]>
Commit | Line | Data |
---|---|---|
852483bc MK |
1 | /* DWARF 2 Expression Evaluator. |
2 | ||
9b254dd1 DJ |
3 | Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008 |
4 | Free Software Foundation, Inc. | |
852483bc | 5 | |
4c2df51b DJ |
6 | Contributed by Daniel Berlin ([email protected]) |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
4c2df51b DJ |
13 | (at your option) any later version. |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
4c2df51b DJ |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
28 | #include "elf/dwarf2.h" | |
29 | #include "dwarf2expr.h" | |
1e3a102a | 30 | #include "gdb_assert.h" |
4c2df51b DJ |
31 | |
32 | /* Local prototypes. */ | |
33 | ||
34 | static void execute_stack_op (struct dwarf_expr_context *, | |
852483bc | 35 | gdb_byte *, gdb_byte *); |
ae0d2f24 | 36 | static struct type *unsigned_address_type (int); |
4c2df51b DJ |
37 | |
38 | /* Create a new context for the expression evaluator. */ | |
39 | ||
40 | struct dwarf_expr_context * | |
e4adbba9 | 41 | new_dwarf_expr_context (void) |
4c2df51b DJ |
42 | { |
43 | struct dwarf_expr_context *retval; | |
44 | retval = xcalloc (1, sizeof (struct dwarf_expr_context)); | |
18ec9831 KB |
45 | retval->stack_len = 0; |
46 | retval->stack_allocated = 10; | |
47 | retval->stack = xmalloc (retval->stack_allocated * sizeof (CORE_ADDR)); | |
87808bd6 JB |
48 | retval->num_pieces = 0; |
49 | retval->pieces = 0; | |
1e3a102a | 50 | retval->max_recursion_depth = 0x100; |
4c2df51b DJ |
51 | return retval; |
52 | } | |
53 | ||
54 | /* Release the memory allocated to CTX. */ | |
55 | ||
56 | void | |
57 | free_dwarf_expr_context (struct dwarf_expr_context *ctx) | |
58 | { | |
59 | xfree (ctx->stack); | |
87808bd6 | 60 | xfree (ctx->pieces); |
4c2df51b DJ |
61 | xfree (ctx); |
62 | } | |
63 | ||
64 | /* Expand the memory allocated to CTX's stack to contain at least | |
65 | NEED more elements than are currently used. */ | |
66 | ||
67 | static void | |
68 | dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need) | |
69 | { | |
70 | if (ctx->stack_len + need > ctx->stack_allocated) | |
71 | { | |
18ec9831 | 72 | size_t newlen = ctx->stack_len + need + 10; |
4c2df51b | 73 | ctx->stack = xrealloc (ctx->stack, |
18ec9831 KB |
74 | newlen * sizeof (CORE_ADDR)); |
75 | ctx->stack_allocated = newlen; | |
4c2df51b DJ |
76 | } |
77 | } | |
78 | ||
79 | /* Push VALUE onto CTX's stack. */ | |
80 | ||
81 | void | |
82 | dwarf_expr_push (struct dwarf_expr_context *ctx, CORE_ADDR value) | |
83 | { | |
84 | dwarf_expr_grow_stack (ctx, 1); | |
85 | ctx->stack[ctx->stack_len++] = value; | |
86 | } | |
87 | ||
88 | /* Pop the top item off of CTX's stack. */ | |
89 | ||
90 | void | |
91 | dwarf_expr_pop (struct dwarf_expr_context *ctx) | |
92 | { | |
93 | if (ctx->stack_len <= 0) | |
8a3fe4f8 | 94 | error (_("dwarf expression stack underflow")); |
4c2df51b DJ |
95 | ctx->stack_len--; |
96 | } | |
97 | ||
98 | /* Retrieve the N'th item on CTX's stack. */ | |
99 | ||
100 | CORE_ADDR | |
101 | dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n) | |
102 | { | |
ef0fdf07 | 103 | if (ctx->stack_len <= n) |
8a3fe4f8 | 104 | error (_("Asked for position %d of stack, stack only has %d elements on it."), |
4c2df51b DJ |
105 | n, ctx->stack_len); |
106 | return ctx->stack[ctx->stack_len - (1 + n)]; | |
107 | ||
108 | } | |
109 | ||
87808bd6 JB |
110 | /* Add a new piece to CTX's piece list. */ |
111 | static void | |
112 | add_piece (struct dwarf_expr_context *ctx, | |
113 | int in_reg, CORE_ADDR value, ULONGEST size) | |
114 | { | |
115 | struct dwarf_expr_piece *p; | |
116 | ||
117 | ctx->num_pieces++; | |
118 | ||
119 | if (ctx->pieces) | |
120 | ctx->pieces = xrealloc (ctx->pieces, | |
121 | (ctx->num_pieces | |
122 | * sizeof (struct dwarf_expr_piece))); | |
123 | else | |
124 | ctx->pieces = xmalloc (ctx->num_pieces | |
125 | * sizeof (struct dwarf_expr_piece)); | |
126 | ||
127 | p = &ctx->pieces[ctx->num_pieces - 1]; | |
128 | p->in_reg = in_reg; | |
129 | p->value = value; | |
130 | p->size = size; | |
131 | } | |
132 | ||
4c2df51b DJ |
133 | /* Evaluate the expression at ADDR (LEN bytes long) using the context |
134 | CTX. */ | |
135 | ||
136 | void | |
852483bc | 137 | dwarf_expr_eval (struct dwarf_expr_context *ctx, gdb_byte *addr, size_t len) |
4c2df51b | 138 | { |
1e3a102a JK |
139 | int old_recursion_depth = ctx->recursion_depth; |
140 | ||
4c2df51b | 141 | execute_stack_op (ctx, addr, addr + len); |
1e3a102a JK |
142 | |
143 | /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */ | |
144 | ||
145 | gdb_assert (ctx->recursion_depth == old_recursion_depth); | |
4c2df51b DJ |
146 | } |
147 | ||
148 | /* Decode the unsigned LEB128 constant at BUF into the variable pointed to | |
149 | by R, and return the new value of BUF. Verify that it doesn't extend | |
150 | past BUF_END. */ | |
151 | ||
852483bc MK |
152 | gdb_byte * |
153 | read_uleb128 (gdb_byte *buf, gdb_byte *buf_end, ULONGEST * r) | |
4c2df51b DJ |
154 | { |
155 | unsigned shift = 0; | |
156 | ULONGEST result = 0; | |
852483bc | 157 | gdb_byte byte; |
4c2df51b DJ |
158 | |
159 | while (1) | |
160 | { | |
161 | if (buf >= buf_end) | |
8a3fe4f8 | 162 | error (_("read_uleb128: Corrupted DWARF expression.")); |
4c2df51b DJ |
163 | |
164 | byte = *buf++; | |
165 | result |= (byte & 0x7f) << shift; | |
166 | if ((byte & 0x80) == 0) | |
167 | break; | |
168 | shift += 7; | |
169 | } | |
170 | *r = result; | |
171 | return buf; | |
172 | } | |
173 | ||
174 | /* Decode the signed LEB128 constant at BUF into the variable pointed to | |
175 | by R, and return the new value of BUF. Verify that it doesn't extend | |
176 | past BUF_END. */ | |
177 | ||
852483bc MK |
178 | gdb_byte * |
179 | read_sleb128 (gdb_byte *buf, gdb_byte *buf_end, LONGEST * r) | |
4c2df51b DJ |
180 | { |
181 | unsigned shift = 0; | |
182 | LONGEST result = 0; | |
852483bc | 183 | gdb_byte byte; |
4c2df51b DJ |
184 | |
185 | while (1) | |
186 | { | |
187 | if (buf >= buf_end) | |
8a3fe4f8 | 188 | error (_("read_sleb128: Corrupted DWARF expression.")); |
4c2df51b DJ |
189 | |
190 | byte = *buf++; | |
191 | result |= (byte & 0x7f) << shift; | |
192 | shift += 7; | |
193 | if ((byte & 0x80) == 0) | |
194 | break; | |
195 | } | |
196 | if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0) | |
197 | result |= -(1 << shift); | |
198 | ||
199 | *r = result; | |
200 | return buf; | |
201 | } | |
202 | ||
ae0d2f24 UW |
203 | /* Read an address of size ADDR_SIZE from BUF, and verify that it |
204 | doesn't extend past BUF_END. */ | |
4c2df51b | 205 | |
0d53c4c4 | 206 | CORE_ADDR |
ae0d2f24 | 207 | dwarf2_read_address (gdb_byte *buf, gdb_byte *buf_end, int addr_size) |
4c2df51b DJ |
208 | { |
209 | CORE_ADDR result; | |
210 | ||
ae0d2f24 | 211 | if (buf_end - buf < addr_size) |
8a3fe4f8 | 212 | error (_("dwarf2_read_address: Corrupted DWARF expression.")); |
4c2df51b | 213 | |
ace186d4 KB |
214 | /* For most architectures, calling extract_unsigned_integer() alone |
215 | is sufficient for extracting an address. However, some | |
216 | architectures (e.g. MIPS) use signed addresses and using | |
217 | extract_unsigned_integer() will not produce a correct | |
218 | result. Turning the unsigned integer into a value and then | |
219 | decomposing that value as an address will cause | |
220 | gdbarch_integer_to_address() to be invoked for those | |
221 | architectures which require it. Thus, using value_as_address() | |
222 | will produce the correct result for both types of architectures. | |
223 | ||
224 | One concern regarding the use of values for this purpose is | |
225 | efficiency. Obviously, these extra calls will take more time to | |
226 | execute and creating a value takes more space, space which will | |
227 | have to be garbage collected at a later time. If constructing | |
228 | and then decomposing a value for this purpose proves to be too | |
229 | inefficient, then gdbarch_integer_to_address() can be called | |
230 | directly. | |
231 | ||
232 | The use of `unsigned_address_type' in the code below refers to | |
233 | the type of buf and has no bearing on the signedness of the | |
234 | address being returned. */ | |
235 | ||
236 | result = value_as_address (value_from_longest | |
ae0d2f24 UW |
237 | (unsigned_address_type (addr_size), |
238 | extract_unsigned_integer (buf, addr_size))); | |
4c2df51b DJ |
239 | return result; |
240 | } | |
241 | ||
ae0d2f24 UW |
242 | /* Return the type of an address of size ADDR_SIZE, |
243 | for unsigned arithmetic. */ | |
4c2df51b DJ |
244 | |
245 | static struct type * | |
ae0d2f24 | 246 | unsigned_address_type (int addr_size) |
4c2df51b | 247 | { |
ae0d2f24 | 248 | switch (addr_size) |
4c2df51b DJ |
249 | { |
250 | case 2: | |
251 | return builtin_type_uint16; | |
252 | case 4: | |
253 | return builtin_type_uint32; | |
254 | case 8: | |
255 | return builtin_type_uint64; | |
256 | default: | |
257 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 258 | _("Unsupported address size.\n")); |
4c2df51b DJ |
259 | } |
260 | } | |
261 | ||
ae0d2f24 UW |
262 | /* Return the type of an address of size ADDR_SIZE, |
263 | for signed arithmetic. */ | |
4c2df51b DJ |
264 | |
265 | static struct type * | |
ae0d2f24 | 266 | signed_address_type (int addr_size) |
4c2df51b | 267 | { |
ae0d2f24 | 268 | switch (addr_size) |
4c2df51b DJ |
269 | { |
270 | case 2: | |
271 | return builtin_type_int16; | |
272 | case 4: | |
273 | return builtin_type_int32; | |
274 | case 8: | |
275 | return builtin_type_int64; | |
276 | default: | |
277 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 278 | _("Unsupported address size.\n")); |
4c2df51b DJ |
279 | } |
280 | } | |
281 | \f | |
282 | /* The engine for the expression evaluator. Using the context in CTX, | |
283 | evaluate the expression between OP_PTR and OP_END. */ | |
284 | ||
285 | static void | |
852483bc MK |
286 | execute_stack_op (struct dwarf_expr_context *ctx, |
287 | gdb_byte *op_ptr, gdb_byte *op_end) | |
4c2df51b | 288 | { |
18ec9831 | 289 | ctx->in_reg = 0; |
42be36b3 | 290 | ctx->initialized = 1; /* Default is initialized. */ |
18ec9831 | 291 | |
1e3a102a JK |
292 | if (ctx->recursion_depth > ctx->max_recursion_depth) |
293 | error (_("DWARF-2 expression error: Loop detected (%d)."), | |
294 | ctx->recursion_depth); | |
295 | ctx->recursion_depth++; | |
296 | ||
4c2df51b DJ |
297 | while (op_ptr < op_end) |
298 | { | |
299 | enum dwarf_location_atom op = *op_ptr++; | |
61fbb938 | 300 | CORE_ADDR result; |
4c2df51b DJ |
301 | ULONGEST uoffset, reg; |
302 | LONGEST offset; | |
4c2df51b | 303 | |
4c2df51b DJ |
304 | switch (op) |
305 | { | |
306 | case DW_OP_lit0: | |
307 | case DW_OP_lit1: | |
308 | case DW_OP_lit2: | |
309 | case DW_OP_lit3: | |
310 | case DW_OP_lit4: | |
311 | case DW_OP_lit5: | |
312 | case DW_OP_lit6: | |
313 | case DW_OP_lit7: | |
314 | case DW_OP_lit8: | |
315 | case DW_OP_lit9: | |
316 | case DW_OP_lit10: | |
317 | case DW_OP_lit11: | |
318 | case DW_OP_lit12: | |
319 | case DW_OP_lit13: | |
320 | case DW_OP_lit14: | |
321 | case DW_OP_lit15: | |
322 | case DW_OP_lit16: | |
323 | case DW_OP_lit17: | |
324 | case DW_OP_lit18: | |
325 | case DW_OP_lit19: | |
326 | case DW_OP_lit20: | |
327 | case DW_OP_lit21: | |
328 | case DW_OP_lit22: | |
329 | case DW_OP_lit23: | |
330 | case DW_OP_lit24: | |
331 | case DW_OP_lit25: | |
332 | case DW_OP_lit26: | |
333 | case DW_OP_lit27: | |
334 | case DW_OP_lit28: | |
335 | case DW_OP_lit29: | |
336 | case DW_OP_lit30: | |
337 | case DW_OP_lit31: | |
338 | result = op - DW_OP_lit0; | |
339 | break; | |
340 | ||
341 | case DW_OP_addr: | |
ae0d2f24 UW |
342 | result = dwarf2_read_address (op_ptr, op_end, ctx->addr_size); |
343 | op_ptr += ctx->addr_size; | |
4c2df51b DJ |
344 | break; |
345 | ||
346 | case DW_OP_const1u: | |
347 | result = extract_unsigned_integer (op_ptr, 1); | |
348 | op_ptr += 1; | |
349 | break; | |
350 | case DW_OP_const1s: | |
351 | result = extract_signed_integer (op_ptr, 1); | |
352 | op_ptr += 1; | |
353 | break; | |
354 | case DW_OP_const2u: | |
355 | result = extract_unsigned_integer (op_ptr, 2); | |
356 | op_ptr += 2; | |
357 | break; | |
358 | case DW_OP_const2s: | |
359 | result = extract_signed_integer (op_ptr, 2); | |
360 | op_ptr += 2; | |
361 | break; | |
362 | case DW_OP_const4u: | |
363 | result = extract_unsigned_integer (op_ptr, 4); | |
364 | op_ptr += 4; | |
365 | break; | |
366 | case DW_OP_const4s: | |
367 | result = extract_signed_integer (op_ptr, 4); | |
368 | op_ptr += 4; | |
369 | break; | |
370 | case DW_OP_const8u: | |
371 | result = extract_unsigned_integer (op_ptr, 8); | |
372 | op_ptr += 8; | |
373 | break; | |
374 | case DW_OP_const8s: | |
375 | result = extract_signed_integer (op_ptr, 8); | |
376 | op_ptr += 8; | |
377 | break; | |
378 | case DW_OP_constu: | |
379 | op_ptr = read_uleb128 (op_ptr, op_end, &uoffset); | |
380 | result = uoffset; | |
381 | break; | |
382 | case DW_OP_consts: | |
383 | op_ptr = read_sleb128 (op_ptr, op_end, &offset); | |
384 | result = offset; | |
385 | break; | |
386 | ||
387 | /* The DW_OP_reg operations are required to occur alone in | |
388 | location expressions. */ | |
389 | case DW_OP_reg0: | |
390 | case DW_OP_reg1: | |
391 | case DW_OP_reg2: | |
392 | case DW_OP_reg3: | |
393 | case DW_OP_reg4: | |
394 | case DW_OP_reg5: | |
395 | case DW_OP_reg6: | |
396 | case DW_OP_reg7: | |
397 | case DW_OP_reg8: | |
398 | case DW_OP_reg9: | |
399 | case DW_OP_reg10: | |
400 | case DW_OP_reg11: | |
401 | case DW_OP_reg12: | |
402 | case DW_OP_reg13: | |
403 | case DW_OP_reg14: | |
404 | case DW_OP_reg15: | |
405 | case DW_OP_reg16: | |
406 | case DW_OP_reg17: | |
407 | case DW_OP_reg18: | |
408 | case DW_OP_reg19: | |
409 | case DW_OP_reg20: | |
410 | case DW_OP_reg21: | |
411 | case DW_OP_reg22: | |
412 | case DW_OP_reg23: | |
413 | case DW_OP_reg24: | |
414 | case DW_OP_reg25: | |
415 | case DW_OP_reg26: | |
416 | case DW_OP_reg27: | |
417 | case DW_OP_reg28: | |
418 | case DW_OP_reg29: | |
419 | case DW_OP_reg30: | |
420 | case DW_OP_reg31: | |
42be36b3 CT |
421 | if (op_ptr != op_end |
422 | && *op_ptr != DW_OP_piece | |
423 | && *op_ptr != DW_OP_GNU_uninit) | |
8a3fe4f8 AC |
424 | error (_("DWARF-2 expression error: DW_OP_reg operations must be " |
425 | "used either alone or in conjuction with DW_OP_piece.")); | |
4c2df51b | 426 | |
61fbb938 DJ |
427 | result = op - DW_OP_reg0; |
428 | ctx->in_reg = 1; | |
4c2df51b DJ |
429 | |
430 | break; | |
431 | ||
432 | case DW_OP_regx: | |
433 | op_ptr = read_uleb128 (op_ptr, op_end, ®); | |
18ec9831 | 434 | if (op_ptr != op_end && *op_ptr != DW_OP_piece) |
8a3fe4f8 AC |
435 | error (_("DWARF-2 expression error: DW_OP_reg operations must be " |
436 | "used either alone or in conjuction with DW_OP_piece.")); | |
4c2df51b | 437 | |
61fbb938 DJ |
438 | result = reg; |
439 | ctx->in_reg = 1; | |
4c2df51b DJ |
440 | break; |
441 | ||
442 | case DW_OP_breg0: | |
443 | case DW_OP_breg1: | |
444 | case DW_OP_breg2: | |
445 | case DW_OP_breg3: | |
446 | case DW_OP_breg4: | |
447 | case DW_OP_breg5: | |
448 | case DW_OP_breg6: | |
449 | case DW_OP_breg7: | |
450 | case DW_OP_breg8: | |
451 | case DW_OP_breg9: | |
452 | case DW_OP_breg10: | |
453 | case DW_OP_breg11: | |
454 | case DW_OP_breg12: | |
455 | case DW_OP_breg13: | |
456 | case DW_OP_breg14: | |
457 | case DW_OP_breg15: | |
458 | case DW_OP_breg16: | |
459 | case DW_OP_breg17: | |
460 | case DW_OP_breg18: | |
461 | case DW_OP_breg19: | |
462 | case DW_OP_breg20: | |
463 | case DW_OP_breg21: | |
464 | case DW_OP_breg22: | |
465 | case DW_OP_breg23: | |
466 | case DW_OP_breg24: | |
467 | case DW_OP_breg25: | |
468 | case DW_OP_breg26: | |
469 | case DW_OP_breg27: | |
470 | case DW_OP_breg28: | |
471 | case DW_OP_breg29: | |
472 | case DW_OP_breg30: | |
473 | case DW_OP_breg31: | |
474 | { | |
475 | op_ptr = read_sleb128 (op_ptr, op_end, &offset); | |
61fbb938 | 476 | result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0); |
4c2df51b DJ |
477 | result += offset; |
478 | } | |
479 | break; | |
480 | case DW_OP_bregx: | |
481 | { | |
482 | op_ptr = read_uleb128 (op_ptr, op_end, ®); | |
483 | op_ptr = read_sleb128 (op_ptr, op_end, &offset); | |
61fbb938 | 484 | result = (ctx->read_reg) (ctx->baton, reg); |
4c2df51b DJ |
485 | result += offset; |
486 | } | |
487 | break; | |
488 | case DW_OP_fbreg: | |
489 | { | |
852483bc | 490 | gdb_byte *datastart; |
4c2df51b DJ |
491 | size_t datalen; |
492 | unsigned int before_stack_len; | |
493 | ||
494 | op_ptr = read_sleb128 (op_ptr, op_end, &offset); | |
495 | /* Rather than create a whole new context, we simply | |
496 | record the stack length before execution, then reset it | |
497 | afterwards, effectively erasing whatever the recursive | |
498 | call put there. */ | |
499 | before_stack_len = ctx->stack_len; | |
da62e633 AC |
500 | /* FIXME: cagney/2003-03-26: This code should be using |
501 | get_frame_base_address(), and then implement a dwarf2 | |
502 | specific this_base method. */ | |
4c2df51b DJ |
503 | (ctx->get_frame_base) (ctx->baton, &datastart, &datalen); |
504 | dwarf_expr_eval (ctx, datastart, datalen); | |
505 | result = dwarf_expr_fetch (ctx, 0); | |
61fbb938 DJ |
506 | if (ctx->in_reg) |
507 | result = (ctx->read_reg) (ctx->baton, result); | |
4c2df51b DJ |
508 | result = result + offset; |
509 | ctx->stack_len = before_stack_len; | |
510 | ctx->in_reg = 0; | |
511 | } | |
512 | break; | |
513 | case DW_OP_dup: | |
514 | result = dwarf_expr_fetch (ctx, 0); | |
515 | break; | |
516 | ||
517 | case DW_OP_drop: | |
518 | dwarf_expr_pop (ctx); | |
519 | goto no_push; | |
520 | ||
521 | case DW_OP_pick: | |
522 | offset = *op_ptr++; | |
523 | result = dwarf_expr_fetch (ctx, offset); | |
524 | break; | |
525 | ||
526 | case DW_OP_over: | |
527 | result = dwarf_expr_fetch (ctx, 1); | |
528 | break; | |
529 | ||
530 | case DW_OP_rot: | |
531 | { | |
532 | CORE_ADDR t1, t2, t3; | |
533 | ||
534 | if (ctx->stack_len < 3) | |
8a3fe4f8 | 535 | error (_("Not enough elements for DW_OP_rot. Need 3, have %d."), |
4c2df51b DJ |
536 | ctx->stack_len); |
537 | t1 = ctx->stack[ctx->stack_len - 1]; | |
538 | t2 = ctx->stack[ctx->stack_len - 2]; | |
539 | t3 = ctx->stack[ctx->stack_len - 3]; | |
540 | ctx->stack[ctx->stack_len - 1] = t2; | |
541 | ctx->stack[ctx->stack_len - 2] = t3; | |
542 | ctx->stack[ctx->stack_len - 3] = t1; | |
543 | goto no_push; | |
544 | } | |
545 | ||
546 | case DW_OP_deref: | |
547 | case DW_OP_deref_size: | |
548 | case DW_OP_abs: | |
549 | case DW_OP_neg: | |
550 | case DW_OP_not: | |
551 | case DW_OP_plus_uconst: | |
552 | /* Unary operations. */ | |
553 | result = dwarf_expr_fetch (ctx, 0); | |
554 | dwarf_expr_pop (ctx); | |
555 | ||
556 | switch (op) | |
557 | { | |
558 | case DW_OP_deref: | |
559 | { | |
ae0d2f24 UW |
560 | gdb_byte *buf = alloca (ctx->addr_size); |
561 | (ctx->read_mem) (ctx->baton, buf, result, ctx->addr_size); | |
562 | result = dwarf2_read_address (buf, buf + ctx->addr_size, | |
563 | ctx->addr_size); | |
4c2df51b DJ |
564 | } |
565 | break; | |
566 | ||
567 | case DW_OP_deref_size: | |
568 | { | |
ae0d2f24 UW |
569 | int addr_size = *op_ptr++; |
570 | gdb_byte *buf = alloca (addr_size); | |
571 | (ctx->read_mem) (ctx->baton, buf, result, addr_size); | |
572 | result = dwarf2_read_address (buf, buf + addr_size, | |
573 | addr_size); | |
4c2df51b DJ |
574 | } |
575 | break; | |
576 | ||
577 | case DW_OP_abs: | |
578 | if ((signed int) result < 0) | |
579 | result = -result; | |
580 | break; | |
581 | case DW_OP_neg: | |
582 | result = -result; | |
583 | break; | |
584 | case DW_OP_not: | |
585 | result = ~result; | |
586 | break; | |
587 | case DW_OP_plus_uconst: | |
588 | op_ptr = read_uleb128 (op_ptr, op_end, ®); | |
589 | result += reg; | |
590 | break; | |
591 | } | |
592 | break; | |
593 | ||
594 | case DW_OP_and: | |
595 | case DW_OP_div: | |
596 | case DW_OP_minus: | |
597 | case DW_OP_mod: | |
598 | case DW_OP_mul: | |
599 | case DW_OP_or: | |
600 | case DW_OP_plus: | |
601 | case DW_OP_shl: | |
602 | case DW_OP_shr: | |
603 | case DW_OP_shra: | |
604 | case DW_OP_xor: | |
605 | case DW_OP_le: | |
606 | case DW_OP_ge: | |
607 | case DW_OP_eq: | |
608 | case DW_OP_lt: | |
609 | case DW_OP_gt: | |
610 | case DW_OP_ne: | |
611 | { | |
612 | /* Binary operations. Use the value engine to do computations in | |
613 | the right width. */ | |
614 | CORE_ADDR first, second; | |
615 | enum exp_opcode binop; | |
616 | struct value *val1, *val2; | |
617 | ||
618 | second = dwarf_expr_fetch (ctx, 0); | |
619 | dwarf_expr_pop (ctx); | |
620 | ||
b263358a | 621 | first = dwarf_expr_fetch (ctx, 0); |
4c2df51b DJ |
622 | dwarf_expr_pop (ctx); |
623 | ||
ae0d2f24 UW |
624 | val1 = value_from_longest |
625 | (unsigned_address_type (ctx->addr_size), first); | |
626 | val2 = value_from_longest | |
627 | (unsigned_address_type (ctx->addr_size), second); | |
4c2df51b DJ |
628 | |
629 | switch (op) | |
630 | { | |
631 | case DW_OP_and: | |
632 | binop = BINOP_BITWISE_AND; | |
633 | break; | |
634 | case DW_OP_div: | |
635 | binop = BINOP_DIV; | |
99c87dab | 636 | break; |
4c2df51b DJ |
637 | case DW_OP_minus: |
638 | binop = BINOP_SUB; | |
639 | break; | |
640 | case DW_OP_mod: | |
641 | binop = BINOP_MOD; | |
642 | break; | |
643 | case DW_OP_mul: | |
644 | binop = BINOP_MUL; | |
645 | break; | |
646 | case DW_OP_or: | |
647 | binop = BINOP_BITWISE_IOR; | |
648 | break; | |
649 | case DW_OP_plus: | |
650 | binop = BINOP_ADD; | |
651 | break; | |
652 | case DW_OP_shl: | |
653 | binop = BINOP_LSH; | |
654 | break; | |
655 | case DW_OP_shr: | |
656 | binop = BINOP_RSH; | |
99c87dab | 657 | break; |
4c2df51b DJ |
658 | case DW_OP_shra: |
659 | binop = BINOP_RSH; | |
ae0d2f24 UW |
660 | val1 = value_from_longest |
661 | (signed_address_type (ctx->addr_size), first); | |
4c2df51b DJ |
662 | break; |
663 | case DW_OP_xor: | |
664 | binop = BINOP_BITWISE_XOR; | |
665 | break; | |
666 | case DW_OP_le: | |
667 | binop = BINOP_LEQ; | |
668 | break; | |
669 | case DW_OP_ge: | |
670 | binop = BINOP_GEQ; | |
671 | break; | |
672 | case DW_OP_eq: | |
673 | binop = BINOP_EQUAL; | |
674 | break; | |
675 | case DW_OP_lt: | |
676 | binop = BINOP_LESS; | |
677 | break; | |
678 | case DW_OP_gt: | |
679 | binop = BINOP_GTR; | |
680 | break; | |
681 | case DW_OP_ne: | |
682 | binop = BINOP_NOTEQUAL; | |
683 | break; | |
684 | default: | |
685 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 686 | _("Can't be reached.")); |
4c2df51b DJ |
687 | } |
688 | result = value_as_long (value_binop (val1, val2, binop)); | |
689 | } | |
690 | break; | |
691 | ||
692 | case DW_OP_GNU_push_tls_address: | |
c3228f12 EZ |
693 | /* Variable is at a constant offset in the thread-local |
694 | storage block into the objfile for the current thread and | |
695 | the dynamic linker module containing this expression. Here | |
696 | we return returns the offset from that base. The top of the | |
697 | stack has the offset from the beginning of the thread | |
698 | control block at which the variable is located. Nothing | |
699 | should follow this operator, so the top of stack would be | |
700 | returned. */ | |
4c2df51b DJ |
701 | result = dwarf_expr_fetch (ctx, 0); |
702 | dwarf_expr_pop (ctx); | |
703 | result = (ctx->get_tls_address) (ctx->baton, result); | |
704 | break; | |
705 | ||
706 | case DW_OP_skip: | |
707 | offset = extract_signed_integer (op_ptr, 2); | |
708 | op_ptr += 2; | |
709 | op_ptr += offset; | |
710 | goto no_push; | |
711 | ||
712 | case DW_OP_bra: | |
713 | offset = extract_signed_integer (op_ptr, 2); | |
714 | op_ptr += 2; | |
715 | if (dwarf_expr_fetch (ctx, 0) != 0) | |
716 | op_ptr += offset; | |
717 | dwarf_expr_pop (ctx); | |
718 | goto no_push; | |
719 | ||
720 | case DW_OP_nop: | |
721 | goto no_push; | |
722 | ||
87808bd6 JB |
723 | case DW_OP_piece: |
724 | { | |
725 | ULONGEST size; | |
726 | CORE_ADDR addr_or_regnum; | |
727 | ||
728 | /* Record the piece. */ | |
729 | op_ptr = read_uleb128 (op_ptr, op_end, &size); | |
730 | addr_or_regnum = dwarf_expr_fetch (ctx, 0); | |
731 | add_piece (ctx, ctx->in_reg, addr_or_regnum, size); | |
732 | ||
733 | /* Pop off the address/regnum, and clear the in_reg flag. */ | |
734 | dwarf_expr_pop (ctx); | |
735 | ctx->in_reg = 0; | |
736 | } | |
737 | goto no_push; | |
738 | ||
42be36b3 CT |
739 | case DW_OP_GNU_uninit: |
740 | if (op_ptr != op_end) | |
741 | error (_("DWARF-2 expression error: DW_OP_GNU_unint must always " | |
742 | "be the very last op.")); | |
743 | ||
744 | ctx->initialized = 0; | |
745 | goto no_push; | |
746 | ||
4c2df51b | 747 | default: |
8a3fe4f8 | 748 | error (_("Unhandled dwarf expression opcode 0x%x"), op); |
4c2df51b DJ |
749 | } |
750 | ||
751 | /* Most things push a result value. */ | |
752 | dwarf_expr_push (ctx, result); | |
753 | no_push:; | |
754 | } | |
1e3a102a JK |
755 | |
756 | ctx->recursion_depth--; | |
757 | gdb_assert (ctx->recursion_depth >= 0); | |
4c2df51b | 758 | } |