); |
12356 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | |
12357 | } | |
12358 | } | |
12359 | else | |
a50b1753 | 12360 | ptr = (bfd_boolean *) bfd_zmalloc (bytes); |
c152c796 AM |
12361 | |
12362 | if (ptr == NULL) | |
12363 | return FALSE; | |
12364 | ||
12365 | /* And arrange for that done flag to be at index -1. */ | |
f6e332e6 AM |
12366 | h->vtable->used = ptr + 1; |
12367 | h->vtable->size = size; | |
c152c796 AM |
12368 | } |
12369 | ||
f6e332e6 | 12370 | h->vtable->used[addend >> log_file_align] = TRUE; |
c152c796 AM |
12371 | |
12372 | return TRUE; | |
12373 | } | |
12374 | ||
ae17ab41 CM |
12375 | /* Map an ELF section header flag to its corresponding string. */ |
12376 | typedef struct | |
12377 | { | |
12378 | char *flag_name; | |
12379 | flagword flag_value; | |
12380 | } elf_flags_to_name_table; | |
12381 | ||
12382 | static elf_flags_to_name_table elf_flags_to_names [] = | |
12383 | { | |
12384 | { "SHF_WRITE", SHF_WRITE }, | |
12385 | { "SHF_ALLOC", SHF_ALLOC }, | |
12386 | { "SHF_EXECINSTR", SHF_EXECINSTR }, | |
12387 | { "SHF_MERGE", SHF_MERGE }, | |
12388 | { "SHF_STRINGS", SHF_STRINGS }, | |
12389 | { "SHF_INFO_LINK", SHF_INFO_LINK}, | |
12390 | { "SHF_LINK_ORDER", SHF_LINK_ORDER}, | |
12391 | { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, | |
12392 | { "SHF_GROUP", SHF_GROUP }, | |
12393 | { "SHF_TLS", SHF_TLS }, | |
12394 | { "SHF_MASKOS", SHF_MASKOS }, | |
12395 | { "SHF_EXCLUDE", SHF_EXCLUDE }, | |
12396 | }; | |
12397 | ||
b9c361e0 JL |
12398 | /* Returns TRUE if the section is to be included, otherwise FALSE. */ |
12399 | bfd_boolean | |
ae17ab41 | 12400 | bfd_elf_lookup_section_flags (struct bfd_link_info *info, |
8b127cbc | 12401 | struct flag_info *flaginfo, |
b9c361e0 | 12402 | asection *section) |
ae17ab41 | 12403 | { |
8b127cbc | 12404 | const bfd_vma sh_flags = elf_section_flags (section); |
ae17ab41 | 12405 | |
8b127cbc | 12406 | if (!flaginfo->flags_initialized) |
ae17ab41 | 12407 | { |
8b127cbc AM |
12408 | bfd *obfd = info->output_bfd; |
12409 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
12410 | struct flag_info_list *tf = flaginfo->flag_list; | |
b9c361e0 JL |
12411 | int with_hex = 0; |
12412 | int without_hex = 0; | |
12413 | ||
8b127cbc | 12414 | for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) |
ae17ab41 | 12415 | { |
b9c361e0 | 12416 | unsigned i; |
8b127cbc | 12417 | flagword (*lookup) (char *); |
ae17ab41 | 12418 | |
8b127cbc AM |
12419 | lookup = bed->elf_backend_lookup_section_flags_hook; |
12420 | if (lookup != NULL) | |
ae17ab41 | 12421 | { |
8b127cbc | 12422 | flagword hexval = (*lookup) ((char *) tf->name); |
b9c361e0 JL |
12423 | |
12424 | if (hexval != 0) | |
12425 | { | |
12426 | if (tf->with == with_flags) | |
12427 | with_hex |= hexval; | |
12428 | else if (tf->with == without_flags) | |
12429 | without_hex |= hexval; | |
12430 | tf->valid = TRUE; | |
12431 | continue; | |
12432 | } | |
ae17ab41 | 12433 | } |
8b127cbc | 12434 | for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) |
ae17ab41 | 12435 | { |
8b127cbc | 12436 | if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) |
b9c361e0 JL |
12437 | { |
12438 | if (tf->with == with_flags) | |
12439 | with_hex |= elf_flags_to_names[i].flag_value; | |
12440 | else if (tf->with == without_flags) | |
12441 | without_hex |= elf_flags_to_names[i].flag_value; | |
12442 | tf->valid = TRUE; | |
12443 | break; | |
12444 | } | |
12445 | } | |
8b127cbc | 12446 | if (!tf->valid) |
b9c361e0 | 12447 | { |
68ffbac6 | 12448 | info->callbacks->einfo |
8b127cbc | 12449 | (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); |
b9c361e0 | 12450 | return FALSE; |
ae17ab41 CM |
12451 | } |
12452 | } | |
8b127cbc AM |
12453 | flaginfo->flags_initialized = TRUE; |
12454 | flaginfo->only_with_flags |= with_hex; | |
12455 | flaginfo->not_with_flags |= without_hex; | |
ae17ab41 | 12456 | } |
ae17ab41 | 12457 | |
8b127cbc | 12458 | if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) |
b9c361e0 JL |
12459 | return FALSE; |
12460 | ||
8b127cbc | 12461 | if ((flaginfo->not_with_flags & sh_flags) != 0) |
b9c361e0 JL |
12462 | return FALSE; |
12463 | ||
12464 | return TRUE; | |
ae17ab41 CM |
12465 | } |
12466 | ||
c152c796 AM |
12467 | struct alloc_got_off_arg { |
12468 | bfd_vma gotoff; | |
10455f89 | 12469 | struct bfd_link_info *info; |
c152c796 AM |
12470 | }; |
12471 | ||
12472 | /* We need a special top-level link routine to convert got reference counts | |
12473 | to real got offsets. */ | |
12474 | ||
12475 | static bfd_boolean | |
12476 | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) | |
12477 | { | |
a50b1753 | 12478 | struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; |
10455f89 HPN |
12479 | bfd *obfd = gofarg->info->output_bfd; |
12480 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
c152c796 | 12481 | |
c152c796 AM |
12482 | if (h->got.refcount > 0) |
12483 | { | |
12484 | h->got.offset = gofarg->gotoff; | |
10455f89 | 12485 | gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); |
c152c796 AM |
12486 | } |
12487 | else | |
12488 | h->got.offset = (bfd_vma) -1; | |
12489 | ||
12490 | return TRUE; | |
12491 | } | |
12492 | ||
12493 | /* And an accompanying bit to work out final got entry offsets once | |
12494 | we're done. Should be called from final_link. */ | |
12495 | ||
12496 | bfd_boolean | |
12497 | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, | |
12498 | struct bfd_link_info *info) | |
12499 | { | |
12500 | bfd *i; | |
12501 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12502 | bfd_vma gotoff; | |
c152c796 AM |
12503 | struct alloc_got_off_arg gofarg; |
12504 | ||
10455f89 HPN |
12505 | BFD_ASSERT (abfd == info->output_bfd); |
12506 | ||
c152c796 AM |
12507 | if (! is_elf_hash_table (info->hash)) |
12508 | return FALSE; | |
12509 | ||
12510 | /* The GOT offset is relative to the .got section, but the GOT header is | |
12511 | put into the .got.plt section, if the backend uses it. */ | |
12512 | if (bed->want_got_plt) | |
12513 | gotoff = 0; | |
12514 | else | |
12515 | gotoff = bed->got_header_size; | |
12516 | ||
12517 | /* Do the local .got entries first. */ | |
c72f2fb2 | 12518 | for (i = info->input_bfds; i; i = i->link.next) |
c152c796 AM |
12519 | { |
12520 | bfd_signed_vma *local_got; | |
12521 | bfd_size_type j, locsymcount; | |
12522 | Elf_Internal_Shdr *symtab_hdr; | |
12523 | ||
12524 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) | |
12525 | continue; | |
12526 | ||
12527 | local_got = elf_local_got_refcounts (i); | |
12528 | if (!local_got) | |
12529 | continue; | |
12530 | ||
12531 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
12532 | if (elf_bad_symtab (i)) | |
12533 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
12534 | else | |
12535 | locsymcount = symtab_hdr->sh_info; | |
12536 | ||
12537 | for (j = 0; j < locsymcount; ++j) | |
12538 | { | |
12539 | if (local_got[j] > 0) | |
12540 | { | |
12541 | local_got[j] = gotoff; | |
10455f89 | 12542 | gotoff += bed->got_elt_size (abfd, info, NULL, i, j); |
c152c796 AM |
12543 | } |
12544 | else | |
12545 | local_got[j] = (bfd_vma) -1; | |
12546 | } | |
12547 | } | |
12548 | ||
12549 | /* Then the global .got entries. .plt refcounts are handled by | |
12550 | adjust_dynamic_symbol */ | |
12551 | gofarg.gotoff = gotoff; | |
10455f89 | 12552 | gofarg.info = info; |
c152c796 AM |
12553 | elf_link_hash_traverse (elf_hash_table (info), |
12554 | elf_gc_allocate_got_offsets, | |
12555 | &gofarg); | |
12556 | return TRUE; | |
12557 | } | |
12558 | ||
12559 | /* Many folk need no more in the way of final link than this, once | |
12560 | got entry reference counting is enabled. */ | |
12561 | ||
12562 | bfd_boolean | |
12563 | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) | |
12564 | { | |
12565 | if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) | |
12566 | return FALSE; | |
12567 | ||
12568 | /* Invoke the regular ELF backend linker to do all the work. */ | |
12569 | return bfd_elf_final_link (abfd, info); | |
12570 | } | |
12571 | ||
12572 | bfd_boolean | |
12573 | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) | |
12574 | { | |
a50b1753 | 12575 | struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; |
c152c796 AM |
12576 | |
12577 | if (rcookie->bad_symtab) | |
12578 | rcookie->rel = rcookie->rels; | |
12579 | ||
12580 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) | |
12581 | { | |
12582 | unsigned long r_symndx; | |
12583 | ||
12584 | if (! rcookie->bad_symtab) | |
12585 | if (rcookie->rel->r_offset > offset) | |
12586 | return FALSE; | |
12587 | if (rcookie->rel->r_offset != offset) | |
12588 | continue; | |
12589 | ||
12590 | r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; | |
2c2fa401 | 12591 | if (r_symndx == STN_UNDEF) |
c152c796 AM |
12592 | return TRUE; |
12593 | ||
12594 | if (r_symndx >= rcookie->locsymcount | |
12595 | || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) | |
12596 | { | |
12597 | struct elf_link_hash_entry *h; | |
12598 | ||
12599 | h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; | |
12600 | ||
12601 | while (h->root.type == bfd_link_hash_indirect | |
12602 | || h->root.type == bfd_link_hash_warning) | |
12603 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
12604 | ||
12605 | if ((h->root.type == bfd_link_hash_defined | |
12606 | || h->root.type == bfd_link_hash_defweak) | |
dbaa2011 | 12607 | && discarded_section (h->root.u.def.section)) |
c152c796 AM |
12608 | return TRUE; |
12609 | else | |
12610 | return FALSE; | |
12611 | } | |
12612 | else | |
12613 | { | |
12614 | /* It's not a relocation against a global symbol, | |
12615 | but it could be a relocation against a local | |
12616 | symbol for a discarded section. */ | |
12617 | asection *isec; | |
12618 | Elf_Internal_Sym *isym; | |
12619 | ||
12620 | /* Need to: get the symbol; get the section. */ | |
12621 | isym = &rcookie->locsyms[r_symndx]; | |
cb33740c | 12622 | isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); |
dbaa2011 | 12623 | if (isec != NULL && discarded_section (isec)) |
cb33740c | 12624 | return TRUE; |
c152c796 AM |
12625 | } |
12626 | return FALSE; | |
12627 | } | |
12628 | return FALSE; | |
12629 | } | |
12630 | ||
12631 | /* Discard unneeded references to discarded sections. | |
75938853 AM |
12632 | Returns -1 on error, 1 if any section's size was changed, 0 if |
12633 | nothing changed. This function assumes that the relocations are in | |
12634 | sorted order, which is true for all known assemblers. */ | |
c152c796 | 12635 | |
75938853 | 12636 | int |
c152c796 AM |
12637 | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) |
12638 | { | |
12639 | struct elf_reloc_cookie cookie; | |
18cd5bce | 12640 | asection *o; |
c152c796 | 12641 | bfd *abfd; |
75938853 | 12642 | int changed = 0; |
c152c796 AM |
12643 | |
12644 | if (info->traditional_format | |
12645 | || !is_elf_hash_table (info->hash)) | |
75938853 | 12646 | return 0; |
c152c796 | 12647 | |
18cd5bce AM |
12648 | o = bfd_get_section_by_name (output_bfd, ".stab"); |
12649 | if (o != NULL) | |
c152c796 | 12650 | { |
18cd5bce | 12651 | asection *i; |
c152c796 | 12652 | |
18cd5bce | 12653 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
8da3dbc5 | 12654 | { |
18cd5bce AM |
12655 | if (i->size == 0 |
12656 | || i->reloc_count == 0 | |
12657 | || i->sec_info_type != SEC_INFO_TYPE_STABS) | |
12658 | continue; | |
c152c796 | 12659 | |
18cd5bce AM |
12660 | abfd = i->owner; |
12661 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
12662 | continue; | |
c152c796 | 12663 | |
18cd5bce | 12664 | if (!init_reloc_cookie_for_section (&cookie, info, i)) |
75938853 | 12665 | return -1; |
c152c796 | 12666 | |
18cd5bce AM |
12667 | if (_bfd_discard_section_stabs (abfd, i, |
12668 | elf_section_data (i)->sec_info, | |
5241d853 RS |
12669 | bfd_elf_reloc_symbol_deleted_p, |
12670 | &cookie)) | |
75938853 | 12671 | changed = 1; |
18cd5bce AM |
12672 | |
12673 | fini_reloc_cookie_for_section (&cookie, i); | |
c152c796 | 12674 | } |
18cd5bce AM |
12675 | } |
12676 | ||
12677 | o = NULL; | |
12678 | if (!info->relocatable) | |
12679 | o = bfd_get_section_by_name (output_bfd, ".eh_frame"); | |
12680 | if (o != NULL) | |
12681 | { | |
12682 | asection *i; | |
c152c796 | 12683 | |
18cd5bce AM |
12684 | _bfd_elf_begin_eh_frame_parsing (info); |
12685 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) | |
c152c796 | 12686 | { |
18cd5bce AM |
12687 | if (i->size == 0) |
12688 | continue; | |
12689 | ||
12690 | abfd = i->owner; | |
12691 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
12692 | continue; | |
12693 | ||
12694 | if (!init_reloc_cookie_for_section (&cookie, info, i)) | |
75938853 | 12695 | return -1; |
18cd5bce AM |
12696 | |
12697 | _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); | |
12698 | if (_bfd_elf_discard_section_eh_frame (abfd, info, i, | |
c152c796 AM |
12699 | bfd_elf_reloc_symbol_deleted_p, |
12700 | &cookie)) | |
75938853 | 12701 | changed = 1; |
18cd5bce AM |
12702 | |
12703 | fini_reloc_cookie_for_section (&cookie, i); | |
c152c796 | 12704 | } |
18cd5bce AM |
12705 | _bfd_elf_end_eh_frame_parsing (info); |
12706 | } | |
c152c796 | 12707 | |
18cd5bce AM |
12708 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
12709 | { | |
12710 | const struct elf_backend_data *bed; | |
c152c796 | 12711 | |
18cd5bce AM |
12712 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
12713 | continue; | |
12714 | ||
12715 | bed = get_elf_backend_data (abfd); | |
12716 | ||
12717 | if (bed->elf_backend_discard_info != NULL) | |
12718 | { | |
12719 | if (!init_reloc_cookie (&cookie, info, abfd)) | |
75938853 | 12720 | return -1; |
18cd5bce AM |
12721 | |
12722 | if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) | |
75938853 | 12723 | changed = 1; |
18cd5bce AM |
12724 | |
12725 | fini_reloc_cookie (&cookie, abfd); | |
12726 | } | |
c152c796 AM |
12727 | } |
12728 | ||
12729 | if (info->eh_frame_hdr | |
12730 | && !info->relocatable | |
12731 | && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) | |
75938853 | 12732 | changed = 1; |
c152c796 | 12733 | |
75938853 | 12734 | return changed; |
c152c796 | 12735 | } |
082b7297 | 12736 | |
43e1669b | 12737 | bfd_boolean |
0c511000 | 12738 | _bfd_elf_section_already_linked (bfd *abfd, |
c77ec726 | 12739 | asection *sec, |
c0f00686 | 12740 | struct bfd_link_info *info) |
082b7297 L |
12741 | { |
12742 | flagword flags; | |
c77ec726 | 12743 | const char *name, *key; |
082b7297 L |
12744 | struct bfd_section_already_linked *l; |
12745 | struct bfd_section_already_linked_hash_entry *already_linked_list; | |
0c511000 | 12746 | |
c77ec726 AM |
12747 | if (sec->output_section == bfd_abs_section_ptr) |
12748 | return FALSE; | |
0c511000 | 12749 | |
c77ec726 | 12750 | flags = sec->flags; |
0c511000 | 12751 | |
c77ec726 AM |
12752 | /* Return if it isn't a linkonce section. A comdat group section |
12753 | also has SEC_LINK_ONCE set. */ | |
12754 | if ((flags & SEC_LINK_ONCE) == 0) | |
12755 | return FALSE; | |
0c511000 | 12756 | |
c77ec726 AM |
12757 | /* Don't put group member sections on our list of already linked |
12758 | sections. They are handled as a group via their group section. */ | |
12759 | if (elf_sec_group (sec) != NULL) | |
12760 | return FALSE; | |
0c511000 | 12761 | |
c77ec726 AM |
12762 | /* For a SHT_GROUP section, use the group signature as the key. */ |
12763 | name = sec->name; | |
12764 | if ((flags & SEC_GROUP) != 0 | |
12765 | && elf_next_in_group (sec) != NULL | |
12766 | && elf_group_name (elf_next_in_group (sec)) != NULL) | |
12767 | key = elf_group_name (elf_next_in_group (sec)); | |
12768 | else | |
12769 | { | |
12770 | /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ | |
0c511000 | 12771 | if (CONST_STRNEQ (name, ".gnu.linkonce.") |
c77ec726 AM |
12772 | && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) |
12773 | key++; | |
0c511000 | 12774 | else |
c77ec726 AM |
12775 | /* Must be a user linkonce section that doesn't follow gcc's |
12776 | naming convention. In this case we won't be matching | |
12777 | single member groups. */ | |
12778 | key = name; | |
0c511000 | 12779 | } |
6d2cd210 | 12780 | |
c77ec726 | 12781 | already_linked_list = bfd_section_already_linked_table_lookup (key); |
082b7297 L |
12782 | |
12783 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12784 | { | |
c2370991 | 12785 | /* We may have 2 different types of sections on the list: group |
c77ec726 AM |
12786 | sections with a signature of <key> (<key> is some string), |
12787 | and linkonce sections named .gnu.linkonce.<type>.<key>. | |
12788 | Match like sections. LTO plugin sections are an exception. | |
12789 | They are always named .gnu.linkonce.t.<key> and match either | |
12790 | type of section. */ | |
12791 | if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) | |
12792 | && ((flags & SEC_GROUP) != 0 | |
12793 | || strcmp (name, l->sec->name) == 0)) | |
12794 | || (l->sec->owner->flags & BFD_PLUGIN) != 0) | |
082b7297 L |
12795 | { |
12796 | /* The section has already been linked. See if we should | |
6d2cd210 | 12797 | issue a warning. */ |
c77ec726 AM |
12798 | if (!_bfd_handle_already_linked (sec, l, info)) |
12799 | return FALSE; | |
082b7297 | 12800 | |
c77ec726 | 12801 | if (flags & SEC_GROUP) |
3d7f7666 | 12802 | { |
c77ec726 AM |
12803 | asection *first = elf_next_in_group (sec); |
12804 | asection *s = first; | |
3d7f7666 | 12805 | |
c77ec726 | 12806 | while (s != NULL) |
3d7f7666 | 12807 | { |
c77ec726 AM |
12808 | s->output_section = bfd_abs_section_ptr; |
12809 | /* Record which group discards it. */ | |
12810 | s->kept_section = l->sec; | |
12811 | s = elf_next_in_group (s); | |
12812 | /* These lists are circular. */ | |
12813 | if (s == first) | |
12814 | break; | |
3d7f7666 L |
12815 | } |
12816 | } | |
082b7297 | 12817 | |
43e1669b | 12818 | return TRUE; |
082b7297 L |
12819 | } |
12820 | } | |
12821 | ||
c77ec726 AM |
12822 | /* A single member comdat group section may be discarded by a |
12823 | linkonce section and vice versa. */ | |
12824 | if ((flags & SEC_GROUP) != 0) | |
3d7f7666 | 12825 | { |
c77ec726 | 12826 | asection *first = elf_next_in_group (sec); |
c2370991 | 12827 | |
c77ec726 AM |
12828 | if (first != NULL && elf_next_in_group (first) == first) |
12829 | /* Check this single member group against linkonce sections. */ | |
12830 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12831 | if ((l->sec->flags & SEC_GROUP) == 0 | |
12832 | && bfd_elf_match_symbols_in_sections (l->sec, first, info)) | |
12833 | { | |
12834 | first->output_section = bfd_abs_section_ptr; | |
12835 | first->kept_section = l->sec; | |
12836 | sec->output_section = bfd_abs_section_ptr; | |
12837 | break; | |
12838 | } | |
12839 | } | |
12840 | else | |
12841 | /* Check this linkonce section against single member groups. */ | |
12842 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12843 | if (l->sec->flags & SEC_GROUP) | |
6d2cd210 | 12844 | { |
c77ec726 | 12845 | asection *first = elf_next_in_group (l->sec); |
6d2cd210 | 12846 | |
c77ec726 AM |
12847 | if (first != NULL |
12848 | && elf_next_in_group (first) == first | |
12849 | && bfd_elf_match_symbols_in_sections (first, sec, info)) | |
12850 | { | |
12851 | sec->output_section = bfd_abs_section_ptr; | |
12852 | sec->kept_section = first; | |
12853 | break; | |
12854 | } | |
6d2cd210 | 12855 | } |
0c511000 | 12856 | |
c77ec726 AM |
12857 | /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' |
12858 | referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 | |
12859 | specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' | |
12860 | prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its | |
12861 | matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded | |
12862 | but its `.gnu.linkonce.t.F' is discarded means we chose one-only | |
12863 | `.gnu.linkonce.t.F' section from a different bfd not requiring any | |
12864 | `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. | |
12865 | The reverse order cannot happen as there is never a bfd with only the | |
12866 | `.gnu.linkonce.r.F' section. The order of sections in a bfd does not | |
12867 | matter as here were are looking only for cross-bfd sections. */ | |
12868 | ||
12869 | if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) | |
12870 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
12871 | if ((l->sec->flags & SEC_GROUP) == 0 | |
12872 | && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) | |
12873 | { | |
12874 | if (abfd != l->sec->owner) | |
12875 | sec->output_section = bfd_abs_section_ptr; | |
12876 | break; | |
12877 | } | |
80c29487 | 12878 | |
082b7297 | 12879 | /* This is the first section with this name. Record it. */ |
c77ec726 | 12880 | if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) |
bb6198d2 | 12881 | info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); |
c77ec726 | 12882 | return sec->output_section == bfd_abs_section_ptr; |
082b7297 | 12883 | } |
81e1b023 | 12884 | |
a4d8e49b L |
12885 | bfd_boolean |
12886 | _bfd_elf_common_definition (Elf_Internal_Sym *sym) | |
12887 | { | |
12888 | return sym->st_shndx == SHN_COMMON; | |
12889 | } | |
12890 | ||
12891 | unsigned int | |
12892 | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) | |
12893 | { | |
12894 | return SHN_COMMON; | |
12895 | } | |
12896 | ||
12897 | asection * | |
12898 | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) | |
12899 | { | |
12900 | return bfd_com_section_ptr; | |
12901 | } | |
10455f89 HPN |
12902 | |
12903 | bfd_vma | |
12904 | _bfd_elf_default_got_elt_size (bfd *abfd, | |
12905 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
12906 | struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, | |
12907 | bfd *ibfd ATTRIBUTE_UNUSED, | |
12908 | unsigned long symndx ATTRIBUTE_UNUSED) | |
12909 | { | |
12910 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12911 | return bed->s->arch_size / 8; | |
12912 | } | |
83bac4b0 NC |
12913 | |
12914 | /* Routines to support the creation of dynamic relocs. */ | |
12915 | ||
83bac4b0 NC |
12916 | /* Returns the name of the dynamic reloc section associated with SEC. */ |
12917 | ||
12918 | static const char * | |
12919 | get_dynamic_reloc_section_name (bfd * abfd, | |
12920 | asection * sec, | |
12921 | bfd_boolean is_rela) | |
12922 | { | |
ddcf1fcf BS |
12923 | char *name; |
12924 | const char *old_name = bfd_get_section_name (NULL, sec); | |
12925 | const char *prefix = is_rela ? ".rela" : ".rel"; | |
83bac4b0 | 12926 | |
ddcf1fcf | 12927 | if (old_name == NULL) |
83bac4b0 NC |
12928 | return NULL; |
12929 | ||
ddcf1fcf | 12930 | name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); |
68ffbac6 | 12931 | sprintf (name, "%s%s", prefix, old_name); |
83bac4b0 NC |
12932 | |
12933 | return name; | |
12934 | } | |
12935 | ||
12936 | /* Returns the dynamic reloc section associated with SEC. | |
12937 | If necessary compute the name of the dynamic reloc section based | |
12938 | on SEC's name (looked up in ABFD's string table) and the setting | |
12939 | of IS_RELA. */ | |
12940 | ||
12941 | asection * | |
12942 | _bfd_elf_get_dynamic_reloc_section (bfd * abfd, | |
12943 | asection * sec, | |
12944 | bfd_boolean is_rela) | |
12945 | { | |
12946 | asection * reloc_sec = elf_section_data (sec)->sreloc; | |
12947 | ||
12948 | if (reloc_sec == NULL) | |
12949 | { | |
12950 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
12951 | ||
12952 | if (name != NULL) | |
12953 | { | |
3d4d4302 | 12954 | reloc_sec = bfd_get_linker_section (abfd, name); |
83bac4b0 NC |
12955 | |
12956 | if (reloc_sec != NULL) | |
12957 | elf_section_data (sec)->sreloc = reloc_sec; | |
12958 | } | |
12959 | } | |
12960 | ||
12961 | return reloc_sec; | |
12962 | } | |
12963 | ||
12964 | /* Returns the dynamic reloc section associated with SEC. If the | |
12965 | section does not exist it is created and attached to the DYNOBJ | |
12966 | bfd and stored in the SRELOC field of SEC's elf_section_data | |
12967 | structure. | |
f8076f98 | 12968 | |
83bac4b0 NC |
12969 | ALIGNMENT is the alignment for the newly created section and |
12970 | IS_RELA defines whether the name should be .rela.<SEC's name> | |
12971 | or .rel.<SEC's name>. The section name is looked up in the | |
12972 | string table associated with ABFD. */ | |
12973 | ||
12974 | asection * | |
12975 | _bfd_elf_make_dynamic_reloc_section (asection * sec, | |
12976 | bfd * dynobj, | |
12977 | unsigned int alignment, | |
12978 | bfd * abfd, | |
12979 | bfd_boolean is_rela) | |
12980 | { | |
12981 | asection * reloc_sec = elf_section_data (sec)->sreloc; | |
12982 | ||
12983 | if (reloc_sec == NULL) | |
12984 | { | |
12985 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
12986 | ||
12987 | if (name == NULL) | |
12988 | return NULL; | |
12989 | ||
3d4d4302 | 12990 | reloc_sec = bfd_get_linker_section (dynobj, name); |
83bac4b0 NC |
12991 | |
12992 | if (reloc_sec == NULL) | |
12993 | { | |
3d4d4302 AM |
12994 | flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY |
12995 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
83bac4b0 NC |
12996 | if ((sec->flags & SEC_ALLOC) != 0) |
12997 | flags |= SEC_ALLOC | SEC_LOAD; | |
12998 | ||
3d4d4302 | 12999 | reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); |
83bac4b0 NC |
13000 | if (reloc_sec != NULL) |
13001 | { | |
8877b5e5 AM |
13002 | /* _bfd_elf_get_sec_type_attr chooses a section type by |
13003 | name. Override as it may be wrong, eg. for a user | |
13004 | section named "auto" we'll get ".relauto" which is | |
13005 | seen to be a .rela section. */ | |
13006 | elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; | |
83bac4b0 NC |
13007 | if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment)) |
13008 | reloc_sec = NULL; | |
13009 | } | |
13010 | } | |
13011 | ||
13012 | elf_section_data (sec)->sreloc = reloc_sec; | |
13013 | } | |
13014 | ||
13015 | return reloc_sec; | |
13016 | } | |
1338dd10 | 13017 | |
bffebb6b AM |
13018 | /* Copy the ELF symbol type and other attributes for a linker script |
13019 | assignment from HSRC to HDEST. Generally this should be treated as | |
13020 | if we found a strong non-dynamic definition for HDEST (except that | |
13021 | ld ignores multiple definition errors). */ | |
1338dd10 | 13022 | void |
bffebb6b AM |
13023 | _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, |
13024 | struct bfd_link_hash_entry *hdest, | |
13025 | struct bfd_link_hash_entry *hsrc) | |
1338dd10 | 13026 | { |
bffebb6b AM |
13027 | struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; |
13028 | struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; | |
13029 | Elf_Internal_Sym isym; | |
1338dd10 PB |
13030 | |
13031 | ehdest->type = ehsrc->type; | |
35fc36a8 | 13032 | ehdest->target_internal = ehsrc->target_internal; |
bffebb6b AM |
13033 | |
13034 | isym.st_other = ehsrc->other; | |
13035 | elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE); | |
1338dd10 | 13036 | } |
351f65ca L |
13037 | |
13038 | /* Append a RELA relocation REL to section S in BFD. */ | |
13039 | ||
13040 | void | |
13041 | elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
13042 | { | |
13043 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
13044 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | |
13045 | BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); | |
13046 | bed->s->swap_reloca_out (abfd, rel, loc); | |
13047 | } | |
13048 | ||
13049 | /* Append a REL relocation REL to section S in BFD. */ | |
13050 | ||
13051 | void | |
13052 | elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
13053 | { | |
13054 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
13055 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); | |
13056 | BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); | |
59d6ffb2 | 13057 | bed->s->swap_reloc_out (abfd, rel, loc); |
351f65ca | 13058 | } |