]> Git Repo - binutils.git/blame - gdb/frv-tdep.c
2003-03-13 Andrew Cagney <[email protected]>
[binutils.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
1e698235 2 Copyright 2002, 2003 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
22#include "inferior.h"
23#include "symfile.h" /* for entry_point_address */
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
27
28extern void _initialize_frv_tdep (void);
29
30static gdbarch_init_ftype frv_gdbarch_init;
31
32static gdbarch_register_name_ftype frv_register_name;
33static gdbarch_register_raw_size_ftype frv_register_raw_size;
34static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
35static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
36static gdbarch_register_byte_ftype frv_register_byte;
37static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
38static gdbarch_frame_chain_ftype frv_frame_chain;
456f8b9d 39static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d
DB
40static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
41static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
42static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
43static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
44static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
456f8b9d
DB
45static gdbarch_store_struct_return_ftype frv_store_struct_return;
46static gdbarch_push_arguments_ftype frv_push_arguments;
47static gdbarch_push_return_address_ftype frv_push_return_address;
456f8b9d
DB
48static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
49
50static void frv_pop_frame_regular (struct frame_info *frame);
51
52/* Register numbers. You can change these as needed, but don't forget
53 to update the simulator accordingly. */
54enum {
55 /* The total number of registers we know exist. */
56 frv_num_regs = 147,
57
58 /* Register numbers 0 -- 63 are always reserved for general-purpose
59 registers. The chip at hand may have less. */
60 first_gpr_regnum = 0,
61 sp_regnum = 1,
62 fp_regnum = 2,
63 struct_return_regnum = 3,
64 last_gpr_regnum = 63,
65
66 /* Register numbers 64 -- 127 are always reserved for floating-point
67 registers. The chip at hand may have less. */
68 first_fpr_regnum = 64,
69 last_fpr_regnum = 127,
70
71 /* Register numbers 128 on up are always reserved for special-purpose
72 registers. */
73 first_spr_regnum = 128,
74 pc_regnum = 128,
75 psr_regnum = 129,
76 ccr_regnum = 130,
77 cccr_regnum = 131,
78 tbr_regnum = 135,
79 brr_regnum = 136,
80 dbar0_regnum = 137,
81 dbar1_regnum = 138,
82 dbar2_regnum = 139,
83 dbar3_regnum = 140,
84 lr_regnum = 145,
85 lcr_regnum = 146,
86 last_spr_regnum = 146
87};
88
89static LONGEST frv_call_dummy_words[] =
90{0};
91
92
93/* The contents of this structure can only be trusted after we've
94 frv_frame_init_saved_regs on the frame. */
95struct frame_extra_info
96 {
97 /* The offset from our frame pointer to our caller's stack
98 pointer. */
99 int fp_to_callers_sp_offset;
100
101 /* Non-zero if we've saved our return address on the stack yet.
102 Zero if it's still sitting in the link register. */
103 int lr_saved_on_stack;
104 };
105
106
107/* A structure describing a particular variant of the FRV.
108 We allocate and initialize one of these structures when we create
109 the gdbarch object for a variant.
110
111 At the moment, all the FR variants we support differ only in which
112 registers are present; the portable code of GDB knows that
113 registers whose names are the empty string don't exist, so the
114 `register_names' array captures all the per-variant information we
115 need.
116
117 in the future, if we need to have per-variant maps for raw size,
118 virtual type, etc., we should replace register_names with an array
119 of structures, each of which gives all the necessary info for one
120 register. Don't stick parallel arrays in here --- that's so
121 Fortran. */
122struct gdbarch_tdep
123{
124 /* How many general-purpose registers does this variant have? */
125 int num_gprs;
126
127 /* How many floating-point registers does this variant have? */
128 int num_fprs;
129
130 /* How many hardware watchpoints can it support? */
131 int num_hw_watchpoints;
132
133 /* How many hardware breakpoints can it support? */
134 int num_hw_breakpoints;
135
136 /* Register names. */
137 char **register_names;
138};
139
140#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
141
142
143/* Allocate a new variant structure, and set up default values for all
144 the fields. */
145static struct gdbarch_tdep *
5ae5f592 146new_variant (void)
456f8b9d
DB
147{
148 struct gdbarch_tdep *var;
149 int r;
150 char buf[20];
151
152 var = xmalloc (sizeof (*var));
153 memset (var, 0, sizeof (*var));
154
155 var->num_gprs = 64;
156 var->num_fprs = 64;
157 var->num_hw_watchpoints = 0;
158 var->num_hw_breakpoints = 0;
159
160 /* By default, don't supply any general-purpose or floating-point
161 register names. */
162 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
163 for (r = 0; r < frv_num_regs; r++)
164 var->register_names[r] = "";
165
166 /* Do, however, supply default names for the special-purpose
167 registers. */
168 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
169 {
170 sprintf (buf, "x%d", r);
171 var->register_names[r] = xstrdup (buf);
172 }
173
174 var->register_names[pc_regnum] = "pc";
175 var->register_names[lr_regnum] = "lr";
176 var->register_names[lcr_regnum] = "lcr";
177
178 var->register_names[psr_regnum] = "psr";
179 var->register_names[ccr_regnum] = "ccr";
180 var->register_names[cccr_regnum] = "cccr";
181 var->register_names[tbr_regnum] = "tbr";
182
183 /* Debug registers. */
184 var->register_names[brr_regnum] = "brr";
185 var->register_names[dbar0_regnum] = "dbar0";
186 var->register_names[dbar1_regnum] = "dbar1";
187 var->register_names[dbar2_regnum] = "dbar2";
188 var->register_names[dbar3_regnum] = "dbar3";
189
190 return var;
191}
192
193
194/* Indicate that the variant VAR has NUM_GPRS general-purpose
195 registers, and fill in the names array appropriately. */
196static void
197set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
198{
199 int r;
200
201 var->num_gprs = num_gprs;
202
203 for (r = 0; r < num_gprs; ++r)
204 {
205 char buf[20];
206
207 sprintf (buf, "gr%d", r);
208 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
209 }
210}
211
212
213/* Indicate that the variant VAR has NUM_FPRS floating-point
214 registers, and fill in the names array appropriately. */
215static void
216set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
217{
218 int r;
219
220 var->num_fprs = num_fprs;
221
222 for (r = 0; r < num_fprs; ++r)
223 {
224 char buf[20];
225
226 sprintf (buf, "fr%d", r);
227 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
228 }
229}
230
231
232static const char *
233frv_register_name (int reg)
234{
235 if (reg < 0)
236 return "?toosmall?";
237 if (reg >= frv_num_regs)
238 return "?toolarge?";
239
240 return CURRENT_VARIANT->register_names[reg];
241}
242
243
244static int
245frv_register_raw_size (int reg)
246{
247 return 4;
248}
249
250static int
251frv_register_virtual_size (int reg)
252{
253 return 4;
254}
255
256static struct type *
257frv_register_virtual_type (int reg)
258{
259 if (reg >= 64 && reg <= 127)
260 return builtin_type_float;
261 else
262 return builtin_type_int;
263}
264
265static int
266frv_register_byte (int reg)
267{
268 return (reg * 4);
269}
270
271static const unsigned char *
272frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
273{
274 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
275 *lenp = sizeof (breakpoint);
276 return breakpoint;
277}
278
279static CORE_ADDR
280frv_frame_chain (struct frame_info *frame)
281{
282 CORE_ADDR saved_fp_addr;
283
284 if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
285 saved_fp_addr = frame->saved_regs[fp_regnum];
286 else
287 /* Just assume it was saved in the usual place. */
288 saved_fp_addr = frame->frame;
289
290 return read_memory_integer (saved_fp_addr, 4);
291}
292
293static CORE_ADDR
294frv_frame_saved_pc (struct frame_info *frame)
295{
296 frv_frame_init_saved_regs (frame);
297
298 /* Perhaps the prologue analyzer recorded where it was stored.
299 (As of 14 Oct 2001, it never does.) */
300 if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
301 return read_memory_integer (frame->saved_regs[pc_regnum], 4);
302
303 /* If the prologue analyzer tells us the link register was saved on
304 the stack, get it from there. */
305 if (frame->extra_info->lr_saved_on_stack)
306 return read_memory_integer (frame->frame + 8, 4);
307
308 /* Otherwise, it's still in LR.
309 However, if FRAME isn't the youngest frame, this is kind of
310 suspicious --- if this frame called somebody else, then its LR
311 has certainly been overwritten. */
312 if (! frame->next)
313 return read_register (lr_regnum);
314
315 /* By default, assume it's saved in the standard place, relative to
316 the frame pointer. */
317 return read_memory_integer (frame->frame + 8, 4);
318}
319
320
321/* Return true if REG is a caller-saves ("scratch") register,
322 false otherwise. */
323static int
324is_caller_saves_reg (int reg)
325{
326 return ((4 <= reg && reg <= 7)
327 || (14 <= reg && reg <= 15)
328 || (32 <= reg && reg <= 47));
329}
330
331
332/* Return true if REG is a callee-saves register, false otherwise. */
333static int
334is_callee_saves_reg (int reg)
335{
336 return ((16 <= reg && reg <= 31)
337 || (48 <= reg && reg <= 63));
338}
339
340
341/* Return true if REG is an argument register, false otherwise. */
342static int
343is_argument_reg (int reg)
344{
345 return (8 <= reg && reg <= 13);
346}
347
348
349/* Scan an FR-V prologue, starting at PC, until frame->PC.
350 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
351 We assume FRAME's saved_regs array has already been allocated and cleared.
352 Return the first PC value after the prologue.
353
354 Note that, for unoptimized code, we almost don't need this function
355 at all; all arguments and locals live on the stack, so we just need
356 the FP to find everything. The catch: structures passed by value
357 have their addresses living in registers; they're never spilled to
358 the stack. So if you ever want to be able to get to these
359 arguments in any frame but the top, you'll need to do this serious
360 prologue analysis. */
361static CORE_ADDR
362frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
363{
364 /* When writing out instruction bitpatterns, we use the following
365 letters to label instruction fields:
366 P - The parallel bit. We don't use this.
367 J - The register number of GRj in the instruction description.
368 K - The register number of GRk in the instruction description.
369 I - The register number of GRi.
370 S - a signed imediate offset.
371 U - an unsigned immediate offset.
372
373 The dots below the numbers indicate where hex digit boundaries
374 fall, to make it easier to check the numbers. */
375
376 /* Non-zero iff we've seen the instruction that initializes the
377 frame pointer for this function's frame. */
378 int fp_set = 0;
379
380 /* If fp_set is non_zero, then this is the distance from
381 the stack pointer to frame pointer: fp = sp + fp_offset. */
382 int fp_offset = 0;
383
384 /* Total size of frame prior to any alloca operations. */
385 int framesize = 0;
386
387 /* The number of the general-purpose register we saved the return
388 address ("link register") in, or -1 if we haven't moved it yet. */
389 int lr_save_reg = -1;
390
391 /* Non-zero iff we've saved the LR onto the stack. */
392 int lr_saved_on_stack = 0;
393
394 /* If gr_saved[i] is non-zero, then we've noticed that general
395 register i has been saved at gr_sp_offset[i] from the stack
396 pointer. */
397 char gr_saved[64];
398 int gr_sp_offset[64];
399
400 memset (gr_saved, 0, sizeof (gr_saved));
401
402 while (! frame || pc < frame->pc)
403 {
404 LONGEST op = read_memory_integer (pc, 4);
405
406 /* The tests in this chain of ifs should be in order of
407 decreasing selectivity, so that more particular patterns get
408 to fire before less particular patterns. */
409
410 /* Setting the FP from the SP:
411 ori sp, 0, fp
412 P 000010 0100010 000001 000000000000 = 0x04881000
413 0 111111 1111111 111111 111111111111 = 0x7fffffff
414 . . . . . . . .
415 We treat this as part of the prologue. */
416 if ((op & 0x7fffffff) == 0x04881000)
417 {
418 fp_set = 1;
419 fp_offset = 0;
420 }
421
422 /* Move the link register to the scratch register grJ, before saving:
423 movsg lr, grJ
424 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
425 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
426 . . . . . . . .
427 We treat this as part of the prologue. */
428 else if ((op & 0x7fffffc0) == 0x080d01c0)
429 {
430 int gr_j = op & 0x3f;
431
432 /* If we're moving it to a scratch register, that's fine. */
433 if (is_caller_saves_reg (gr_j))
434 lr_save_reg = gr_j;
435 /* Otherwise it's not a prologue instruction that we
436 recognize. */
437 else
438 break;
439 }
440
441 /* To save multiple callee-saves registers on the stack, at
442 offset zero:
443
444 std grK,@(sp,gr0)
445 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
446 0 000000 1111111 111111 111111 111111 = 0x01ffffff
447
448 stq grK,@(sp,gr0)
449 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
450 0 000000 1111111 111111 111111 111111 = 0x01ffffff
451 . . . . . . . .
452 We treat this as part of the prologue, and record the register's
453 saved address in the frame structure. */
454 else if ((op & 0x01ffffff) == 0x000c10c0
455 || (op & 0x01ffffff) == 0x000c1100)
456 {
457 int gr_k = ((op >> 25) & 0x3f);
458 int ope = ((op >> 6) & 0x3f);
459 int count;
460 int i;
461
462 /* Is it an std or an stq? */
463 if (ope == 0x03)
464 count = 2;
465 else
466 count = 4;
467
468 /* Is it really a callee-saves register? */
469 if (is_callee_saves_reg (gr_k))
470 {
471 for (i = 0; i < count; i++)
472 {
473 gr_saved[gr_k + i] = 1;
474 gr_sp_offset[gr_k + i] = 4 * i;
475 }
476 }
477 else
478 /* It's not a prologue instruction. */
479 break;
480 }
481
482 /* Adjusting the stack pointer. (The stack pointer is GR1.)
483 addi sp, S, sp
484 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
485 0 111111 1111111 111111 000000000000 = 0x7ffff000
486 . . . . . . . .
487 We treat this as part of the prologue. */
488 else if ((op & 0x7ffff000) == 0x02401000)
489 {
490 /* Sign-extend the twelve-bit field.
491 (Isn't there a better way to do this?) */
492 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
493
494 framesize -= s;
495 }
496
497 /* Setting the FP to a constant distance from the SP:
498 addi sp, S, fp
499 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
500 0 111111 1111111 111111 000000000000 = 0x7ffff000
501 . . . . . . . .
502 We treat this as part of the prologue. */
503 else if ((op & 0x7ffff000) == 0x04401000)
504 {
505 /* Sign-extend the twelve-bit field.
506 (Isn't there a better way to do this?) */
507 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
508 fp_set = 1;
509 fp_offset = s;
510 }
511
512 /* To spill an argument register to a scratch register:
513 ori GRi, 0, GRk
514 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
515 0 000000 1111111 000000 111111111111 = 0x01fc0fff
516 . . . . . . . .
517 For the time being, we treat this as a prologue instruction,
518 assuming that GRi is an argument register. This one's kind
519 of suspicious, because it seems like it could be part of a
520 legitimate body instruction. But we only come here when the
521 source info wasn't helpful, so we have to do the best we can.
522 Hopefully once GCC and GDB agree on how to emit line number
523 info for prologues, then this code will never come into play. */
524 else if ((op & 0x01fc0fff) == 0x00880000)
525 {
526 int gr_i = ((op >> 12) & 0x3f);
527
528 /* If the source isn't an arg register, then this isn't a
529 prologue instruction. */
530 if (! is_argument_reg (gr_i))
531 break;
532 }
533
534 /* To spill 16-bit values to the stack:
535 sthi GRk, @(fp, s)
536 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
537 0 000000 1111111 111111 000000000000 = 0x01fff000
538 . . . . . . . .
539 And for 8-bit values, we use STB instructions.
540 stbi GRk, @(fp, s)
541 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
542 0 000000 1111111 111111 000000000000 = 0x01fff000
543 . . . . . . . .
544 We check that GRk is really an argument register, and treat
545 all such as part of the prologue. */
546 else if ( (op & 0x01fff000) == 0x01442000
547 || (op & 0x01fff000) == 0x01402000)
548 {
549 int gr_k = ((op >> 25) & 0x3f);
550
551 if (! is_argument_reg (gr_k))
552 break; /* Source isn't an arg register. */
553 }
554
555 /* To save multiple callee-saves register on the stack, at a
556 non-zero offset:
557
558 stdi GRk, @(sp, s)
559 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
560 0 000000 1111111 111111 000000000000 = 0x01fff000
561 . . . . . . . .
562 stqi GRk, @(sp, s)
563 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
564 0 000000 1111111 111111 000000000000 = 0x01fff000
565 . . . . . . . .
566 We treat this as part of the prologue, and record the register's
567 saved address in the frame structure. */
568 else if ((op & 0x01fff000) == 0x014c1000
569 || (op & 0x01fff000) == 0x01501000)
570 {
571 int gr_k = ((op >> 25) & 0x3f);
572 int count;
573 int i;
574
575 /* Is it a stdi or a stqi? */
576 if ((op & 0x01fff000) == 0x014c1000)
577 count = 2;
578 else
579 count = 4;
580
581 /* Is it really a callee-saves register? */
582 if (is_callee_saves_reg (gr_k))
583 {
584 /* Sign-extend the twelve-bit field.
585 (Isn't there a better way to do this?) */
586 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
587
588 for (i = 0; i < count; i++)
589 {
590 gr_saved[gr_k + i] = 1;
591 gr_sp_offset[gr_k + i] = s + (4 * i);
592 }
593 }
594 else
595 /* It's not a prologue instruction. */
596 break;
597 }
598
599 /* Storing any kind of integer register at any constant offset
600 from any other register.
601
602 st GRk, @(GRi, gr0)
603 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
604 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
605 . . . . . . . .
606 sti GRk, @(GRi, d12)
607 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
608 0 000000 1111111 000000 000000000000 = 0x01fc0000
609 . . . . . . . .
610 These could be almost anything, but a lot of prologue
611 instructions fall into this pattern, so let's decode the
612 instruction once, and then work at a higher level. */
613 else if (((op & 0x01fc0fff) == 0x000c0080)
614 || ((op & 0x01fc0000) == 0x01480000))
615 {
616 int gr_k = ((op >> 25) & 0x3f);
617 int gr_i = ((op >> 12) & 0x3f);
618 int offset;
619
620 /* Are we storing with gr0 as an offset, or using an
621 immediate value? */
622 if ((op & 0x01fc0fff) == 0x000c0080)
623 offset = 0;
624 else
625 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
626
627 /* If the address isn't relative to the SP or FP, it's not a
628 prologue instruction. */
629 if (gr_i != sp_regnum && gr_i != fp_regnum)
630 break;
631
632 /* Saving the old FP in the new frame (relative to the SP). */
633 if (gr_k == fp_regnum && gr_i == sp_regnum)
634 ;
635
636 /* Saving callee-saves register(s) on the stack, relative to
637 the SP. */
638 else if (gr_i == sp_regnum
639 && is_callee_saves_reg (gr_k))
640 {
641 gr_saved[gr_k] = 1;
642 gr_sp_offset[gr_k] = offset;
643 }
644
645 /* Saving the scratch register holding the return address. */
646 else if (lr_save_reg != -1
647 && gr_k == lr_save_reg)
648 lr_saved_on_stack = 1;
649
650 /* Spilling int-sized arguments to the stack. */
651 else if (is_argument_reg (gr_k))
652 ;
653
654 /* It's not a store instruction we recognize, so this must
655 be the end of the prologue. */
656 else
657 break;
658 }
659
660 /* It's not any instruction we recognize, so this must be the end
661 of the prologue. */
662 else
663 break;
664
665 pc += 4;
666 }
667
668 if (frame)
669 {
670 frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
671
672 /* If we know the relationship between the stack and frame
673 pointers, record the addresses of the registers we noticed.
674 Note that we have to do this as a separate step at the end,
675 because instructions may save relative to the SP, but we need
676 their addresses relative to the FP. */
677 if (fp_set)
678 {
679 int i;
680
681 for (i = 0; i < 64; i++)
682 if (gr_saved[i])
683 frame->saved_regs[i] = (frame->frame
684 - fp_offset + gr_sp_offset[i]);
685
686 frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
687 }
688 }
689
690 return pc;
691}
692
693
694static CORE_ADDR
695frv_skip_prologue (CORE_ADDR pc)
696{
697 CORE_ADDR func_addr, func_end, new_pc;
698
699 new_pc = pc;
700
701 /* If the line table has entry for a line *within* the function
702 (i.e., not in the prologue, and not past the end), then that's
703 our location. */
704 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
705 {
706 struct symtab_and_line sal;
707
708 sal = find_pc_line (func_addr, 0);
709
710 if (sal.line != 0 && sal.end < func_end)
711 {
712 new_pc = sal.end;
713 }
714 }
715
716 /* The FR-V prologue is at least five instructions long (twenty bytes).
717 If we didn't find a real source location past that, then
718 do a full analysis of the prologue. */
719 if (new_pc < pc + 20)
720 new_pc = frv_analyze_prologue (pc, 0);
721
722 return new_pc;
723}
724
725static void
726frv_frame_init_saved_regs (struct frame_info *frame)
727{
728 if (frame->saved_regs)
729 return;
730
731 frame_saved_regs_zalloc (frame);
732 frame->saved_regs[fp_regnum] = frame->frame;
733
734 /* Find the beginning of this function, so we can analyze its
735 prologue. */
736 {
737 CORE_ADDR func_addr, func_end;
738
739 if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
740 frv_analyze_prologue (func_addr, frame);
741 }
742}
743
744/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
745 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
746 and TYPE is the type (which is known to be struct, union or array).
747
748 The frv returns all structs in memory. */
749
750static int
751frv_use_struct_convention (int gcc_p, struct type *type)
752{
753 return 1;
754}
755
756static void
757frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
758{
759 memcpy (valbuf, (regbuf
760 + frv_register_byte (8)
761 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
762 TYPE_LENGTH (type));
763}
764
765static CORE_ADDR
766frv_extract_struct_value_address (char *regbuf)
767{
768 return extract_address (regbuf + frv_register_byte (struct_return_regnum),
769 4);
770}
771
772static void
773frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
774{
775 write_register (struct_return_regnum, addr);
776}
777
778static int
779frv_frameless_function_invocation (struct frame_info *frame)
780{
781 return frameless_look_for_prologue (frame);
782}
783
784static CORE_ADDR
785frv_saved_pc_after_call (struct frame_info *frame)
786{
787 return read_register (lr_regnum);
788}
789
790static void
791frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
792{
a00a19e9 793 frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
456f8b9d
DB
794 frame->extra_info->fp_to_callers_sp_offset = 0;
795 frame->extra_info->lr_saved_on_stack = 0;
796}
797
798#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
799#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
800
801static CORE_ADDR
802frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
803 int struct_return, CORE_ADDR struct_addr)
804{
805 int argreg;
806 int argnum;
807 char *val;
808 char valbuf[4];
809 struct value *arg;
810 struct type *arg_type;
811 int len;
812 enum type_code typecode;
813 CORE_ADDR regval;
814 int stack_space;
815 int stack_offset;
816
817#if 0
818 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
819 nargs, (int) sp, struct_return, struct_addr);
820#endif
821
822 stack_space = 0;
823 for (argnum = 0; argnum < nargs; ++argnum)
824 stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
825
826 stack_space -= (6 * 4);
827 if (stack_space > 0)
828 sp -= stack_space;
829
830 /* Make sure stack is dword aligned. */
831 sp = ROUND_DOWN (sp, 8);
832
833 stack_offset = 0;
834
835 argreg = 8;
836
837 if (struct_return)
838 write_register (struct_return_regnum, struct_addr);
839
840 for (argnum = 0; argnum < nargs; ++argnum)
841 {
842 arg = args[argnum];
843 arg_type = check_typedef (VALUE_TYPE (arg));
844 len = TYPE_LENGTH (arg_type);
845 typecode = TYPE_CODE (arg_type);
846
847 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
848 {
849 store_address (valbuf, 4, VALUE_ADDRESS (arg));
850 typecode = TYPE_CODE_PTR;
851 len = 4;
852 val = valbuf;
853 }
854 else
855 {
856 val = (char *) VALUE_CONTENTS (arg);
857 }
858
859 while (len > 0)
860 {
861 int partial_len = (len < 4 ? len : 4);
862
863 if (argreg < 14)
864 {
865 regval = extract_address (val, partial_len);
866#if 0
867 printf(" Argnum %d data %x -> reg %d\n",
868 argnum, (int) regval, argreg);
869#endif
870 write_register (argreg, regval);
871 ++argreg;
872 }
873 else
874 {
875#if 0
876 printf(" Argnum %d data %x -> offset %d (%x)\n",
877 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
878#endif
879 write_memory (sp + stack_offset, val, partial_len);
880 stack_offset += ROUND_UP(partial_len, 4);
881 }
882 len -= partial_len;
883 val += partial_len;
884 }
885 }
886 return sp;
887}
888
889static CORE_ADDR
890frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
891{
892 write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
893 return sp;
894}
895
896static void
897frv_store_return_value (struct type *type, char *valbuf)
898{
899 int length = TYPE_LENGTH (type);
900 int reg8_offset = frv_register_byte (8);
901
902 if (length <= 4)
73937e03
AC
903 deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
904 length);
456f8b9d 905 else if (length == 8)
73937e03 906 deprecated_write_register_bytes (reg8_offset, valbuf, length);
456f8b9d
DB
907 else
908 internal_error (__FILE__, __LINE__,
909 "Don't know how to return a %d-byte value.", length);
910}
911
912static void
913frv_pop_frame (void)
914{
915 generic_pop_current_frame (frv_pop_frame_regular);
916}
917
918static void
919frv_pop_frame_regular (struct frame_info *frame)
920{
921 CORE_ADDR fp;
922 int regno;
923
924 fp = frame->frame;
925
926 frv_frame_init_saved_regs (frame);
927
928 write_register (pc_regnum, frv_frame_saved_pc (frame));
929 for (regno = 0; regno < frv_num_regs; ++regno)
930 {
931 if (frame->saved_regs[regno]
932 && regno != pc_regnum
933 && regno != sp_regnum)
934 {
935 write_register (regno,
936 read_memory_integer (frame->saved_regs[regno], 4));
937 }
938 }
939 write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
940 flush_cached_frames ();
941}
942
943
944static void
945frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
946 CORE_ADDR *targ_addr, int *targ_len)
947{
948 *targ_addr = memaddr;
949 *targ_len = nr_bytes;
950}
951
952
953/* Hardware watchpoint / breakpoint support for the FR500
954 and FR400. */
955
956int
957frv_check_watch_resources (int type, int cnt, int ot)
958{
959 struct gdbarch_tdep *var = CURRENT_VARIANT;
960
961 /* Watchpoints not supported on simulator. */
962 if (strcmp (target_shortname, "sim") == 0)
963 return 0;
964
965 if (type == bp_hardware_breakpoint)
966 {
967 if (var->num_hw_breakpoints == 0)
968 return 0;
969 else if (cnt <= var->num_hw_breakpoints)
970 return 1;
971 }
972 else
973 {
974 if (var->num_hw_watchpoints == 0)
975 return 0;
976 else if (ot)
977 return -1;
978 else if (cnt <= var->num_hw_watchpoints)
979 return 1;
980 }
981 return -1;
982}
983
984
985CORE_ADDR
5ae5f592 986frv_stopped_data_address (void)
456f8b9d
DB
987{
988 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
989
990 brr = read_register (brr_regnum);
991 dbar0 = read_register (dbar0_regnum);
992 dbar1 = read_register (dbar1_regnum);
993 dbar2 = read_register (dbar2_regnum);
994 dbar3 = read_register (dbar3_regnum);
995
996 if (brr & (1<<11))
997 return dbar0;
998 else if (brr & (1<<10))
999 return dbar1;
1000 else if (brr & (1<<9))
1001 return dbar2;
1002 else if (brr & (1<<8))
1003 return dbar3;
1004 else
1005 return 0;
1006}
1007
1008static struct gdbarch *
1009frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1010{
1011 struct gdbarch *gdbarch;
1012 struct gdbarch_tdep *var;
1013
1014 /* Check to see if we've already built an appropriate architecture
1015 object for this executable. */
1016 arches = gdbarch_list_lookup_by_info (arches, &info);
1017 if (arches)
1018 return arches->gdbarch;
1019
1020 /* Select the right tdep structure for this variant. */
1021 var = new_variant ();
1022 switch (info.bfd_arch_info->mach)
1023 {
1024 case bfd_mach_frv:
1025 case bfd_mach_frvsimple:
1026 case bfd_mach_fr500:
1027 case bfd_mach_frvtomcat:
1028 set_variant_num_gprs (var, 64);
1029 set_variant_num_fprs (var, 64);
1030 break;
1031
1032 case bfd_mach_fr400:
1033 set_variant_num_gprs (var, 32);
1034 set_variant_num_fprs (var, 32);
1035 break;
1036
1037 default:
1038 /* Never heard of this variant. */
1039 return 0;
1040 }
1041
1042 gdbarch = gdbarch_alloc (&info, var);
1043
a5afb99f
AC
1044 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1045 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1046 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1047
456f8b9d
DB
1048 set_gdbarch_short_bit (gdbarch, 16);
1049 set_gdbarch_int_bit (gdbarch, 32);
1050 set_gdbarch_long_bit (gdbarch, 32);
1051 set_gdbarch_long_long_bit (gdbarch, 64);
1052 set_gdbarch_float_bit (gdbarch, 32);
1053 set_gdbarch_double_bit (gdbarch, 64);
1054 set_gdbarch_long_double_bit (gdbarch, 64);
1055 set_gdbarch_ptr_bit (gdbarch, 32);
1056
1057 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1058 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1059 set_gdbarch_fp_regnum (gdbarch, fp_regnum);
1060 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1061
1062 set_gdbarch_register_name (gdbarch, frv_register_name);
1063 set_gdbarch_register_size (gdbarch, 4);
1064 set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4);
1065 set_gdbarch_register_byte (gdbarch, frv_register_byte);
1066 set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
a0ed5532 1067 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
456f8b9d 1068 set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
a0ed5532 1069 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
456f8b9d
DB
1070 set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
1071
1072 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1073 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1074
1075 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1076 set_gdbarch_frame_args_skip (gdbarch, 0);
1077 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1078
1079 set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
1080
1081 set_gdbarch_frame_chain (gdbarch, frv_frame_chain);
8bedc050 1082 set_gdbarch_deprecated_frame_saved_pc (gdbarch, frv_frame_saved_pc);
456f8b9d 1083
f30ee0bc 1084 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
456f8b9d
DB
1085
1086 set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
1087 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1088
1089 set_gdbarch_store_struct_return (gdbarch, frv_store_struct_return);
ebba8386 1090 set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
456f8b9d
DB
1091 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1092
1093 /* Settings for calling functions in the inferior. */
456f8b9d 1094 set_gdbarch_call_dummy_length (gdbarch, 0);
456f8b9d
DB
1095 set_gdbarch_push_arguments (gdbarch, frv_push_arguments);
1096 set_gdbarch_push_return_address (gdbarch, frv_push_return_address);
749b82f6 1097 set_gdbarch_deprecated_pop_frame (gdbarch, frv_pop_frame);
456f8b9d
DB
1098
1099 set_gdbarch_call_dummy_p (gdbarch, 1);
1100 set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words);
1101 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
1102 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
e9582e71 1103 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
456f8b9d
DB
1104
1105 /* Settings that should be unnecessary. */
1106 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1107
1108 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1109 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1110 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1111 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1112 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1113
456f8b9d
DB
1114 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1115 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1116 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
ae45cd16 1117 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
456f8b9d 1118 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
456f8b9d
DB
1119 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1120
456f8b9d
DB
1121 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1122 set_gdbarch_function_start_offset (gdbarch, 0);
1123 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1124
1125 set_gdbarch_remote_translate_xfer_address
1126 (gdbarch, frv_remote_translate_xfer_address);
1127
1128 /* Hardware watchpoint / breakpoint support. */
1129 switch (info.bfd_arch_info->mach)
1130 {
1131 case bfd_mach_frv:
1132 case bfd_mach_frvsimple:
1133 case bfd_mach_fr500:
1134 case bfd_mach_frvtomcat:
1135 /* fr500-style hardware debugging support. */
1136 var->num_hw_watchpoints = 4;
1137 var->num_hw_breakpoints = 4;
1138 break;
1139
1140 case bfd_mach_fr400:
1141 /* fr400-style hardware debugging support. */
1142 var->num_hw_watchpoints = 2;
1143 var->num_hw_breakpoints = 4;
1144 break;
1145
1146 default:
1147 /* Otherwise, assume we don't have hardware debugging support. */
1148 var->num_hw_watchpoints = 0;
1149 var->num_hw_breakpoints = 0;
1150 break;
1151 }
1152
1153 return gdbarch;
1154}
1155
1156void
1157_initialize_frv_tdep (void)
1158{
1159 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1160
1161 tm_print_insn = print_insn_frv;
1162}
1163
1164\f
This page took 0.295489 seconds and 4 git commands to generate.