]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
b6ba6518 KB |
2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
3 | Free Software Foundation, Inc. | |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | ||
24 | /* This file contains support routines for creating, manipulating, and | |
25 | destroying minimal symbol tables. | |
26 | ||
27 | Minimal symbol tables are used to hold some very basic information about | |
28 | all defined global symbols (text, data, bss, abs, etc). The only two | |
29 | required pieces of information are the symbol's name and the address | |
30 | associated with that symbol. | |
31 | ||
32 | In many cases, even if a file was compiled with no special options for | |
33 | debugging at all, as long as was not stripped it will contain sufficient | |
34 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 35 | |
c906108c SS |
36 | Even when a file contains enough debugging information to build a full |
37 | symbol table, these minimal symbols are still useful for quickly mapping | |
38 | between names and addresses, and vice versa. They are also sometimes used | |
39 | to figure out what full symbol table entries need to be read in. */ | |
40 | ||
41 | ||
42 | #include "defs.h" | |
9227b5eb | 43 | #include <ctype.h> |
c906108c SS |
44 | #include "gdb_string.h" |
45 | #include "symtab.h" | |
46 | #include "bfd.h" | |
47 | #include "symfile.h" | |
48 | #include "objfiles.h" | |
49 | #include "demangle.h" | |
7ed49443 JB |
50 | #include "value.h" |
51 | #include "cp-abi.h" | |
c906108c SS |
52 | |
53 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
54 | At the end, copy them all into one newly allocated location on an objfile's | |
55 | symbol obstack. */ | |
56 | ||
57 | #define BUNCH_SIZE 127 | |
58 | ||
59 | struct msym_bunch | |
c5aa993b JM |
60 | { |
61 | struct msym_bunch *next; | |
62 | struct minimal_symbol contents[BUNCH_SIZE]; | |
63 | }; | |
c906108c SS |
64 | |
65 | /* Bunch currently being filled up. | |
66 | The next field points to chain of filled bunches. */ | |
67 | ||
68 | static struct msym_bunch *msym_bunch; | |
69 | ||
70 | /* Number of slots filled in current bunch. */ | |
71 | ||
72 | static int msym_bunch_index; | |
73 | ||
74 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
75 | ||
76 | static int msym_count; | |
77 | ||
9227b5eb JB |
78 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
79 | ||
80 | unsigned int | |
81 | msymbol_hash_iw (const char *string) | |
82 | { | |
83 | unsigned int hash = 0; | |
84 | while (*string && *string != '(') | |
85 | { | |
86 | while (isspace (*string)) | |
87 | ++string; | |
88 | if (*string && *string != '(') | |
375f3d86 DJ |
89 | { |
90 | hash = hash * 67 + *string - 113; | |
91 | ++string; | |
92 | } | |
9227b5eb JB |
93 | } |
94 | return hash % MINIMAL_SYMBOL_HASH_SIZE; | |
95 | } | |
96 | ||
97 | /* Compute a hash code for a string. */ | |
98 | ||
99 | unsigned int | |
100 | msymbol_hash (const char *string) | |
101 | { | |
102 | unsigned int hash = 0; | |
103 | for (; *string; ++string) | |
375f3d86 | 104 | hash = hash * 67 + *string - 113; |
9227b5eb JB |
105 | return hash % MINIMAL_SYMBOL_HASH_SIZE; |
106 | } | |
107 | ||
108 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
109 | void | |
110 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
111 | struct minimal_symbol **table) | |
112 | { | |
113 | if (sym->hash_next == NULL) | |
114 | { | |
115 | unsigned int hash = msymbol_hash (SYMBOL_NAME (sym)); | |
116 | sym->hash_next = table[hash]; | |
117 | table[hash] = sym; | |
118 | } | |
119 | } | |
120 | ||
0729fd50 DB |
121 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
122 | TABLE. */ | |
123 | static void | |
124 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
125 | struct minimal_symbol **table) | |
126 | { | |
127 | if (sym->demangled_hash_next == NULL) | |
128 | { | |
129 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)); | |
130 | sym->demangled_hash_next = table[hash]; | |
131 | table[hash] = sym; | |
132 | } | |
133 | } | |
134 | ||
c906108c SS |
135 | |
136 | /* Look through all the current minimal symbol tables and find the | |
137 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
138 | the search to that objfile. If SFILE is non-NULL, limit the search | |
139 | to that source file. Returns a pointer to the minimal symbol that | |
140 | matches, or NULL if no match is found. | |
141 | ||
142 | Note: One instance where there may be duplicate minimal symbols with | |
143 | the same name is when the symbol tables for a shared library and the | |
144 | symbol tables for an executable contain global symbols with the same | |
145 | names (the dynamic linker deals with the duplication). */ | |
146 | ||
147 | struct minimal_symbol * | |
fba45db2 KB |
148 | lookup_minimal_symbol (register const char *name, const char *sfile, |
149 | struct objfile *objf) | |
c906108c SS |
150 | { |
151 | struct objfile *objfile; | |
152 | struct minimal_symbol *msymbol; | |
153 | struct minimal_symbol *found_symbol = NULL; | |
154 | struct minimal_symbol *found_file_symbol = NULL; | |
155 | struct minimal_symbol *trampoline_symbol = NULL; | |
156 | ||
9227b5eb JB |
157 | unsigned int hash = msymbol_hash (name); |
158 | unsigned int dem_hash = msymbol_hash_iw (name); | |
159 | ||
c906108c SS |
160 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
161 | if (sfile != NULL) | |
162 | { | |
163 | char *p = strrchr (sfile, '/'); | |
164 | if (p != NULL) | |
165 | sfile = p + 1; | |
166 | } | |
167 | #endif | |
168 | ||
169 | for (objfile = object_files; | |
170 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 171 | objfile = objfile->next) |
c906108c SS |
172 | { |
173 | if (objf == NULL || objf == objfile) | |
174 | { | |
9227b5eb JB |
175 | /* Do two passes: the first over the ordinary hash table, |
176 | and the second over the demangled hash table. */ | |
0729fd50 | 177 | int pass; |
9227b5eb | 178 | |
0729fd50 | 179 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 180 | { |
0729fd50 DB |
181 | /* Select hash list according to pass. */ |
182 | if (pass == 1) | |
183 | msymbol = objfile->msymbol_hash[hash]; | |
184 | else | |
185 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
186 | ||
187 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 188 | { |
0729fd50 | 189 | if (SYMBOL_MATCHES_NAME (msymbol, name)) |
c906108c | 190 | { |
0729fd50 DB |
191 | switch (MSYMBOL_TYPE (msymbol)) |
192 | { | |
193 | case mst_file_text: | |
194 | case mst_file_data: | |
195 | case mst_file_bss: | |
c906108c | 196 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
0729fd50 DB |
197 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) |
198 | found_file_symbol = msymbol; | |
c906108c | 199 | #else |
0729fd50 DB |
200 | /* We have neither the ability nor the need to |
201 | deal with the SFILE parameter. If we find | |
202 | more than one symbol, just return the latest | |
203 | one (the user can't expect useful behavior in | |
204 | that case). */ | |
205 | found_file_symbol = msymbol; | |
c906108c | 206 | #endif |
0729fd50 DB |
207 | break; |
208 | ||
209 | case mst_solib_trampoline: | |
210 | ||
211 | /* If a trampoline symbol is found, we prefer to | |
212 | keep looking for the *real* symbol. If the | |
213 | actual symbol is not found, then we'll use the | |
214 | trampoline entry. */ | |
215 | if (trampoline_symbol == NULL) | |
216 | trampoline_symbol = msymbol; | |
217 | break; | |
218 | ||
219 | case mst_unknown: | |
220 | default: | |
221 | found_symbol = msymbol; | |
222 | break; | |
223 | } | |
c906108c | 224 | } |
9227b5eb | 225 | |
0729fd50 DB |
226 | /* Find the next symbol on the hash chain. */ |
227 | if (pass == 1) | |
228 | msymbol = msymbol->hash_next; | |
229 | else | |
230 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 231 | } |
c906108c SS |
232 | } |
233 | } | |
234 | } | |
235 | /* External symbols are best. */ | |
236 | if (found_symbol) | |
237 | return found_symbol; | |
238 | ||
239 | /* File-local symbols are next best. */ | |
240 | if (found_file_symbol) | |
241 | return found_file_symbol; | |
242 | ||
243 | /* Symbols for shared library trampolines are next best. */ | |
244 | if (trampoline_symbol) | |
245 | return trampoline_symbol; | |
246 | ||
247 | return NULL; | |
248 | } | |
249 | ||
250 | /* Look through all the current minimal symbol tables and find the | |
251 | first minimal symbol that matches NAME and of text type. | |
252 | If OBJF is non-NULL, limit | |
253 | the search to that objfile. If SFILE is non-NULL, limit the search | |
254 | to that source file. Returns a pointer to the minimal symbol that | |
255 | matches, or NULL if no match is found. | |
c5aa993b JM |
256 | */ |
257 | ||
c906108c | 258 | struct minimal_symbol * |
fba45db2 KB |
259 | lookup_minimal_symbol_text (register const char *name, const char *sfile, |
260 | struct objfile *objf) | |
c906108c SS |
261 | { |
262 | struct objfile *objfile; | |
263 | struct minimal_symbol *msymbol; | |
264 | struct minimal_symbol *found_symbol = NULL; | |
265 | struct minimal_symbol *found_file_symbol = NULL; | |
266 | ||
267 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
268 | if (sfile != NULL) | |
269 | { | |
270 | char *p = strrchr (sfile, '/'); | |
271 | if (p != NULL) | |
272 | sfile = p + 1; | |
273 | } | |
274 | #endif | |
275 | ||
276 | for (objfile = object_files; | |
277 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 278 | objfile = objfile->next) |
c906108c SS |
279 | { |
280 | if (objf == NULL || objf == objfile) | |
281 | { | |
c5aa993b | 282 | for (msymbol = objfile->msymbols; |
c906108c SS |
283 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
284 | found_symbol == NULL; | |
285 | msymbol++) | |
286 | { | |
c5aa993b | 287 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
288 | (MSYMBOL_TYPE (msymbol) == mst_text || |
289 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
290 | { | |
291 | switch (MSYMBOL_TYPE (msymbol)) | |
292 | { | |
293 | case mst_file_text: | |
294 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
295 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) | |
296 | found_file_symbol = msymbol; | |
297 | #else | |
298 | /* We have neither the ability nor the need to | |
c5aa993b JM |
299 | deal with the SFILE parameter. If we find |
300 | more than one symbol, just return the latest | |
301 | one (the user can't expect useful behavior in | |
302 | that case). */ | |
c906108c SS |
303 | found_file_symbol = msymbol; |
304 | #endif | |
305 | break; | |
306 | default: | |
307 | found_symbol = msymbol; | |
308 | break; | |
309 | } | |
310 | } | |
311 | } | |
312 | } | |
313 | } | |
314 | /* External symbols are best. */ | |
315 | if (found_symbol) | |
316 | return found_symbol; | |
317 | ||
318 | /* File-local symbols are next best. */ | |
319 | if (found_file_symbol) | |
320 | return found_file_symbol; | |
321 | ||
322 | return NULL; | |
323 | } | |
324 | ||
325 | /* Look through all the current minimal symbol tables and find the | |
326 | first minimal symbol that matches NAME and of solib trampoline type. | |
327 | If OBJF is non-NULL, limit | |
328 | the search to that objfile. If SFILE is non-NULL, limit the search | |
329 | to that source file. Returns a pointer to the minimal symbol that | |
330 | matches, or NULL if no match is found. | |
c5aa993b JM |
331 | */ |
332 | ||
c906108c | 333 | struct minimal_symbol * |
fba45db2 KB |
334 | lookup_minimal_symbol_solib_trampoline (register const char *name, |
335 | const char *sfile, struct objfile *objf) | |
c906108c SS |
336 | { |
337 | struct objfile *objfile; | |
338 | struct minimal_symbol *msymbol; | |
339 | struct minimal_symbol *found_symbol = NULL; | |
340 | ||
341 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
342 | if (sfile != NULL) | |
343 | { | |
344 | char *p = strrchr (sfile, '/'); | |
345 | if (p != NULL) | |
346 | sfile = p + 1; | |
347 | } | |
348 | #endif | |
349 | ||
350 | for (objfile = object_files; | |
351 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 352 | objfile = objfile->next) |
c906108c SS |
353 | { |
354 | if (objf == NULL || objf == objfile) | |
355 | { | |
c5aa993b | 356 | for (msymbol = objfile->msymbols; |
c906108c SS |
357 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
358 | found_symbol == NULL; | |
359 | msymbol++) | |
360 | { | |
c5aa993b | 361 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
362 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
363 | return msymbol; | |
364 | } | |
365 | } | |
366 | } | |
367 | ||
368 | return NULL; | |
369 | } | |
370 | ||
371 | ||
372 | /* Search through the minimal symbol table for each objfile and find | |
373 | the symbol whose address is the largest address that is still less | |
374 | than or equal to PC, and matches SECTION (if non-null). Returns a | |
375 | pointer to the minimal symbol if such a symbol is found, or NULL if | |
376 | PC is not in a suitable range. Note that we need to look through | |
377 | ALL the minimal symbol tables before deciding on the symbol that | |
378 | comes closest to the specified PC. This is because objfiles can | |
379 | overlap, for example objfile A has .text at 0x100 and .data at | |
380 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
381 | ||
382 | struct minimal_symbol * | |
fba45db2 | 383 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
384 | { |
385 | int lo; | |
386 | int hi; | |
387 | int new; | |
388 | struct objfile *objfile; | |
389 | struct minimal_symbol *msymbol; | |
390 | struct minimal_symbol *best_symbol = NULL; | |
391 | ||
392 | /* pc has to be in a known section. This ensures that anything beyond | |
393 | the end of the last segment doesn't appear to be part of the last | |
394 | function in the last segment. */ | |
395 | if (find_pc_section (pc) == NULL) | |
396 | return NULL; | |
397 | ||
398 | for (objfile = object_files; | |
399 | objfile != NULL; | |
c5aa993b | 400 | objfile = objfile->next) |
c906108c SS |
401 | { |
402 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
403 | a binary search. Note that a minimal symbol table always consists |
404 | of at least two symbols, a "real" symbol and the terminating | |
405 | "null symbol". If there are no real symbols, then there is no | |
406 | minimal symbol table at all. */ | |
c906108c | 407 | |
c5aa993b | 408 | if ((msymbol = objfile->msymbols) != NULL) |
c906108c SS |
409 | { |
410 | lo = 0; | |
c5aa993b | 411 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
412 | |
413 | /* This code assumes that the minimal symbols are sorted by | |
414 | ascending address values. If the pc value is greater than or | |
415 | equal to the first symbol's address, then some symbol in this | |
416 | minimal symbol table is a suitable candidate for being the | |
417 | "best" symbol. This includes the last real symbol, for cases | |
418 | where the pc value is larger than any address in this vector. | |
419 | ||
420 | By iterating until the address associated with the current | |
421 | hi index (the endpoint of the test interval) is less than | |
422 | or equal to the desired pc value, we accomplish two things: | |
423 | (1) the case where the pc value is larger than any minimal | |
424 | symbol address is trivially solved, (2) the address associated | |
425 | with the hi index is always the one we want when the interation | |
426 | terminates. In essence, we are iterating the test interval | |
427 | down until the pc value is pushed out of it from the high end. | |
428 | ||
429 | Warning: this code is trickier than it would appear at first. */ | |
430 | ||
431 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
432 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
433 | { | |
434 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
435 | { | |
436 | /* pc is still strictly less than highest address */ | |
437 | /* Note "new" will always be >= lo */ | |
438 | new = (lo + hi) / 2; | |
439 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
440 | (lo == new)) | |
441 | { | |
442 | hi = new; | |
443 | } | |
444 | else | |
445 | { | |
446 | lo = new; | |
447 | } | |
448 | } | |
449 | ||
450 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
451 | hi to point to the last one. That way we can find the |
452 | right symbol if it has an index greater than hi. */ | |
453 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 454 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 455 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
456 | hi++; |
457 | ||
458 | /* The minimal symbol indexed by hi now is the best one in this | |
c5aa993b JM |
459 | objfile's minimal symbol table. See if it is the best one |
460 | overall. */ | |
c906108c SS |
461 | |
462 | /* Skip any absolute symbols. This is apparently what adb | |
c5aa993b JM |
463 | and dbx do, and is needed for the CM-5. There are two |
464 | known possible problems: (1) on ELF, apparently end, edata, | |
465 | etc. are absolute. Not sure ignoring them here is a big | |
466 | deal, but if we want to use them, the fix would go in | |
467 | elfread.c. (2) I think shared library entry points on the | |
468 | NeXT are absolute. If we want special handling for this | |
469 | it probably should be triggered by a special | |
470 | mst_abs_or_lib or some such. */ | |
c906108c SS |
471 | while (hi >= 0 |
472 | && msymbol[hi].type == mst_abs) | |
473 | --hi; | |
474 | ||
475 | /* If "section" specified, skip any symbol from wrong section */ | |
476 | /* This is the new code that distinguishes it from the old function */ | |
477 | if (section) | |
478 | while (hi >= 0 | |
65d5a54a EZ |
479 | /* Some types of debug info, such as COFF, |
480 | don't fill the bfd_section member, so don't | |
481 | throw away symbols on those platforms. */ | |
482 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
c906108c SS |
483 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != section) |
484 | --hi; | |
485 | ||
486 | if (hi >= 0 | |
487 | && ((best_symbol == NULL) || | |
c5aa993b | 488 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
489 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
490 | { | |
491 | best_symbol = &msymbol[hi]; | |
492 | } | |
493 | } | |
494 | } | |
495 | } | |
496 | return (best_symbol); | |
497 | } | |
498 | ||
499 | /* Backward compatibility: search through the minimal symbol table | |
500 | for a matching PC (no section given) */ | |
501 | ||
502 | struct minimal_symbol * | |
fba45db2 | 503 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
504 | { |
505 | return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc)); | |
506 | } | |
507 | ||
508 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
509 | CORE_ADDR | |
fba45db2 KB |
510 | find_stab_function_addr (char *namestring, char *filename, |
511 | struct objfile *objfile) | |
c906108c SS |
512 | { |
513 | struct minimal_symbol *msym; | |
514 | char *p; | |
515 | int n; | |
516 | ||
517 | p = strchr (namestring, ':'); | |
518 | if (p == NULL) | |
519 | p = namestring; | |
520 | n = p - namestring; | |
521 | p = alloca (n + 2); | |
522 | strncpy (p, namestring, n); | |
523 | p[n] = 0; | |
524 | ||
c2c6d25f | 525 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c SS |
526 | if (msym == NULL) |
527 | { | |
528 | /* Sun Fortran appends an underscore to the minimal symbol name, | |
c5aa993b JM |
529 | try again with an appended underscore if the minimal symbol |
530 | was not found. */ | |
c906108c SS |
531 | p[n] = '_'; |
532 | p[n + 1] = 0; | |
c2c6d25f | 533 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c | 534 | } |
c2c6d25f JM |
535 | |
536 | if (msym == NULL && filename != NULL) | |
537 | { | |
538 | /* Try again without the filename. */ | |
539 | p[n] = 0; | |
9b27852e | 540 | msym = lookup_minimal_symbol (p, NULL, objfile); |
c2c6d25f JM |
541 | } |
542 | if (msym == NULL && filename != NULL) | |
543 | { | |
544 | /* And try again for Sun Fortran, but without the filename. */ | |
545 | p[n] = '_'; | |
546 | p[n + 1] = 0; | |
9b27852e | 547 | msym = lookup_minimal_symbol (p, NULL, objfile); |
c2c6d25f JM |
548 | } |
549 | ||
c906108c SS |
550 | return msym == NULL ? 0 : SYMBOL_VALUE_ADDRESS (msym); |
551 | } | |
552 | #endif /* SOFUN_ADDRESS_MAYBE_MISSING */ | |
c906108c | 553 | \f |
c5aa993b | 554 | |
c906108c SS |
555 | /* Return leading symbol character for a BFD. If BFD is NULL, |
556 | return the leading symbol character from the main objfile. */ | |
557 | ||
a14ed312 | 558 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
559 | |
560 | static int | |
fba45db2 | 561 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
562 | { |
563 | if (abfd != NULL) | |
564 | return bfd_get_symbol_leading_char (abfd); | |
565 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
566 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
567 | return 0; | |
568 | } | |
569 | ||
570 | /* Prepare to start collecting minimal symbols. Note that presetting | |
571 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
572 | symbol to allocate the memory for the first bunch. */ | |
573 | ||
574 | void | |
fba45db2 | 575 | init_minimal_symbol_collection (void) |
c906108c SS |
576 | { |
577 | msym_count = 0; | |
578 | msym_bunch = NULL; | |
579 | msym_bunch_index = BUNCH_SIZE; | |
580 | } | |
581 | ||
582 | void | |
fba45db2 KB |
583 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
584 | enum minimal_symbol_type ms_type, | |
585 | struct objfile *objfile) | |
c906108c SS |
586 | { |
587 | int section; | |
588 | ||
589 | switch (ms_type) | |
590 | { | |
591 | case mst_text: | |
592 | case mst_file_text: | |
593 | case mst_solib_trampoline: | |
b8fbeb18 | 594 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
595 | break; |
596 | case mst_data: | |
597 | case mst_file_data: | |
b8fbeb18 | 598 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
599 | break; |
600 | case mst_bss: | |
601 | case mst_file_bss: | |
b8fbeb18 | 602 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
603 | break; |
604 | default: | |
605 | section = -1; | |
606 | } | |
607 | ||
608 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
609 | NULL, section, NULL, objfile); | |
610 | } | |
611 | ||
612 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
613 | newly created. */ | |
614 | ||
615 | struct minimal_symbol * | |
fba45db2 KB |
616 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
617 | enum minimal_symbol_type ms_type, | |
618 | char *info, int section, | |
619 | asection *bfd_section, | |
620 | struct objfile *objfile) | |
c906108c SS |
621 | { |
622 | register struct msym_bunch *new; | |
623 | register struct minimal_symbol *msymbol; | |
624 | ||
625 | if (ms_type == mst_file_text) | |
626 | { | |
627 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into | |
c5aa993b JM |
628 | the minimal symbols, because if there is also another symbol |
629 | at the same address (e.g. the first function of the file), | |
630 | lookup_minimal_symbol_by_pc would have no way of getting the | |
631 | right one. */ | |
c906108c SS |
632 | if (name[0] == 'g' |
633 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
634 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
635 | return (NULL); | |
636 | ||
637 | { | |
638 | const char *tempstring = name; | |
639 | if (tempstring[0] == get_symbol_leading_char (objfile->obfd)) | |
640 | ++tempstring; | |
641 | if (STREQN (tempstring, "__gnu_compiled", 14)) | |
642 | return (NULL); | |
643 | } | |
644 | } | |
645 | ||
646 | if (msym_bunch_index == BUNCH_SIZE) | |
647 | { | |
648 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
649 | msym_bunch_index = 0; | |
c5aa993b | 650 | new->next = msym_bunch; |
c906108c SS |
651 | msym_bunch = new; |
652 | } | |
c5aa993b | 653 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c SS |
654 | SYMBOL_NAME (msymbol) = obsavestring ((char *) name, strlen (name), |
655 | &objfile->symbol_obstack); | |
656 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); | |
657 | SYMBOL_VALUE_ADDRESS (msymbol) = address; | |
658 | SYMBOL_SECTION (msymbol) = section; | |
659 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
660 | ||
661 | MSYMBOL_TYPE (msymbol) = ms_type; | |
662 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 663 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
9227b5eb | 664 | |
a79dea61 | 665 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 666 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
667 | msymbol->hash_next = NULL; |
668 | msymbol->demangled_hash_next = NULL; | |
669 | ||
c906108c SS |
670 | msym_bunch_index++; |
671 | msym_count++; | |
672 | OBJSTAT (objfile, n_minsyms++); | |
673 | return msymbol; | |
674 | } | |
675 | ||
676 | /* Compare two minimal symbols by address and return a signed result based | |
677 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
678 | Within groups with the same address, sort by name. */ | |
679 | ||
680 | static int | |
12b9c64f | 681 | compare_minimal_symbols (const void *fn1p, const void *fn2p) |
c906108c SS |
682 | { |
683 | register const struct minimal_symbol *fn1; | |
684 | register const struct minimal_symbol *fn2; | |
685 | ||
686 | fn1 = (const struct minimal_symbol *) fn1p; | |
687 | fn2 = (const struct minimal_symbol *) fn2p; | |
688 | ||
689 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
690 | { | |
c5aa993b | 691 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
692 | } |
693 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
694 | { | |
c5aa993b | 695 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 696 | } |
c5aa993b JM |
697 | else |
698 | /* addrs are equal: sort by name */ | |
c906108c SS |
699 | { |
700 | char *name1 = SYMBOL_NAME (fn1); | |
701 | char *name2 = SYMBOL_NAME (fn2); | |
702 | ||
703 | if (name1 && name2) /* both have names */ | |
704 | return strcmp (name1, name2); | |
705 | else if (name2) | |
c5aa993b JM |
706 | return 1; /* fn1 has no name, so it is "less" */ |
707 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
708 | return -1; |
709 | else | |
c5aa993b | 710 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
711 | } |
712 | } | |
713 | ||
714 | /* Discard the currently collected minimal symbols, if any. If we wish | |
715 | to save them for later use, we must have already copied them somewhere | |
716 | else before calling this function. | |
717 | ||
718 | FIXME: We could allocate the minimal symbol bunches on their own | |
719 | obstack and then simply blow the obstack away when we are done with | |
720 | it. Is it worth the extra trouble though? */ | |
721 | ||
56e290f4 AC |
722 | static void |
723 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c SS |
724 | { |
725 | register struct msym_bunch *next; | |
726 | ||
727 | while (msym_bunch != NULL) | |
728 | { | |
c5aa993b | 729 | next = msym_bunch->next; |
b8c9b27d | 730 | xfree (msym_bunch); |
c906108c SS |
731 | msym_bunch = next; |
732 | } | |
733 | } | |
734 | ||
56e290f4 AC |
735 | struct cleanup * |
736 | make_cleanup_discard_minimal_symbols (void) | |
737 | { | |
738 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
739 | } | |
740 | ||
741 | ||
9227b5eb | 742 | |
c906108c SS |
743 | /* Compact duplicate entries out of a minimal symbol table by walking |
744 | through the table and compacting out entries with duplicate addresses | |
745 | and matching names. Return the number of entries remaining. | |
746 | ||
747 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
748 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
749 | ||
750 | When files contain multiple sources of symbol information, it is | |
751 | possible for the minimal symbol table to contain many duplicate entries. | |
752 | As an example, SVR4 systems use ELF formatted object files, which | |
753 | usually contain at least two different types of symbol tables (a | |
754 | standard ELF one and a smaller dynamic linking table), as well as | |
755 | DWARF debugging information for files compiled with -g. | |
756 | ||
757 | Without compacting, the minimal symbol table for gdb itself contains | |
758 | over a 1000 duplicates, about a third of the total table size. Aside | |
759 | from the potential trap of not noticing that two successive entries | |
760 | identify the same location, this duplication impacts the time required | |
761 | to linearly scan the table, which is done in a number of places. So we | |
762 | just do one linear scan here and toss out the duplicates. | |
763 | ||
764 | Note that we are not concerned here about recovering the space that | |
765 | is potentially freed up, because the strings themselves are allocated | |
766 | on the symbol_obstack, and will get automatically freed when the symbol | |
767 | table is freed. The caller can free up the unused minimal symbols at | |
768 | the end of the compacted region if their allocation strategy allows it. | |
769 | ||
770 | Also note we only go up to the next to last entry within the loop | |
771 | and then copy the last entry explicitly after the loop terminates. | |
772 | ||
773 | Since the different sources of information for each symbol may | |
774 | have different levels of "completeness", we may have duplicates | |
775 | that have one entry with type "mst_unknown" and the other with a | |
776 | known type. So if the one we are leaving alone has type mst_unknown, | |
777 | overwrite its type with the type from the one we are compacting out. */ | |
778 | ||
779 | static int | |
fba45db2 KB |
780 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
781 | struct objfile *objfile) | |
c906108c SS |
782 | { |
783 | struct minimal_symbol *copyfrom; | |
784 | struct minimal_symbol *copyto; | |
785 | ||
786 | if (mcount > 0) | |
787 | { | |
788 | copyfrom = copyto = msymbol; | |
789 | while (copyfrom < msymbol + mcount - 1) | |
790 | { | |
c5aa993b | 791 | if (SYMBOL_VALUE_ADDRESS (copyfrom) == |
c906108c SS |
792 | SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && |
793 | (STREQ (SYMBOL_NAME (copyfrom), SYMBOL_NAME ((copyfrom + 1))))) | |
794 | { | |
c5aa993b | 795 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
796 | { |
797 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
798 | } | |
799 | copyfrom++; | |
800 | } | |
801 | else | |
afbb8d7a | 802 | *copyto++ = *copyfrom++; |
c906108c SS |
803 | } |
804 | *copyto++ = *copyfrom++; | |
805 | mcount = copyto - msymbol; | |
806 | } | |
807 | return (mcount); | |
808 | } | |
809 | ||
afbb8d7a KB |
810 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
811 | after compacting or sorting the table since the entries move around | |
812 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
813 | ||
814 | static void | |
815 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
816 | { | |
817 | int i; | |
818 | struct minimal_symbol *msym; | |
819 | ||
820 | /* Clear the hash tables. */ | |
821 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
822 | { | |
823 | objfile->msymbol_hash[i] = 0; | |
824 | objfile->msymbol_demangled_hash[i] = 0; | |
825 | } | |
826 | ||
827 | /* Now, (re)insert the actual entries. */ | |
828 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
829 | i > 0; | |
830 | i--, msym++) | |
831 | { | |
832 | msym->hash_next = 0; | |
833 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
834 | ||
835 | msym->demangled_hash_next = 0; | |
836 | if (SYMBOL_DEMANGLED_NAME (msym) != NULL) | |
837 | add_minsym_to_demangled_hash_table (msym, | |
838 | objfile->msymbol_demangled_hash); | |
839 | } | |
840 | } | |
841 | ||
c906108c SS |
842 | /* Add the minimal symbols in the existing bunches to the objfile's official |
843 | minimal symbol table. In most cases there is no minimal symbol table yet | |
844 | for this objfile, and the existing bunches are used to create one. Once | |
845 | in a while (for shared libraries for example), we add symbols (e.g. common | |
846 | symbols) to an existing objfile. | |
847 | ||
848 | Because of the way minimal symbols are collected, we generally have no way | |
849 | of knowing what source language applies to any particular minimal symbol. | |
850 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
851 | C++ compilation unit or not. So for the sake of supporting cached | |
852 | demangled C++ names, we have no choice but to try and demangle each new one | |
853 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
854 | symbol and set the symbol's language and demangled name fields | |
855 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
856 | allocating obstack space that subsequently can't be freed for the demangled | |
857 | names, we mark all newly added symbols with language_auto. After | |
858 | compaction of the minimal symbols, we go back and scan the entire minimal | |
859 | symbol table looking for these new symbols. For each new symbol we attempt | |
860 | to demangle it, and if successful, record it as a language_cplus symbol | |
861 | and cache the demangled form on the symbol obstack. Symbols which don't | |
862 | demangle are marked as language_unknown symbols, which inhibits future | |
863 | attempts to demangle them if we later add more minimal symbols. */ | |
864 | ||
865 | void | |
fba45db2 | 866 | install_minimal_symbols (struct objfile *objfile) |
c906108c SS |
867 | { |
868 | register int bindex; | |
869 | register int mcount; | |
870 | register struct msym_bunch *bunch; | |
871 | register struct minimal_symbol *msymbols; | |
872 | int alloc_count; | |
873 | register char leading_char; | |
874 | ||
875 | if (msym_count > 0) | |
876 | { | |
877 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
878 | bunches of new and existing minimal symbols, sort them, and then |
879 | compact out the duplicate entries. Once we have a final table, | |
880 | we will give back the excess space. */ | |
c906108c SS |
881 | |
882 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
883 | obstack_blank (&objfile->symbol_obstack, | |
884 | alloc_count * sizeof (struct minimal_symbol)); | |
885 | msymbols = (struct minimal_symbol *) | |
c5aa993b | 886 | obstack_base (&objfile->symbol_obstack); |
c906108c SS |
887 | |
888 | /* Copy in the existing minimal symbols, if there are any. */ | |
889 | ||
890 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
891 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
892 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
893 | |
894 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
895 | to the new contiguous array of symbols. Note that we start with the |
896 | current, possibly partially filled bunch (thus we use the current | |
897 | msym_bunch_index for the first bunch we copy over), and thereafter | |
898 | each bunch is full. */ | |
899 | ||
c906108c SS |
900 | mcount = objfile->minimal_symbol_count; |
901 | leading_char = get_symbol_leading_char (objfile->obfd); | |
c5aa993b JM |
902 | |
903 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
904 | { |
905 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
906 | { | |
c5aa993b | 907 | msymbols[mcount] = bunch->contents[bindex]; |
c906108c SS |
908 | SYMBOL_LANGUAGE (&msymbols[mcount]) = language_auto; |
909 | if (SYMBOL_NAME (&msymbols[mcount])[0] == leading_char) | |
910 | { | |
c5aa993b | 911 | SYMBOL_NAME (&msymbols[mcount])++; |
c906108c SS |
912 | } |
913 | } | |
914 | msym_bunch_index = BUNCH_SIZE; | |
915 | } | |
916 | ||
917 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 918 | |
c906108c SS |
919 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
920 | compare_minimal_symbols); | |
c5aa993b | 921 | |
c906108c | 922 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
923 | no longer using. */ |
924 | ||
9227b5eb | 925 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c SS |
926 | |
927 | obstack_blank (&objfile->symbol_obstack, | |
c5aa993b | 928 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c SS |
929 | msymbols = (struct minimal_symbol *) |
930 | obstack_finish (&objfile->symbol_obstack); | |
931 | ||
932 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
933 | which is *not* included in the size of the table. This makes it |
934 | easier to find the end of the table when we are handed a pointer | |
935 | to some symbol in the middle of it. Zero out the fields in the | |
936 | "null symbol" allocated at the end of the array. Note that the | |
937 | symbol count does *not* include this null symbol, which is why it | |
938 | is indexed by mcount and not mcount-1. */ | |
c906108c SS |
939 | |
940 | SYMBOL_NAME (&msymbols[mcount]) = NULL; | |
941 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; | |
942 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
943 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; | |
944 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
945 | ||
946 | /* Attach the minimal symbol table to the specified objfile. | |
c5aa993b JM |
947 | The strings themselves are also located in the symbol_obstack |
948 | of this objfile. */ | |
c906108c | 949 | |
c5aa993b JM |
950 | objfile->minimal_symbol_count = mcount; |
951 | objfile->msymbols = msymbols; | |
c906108c | 952 | |
7ed49443 JB |
953 | /* Try to guess the appropriate C++ ABI by looking at the names |
954 | of the minimal symbols in the table. */ | |
955 | { | |
956 | int i; | |
957 | ||
958 | for (i = 0; i < mcount; i++) | |
959 | { | |
960 | const char *name = SYMBOL_NAME (&objfile->msymbols[i]); | |
961 | if (name[0] == '_' && name[1] == 'Z') | |
962 | { | |
963 | switch_to_cp_abi ("gnu-v3"); | |
964 | break; | |
965 | } | |
966 | } | |
967 | } | |
968 | ||
c906108c | 969 | /* Now walk through all the minimal symbols, selecting the newly added |
c5aa993b | 970 | ones and attempting to cache their C++ demangled names. */ |
c5aa993b | 971 | for (; mcount-- > 0; msymbols++) |
afbb8d7a KB |
972 | SYMBOL_INIT_DEMANGLED_NAME (msymbols, &objfile->symbol_obstack); |
973 | ||
974 | /* Now build the hash tables; we can't do this incrementally | |
975 | at an earlier point since we weren't finished with the obstack | |
976 | yet. (And if the msymbol obstack gets moved, all the internal | |
977 | pointers to other msymbols need to be adjusted.) */ | |
978 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
979 | } |
980 | } | |
981 | ||
982 | /* Sort all the minimal symbols in OBJFILE. */ | |
983 | ||
984 | void | |
fba45db2 | 985 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
986 | { |
987 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
988 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 989 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
990 | } |
991 | ||
992 | /* Check if PC is in a shared library trampoline code stub. | |
993 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
994 | in a trampoline code stub. */ | |
995 | ||
996 | struct minimal_symbol * | |
fba45db2 | 997 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
998 | { |
999 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
1000 | ||
1001 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
1002 | return msymbol; | |
1003 | return NULL; | |
1004 | } | |
1005 | ||
1006 | /* If PC is in a shared library trampoline code stub, return the | |
1007 | address of the `real' function belonging to the stub. | |
1008 | Return 0 if PC is not in a trampoline code stub or if the real | |
1009 | function is not found in the minimal symbol table. | |
1010 | ||
1011 | We may fail to find the right function if a function with the | |
1012 | same name is defined in more than one shared library, but this | |
1013 | is considered bad programming style. We could return 0 if we find | |
1014 | a duplicate function in case this matters someday. */ | |
1015 | ||
1016 | CORE_ADDR | |
fba45db2 | 1017 | find_solib_trampoline_target (CORE_ADDR pc) |
c906108c SS |
1018 | { |
1019 | struct objfile *objfile; | |
1020 | struct minimal_symbol *msymbol; | |
1021 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
1022 | ||
1023 | if (tsymbol != NULL) | |
1024 | { | |
1025 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
1026 | { |
1027 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
1028 | && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (tsymbol))) | |
1029 | return SYMBOL_VALUE_ADDRESS (msymbol); | |
1030 | } | |
c906108c SS |
1031 | } |
1032 | return 0; | |
1033 | } |