]>
Commit | Line | Data |
---|---|---|
5076de82 FF |
1 | /* Definitions to make GDB run on an encore under umax 4.2 |
2 | Copyright 1987, 1989, 1991, 1993 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
5d76c8e6 JK |
20 | /* This is also included by tm-ns32km3.h, as well as being used by umax. */ |
21 | ||
5076de82 FF |
22 | #define TARGET_BYTE_ORDER LITTLE_ENDIAN |
23 | ||
24 | /* Need to get function ends by adding this to epilogue address from .bf | |
25 | record, not using x_fsize field. */ | |
26 | #define FUNCTION_EPILOGUE_SIZE 4 | |
27 | ||
28 | /* Offset from address of function to start of its code. | |
29 | Zero on most machines. */ | |
30 | ||
31 | #define FUNCTION_START_OFFSET 0 | |
32 | ||
33 | /* Advance PC across any function entry prologue instructions | |
34 | to reach some "real" code. */ | |
35 | ||
36 | #define SKIP_PROLOGUE(pc) \ | |
37 | { register unsigned char op = read_memory_integer (pc, 1); \ | |
38 | if (op == 0x82) { op = read_memory_integer (pc+2,1); \ | |
39 | if ((op & 0x80) == 0) pc += 3; \ | |
40 | else if ((op & 0xc0) == 0x80) pc += 4; \ | |
41 | else pc += 6; \ | |
42 | } \ | |
43 | } | |
44 | ||
45 | /* Immediately after a function call, return the saved pc. | |
46 | Can't always go through the frames for this because on some machines | |
47 | the new frame is not set up until the new function executes | |
48 | some instructions. */ | |
49 | ||
50 | #define SAVED_PC_AFTER_CALL(frame) \ | |
51 | read_memory_integer (read_register (SP_REGNUM), 4) | |
52 | ||
53 | /* Address of end of stack space. */ | |
54 | ||
5d76c8e6 | 55 | #ifndef STACK_END_ADDR |
5076de82 | 56 | #define STACK_END_ADDR (0xfffff000) |
5d76c8e6 | 57 | #endif |
5076de82 FF |
58 | |
59 | /* Stack grows downward. */ | |
60 | ||
61 | #define INNER_THAN < | |
62 | ||
63 | /* Sequence of bytes for breakpoint instruction. */ | |
64 | ||
65 | #define BREAKPOINT {0xf2} | |
66 | ||
67 | /* Amount PC must be decremented by after a breakpoint. | |
68 | This is often the number of bytes in BREAKPOINT | |
69 | but not always. */ | |
70 | ||
71 | #define DECR_PC_AFTER_BREAK 0 | |
72 | ||
73 | /* Nonzero if instruction at PC is a return instruction. */ | |
74 | ||
75 | #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12) | |
76 | ||
ac57e5ad | 77 | #if 0 /* Disable until fixed *correctly*. */ |
5d76c8e6 | 78 | #ifndef INVALID_FLOAT |
5076de82 FF |
79 | #ifndef NaN |
80 | #include <nan.h> | |
81 | #endif NaN | |
82 | ||
83 | /* Return 1 if P points to an invalid floating point value. */ | |
84 | /* Surely wrong for cross-debugging. */ | |
85 | #define INVALID_FLOAT(p, s) \ | |
86 | ((s == sizeof (float))? \ | |
87 | NaF (*(float *) p) : \ | |
88 | NaD (*(double *) p)) | |
5d76c8e6 | 89 | #endif /* INVALID_FLOAT */ |
ac57e5ad | 90 | #endif |
5076de82 | 91 | |
f4f0d174 JK |
92 | /* Say how long (ordinary) registers are. This is a piece of bogosity |
93 | used in push_word and a few other places; REGISTER_RAW_SIZE is the | |
94 | real way to know how big a register is. */ | |
5076de82 | 95 | |
f4f0d174 | 96 | #define REGISTER_SIZE 4 |
5076de82 FF |
97 | |
98 | /* Number of machine registers */ | |
99 | ||
100 | #define NUM_REGS 25 | |
101 | ||
102 | #define NUM_GENERAL_REGS 8 | |
103 | ||
104 | /* Initializer for an array of names of registers. | |
105 | There should be NUM_REGS strings in this initializer. */ | |
106 | ||
107 | #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ | |
108 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ | |
109 | "sp", "fp", "pc", "ps", \ | |
110 | "fsr", \ | |
111 | "l0", "l1", "l2", "l3", "xx", \ | |
112 | } | |
113 | ||
114 | /* Register numbers of various important registers. | |
115 | Note that some of these values are "real" register numbers, | |
116 | and correspond to the general registers of the machine, | |
117 | and some are "phony" register numbers which are too large | |
118 | to be actual register numbers as far as the user is concerned | |
119 | but do serve to get the desired values when passed to read_register. */ | |
120 | ||
121 | #define R0_REGNUM 0 /* General register 0 */ | |
122 | #define FP0_REGNUM 8 /* Floating point register 0 */ | |
123 | #define SP_REGNUM 16 /* Contains address of top of stack */ | |
124 | #define AP_REGNUM FP_REGNUM | |
125 | #define FP_REGNUM 17 /* Contains address of executing stack frame */ | |
126 | #define PC_REGNUM 18 /* Contains program counter */ | |
127 | #define PS_REGNUM 19 /* Contains processor status */ | |
128 | #define FPS_REGNUM 20 /* Floating point status register */ | |
129 | #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */ | |
130 | ||
131 | /* Total amount of space needed to store our copies of the machine's | |
132 | register state, the array `registers'. */ | |
133 | #define REGISTER_BYTES \ | |
134 | ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \ | |
135 | + 4 * REGISTER_RAW_SIZE(LP0_REGNUM)) | |
136 | ||
137 | /* Index within `registers' of the first byte of the space for | |
138 | register N. */ | |
139 | ||
140 | #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \ | |
141 | LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4) | |
142 | ||
143 | /* Number of bytes of storage in the actual machine representation | |
144 | for register N. On the 32000, all regs are 4 bytes | |
145 | except for the doubled floating registers. */ | |
146 | ||
147 | #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4) | |
148 | ||
149 | /* Number of bytes of storage in the program's representation | |
150 | for register N. On the 32000, all regs are 4 bytes | |
151 | except for the doubled floating registers. */ | |
152 | ||
153 | #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4) | |
154 | ||
155 | /* Largest value REGISTER_RAW_SIZE can have. */ | |
156 | ||
157 | #define MAX_REGISTER_RAW_SIZE 8 | |
158 | ||
159 | /* Largest value REGISTER_VIRTUAL_SIZE can have. */ | |
160 | ||
161 | #define MAX_REGISTER_VIRTUAL_SIZE 8 | |
162 | ||
5076de82 FF |
163 | /* Return the GDB type object for the "standard" data type |
164 | of data in register N. */ | |
165 | ||
166 | #define REGISTER_VIRTUAL_TYPE(N) \ | |
167 | (((N) < FP0_REGNUM) ? \ | |
168 | builtin_type_int : \ | |
169 | ((N) < FP0_REGNUM + 8) ? \ | |
170 | builtin_type_float : \ | |
171 | ((N) < LP0_REGNUM) ? \ | |
172 | builtin_type_int : \ | |
173 | builtin_type_double) | |
174 | ||
175 | /* Store the address of the place in which to copy the structure the | |
176 | subroutine will return. This is called from call_function. | |
177 | ||
178 | On this machine this is a no-op, because gcc isn't used on it | |
179 | yet. So this calling convention is not used. */ | |
180 | ||
181 | #define STORE_STRUCT_RETURN(ADDR, SP) | |
182 | ||
183 | /* Extract from an array REGBUF containing the (raw) register state | |
184 | a function return value of type TYPE, and copy that, in virtual format, | |
185 | into VALBUF. */ | |
186 | ||
187 | #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ | |
ade40d31 | 188 | memcpy (VALBUF, REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (TYPE)) |
5076de82 FF |
189 | |
190 | /* Write into appropriate registers a function return value | |
191 | of type TYPE, given in virtual format. */ | |
192 | ||
193 | #define STORE_RETURN_VALUE(TYPE,VALBUF) \ | |
194 | write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE)) | |
195 | ||
196 | /* Extract from an array REGBUF containing the (raw) register state | |
197 | the address in which a function should return its structure value, | |
198 | as a CORE_ADDR (or an expression that can be used as one). */ | |
199 | ||
200 | #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) | |
201 | \f | |
202 | /* Describe the pointer in each stack frame to the previous stack frame | |
203 | (its caller). */ | |
204 | ||
205 | /* FRAME_CHAIN takes a frame's nominal address | |
206 | and produces the frame's chain-pointer. */ | |
207 | ||
208 | /* In the case of the ns32000 series, the frame's nominal address is the FP | |
209 | value, and at that address is saved previous FP value as a 4-byte word. */ | |
210 | ||
211 | #define FRAME_CHAIN(thisframe) \ | |
212 | (!inside_entry_file ((thisframe)->pc) ? \ | |
213 | read_memory_integer ((thisframe)->frame, 4) :\ | |
214 | 0) | |
215 | ||
216 | /* Define other aspects of the stack frame. */ | |
217 | ||
218 | #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4)) | |
219 | ||
220 | /* Compute base of arguments. */ | |
221 | ||
222 | #define FRAME_ARGS_ADDRESS(fi) \ | |
223 | ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \ | |
224 | ((fi)->frame) : (read_register (SP_REGNUM) - 4)) | |
225 | ||
226 | #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame) | |
227 | ||
228 | /* Get the address of the enter opcode for this function, if it is active. | |
229 | Returns positive address > 1 if pc is between enter/exit, | |
230 | 1 if pc before enter or after exit, 0 otherwise. */ | |
231 | ||
232 | extern CORE_ADDR ns32k_get_enter_addr (); | |
233 | ||
234 | /* Return number of args passed to a frame. | |
235 | Can return -1, meaning no way to tell. | |
236 | Encore's C compiler often reuses same area on stack for args, | |
237 | so this will often not work properly. If the arg names | |
238 | are known, it's likely most of them will be printed. */ | |
239 | ||
240 | #define FRAME_NUM_ARGS(numargs, fi) \ | |
241 | { CORE_ADDR pc; \ | |
242 | CORE_ADDR enter_addr; \ | |
243 | unsigned int insn; \ | |
244 | unsigned int addr_mode; \ | |
245 | int width; \ | |
246 | \ | |
247 | numargs = -1; \ | |
248 | enter_addr = ns32k_get_enter_addr ((fi)->pc); \ | |
249 | if (enter_addr > 0) \ | |
250 | { \ | |
251 | pc = (enter_addr == 1) ? \ | |
252 | SAVED_PC_AFTER_CALL (fi) : \ | |
253 | FRAME_SAVED_PC (fi); \ | |
254 | insn = read_memory_integer (pc,2); \ | |
255 | addr_mode = (insn >> 11) & 0x1f; \ | |
256 | insn = insn & 0x7ff; \ | |
257 | if ((insn & 0x7fc) == 0x57c && \ | |
258 | addr_mode == 0x14) /* immediate */ \ | |
259 | { \ | |
260 | if (insn == 0x57c) /* adjspb */ \ | |
261 | width = 1; \ | |
262 | else if (insn == 0x57d) /* adjspw */ \ | |
263 | width = 2; \ | |
264 | else if (insn == 0x57f) /* adjspd */ \ | |
265 | width = 4; \ | |
266 | numargs = read_memory_integer (pc+2,width); \ | |
267 | if (width > 1) \ | |
268 | flip_bytes (&numargs, width); \ | |
269 | numargs = - sign_extend (numargs, width*8) / 4;\ | |
270 | } \ | |
271 | } \ | |
272 | } | |
273 | ||
274 | /* Return number of bytes at start of arglist that are not really args. */ | |
275 | ||
276 | #define FRAME_ARGS_SKIP 8 | |
277 | ||
278 | /* Put here the code to store, into a struct frame_saved_regs, | |
279 | the addresses of the saved registers of frame described by FRAME_INFO. | |
280 | This includes special registers such as pc and fp saved in special | |
281 | ways in the stack frame. sp is even more special: | |
282 | the address we return for it IS the sp for the next frame. */ | |
283 | ||
284 | #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ | |
285 | { \ | |
286 | register int regmask, regnum; \ | |
287 | int localcount; \ | |
288 | register CORE_ADDR enter_addr; \ | |
289 | register CORE_ADDR next_addr; \ | |
290 | \ | |
4ed97c9a | 291 | memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \ |
5076de82 FF |
292 | enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \ |
293 | if (enter_addr > 1) \ | |
294 | { \ | |
295 | regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \ | |
296 | localcount = ns32k_localcount (enter_addr); \ | |
297 | next_addr = (frame_info)->frame + localcount; \ | |
298 | for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \ | |
299 | (frame_saved_regs).regs[regnum] = (regmask & 1) ? \ | |
300 | (next_addr -= 4) : 0; \ | |
301 | (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\ | |
302 | (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\ | |
303 | (frame_saved_regs).regs[FP_REGNUM] = \ | |
304 | (read_memory_integer ((frame_info)->frame, 4));\ | |
305 | } \ | |
306 | else if (enter_addr == 1) \ | |
307 | { \ | |
308 | CORE_ADDR sp = read_register (SP_REGNUM); \ | |
309 | (frame_saved_regs).regs[PC_REGNUM] = sp; \ | |
310 | (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \ | |
311 | } \ | |
312 | } | |
313 | \f | |
314 | /* Things needed for making the inferior call functions. */ | |
315 | ||
316 | /* Push an empty stack frame, to record the current PC, etc. */ | |
317 | ||
318 | #define PUSH_DUMMY_FRAME \ | |
319 | { register CORE_ADDR sp = read_register (SP_REGNUM);\ | |
320 | register int regnum; \ | |
321 | sp = push_word (sp, read_register (PC_REGNUM)); \ | |
322 | sp = push_word (sp, read_register (FP_REGNUM)); \ | |
323 | write_register (FP_REGNUM, sp); \ | |
324 | for (regnum = 0; regnum < 8; regnum++) \ | |
325 | sp = push_word (sp, read_register (regnum)); \ | |
326 | write_register (SP_REGNUM, sp); \ | |
327 | } | |
328 | ||
329 | /* Discard from the stack the innermost frame, restoring all registers. */ | |
330 | ||
331 | #define POP_FRAME \ | |
669caa9c | 332 | { register struct frame_info *frame = get_current_frame (); \ |
5076de82 FF |
333 | register CORE_ADDR fp; \ |
334 | register int regnum; \ | |
335 | struct frame_saved_regs fsr; \ | |
336 | struct frame_info *fi; \ | |
669caa9c SS |
337 | fp = frame->frame; \ |
338 | get_frame_saved_regs (frame, &fsr); \ | |
5076de82 FF |
339 | for (regnum = 0; regnum < 8; regnum++) \ |
340 | if (fsr.regs[regnum]) \ | |
341 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \ | |
342 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); \ | |
343 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \ | |
344 | write_register (SP_REGNUM, fp + 8); \ | |
345 | flush_cached_frames (); \ | |
16726dd1 | 346 | } |
5076de82 FF |
347 | |
348 | /* This sequence of words is the instructions | |
349 | enter 0xff,0 82 ff 00 | |
350 | jsr @0x00010203 7f ae c0 01 02 03 | |
351 | adjspd 0x69696969 7f a5 01 02 03 04 | |
352 | bpt f2 | |
353 | Note this is 16 bytes. */ | |
354 | ||
355 | #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 } | |
356 | ||
357 | #define CALL_DUMMY_START_OFFSET 3 | |
358 | #define CALL_DUMMY_LENGTH 16 | |
359 | #define CALL_DUMMY_ADDR 5 | |
360 | #define CALL_DUMMY_NARGS 11 | |
361 | ||
362 | /* Insert the specified number of args and function address | |
363 | into a call sequence of the above form stored at DUMMYNAME. */ | |
364 | ||
365 | #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ | |
366 | { \ | |
367 | int flipped; \ | |
368 | flipped = fun | 0xc0000000; \ | |
369 | flip_bytes (&flipped, 4); \ | |
370 | *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \ | |
371 | flipped = - nargs * 4; \ | |
372 | flip_bytes (&flipped, 4); \ | |
373 | *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \ | |
374 | } |