]>
Commit | Line | Data |
---|---|---|
35f5886e FF |
1 | /* DWARF debugging format support for GDB. |
2 | Copyright (C) 1991 Free Software Foundation, Inc. | |
3 | Written by Fred Fish at Cygnus Support, portions based on dbxread.c, | |
4 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | /* | |
23 | ||
24 | FIXME: Figure out how to get the frame pointer register number in the | |
25 | execution environment of the target. Remove R_FP kludge | |
26 | ||
27 | FIXME: Add generation of dependencies list to partial symtab code. | |
28 | ||
29 | FIXME: Currently we ignore host/target byte ordering and integer size | |
30 | differences. Should remap data from external form to an internal form | |
31 | before trying to use it. | |
32 | ||
33 | FIXME: Resolve minor differences between what information we put in the | |
34 | partial symbol table and what dbxread puts in. For example, we don't yet | |
35 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
36 | we never see. Use the new printpsym command to see the partial symbol table | |
37 | contents. | |
38 | ||
39 | FIXME: Change forward declarations of static functions to allow for compilers | |
40 | without prototypes. | |
41 | ||
42 | FIXME: Figure out a better way to tell gdb (all the debug reading routines) | |
43 | the names of the gccX_compiled flags. | |
44 | ||
45 | FIXME: Figure out a better way to tell gdb about the name of the function | |
46 | contain the user's entry point (I.E. main()) | |
47 | ||
48 | FIXME: The current DWARF specification has a very strong bias towards | |
49 | machines with 32-bit integers, as it assumes that many attributes of the | |
50 | program (such as an address) will fit in such an integer. There are many | |
51 | references in the spec to things that are 2, 4, or 8 bytes long. Given that | |
52 | we will probably run into problems on machines where some of these assumptions | |
53 | are invalid (64-bit ints for example), we don't bother at this time to try to | |
54 | make this code more flexible and just use shorts, ints, and longs (and their | |
55 | sizes) where it seems appropriate. I.E. we use a short int to hold DWARF | |
56 | tags, and assume that the tag size in the file is the same as sizeof(short). | |
57 | ||
58 | FIXME: Figure out how to get the name of the symbol indicating that a module | |
59 | has been compiled with gcc (gcc_compiledXX) in a more portable way than | |
60 | hardcoding it into the object file readers. | |
61 | ||
62 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for | |
63 | other things to work on, if you get bored. :-) | |
64 | ||
65 | */ | |
66 | ||
67 | #include <stdio.h> | |
313fdead | 68 | #include <varargs.h> |
35f5886e FF |
69 | #include <fcntl.h> |
70 | ||
71 | #include "defs.h" | |
72 | #include "param.h" | |
73 | #include "bfd.h" | |
74 | #include "symtab.h" | |
75 | #include "symfile.h" | |
76 | #include "dwarf.h" | |
77 | #include "ansidecl.h" | |
78 | ||
79 | #ifdef MAINTENANCE /* Define to 1 to compile in some maintenance stuff */ | |
80 | #define SQUAWK(stuff) dwarfwarn stuff | |
81 | #else | |
82 | #define SQUAWK(stuff) | |
83 | #endif | |
84 | ||
85 | #ifndef R_FP /* FIXME */ | |
86 | #define R_FP 14 /* Kludge to get frame pointer register number */ | |
87 | #endif | |
88 | ||
89 | typedef unsigned int DIEREF; /* Reference to a DIE */ | |
90 | ||
91 | #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled%" /* FIXME */ | |
92 | #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled%" /* FIXME */ | |
93 | ||
94 | #define STREQ(a,b) (strcmp(a,b)==0) | |
95 | ||
35f5886e FF |
96 | extern CORE_ADDR startup_file_start; /* From blockframe.c */ |
97 | extern CORE_ADDR startup_file_end; /* From blockframe.c */ | |
98 | extern CORE_ADDR entry_scope_lowpc; /* From blockframe.c */ | |
99 | extern CORE_ADDR entry_scope_highpc; /* From blockframc.c */ | |
100 | extern CORE_ADDR main_scope_lowpc; /* From blockframe.c */ | |
101 | extern CORE_ADDR main_scope_highpc; /* From blockframc.c */ | |
102 | extern int info_verbose; /* From main.c; nonzero => verbose */ | |
103 | ||
104 | ||
105 | /* The DWARF debugging information consists of two major pieces, | |
106 | one is a block of DWARF Information Entries (DIE's) and the other | |
107 | is a line number table. The "struct dieinfo" structure contains | |
108 | the information for a single DIE, the one currently being processed. | |
109 | ||
110 | In order to make it easier to randomly access the attribute fields | |
111 | of the current DIE, which are specifically unordered within the DIE | |
112 | each DIE is scanned and an instance of the "struct dieinfo" | |
113 | structure is initialized. | |
114 | ||
115 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
116 | just initializes those fields that are vital to deciding whether or not | |
117 | to use this DIE, how to skip past it, etc. The second, done by the | |
118 | function completedieinfo(), fills in the rest of the information. | |
119 | ||
120 | Attributes which have block forms are not interpreted at the time | |
121 | the DIE is scanned, instead we just save pointers to the start | |
122 | of their value fields. | |
123 | ||
124 | Some fields have a flag <name>_p that is set when the value of the | |
125 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
126 | we may want to test for the presence of some attributes in the DIE, | |
127 | such as AT_is_external, without restricting the values of the field, | |
128 | we need someway to note that we found such an attribute. | |
129 | ||
130 | */ | |
131 | ||
132 | typedef char BLOCK; | |
133 | ||
134 | struct dieinfo { | |
135 | char * die; /* Pointer to the raw DIE data */ | |
136 | long dielength; /* Length of the raw DIE data */ | |
137 | DIEREF dieref; /* Offset of this DIE */ | |
138 | short dietag; /* Tag for this DIE */ | |
139 | long at_padding; | |
140 | long at_sibling; | |
141 | BLOCK * at_location; | |
142 | char * at_name; | |
143 | unsigned short at_fund_type; | |
144 | BLOCK * at_mod_fund_type; | |
145 | long at_user_def_type; | |
146 | BLOCK * at_mod_u_d_type; | |
147 | short at_ordering; | |
148 | BLOCK * at_subscr_data; | |
149 | long at_byte_size; | |
150 | short at_bit_offset; | |
151 | long at_bit_size; | |
152 | BLOCK * at_deriv_list; | |
153 | BLOCK * at_element_list; | |
154 | long at_stmt_list; | |
155 | long at_low_pc; | |
156 | long at_high_pc; | |
157 | long at_language; | |
158 | long at_member; | |
159 | long at_discr; | |
160 | BLOCK * at_discr_value; | |
161 | short at_visibility; | |
162 | long at_import; | |
163 | BLOCK * at_string_length; | |
164 | char * at_comp_dir; | |
165 | char * at_producer; | |
166 | long at_loclist; | |
167 | long at_frame_base; | |
168 | short at_incomplete; | |
169 | long at_start_scope; | |
170 | long at_stride_size; | |
171 | long at_src_info; | |
172 | short at_prototyped; | |
173 | BLOCK * at_const_data; | |
174 | short at_is_external; | |
175 | unsigned int at_is_external_p:1; | |
176 | unsigned int at_stmt_list_p:1; | |
177 | }; | |
178 | ||
179 | static int diecount; /* Approximate count of dies for compilation unit */ | |
180 | static struct dieinfo *curdie; /* For warnings and such */ | |
181 | ||
182 | static char *dbbase; /* Base pointer to dwarf info */ | |
183 | static int dbroff; /* Relative offset from start of .debug section */ | |
184 | static char *lnbase; /* Base pointer to line section */ | |
185 | static int isreg; /* Kludge to identify register variables */ | |
186 | ||
187 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
188 | ||
189 | /* Each partial symbol table entry contains a pointer to private data for the | |
190 | read_symtab() function to use when expanding a partial symbol table entry | |
191 | to a full symbol table entry. For DWARF debugging info, this data is | |
192 | contained in the following structure and macros are provided for easy | |
193 | access to the members given a pointer to a partial symbol table entry. | |
194 | ||
195 | dbfoff Always the absolute file offset to the start of the ".debug" | |
196 | section for the file containing the DIE's being accessed. | |
197 | ||
198 | dbroff Relative offset from the start of the ".debug" access to the | |
199 | first DIE to be accessed. When building the partial symbol | |
200 | table, this value will be zero since we are accessing the | |
201 | entire ".debug" section. When expanding a partial symbol | |
202 | table entry, this value will be the offset to the first | |
203 | DIE for the compilation unit containing the symbol that | |
204 | triggers the expansion. | |
205 | ||
206 | dblength The size of the chunk of DIE's being examined, in bytes. | |
207 | ||
208 | lnfoff The absolute file offset to the line table fragment. Ignored | |
209 | when building partial symbol tables, but used when expanding | |
210 | them, and contains the absolute file offset to the fragment | |
211 | of the ".line" section containing the line numbers for the | |
212 | current compilation unit. | |
213 | */ | |
214 | ||
215 | struct dwfinfo { | |
216 | int dbfoff; /* Absolute file offset to start of .debug section */ | |
217 | int dbroff; /* Relative offset from start of .debug section */ | |
218 | int dblength; /* Size of the chunk of DIE's being examined */ | |
219 | int lnfoff; /* Absolute file offset to line table fragment */ | |
220 | }; | |
221 | ||
222 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
223 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
224 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
225 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
226 | ||
227 | /* Record the symbols defined for each context in a linked list. We don't | |
228 | create a struct block for the context until we know how long to make it. | |
229 | Global symbols for each file are maintained in the global_symbols list. */ | |
230 | ||
231 | struct pending_symbol { | |
232 | struct pending_symbol *next; /* Next pending symbol */ | |
233 | struct symbol *symbol; /* The actual symbol */ | |
234 | }; | |
235 | ||
236 | static struct pending_symbol *global_symbols; /* global funcs and vars */ | |
237 | static struct block *global_symbol_block; | |
238 | ||
239 | /* Line number entries are read into a dynamically expandable vector before | |
240 | being added to the symbol table section. Once we know how many there are | |
241 | we can add them. */ | |
242 | ||
243 | static struct linetable *line_vector; /* Vector of line numbers. */ | |
244 | static int line_vector_index; /* Index of next entry. */ | |
245 | static int line_vector_length; /* Current allocation limit */ | |
246 | ||
247 | /* Scope information is kept in a scope tree, one node per scope. Each time | |
248 | a new scope is started, a child node is created under the current node | |
249 | and set to the current scope. Each time a scope is closed, the current | |
250 | scope moves back up the tree to the parent of the current scope. | |
251 | ||
252 | Each scope contains a pointer to the list of symbols defined in the scope, | |
253 | a pointer to the block vector for the scope, a pointer to the symbol | |
254 | that names the scope (if any), and the range of PC values that mark | |
255 | the start and end of the scope. */ | |
256 | ||
257 | struct scopenode { | |
258 | struct scopenode *parent; | |
259 | struct scopenode *child; | |
260 | struct scopenode *sibling; | |
261 | struct pending_symbol *symbols; | |
262 | struct block *block; | |
263 | struct symbol *namesym; | |
264 | CORE_ADDR lowpc; | |
265 | CORE_ADDR highpc; | |
266 | }; | |
267 | ||
268 | static struct scopenode *scopetree; | |
269 | static struct scopenode *scope; | |
270 | ||
271 | /* DIES which have user defined types or modified user defined types refer to | |
272 | other DIES for the type information. Thus we need to associate the offset | |
273 | of a DIE for a user defined type with a pointer to the type information. | |
274 | ||
275 | Originally this was done using a simple but expensive algorithm, with an | |
276 | array of unsorted structures, each containing an offset/type-pointer pair. | |
277 | This array was scanned linearly each time a lookup was done. The result | |
278 | was that gdb was spending over half it's startup time munging through this | |
279 | array of pointers looking for a structure that had the right offset member. | |
280 | ||
281 | The second attempt used the same array of structures, but the array was | |
282 | sorted using qsort each time a new offset/type was recorded, and a binary | |
283 | search was used to find the type pointer for a given DIE offset. This was | |
284 | even slower, due to the overhead of sorting the array each time a new | |
285 | offset/type pair was entered. | |
286 | ||
287 | The third attempt uses a fixed size array of type pointers, indexed by a | |
288 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
289 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
290 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
291 | much memory to hold this array as to hold the DWARF info for a given | |
292 | compilation unit. But it gets freed as soon as we are done with it. */ | |
293 | ||
294 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
295 | static int numutypes; /* Max number of user type pointers */ | |
296 | ||
297 | /* Forward declarations of static functions so we don't have to worry | |
298 | about ordering within this file. The EXFUN macro may be slightly | |
299 | misleading. Should probably be called DCLFUN instead, or something | |
300 | more intuitive, since it can be used for both static and external | |
301 | definitions. */ | |
302 | ||
b662acae | 303 | static void dwarfwarn (); /* EXFUN breaks with <varargs.h> (FIXME)*/ |
35f5886e FF |
304 | |
305 | static void | |
306 | EXFUN (scan_partial_symbols, (char *thisdie AND char *enddie)); | |
307 | ||
308 | static void | |
309 | EXFUN (scan_compilation_units, | |
310 | (char *filename AND CORE_ADDR addr AND char *thisdie AND char *enddie | |
311 | AND unsigned int dbfoff AND unsigned int lnoffset)); | |
312 | ||
313 | static struct partial_symtab * | |
314 | EXFUN(start_psymtab, (char *symfile_name AND CORE_ADDR addr | |
315 | AND char *filename AND CORE_ADDR textlow | |
316 | AND CORE_ADDR texthigh AND int dbfoff | |
317 | AND int curoff AND int culength AND int lnfoff | |
318 | AND struct partial_symbol *global_syms | |
319 | AND struct partial_symbol *static_syms)); | |
320 | static void | |
321 | EXFUN(add_partial_symbol, (struct dieinfo *dip)); | |
322 | ||
323 | static void | |
324 | EXFUN(add_psymbol_to_list, | |
325 | (struct psymbol_allocation_list *listp AND char *name | |
326 | AND enum namespace space AND enum address_class class | |
327 | AND CORE_ADDR value)); | |
328 | ||
329 | static void | |
330 | EXFUN(init_psymbol_list, (int total_symbols)); | |
331 | ||
332 | static void | |
333 | EXFUN(basicdieinfo, (struct dieinfo *dip AND char *diep)); | |
334 | ||
335 | static void | |
336 | EXFUN(completedieinfo, (struct dieinfo *dip)); | |
337 | ||
338 | static void | |
339 | EXFUN(dwarf_psymtab_to_symtab, (struct partial_symtab *pst)); | |
340 | ||
341 | static void | |
342 | EXFUN(psymtab_to_symtab_1, (struct partial_symtab *pst AND int desc )); | |
343 | ||
344 | static struct symtab * | |
345 | EXFUN(read_ofile_symtab, (struct partial_symtab *pst AND int desc)); | |
346 | ||
347 | static void | |
348 | EXFUN(process_dies, (char *thisdie AND char *enddie)); | |
349 | ||
350 | static void | |
351 | EXFUN(read_lexical_block_scope, | |
352 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
353 | ||
354 | static void | |
355 | EXFUN(read_structure_scope, | |
356 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
357 | ||
358 | static struct type * | |
359 | EXFUN(decode_array_element_type, (char *scan AND char *end)); | |
360 | ||
361 | static struct type * | |
362 | EXFUN(decode_subscr_data, (char *scan AND char *end)); | |
363 | ||
364 | static void | |
365 | EXFUN(read_array_type, (struct dieinfo *dip)); | |
366 | ||
367 | static void | |
368 | EXFUN(read_subroutine_type, | |
369 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
370 | ||
371 | static void | |
372 | EXFUN(read_enumeration, | |
373 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
374 | ||
375 | static struct type * | |
376 | EXFUN(struct_type, | |
377 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
378 | ||
379 | static struct type * | |
380 | EXFUN(enum_type, (struct dieinfo *dip)); | |
381 | ||
382 | static void | |
383 | EXFUN(read_func_scope, | |
384 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
385 | ||
386 | static void | |
387 | EXFUN(read_file_scope, | |
388 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
389 | ||
390 | static void | |
391 | EXFUN(start_symtab, (void)); | |
392 | ||
393 | static void | |
394 | EXFUN(end_symtab, (char *filename AND long language)); | |
395 | ||
396 | static int | |
397 | EXFUN(scopecount, (struct scopenode *node)); | |
398 | ||
399 | static void | |
400 | EXFUN(openscope, | |
401 | (struct symbol *namesym AND CORE_ADDR lowpc AND CORE_ADDR highpc)); | |
402 | ||
403 | static void | |
404 | EXFUN(freescope, (struct scopenode *node)); | |
405 | ||
406 | static struct block * | |
407 | EXFUN(buildblock, (struct pending_symbol *syms)); | |
408 | ||
409 | static void | |
410 | EXFUN(closescope, (void)); | |
411 | ||
412 | static void | |
413 | EXFUN(record_line, (int line AND CORE_ADDR pc)); | |
414 | ||
415 | static void | |
416 | EXFUN(decode_line_numbers, (char *linetable)); | |
417 | ||
418 | static struct type * | |
419 | EXFUN(decode_die_type, (struct dieinfo *dip)); | |
420 | ||
421 | static struct type * | |
422 | EXFUN(decode_mod_fund_type, (char *typedata)); | |
423 | ||
424 | static struct type * | |
425 | EXFUN(decode_mod_u_d_type, (char *typedata)); | |
426 | ||
427 | static struct type * | |
428 | EXFUN(decode_modified_type, | |
429 | (unsigned char *modifiers AND unsigned short modcount AND int mtype)); | |
430 | ||
431 | static struct type * | |
432 | EXFUN(decode_fund_type, (unsigned short fundtype)); | |
433 | ||
434 | static char * | |
435 | EXFUN(create_name, (char *name AND struct obstack *obstackp)); | |
436 | ||
437 | static void | |
438 | EXFUN(add_symbol_to_list, | |
439 | (struct symbol *symbol AND struct pending_symbol **listhead)); | |
440 | ||
441 | static struct block ** | |
442 | EXFUN(gatherblocks, (struct block **dest AND struct scopenode *node)); | |
443 | ||
444 | static struct blockvector * | |
445 | EXFUN(make_blockvector, (void)); | |
446 | ||
447 | static struct type * | |
448 | EXFUN(lookup_utype, (DIEREF dieref)); | |
449 | ||
450 | static struct type * | |
451 | EXFUN(alloc_utype, (DIEREF dieref AND struct type *usetype)); | |
452 | ||
453 | static struct symbol * | |
454 | EXFUN(new_symbol, (struct dieinfo *dip)); | |
455 | ||
456 | static int | |
457 | EXFUN(locval, (char *loc)); | |
458 | ||
459 | static void | |
460 | EXFUN(record_misc_function, (char *name AND CORE_ADDR address)); | |
461 | ||
462 | static int | |
463 | EXFUN(compare_psymbols, | |
464 | (struct partial_symbol *s1 AND struct partial_symbol *s2)); | |
465 | ||
466 | ||
467 | /* | |
468 | ||
469 | GLOBAL FUNCTION | |
470 | ||
471 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info | |
472 | ||
473 | SYNOPSIS | |
474 | ||
475 | void dwarf_build_psymtabs (int desc, char *filename, CORE_ADDR addr, | |
476 | int mainline, unsigned int dbfoff, unsigned int dbsize, | |
477 | unsigned int lnoffset, unsigned int lnsize) | |
478 | ||
479 | DESCRIPTION | |
480 | ||
481 | This function is called upon to build partial symtabs from files | |
482 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
483 | ||
484 | It is passed a file descriptor for an open file containing the DIES | |
485 | and line number information, the corresponding filename for that | |
486 | file, a base address for relocating the symbols, a flag indicating | |
487 | whether or not this debugging information is from a "main symbol | |
488 | table" rather than a shared library or dynamically linked file, | |
489 | and file offset/size pairs for the DIE information and line number | |
490 | information. | |
491 | ||
492 | RETURNS | |
493 | ||
494 | No return value. | |
495 | ||
496 | */ | |
497 | ||
498 | void | |
499 | DEFUN(dwarf_build_psymtabs, | |
500 | (desc, filename, addr, mainline, dbfoff, dbsize, lnoffset, lnsize), | |
501 | int desc AND | |
502 | char *filename AND | |
503 | CORE_ADDR addr AND | |
504 | int mainline AND | |
505 | unsigned int dbfoff AND | |
506 | unsigned int dbsize AND | |
507 | unsigned int lnoffset AND | |
508 | unsigned int lnsize) | |
509 | { | |
510 | struct cleanup *back_to; | |
511 | ||
512 | dbbase = xmalloc (dbsize); | |
513 | dbroff = 0; | |
514 | if ((lseek (desc, dbfoff, 0) != dbfoff) || | |
515 | (read (desc, dbbase, dbsize) != dbsize)) | |
516 | { | |
517 | free (dbbase); | |
518 | error ("can't read DWARF data from '%s'", filename); | |
519 | } | |
520 | back_to = make_cleanup (free, dbbase); | |
521 | ||
522 | /* If we are reinitializing, or if we have never loaded syms yet, init. | |
523 | Since we have no idea how many DIES we are looking at, we just guess | |
524 | some arbitrary value. */ | |
525 | ||
526 | if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0) | |
527 | { | |
528 | init_psymbol_list (1024); | |
529 | } | |
530 | ||
531 | init_misc_bunches (); | |
532 | make_cleanup (discard_misc_bunches, 0); | |
533 | ||
534 | /* Follow the compilation unit sibling chain, building a partial symbol | |
535 | table entry for each one. Save enough information about each compilation | |
536 | unit to locate the full DWARF information later. */ | |
537 | ||
538 | scan_compilation_units (filename, addr, dbbase, dbbase + dbsize, | |
539 | dbfoff, lnoffset); | |
540 | ||
541 | /* Go over the miscellaneous functions and install them in the miscellaneous | |
542 | function vector. */ | |
543 | ||
544 | condense_misc_bunches (!mainline); | |
545 | do_cleanups (back_to); | |
546 | } | |
547 | ||
548 | ||
549 | /* | |
550 | ||
551 | LOCAL FUNCTION | |
552 | ||
553 | record_misc_function -- add entry to miscellaneous function vector | |
554 | ||
555 | SYNOPSIS | |
556 | ||
557 | static void record_misc_function (char *name, CORE_ADDR address) | |
558 | ||
559 | DESCRIPTION | |
560 | ||
561 | Given a pointer to the name of a symbol that should be added to the | |
562 | miscellaneous function vector, and the address associated with that | |
563 | symbol, records this information for later use in building the | |
564 | miscellaneous function vector. | |
565 | ||
566 | NOTES | |
567 | ||
568 | FIXME: For now we just use mf_text as the type. This should be | |
569 | fixed. | |
570 | */ | |
571 | ||
572 | static void | |
573 | DEFUN(record_misc_function, (name, address), char *name AND CORE_ADDR address) | |
574 | { | |
575 | prim_record_misc_function (obsavestring (name, strlen (name)), address, | |
576 | mf_text); | |
577 | } | |
578 | ||
579 | /* | |
580 | ||
581 | LOCAL FUNCTION | |
582 | ||
583 | dwarfwarn -- issue a DWARF related warning | |
584 | ||
585 | DESCRIPTION | |
586 | ||
587 | Issue warnings about DWARF related things that aren't serious enough | |
588 | to warrant aborting with an error, but should not be ignored either. | |
589 | This includes things like detectable corruption in DIE's, missing | |
590 | DIE's, unimplemented features, etc. | |
591 | ||
592 | In general, running across tags or attributes that we don't recognize | |
593 | is not considered to be a problem and we should not issue warnings | |
594 | about such. | |
595 | ||
596 | NOTES | |
597 | ||
598 | We mostly follow the example of the error() routine, but without | |
599 | returning to command level. It is arguable about whether warnings | |
600 | should be issued at all, and if so, where they should go (stdout or | |
601 | stderr). | |
602 | ||
603 | We assume that curdie is valid and contains at least the basic | |
604 | information for the DIE where the problem was noticed. | |
605 | */ | |
606 | ||
607 | static void | |
313fdead JG |
608 | dwarfwarn (va_alist) |
609 | va_dcl | |
35f5886e FF |
610 | { |
611 | va_list ap; | |
313fdead | 612 | char *fmt; |
35f5886e | 613 | |
313fdead JG |
614 | va_start (ap); |
615 | fmt = va_arg (ap, char *); | |
35f5886e FF |
616 | warning_setup (); |
617 | fprintf (stderr, "DWARF warning (ref 0x%x): ", curdie -> dieref); | |
618 | if (curdie -> at_name) | |
619 | { | |
620 | fprintf (stderr, "'%s': ", curdie -> at_name); | |
621 | } | |
622 | vfprintf (stderr, fmt, ap); | |
623 | fprintf (stderr, "\n"); | |
624 | fflush (stderr); | |
625 | va_end (ap); | |
626 | } | |
627 | ||
628 | /* | |
629 | ||
630 | LOCAL FUNCTION | |
631 | ||
632 | compare_psymbols -- compare two partial symbols by name | |
633 | ||
634 | DESCRIPTION | |
635 | ||
636 | Given pointer to two partial symbol table entries, compare | |
637 | them by name and return -N, 0, or +N (ala strcmp). Typically | |
638 | used by sorting routines like qsort(). | |
639 | ||
640 | NOTES | |
641 | ||
642 | This is a copy from dbxread.c. It should be moved to a generic | |
643 | gdb file and made available for all psymtab builders (FIXME). | |
644 | ||
645 | Does direct compare of first two characters before punting | |
646 | and passing to strcmp for longer compares. Note that the | |
647 | original version had a bug whereby two null strings or two | |
648 | identically named one character strings would return the | |
649 | comparison of memory following the null byte. | |
650 | ||
651 | */ | |
652 | ||
653 | static int | |
654 | DEFUN(compare_psymbols, (s1, s2), | |
655 | struct partial_symbol *s1 AND | |
656 | struct partial_symbol *s2) | |
657 | { | |
658 | register char *st1 = SYMBOL_NAME (s1); | |
659 | register char *st2 = SYMBOL_NAME (s2); | |
660 | ||
661 | if ((st1[0] - st2[0]) || !st1[0]) | |
662 | { | |
663 | return (st1[0] - st2[0]); | |
664 | } | |
665 | else if ((st1[1] - st2[1]) || !st1[1]) | |
666 | { | |
667 | return (st1[1] - st2[1]); | |
668 | } | |
669 | else | |
670 | { | |
671 | return (strcmp (st1 + 2, st2 + 2)); | |
672 | } | |
673 | } | |
674 | ||
675 | /* | |
676 | ||
677 | LOCAL FUNCTION | |
678 | ||
679 | read_lexical_block_scope -- process all dies in a lexical block | |
680 | ||
681 | SYNOPSIS | |
682 | ||
683 | static void read_lexical_block_scope (struct dieinfo *dip, | |
684 | char *thisdie, char *enddie) | |
685 | ||
686 | DESCRIPTION | |
687 | ||
688 | Process all the DIES contained within a lexical block scope. | |
689 | Start a new scope, process the dies, and then close the scope. | |
690 | ||
691 | */ | |
692 | ||
693 | static void | |
694 | DEFUN(read_lexical_block_scope, (dip, thisdie, enddie), | |
695 | struct dieinfo *dip AND | |
696 | char *thisdie AND | |
697 | char *enddie) | |
698 | { | |
699 | openscope (NULL, dip -> at_low_pc, dip -> at_high_pc); | |
700 | process_dies (thisdie + dip -> dielength, enddie); | |
701 | closescope (); | |
702 | } | |
703 | ||
704 | /* | |
705 | ||
706 | LOCAL FUNCTION | |
707 | ||
708 | lookup_utype -- look up a user defined type from die reference | |
709 | ||
710 | SYNOPSIS | |
711 | ||
712 | static type *lookup_utype (DIEREF dieref) | |
713 | ||
714 | DESCRIPTION | |
715 | ||
716 | Given a DIE reference, lookup the user defined type associated with | |
717 | that DIE, if it has been registered already. If not registered, then | |
718 | return NULL. Alloc_utype() can be called to register an empty | |
719 | type for this reference, which will be filled in later when the | |
720 | actual referenced DIE is processed. | |
721 | */ | |
722 | ||
723 | static struct type * | |
724 | DEFUN(lookup_utype, (dieref), DIEREF dieref) | |
725 | { | |
726 | struct type *type = NULL; | |
727 | int utypeidx; | |
728 | ||
729 | utypeidx = (dieref - dbroff) / 4; | |
730 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
731 | { | |
732 | dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref); | |
733 | } | |
734 | else | |
735 | { | |
736 | type = *(utypes + utypeidx); | |
737 | } | |
738 | return (type); | |
739 | } | |
740 | ||
741 | ||
742 | /* | |
743 | ||
744 | LOCAL FUNCTION | |
745 | ||
746 | alloc_utype -- add a user defined type for die reference | |
747 | ||
748 | SYNOPSIS | |
749 | ||
750 | static type *alloc_utype (DIEREF dieref, struct type *utypep) | |
751 | ||
752 | DESCRIPTION | |
753 | ||
754 | Given a die reference DIEREF, and a possible pointer to a user | |
755 | defined type UTYPEP, register that this reference has a user | |
756 | defined type and either use the specified type in UTYPEP or | |
757 | make a new empty type that will be filled in later. | |
758 | ||
759 | We should only be called after calling lookup_utype() to verify that | |
760 | there is not currently a type registered for DIEREF. | |
761 | */ | |
762 | ||
763 | static struct type * | |
764 | DEFUN(alloc_utype, (dieref, utypep), | |
765 | DIEREF dieref AND | |
766 | struct type *utypep) | |
767 | { | |
768 | struct type **typep; | |
769 | int utypeidx; | |
770 | ||
771 | utypeidx = (dieref - dbroff) / 4; | |
772 | typep = utypes + utypeidx; | |
773 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
774 | { | |
775 | utypep = builtin_type_int; | |
776 | dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref); | |
777 | } | |
778 | else if (*typep != NULL) | |
779 | { | |
780 | utypep = *typep; | |
781 | SQUAWK (("internal error: dup user type allocation")); | |
782 | } | |
783 | else | |
784 | { | |
785 | if (utypep == NULL) | |
786 | { | |
787 | utypep = (struct type *) | |
788 | obstack_alloc (symbol_obstack, sizeof (struct type)); | |
789 | (void) memset (utypep, 0, sizeof (struct type)); | |
790 | } | |
791 | *typep = utypep; | |
792 | } | |
793 | return (utypep); | |
794 | } | |
795 | ||
796 | /* | |
797 | ||
798 | LOCAL FUNCTION | |
799 | ||
800 | decode_die_type -- return a type for a specified die | |
801 | ||
802 | SYNOPSIS | |
803 | ||
804 | static struct type *decode_die_type (struct dieinfo *dip) | |
805 | ||
806 | DESCRIPTION | |
807 | ||
808 | Given a pointer to a die information structure DIP, decode the | |
809 | type of the die and return a pointer to the decoded type. All | |
810 | dies without specific types default to type int. | |
811 | */ | |
812 | ||
813 | static struct type * | |
814 | DEFUN(decode_die_type, (dip), struct dieinfo *dip) | |
815 | { | |
816 | struct type *type = NULL; | |
817 | ||
818 | if (dip -> at_fund_type != 0) | |
819 | { | |
820 | type = decode_fund_type (dip -> at_fund_type); | |
821 | } | |
822 | else if (dip -> at_mod_fund_type != NULL) | |
823 | { | |
824 | type = decode_mod_fund_type (dip -> at_mod_fund_type); | |
825 | } | |
826 | else if (dip -> at_user_def_type) | |
827 | { | |
828 | if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) | |
829 | { | |
830 | type = alloc_utype (dip -> at_user_def_type, NULL); | |
831 | } | |
832 | } | |
833 | else if (dip -> at_mod_u_d_type) | |
834 | { | |
835 | type = decode_mod_u_d_type (dip -> at_mod_u_d_type); | |
836 | } | |
837 | else | |
838 | { | |
839 | type = builtin_type_int; | |
840 | } | |
841 | return (type); | |
842 | } | |
843 | ||
844 | /* | |
845 | ||
846 | LOCAL FUNCTION | |
847 | ||
848 | struct_type -- compute and return the type for a struct or union | |
849 | ||
850 | SYNOPSIS | |
851 | ||
852 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, | |
853 | char *enddie) | |
854 | ||
855 | DESCRIPTION | |
856 | ||
857 | Given pointer to a die information structure for a die which | |
858 | defines a union or structure, and pointers to the raw die data | |
859 | that define the range of dies which define the members, compute | |
860 | and return the user defined type for the structure or union. | |
861 | */ | |
862 | ||
863 | static struct type * | |
864 | DEFUN(struct_type, (dip, thisdie, enddie), | |
865 | struct dieinfo *dip AND | |
866 | char *thisdie AND | |
867 | char *enddie) | |
868 | { | |
869 | struct type *type; | |
870 | struct nextfield { | |
871 | struct nextfield *next; | |
872 | struct field field; | |
873 | }; | |
874 | struct nextfield *list = NULL; | |
875 | struct nextfield *new; | |
876 | int nfields = 0; | |
877 | int n; | |
878 | char *tpart1; | |
879 | char *tpart2; | |
880 | char *tpart3; | |
881 | struct dieinfo mbr; | |
882 | ||
883 | if ((type = lookup_utype (dip -> dieref)) == NULL) | |
884 | { | |
885 | type = alloc_utype (dip -> dieref, NULL); | |
886 | } | |
887 | switch (dip -> dietag) | |
888 | { | |
889 | case TAG_structure_type: | |
890 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
891 | tpart1 = "struct "; | |
892 | break; | |
893 | case TAG_union_type: | |
894 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
895 | tpart1 = "union "; | |
896 | break; | |
897 | default: | |
898 | tpart1 = ""; | |
899 | SQUAWK (("missing structure or union tag")); | |
900 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
901 | break; | |
902 | } | |
903 | if (dip -> at_name == NULL) | |
904 | { | |
905 | tpart2 = "{...}"; | |
906 | } | |
907 | else | |
908 | { | |
909 | tpart2 = dip -> at_name; | |
910 | } | |
911 | if (dip -> at_byte_size == 0) | |
912 | { | |
913 | tpart3 = " <opaque>"; | |
914 | } else { | |
915 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
916 | tpart3 = ""; | |
917 | } | |
918 | TYPE_NAME (type) = concat (tpart1, tpart2, tpart3); | |
919 | thisdie += dip -> dielength; | |
920 | while (thisdie < enddie) | |
921 | { | |
922 | basicdieinfo (&mbr, thisdie); | |
923 | completedieinfo (&mbr); | |
924 | if (mbr.dielength <= sizeof (long)) | |
925 | { | |
926 | break; | |
927 | } | |
928 | switch (mbr.dietag) | |
929 | { | |
930 | case TAG_member: | |
931 | /* Get space to record the next field's data. */ | |
932 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
933 | new -> next = list; | |
934 | list = new; | |
935 | /* Save the data. */ | |
936 | list -> field.name = savestring (mbr.at_name, strlen (mbr.at_name)); | |
937 | list -> field.type = decode_die_type (&mbr); | |
938 | list -> field.bitpos = 8 * locval (mbr.at_location); | |
939 | list -> field.bitsize = 0; | |
940 | nfields++; | |
941 | break; | |
942 | default: | |
943 | SQUAWK (("bad member of '%s'", TYPE_NAME (type))); | |
944 | break; | |
945 | } | |
946 | thisdie += mbr.dielength; | |
947 | } | |
948 | /* Now create the vector of fields, and record how big it is. */ | |
949 | TYPE_NFIELDS (type) = nfields; | |
950 | TYPE_FIELDS (type) = (struct field *) | |
951 | obstack_alloc (symbol_obstack, sizeof (struct field) * nfields); | |
952 | /* Copy the saved-up fields into the field vector. */ | |
953 | for (n = nfields; list; list = list -> next) | |
954 | { | |
955 | TYPE_FIELD (type, --n) = list -> field; | |
956 | } | |
957 | return (type); | |
958 | } | |
959 | ||
960 | /* | |
961 | ||
962 | LOCAL FUNCTION | |
963 | ||
964 | read_structure_scope -- process all dies within struct or union | |
965 | ||
966 | SYNOPSIS | |
967 | ||
968 | static void read_structure_scope (struct dieinfo *dip, | |
969 | char *thisdie, char *enddie) | |
970 | ||
971 | DESCRIPTION | |
972 | ||
973 | Called when we find the DIE that starts a structure or union | |
974 | scope (definition) to process all dies that define the members | |
975 | of the structure or union. DIP is a pointer to the die info | |
976 | struct for the DIE that names the structure or union. | |
977 | ||
978 | NOTES | |
979 | ||
980 | Note that we need to call struct_type regardless of whether or not | |
981 | we have a symbol, since we might have a structure or union without | |
982 | a tag name (thus no symbol for the tagname). | |
983 | */ | |
984 | ||
985 | static void | |
986 | DEFUN(read_structure_scope, (dip, thisdie, enddie), | |
987 | struct dieinfo *dip AND | |
988 | char *thisdie AND | |
989 | char *enddie) | |
990 | { | |
991 | struct type *type; | |
992 | struct symbol *sym; | |
993 | ||
994 | type = struct_type (dip, thisdie, enddie); | |
995 | if ((sym = new_symbol (dip)) != NULL) | |
996 | { | |
997 | SYMBOL_TYPE (sym) = type; | |
998 | } | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | ||
1003 | LOCAL FUNCTION | |
1004 | ||
1005 | decode_array_element_type -- decode type of the array elements | |
1006 | ||
1007 | SYNOPSIS | |
1008 | ||
1009 | static struct type *decode_array_element_type (char *scan, char *end) | |
1010 | ||
1011 | DESCRIPTION | |
1012 | ||
1013 | As the last step in decoding the array subscript information for an | |
1014 | array DIE, we need to decode the type of the array elements. We are | |
1015 | passed a pointer to this last part of the subscript information and | |
1016 | must return the appropriate type. If the type attribute is not | |
1017 | recognized, just warn about the problem and return type int. | |
1018 | */ | |
1019 | ||
1020 | static struct type * | |
1021 | DEFUN(decode_array_element_type, (scan, end), char *scan AND char *end) | |
1022 | { | |
1023 | struct type *typep; | |
1024 | short attribute; | |
1025 | DIEREF dieref; | |
1026 | unsigned short fundtype; | |
1027 | ||
1028 | (void) memcpy (&attribute, scan, sizeof (short)); | |
1029 | scan += sizeof (short); | |
1030 | switch (attribute) | |
1031 | { | |
1032 | case AT_fund_type: | |
1033 | (void) memcpy (&fundtype, scan, sizeof (short)); | |
1034 | typep = decode_fund_type (fundtype); | |
1035 | break; | |
1036 | case AT_mod_fund_type: | |
1037 | typep = decode_mod_fund_type (scan); | |
1038 | break; | |
1039 | case AT_user_def_type: | |
1040 | (void) memcpy (&dieref, scan, sizeof (DIEREF)); | |
1041 | if ((typep = lookup_utype (dieref)) == NULL) | |
1042 | { | |
1043 | typep = alloc_utype (dieref, NULL); | |
1044 | } | |
1045 | break; | |
1046 | case AT_mod_u_d_type: | |
1047 | typep = decode_mod_u_d_type (scan); | |
1048 | break; | |
1049 | default: | |
1050 | SQUAWK (("bad array element type attribute 0x%x", attribute)); | |
1051 | typep = builtin_type_int; | |
1052 | break; | |
1053 | } | |
1054 | return (typep); | |
1055 | } | |
1056 | ||
1057 | /* | |
1058 | ||
1059 | LOCAL FUNCTION | |
1060 | ||
1061 | decode_subscr_data -- decode array subscript and element type data | |
1062 | ||
1063 | SYNOPSIS | |
1064 | ||
1065 | static struct type *decode_subscr_data (char *scan, char *end) | |
1066 | ||
1067 | DESCRIPTION | |
1068 | ||
1069 | The array subscripts and the data type of the elements of an | |
1070 | array are described by a list of data items, stored as a block | |
1071 | of contiguous bytes. There is a data item describing each array | |
1072 | dimension, and a final data item describing the element type. | |
1073 | The data items are ordered the same as their appearance in the | |
1074 | source (I.E. leftmost dimension first, next to leftmost second, | |
1075 | etc). | |
1076 | ||
1077 | We are passed a pointer to the start of the block of bytes | |
1078 | containing the data items, and a pointer to the first byte past | |
1079 | the data. This function decodes the data and returns a type. | |
1080 | ||
1081 | BUGS | |
1082 | FIXME: This code only implements the forms currently used | |
1083 | by the AT&T and GNU C compilers. | |
1084 | ||
1085 | The end pointer is supplied for error checking, maybe we should | |
1086 | use it for that... | |
1087 | */ | |
1088 | ||
1089 | static struct type * | |
1090 | DEFUN(decode_subscr_data, (scan, end), char *scan AND char *end) | |
1091 | { | |
1092 | struct type *typep = NULL; | |
1093 | struct type *nexttype; | |
1094 | int format; | |
1095 | short fundtype; | |
1096 | long lowbound; | |
1097 | long highbound; | |
1098 | ||
1099 | format = *scan++; | |
1100 | switch (format) | |
1101 | { | |
1102 | case FMT_ET: | |
1103 | typep = decode_array_element_type (scan, end); | |
1104 | break; | |
1105 | case FMT_FT_C_C: | |
1106 | (void) memcpy (&fundtype, scan, sizeof (short)); | |
1107 | scan += sizeof (short); | |
1108 | if (fundtype != FT_integer && fundtype != FT_signed_integer | |
1109 | && fundtype != FT_unsigned_integer) | |
1110 | { | |
1111 | SQUAWK (("array subscripts must be integral types, not type 0x%x", | |
1112 | fundtype)); | |
1113 | } | |
1114 | else | |
1115 | { | |
1116 | (void) memcpy (&lowbound, scan, sizeof (long)); | |
1117 | scan += sizeof (long); | |
1118 | (void) memcpy (&highbound, scan, sizeof (long)); | |
1119 | scan += sizeof (long); | |
1120 | nexttype = decode_subscr_data (scan, end); | |
1121 | if (nexttype != NULL) | |
1122 | { | |
1123 | typep = (struct type *) | |
1124 | obstack_alloc (symbol_obstack, sizeof (struct type)); | |
1125 | (void) memset (typep, 0, sizeof (struct type)); | |
1126 | TYPE_CODE (typep) = TYPE_CODE_ARRAY; | |
1127 | TYPE_LENGTH (typep) = TYPE_LENGTH (nexttype); | |
1128 | TYPE_LENGTH (typep) *= lowbound + highbound + 1; | |
1129 | TYPE_TARGET_TYPE (typep) = nexttype; | |
1130 | } | |
1131 | } | |
1132 | break; | |
1133 | case FMT_FT_C_X: | |
1134 | case FMT_FT_X_C: | |
1135 | case FMT_FT_X_X: | |
1136 | case FMT_UT_C_C: | |
1137 | case FMT_UT_C_X: | |
1138 | case FMT_UT_X_C: | |
1139 | case FMT_UT_X_X: | |
1140 | SQUAWK (("array subscript format 0x%x not handled yet", format)); | |
1141 | break; | |
1142 | default: | |
1143 | SQUAWK (("unknown array subscript format %x", format)); | |
1144 | break; | |
1145 | } | |
1146 | return (typep); | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | ||
1151 | LOCAL FUNCTION | |
1152 | ||
1153 | read_array_type -- read TAG_array_type DIE | |
1154 | ||
1155 | SYNOPSIS | |
1156 | ||
1157 | static void read_array_type (struct dieinfo *dip) | |
1158 | ||
1159 | DESCRIPTION | |
1160 | ||
1161 | Extract all information from a TAG_array_type DIE and add to | |
1162 | the user defined type vector. | |
1163 | */ | |
1164 | ||
1165 | static void | |
1166 | DEFUN(read_array_type, (dip), struct dieinfo *dip) | |
1167 | { | |
1168 | struct type *type; | |
1169 | char *sub; | |
1170 | char *subend; | |
1171 | short temp; | |
1172 | ||
1173 | if (dip -> at_ordering != ORD_row_major) | |
1174 | { | |
1175 | /* FIXME: Can gdb even handle column major arrays? */ | |
1176 | SQUAWK (("array not row major; not handled correctly")); | |
1177 | } | |
1178 | if ((sub = dip -> at_subscr_data) != NULL) | |
1179 | { | |
1180 | (void) memcpy (&temp, sub, sizeof (short)); | |
1181 | subend = sub + sizeof (short) + temp; | |
1182 | sub += sizeof (short); | |
1183 | type = decode_subscr_data (sub, subend); | |
1184 | if (type == NULL) | |
1185 | { | |
1186 | type = alloc_utype (dip -> dieref, NULL); | |
1187 | TYPE_CODE (type) = TYPE_CODE_ARRAY; | |
1188 | TYPE_TARGET_TYPE (type) = builtin_type_int; | |
1189 | TYPE_LENGTH (type) = 1 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)); | |
1190 | } | |
1191 | else | |
1192 | { | |
1193 | type = alloc_utype (dip -> dieref, type); | |
1194 | } | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | /* | |
1199 | ||
1200 | LOCAL FUNCTION | |
1201 | ||
1202 | read_subroutine_type -- process TAG_subroutine_type dies | |
1203 | ||
1204 | SYNOPSIS | |
1205 | ||
1206 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, | |
1207 | char *enddie) | |
1208 | ||
1209 | DESCRIPTION | |
1210 | ||
1211 | Handle DIES due to C code like: | |
1212 | ||
1213 | struct foo { | |
1214 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1215 | int b; | |
1216 | }; | |
1217 | ||
1218 | NOTES | |
1219 | ||
1220 | The parameter DIES are currently ignored. See if gdb has a way to | |
1221 | include this info in it's type system, and decode them if so. Is | |
1222 | this what the type structure's "arg_types" field is for? (FIXME) | |
1223 | */ | |
1224 | ||
1225 | static void | |
1226 | DEFUN(read_subroutine_type, (dip, thisdie, enddie), | |
1227 | struct dieinfo *dip AND | |
1228 | char *thisdie AND | |
1229 | char *enddie) | |
1230 | { | |
1231 | struct type *type; | |
1232 | ||
1233 | type = decode_die_type (dip); | |
1234 | type = lookup_function_type (type); | |
1235 | type = alloc_utype (dip -> dieref, type); | |
1236 | } | |
1237 | ||
1238 | /* | |
1239 | ||
1240 | LOCAL FUNCTION | |
1241 | ||
1242 | read_enumeration -- process dies which define an enumeration | |
1243 | ||
1244 | SYNOPSIS | |
1245 | ||
1246 | static void read_enumeration (struct dieinfo *dip, char *thisdie, | |
1247 | char *enddie) | |
1248 | ||
1249 | DESCRIPTION | |
1250 | ||
1251 | Given a pointer to a die which begins an enumeration, process all | |
1252 | the dies that define the members of the enumeration. | |
1253 | ||
1254 | NOTES | |
1255 | ||
1256 | Note that we need to call enum_type regardless of whether or not we | |
1257 | have a symbol, since we might have an enum without a tag name (thus | |
1258 | no symbol for the tagname). | |
1259 | */ | |
1260 | ||
1261 | static void | |
1262 | DEFUN(read_enumeration, (dip, thisdie, enddie), | |
1263 | struct dieinfo *dip AND | |
1264 | char *thisdie AND | |
1265 | char *enddie) | |
1266 | { | |
1267 | struct type *type; | |
1268 | struct symbol *sym; | |
1269 | ||
1270 | type = enum_type (dip); | |
1271 | if ((sym = new_symbol (dip)) != NULL) | |
1272 | { | |
1273 | SYMBOL_TYPE (sym) = type; | |
1274 | } | |
1275 | } | |
1276 | ||
1277 | /* | |
1278 | ||
1279 | LOCAL FUNCTION | |
1280 | ||
1281 | enum_type -- decode and return a type for an enumeration | |
1282 | ||
1283 | SYNOPSIS | |
1284 | ||
1285 | static type *enum_type (struct dieinfo *dip) | |
1286 | ||
1287 | DESCRIPTION | |
1288 | ||
1289 | Given a pointer to a die information structure for the die which | |
1290 | starts an enumeration, process all the dies that define the members | |
1291 | of the enumeration and return a type pointer for the enumeration. | |
1292 | */ | |
1293 | ||
1294 | static struct type * | |
1295 | DEFUN(enum_type, (dip), struct dieinfo *dip) | |
1296 | { | |
1297 | struct type *type; | |
1298 | struct nextfield { | |
1299 | struct nextfield *next; | |
1300 | struct field field; | |
1301 | }; | |
1302 | struct nextfield *list = NULL; | |
1303 | struct nextfield *new; | |
1304 | int nfields = 0; | |
1305 | int n; | |
1306 | char *tpart1; | |
1307 | char *tpart2; | |
1308 | char *tpart3; | |
1309 | char *scan; | |
1310 | char *listend; | |
1311 | long temp; | |
1312 | ||
1313 | if ((type = lookup_utype (dip -> dieref)) == NULL) | |
1314 | { | |
1315 | type = alloc_utype (dip -> dieref, NULL); | |
1316 | } | |
1317 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1318 | tpart1 = "enum "; | |
1319 | if (dip -> at_name == NULL) | |
1320 | { | |
1321 | tpart2 = "{...}"; | |
1322 | } else { | |
1323 | tpart2 = dip -> at_name; | |
1324 | } | |
1325 | if (dip -> at_byte_size == 0) | |
1326 | { | |
1327 | tpart3 = " <opaque>"; | |
1328 | } | |
1329 | else | |
1330 | { | |
1331 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1332 | tpart3 = ""; | |
1333 | } | |
1334 | TYPE_NAME (type) = concat (tpart1, tpart2, tpart3); | |
1335 | if ((scan = dip -> at_element_list) != NULL) | |
1336 | { | |
1337 | (void) memcpy (&temp, scan, sizeof (temp)); | |
1338 | listend = scan + temp + sizeof (temp); | |
1339 | scan += sizeof (temp); | |
1340 | while (scan < listend) | |
1341 | { | |
1342 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1343 | new -> next = list; | |
1344 | list = new; | |
1345 | list -> field.type = NULL; | |
1346 | list -> field.bitsize = 0; | |
1347 | (void) memcpy (&list -> field.bitpos, scan, sizeof (long)); | |
1348 | scan += sizeof (long); | |
1349 | list -> field.name = savestring (scan, strlen (scan)); | |
1350 | scan += strlen (scan) + 1; | |
1351 | nfields++; | |
1352 | } | |
1353 | } | |
1354 | /* Now create the vector of fields, and record how big it is. */ | |
1355 | TYPE_NFIELDS (type) = nfields; | |
1356 | TYPE_FIELDS (type) = (struct field *) | |
1357 | obstack_alloc (symbol_obstack, sizeof (struct field) * nfields); | |
1358 | /* Copy the saved-up fields into the field vector. */ | |
1359 | for (n = nfields; list; list = list -> next) | |
1360 | { | |
1361 | TYPE_FIELD (type, --n) = list -> field; | |
1362 | } | |
1363 | return (type); | |
1364 | } | |
1365 | ||
1366 | /* | |
1367 | ||
1368 | LOCAL FUNCTION | |
1369 | ||
1370 | read_func_scope -- process all dies within a function scope | |
1371 | ||
1372 | SYNOPSIS | |
1373 | ||
1374 | static void read_func_scope (struct dieinfo dip, char *thisdie, | |
1375 | char *enddie) | |
1376 | ||
1377 | DESCRIPTION | |
1378 | ||
1379 | Process all dies within a given function scope. We are passed | |
1380 | a die information structure pointer DIP for the die which | |
1381 | starts the function scope, and pointers into the raw die data | |
1382 | that define the dies within the function scope. | |
1383 | ||
1384 | For now, we ignore lexical block scopes within the function. | |
1385 | The problem is that AT&T cc does not define a DWARF lexical | |
1386 | block scope for the function itself, while gcc defines a | |
1387 | lexical block scope for the function. We need to think about | |
1388 | how to handle this difference, or if it is even a problem. | |
1389 | (FIXME) | |
1390 | */ | |
1391 | ||
1392 | static void | |
1393 | DEFUN(read_func_scope, (dip, thisdie, enddie), | |
1394 | struct dieinfo *dip AND | |
1395 | char *thisdie AND | |
1396 | char *enddie) | |
1397 | { | |
1398 | struct symbol *sym; | |
1399 | ||
1400 | if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc) | |
1401 | { | |
1402 | entry_scope_lowpc = dip -> at_low_pc; | |
1403 | entry_scope_highpc = dip -> at_high_pc; | |
1404 | } | |
1405 | if (strcmp (dip -> at_name, "main") == 0) /* FIXME: hardwired name */ | |
1406 | { | |
1407 | main_scope_lowpc = dip -> at_low_pc; | |
1408 | main_scope_highpc = dip -> at_high_pc; | |
1409 | } | |
1410 | sym = new_symbol (dip); | |
1411 | openscope (sym, dip -> at_low_pc, dip -> at_high_pc); | |
1412 | process_dies (thisdie + dip -> dielength, enddie); | |
1413 | closescope (); | |
1414 | } | |
1415 | ||
1416 | /* | |
1417 | ||
1418 | LOCAL FUNCTION | |
1419 | ||
1420 | read_file_scope -- process all dies within a file scope | |
1421 | ||
1422 | SYNOPSIS | |
1423 | ||
1424 | static void read_file_scope (struct dieinfo *dip, char *thisdie | |
1425 | char *enddie) | |
1426 | ||
1427 | DESCRIPTION | |
1428 | ||
1429 | Process all dies within a given file scope. We are passed a | |
1430 | pointer to the die information structure for the die which | |
1431 | starts the file scope, and pointers into the raw die data which | |
1432 | mark the range of dies within the file scope. | |
1433 | ||
1434 | When the partial symbol table is built, the file offset for the line | |
1435 | number table for each compilation unit is saved in the partial symbol | |
1436 | table entry for that compilation unit. As the symbols for each | |
1437 | compilation unit are read, the line number table is read into memory | |
1438 | and the variable lnbase is set to point to it. Thus all we have to | |
1439 | do is use lnbase to access the line number table for the current | |
1440 | compilation unit. | |
1441 | */ | |
1442 | ||
1443 | static void | |
1444 | DEFUN(read_file_scope, (dip, thisdie, enddie), | |
1445 | struct dieinfo *dip AND | |
1446 | char *thisdie AND | |
1447 | char *enddie) | |
1448 | { | |
1449 | struct cleanup *back_to; | |
1450 | ||
1451 | if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc) | |
1452 | { | |
1453 | startup_file_start = dip -> at_low_pc; | |
1454 | startup_file_end = dip -> at_high_pc; | |
1455 | } | |
1456 | numutypes = (enddie - thisdie) / 4; | |
1457 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1458 | back_to = make_cleanup (free, utypes); | |
1459 | (void) memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1460 | start_symtab (); | |
1461 | openscope (NULL, dip -> at_low_pc, dip -> at_high_pc); | |
1462 | decode_line_numbers (lnbase); | |
1463 | process_dies (thisdie + dip -> dielength, enddie); | |
1464 | closescope (); | |
1465 | end_symtab (dip -> at_name, dip -> at_language); | |
1466 | do_cleanups (back_to); | |
1467 | utypes = NULL; | |
1468 | numutypes = 0; | |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | ||
1473 | LOCAL FUNCTION | |
1474 | ||
1475 | start_symtab -- do initialization for starting new symbol table | |
1476 | ||
1477 | SYNOPSIS | |
1478 | ||
1479 | static void start_symtab (void) | |
1480 | ||
1481 | DESCRIPTION | |
1482 | ||
1483 | Called whenever we are starting to process dies for a new | |
1484 | compilation unit, to perform initializations. Right now | |
1485 | the only thing we really have to do is initialize storage | |
1486 | space for the line number vector. | |
1487 | ||
1488 | */ | |
1489 | ||
1490 | static void | |
1491 | DEFUN_VOID (start_symtab) | |
1492 | { | |
1493 | int nbytes; | |
1494 | ||
1495 | line_vector_index = 0; | |
1496 | line_vector_length = 1000; | |
1497 | nbytes = sizeof (struct linetable); | |
1498 | nbytes += line_vector_length * sizeof (struct linetable_entry); | |
1499 | line_vector = (struct linetable *) xmalloc (nbytes); | |
1500 | } | |
1501 | ||
1502 | /* | |
1503 | ||
1504 | LOCAL FUNCTION | |
1505 | ||
1506 | process_dies -- process a range of DWARF Information Entries | |
1507 | ||
1508 | SYNOPSIS | |
1509 | ||
1510 | static void process_dies (char *thisdie, char *enddie) | |
1511 | ||
1512 | DESCRIPTION | |
1513 | ||
1514 | Process all DIE's in a specified range. May be (and almost | |
1515 | certainly will be) called recursively. | |
1516 | */ | |
1517 | ||
1518 | static void | |
1519 | DEFUN(process_dies, (thisdie, enddie), char *thisdie AND char *enddie) | |
1520 | { | |
1521 | char *nextdie; | |
1522 | struct dieinfo di; | |
1523 | ||
1524 | while (thisdie < enddie) | |
1525 | { | |
1526 | basicdieinfo (&di, thisdie); | |
1527 | if (di.dielength < sizeof (long)) | |
1528 | { | |
1529 | break; | |
1530 | } | |
1531 | else if (di.dietag == TAG_padding) | |
1532 | { | |
1533 | nextdie = thisdie + di.dielength; | |
1534 | } | |
1535 | else | |
1536 | { | |
1537 | completedieinfo (&di); | |
1538 | if (di.at_sibling != 0) | |
1539 | { | |
1540 | nextdie = dbbase + di.at_sibling - dbroff; | |
1541 | } | |
1542 | else | |
1543 | { | |
1544 | nextdie = thisdie + di.dielength; | |
1545 | } | |
1546 | switch (di.dietag) | |
1547 | { | |
1548 | case TAG_compile_unit: | |
1549 | read_file_scope (&di, thisdie, nextdie); | |
1550 | break; | |
1551 | case TAG_global_subroutine: | |
1552 | case TAG_subroutine: | |
1553 | if (!di.at_is_external_p) | |
1554 | { | |
1555 | read_func_scope (&di, thisdie, nextdie); | |
1556 | } | |
1557 | break; | |
1558 | case TAG_lexical_block: | |
1559 | read_lexical_block_scope (&di, thisdie, nextdie); | |
1560 | break; | |
1561 | case TAG_structure_type: | |
1562 | case TAG_union_type: | |
1563 | read_structure_scope (&di, thisdie, nextdie); | |
1564 | break; | |
1565 | case TAG_enumeration_type: | |
1566 | read_enumeration (&di, thisdie, nextdie); | |
1567 | break; | |
1568 | case TAG_subroutine_type: | |
1569 | read_subroutine_type (&di, thisdie, nextdie); | |
1570 | break; | |
1571 | case TAG_array_type: | |
1572 | read_array_type (&di); | |
1573 | break; | |
1574 | default: | |
1575 | (void) new_symbol (&di); | |
1576 | break; | |
1577 | } | |
1578 | } | |
1579 | thisdie = nextdie; | |
1580 | } | |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | ||
1585 | LOCAL FUNCTION | |
1586 | ||
1587 | end_symtab -- finish processing for a compilation unit | |
1588 | ||
1589 | SYNOPSIS | |
1590 | ||
1591 | static void end_symtab (char *filename, long language) | |
1592 | ||
1593 | DESCRIPTION | |
1594 | ||
1595 | Complete the symbol table entry for the current compilation | |
1596 | unit. Make the struct symtab and put it on the list of all | |
1597 | such symtabs. | |
1598 | ||
1599 | */ | |
1600 | ||
1601 | static void | |
1602 | DEFUN(end_symtab, (filename, language), char *filename AND long language) | |
1603 | { | |
1604 | struct symtab *symtab; | |
1605 | struct blockvector *blockvector; | |
1606 | int nbytes; | |
1607 | ||
1608 | /* Ignore a file that has no functions with real debugging info. */ | |
1609 | if (global_symbols == NULL && scopetree -> block == NULL) | |
1610 | { | |
1611 | free (line_vector); | |
1612 | line_vector = NULL; | |
1613 | line_vector_length = -1; | |
1614 | freescope (scopetree); | |
1615 | scope = scopetree = NULL; | |
1616 | } | |
1617 | ||
1618 | /* Create the blockvector that points to all the file's blocks. */ | |
1619 | ||
1620 | blockvector = make_blockvector (); | |
1621 | ||
1622 | /* Now create the symtab object for this source file. */ | |
1623 | ||
1624 | symtab = (struct symtab *) xmalloc (sizeof (struct symtab)); | |
1625 | (void) memset (symtab, 0, sizeof (struct symtab)); | |
1626 | ||
1627 | symtab -> free_ptr = 0; | |
1628 | ||
1629 | /* Fill in its components. */ | |
1630 | symtab -> blockvector = blockvector; | |
1631 | symtab -> free_code = free_linetable; | |
1632 | symtab -> filename = savestring (filename, strlen (filename)); | |
1633 | ||
1634 | /* Save the line number information. */ | |
1635 | ||
1636 | line_vector -> nitems = line_vector_index; | |
1637 | nbytes = sizeof (struct linetable); | |
1638 | if (line_vector_index > 1) | |
1639 | { | |
1640 | nbytes += (line_vector_index - 1) * sizeof (struct linetable_entry); | |
1641 | } | |
1642 | symtab -> linetable = (struct linetable *) xrealloc (line_vector, nbytes); | |
1643 | symtab -> nlines = 0; | |
1644 | symtab -> line_charpos = 0; | |
1645 | ||
1646 | /* FIXME: The following may need to be expanded for other languages */ | |
1647 | if (language == LANG_C89 || language == LANG_C) | |
1648 | { | |
1649 | symtab -> language = language_c; | |
1650 | } | |
1651 | ||
1652 | /* Link the new symtab into the list of such. */ | |
1653 | symtab -> next = symtab_list; | |
1654 | symtab_list = symtab; | |
1655 | ||
1656 | /* Recursively free the scope tree */ | |
1657 | freescope (scopetree); | |
1658 | scope = scopetree = NULL; | |
1659 | ||
1660 | /* Reinitialize for beginning of new file. */ | |
1661 | line_vector = 0; | |
1662 | line_vector_length = -1; | |
1663 | } | |
1664 | ||
1665 | /* | |
1666 | ||
1667 | LOCAL FUNCTION | |
1668 | ||
1669 | scopecount -- count the number of enclosed scopes | |
1670 | ||
1671 | SYNOPSIS | |
1672 | ||
1673 | static int scopecount (struct scopenode *node) | |
1674 | ||
1675 | DESCRIPTION | |
1676 | ||
1677 | Given pointer to a node, compute the size of the subtree which is | |
1678 | rooted in this node, which also happens to be the number of scopes | |
1679 | to the subtree. | |
1680 | */ | |
1681 | ||
1682 | static int | |
1683 | DEFUN(scopecount, (node), struct scopenode *node) | |
1684 | { | |
1685 | int count = 0; | |
1686 | ||
1687 | if (node != NULL) | |
1688 | { | |
1689 | count += scopecount (node -> child); | |
1690 | count += scopecount (node -> sibling); | |
1691 | count++; | |
1692 | } | |
1693 | return (count); | |
1694 | } | |
1695 | ||
1696 | /* | |
1697 | ||
1698 | LOCAL FUNCTION | |
1699 | ||
1700 | openscope -- start a new lexical block scope | |
1701 | ||
1702 | SYNOPSIS | |
1703 | ||
1704 | static void openscope (struct symbol *namesym, CORE_ADDR lowpc, | |
1705 | CORE_ADDR highpc) | |
1706 | ||
1707 | DESCRIPTION | |
1708 | ||
1709 | Start a new scope by allocating a new scopenode, adding it as the | |
1710 | next child of the current scope (if any) or as the root of the | |
1711 | scope tree, and then making the new node the current scope node. | |
1712 | */ | |
1713 | ||
1714 | static void | |
1715 | DEFUN(openscope, (namesym, lowpc, highpc), | |
1716 | struct symbol *namesym AND | |
1717 | CORE_ADDR lowpc AND | |
1718 | CORE_ADDR highpc) | |
1719 | { | |
1720 | struct scopenode *new; | |
1721 | struct scopenode *child; | |
1722 | ||
1723 | new = (struct scopenode *) xmalloc (sizeof (*new)); | |
1724 | (void) memset (new, 0, sizeof (*new)); | |
1725 | new -> namesym = namesym; | |
1726 | new -> lowpc = lowpc; | |
1727 | new -> highpc = highpc; | |
1728 | if (scope == NULL) | |
1729 | { | |
1730 | scopetree = new; | |
1731 | } | |
1732 | else if ((child = scope -> child) == NULL) | |
1733 | { | |
1734 | scope -> child = new; | |
1735 | new -> parent = scope; | |
1736 | } | |
1737 | else | |
1738 | { | |
1739 | while (child -> sibling != NULL) | |
1740 | { | |
1741 | child = child -> sibling; | |
1742 | } | |
1743 | child -> sibling = new; | |
1744 | new -> parent = scope; | |
1745 | } | |
1746 | scope = new; | |
1747 | } | |
1748 | ||
1749 | /* | |
1750 | ||
1751 | LOCAL FUNCTION | |
1752 | ||
1753 | freescope -- free a scope tree rooted at the given node | |
1754 | ||
1755 | SYNOPSIS | |
1756 | ||
1757 | static void freescope (struct scopenode *node) | |
1758 | ||
1759 | DESCRIPTION | |
1760 | ||
1761 | Given a pointer to a node in the scope tree, free the subtree | |
1762 | rooted at that node. First free all the children and sibling | |
1763 | nodes, and then the node itself. Used primarily for cleaning | |
1764 | up after ourselves and returning memory to the system. | |
1765 | */ | |
1766 | ||
1767 | static void | |
1768 | DEFUN(freescope, (node), struct scopenode *node) | |
1769 | { | |
1770 | if (node != NULL) | |
1771 | { | |
1772 | freescope (node -> child); | |
1773 | freescope (node -> sibling); | |
1774 | free (node); | |
1775 | } | |
1776 | } | |
1777 | ||
1778 | /* | |
1779 | ||
1780 | LOCAL FUNCTION | |
1781 | ||
1782 | buildblock -- build a new block from pending symbols list | |
1783 | ||
1784 | SYNOPSIS | |
1785 | ||
1786 | static struct block *buildblock (struct pending_symbol *syms) | |
1787 | ||
1788 | DESCRIPTION | |
1789 | ||
1790 | Given a pointer to a list of symbols, build a new block and free | |
1791 | the symbol list structure. Also check each symbol to see if it | |
1792 | is the special symbol that flags that this block was compiled by | |
1793 | gcc, and if so, mark the block appropriately. | |
1794 | */ | |
1795 | ||
1796 | static struct block * | |
1797 | DEFUN(buildblock, (syms), struct pending_symbol *syms) | |
1798 | { | |
1799 | struct pending_symbol *next, *next1; | |
1800 | int i; | |
1801 | struct block *newblock; | |
1802 | int nbytes; | |
1803 | ||
1804 | for (next = syms, i = 0 ; next ; next = next -> next, i++) {;} | |
1805 | ||
1806 | /* Allocate a new block */ | |
1807 | ||
1808 | nbytes = sizeof (struct block); | |
1809 | if (i > 1) | |
1810 | { | |
1811 | nbytes += (i - 1) * sizeof (struct symbol *); | |
1812 | } | |
1813 | newblock = (struct block *) obstack_alloc (symbol_obstack, nbytes); | |
1814 | (void) memset (newblock, 0, nbytes); | |
1815 | ||
1816 | /* Copy the symbols into the block. */ | |
1817 | ||
1818 | BLOCK_NSYMS (newblock) = i; | |
1819 | for (next = syms ; next ; next = next -> next) | |
1820 | { | |
1821 | BLOCK_SYM (newblock, --i) = next -> symbol; | |
1822 | if (STREQ (GCC_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol)) || | |
1823 | STREQ (GCC2_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol))) | |
1824 | { | |
1825 | BLOCK_GCC_COMPILED (newblock) = 1; | |
1826 | } | |
1827 | } | |
1828 | ||
1829 | /* Now free the links of the list, and empty the list. */ | |
1830 | ||
1831 | for (next = syms ; next ; next = next1) | |
1832 | { | |
1833 | next1 = next -> next; | |
1834 | free (next); | |
1835 | } | |
1836 | ||
1837 | return (newblock); | |
1838 | } | |
1839 | ||
1840 | /* | |
1841 | ||
1842 | LOCAL FUNCTION | |
1843 | ||
1844 | closescope -- close a lexical block scope | |
1845 | ||
1846 | SYNOPSIS | |
1847 | ||
1848 | static void closescope (void) | |
1849 | ||
1850 | DESCRIPTION | |
1851 | ||
1852 | Close the current lexical block scope. Closing the current scope | |
1853 | is as simple as moving the current scope pointer up to the parent | |
1854 | of the current scope pointer. But we also take this opportunity | |
1855 | to build the block for the current scope first, since we now have | |
1856 | all of it's symbols. | |
1857 | */ | |
1858 | ||
1859 | static void | |
1860 | DEFUN_VOID(closescope) | |
1861 | { | |
1862 | struct scopenode *child; | |
1863 | ||
1864 | if (scope == NULL) | |
1865 | { | |
1866 | error ("DWARF parse error, too many close scopes"); | |
1867 | } | |
1868 | else | |
1869 | { | |
1870 | if (scope -> parent == NULL) | |
1871 | { | |
1872 | global_symbol_block = buildblock (global_symbols); | |
1873 | global_symbols = NULL; | |
1874 | BLOCK_START (global_symbol_block) = scope -> lowpc + baseaddr; | |
1875 | BLOCK_END (global_symbol_block) = scope -> highpc + baseaddr; | |
1876 | } | |
1877 | scope -> block = buildblock (scope -> symbols); | |
1878 | scope -> symbols = NULL; | |
1879 | BLOCK_START (scope -> block) = scope -> lowpc + baseaddr; | |
1880 | BLOCK_END (scope -> block) = scope -> highpc + baseaddr; | |
1881 | ||
1882 | /* Put the local block in as the value of the symbol that names it. */ | |
1883 | ||
1884 | if (scope -> namesym) | |
1885 | { | |
1886 | SYMBOL_BLOCK_VALUE (scope -> namesym) = scope -> block; | |
1887 | BLOCK_FUNCTION (scope -> block) = scope -> namesym; | |
1888 | } | |
1889 | ||
1890 | /* Install this scope's local block as the superblock of all child | |
1891 | scope blocks. */ | |
1892 | ||
1893 | for (child = scope -> child ; child ; child = child -> sibling) | |
1894 | { | |
1895 | BLOCK_SUPERBLOCK (child -> block) = scope -> block; | |
1896 | } | |
1897 | ||
1898 | scope = scope -> parent; | |
1899 | } | |
1900 | } | |
1901 | ||
1902 | /* | |
1903 | ||
1904 | LOCAL FUNCTION | |
1905 | ||
1906 | record_line -- record a line number entry in the line vector | |
1907 | ||
1908 | SYNOPSIS | |
1909 | ||
1910 | static void record_line (int line, CORE_ADDR pc) | |
1911 | ||
1912 | DESCRIPTION | |
1913 | ||
1914 | Given a line number and the corresponding pc value, record | |
1915 | this pair in the line number vector, expanding the vector as | |
1916 | necessary. | |
1917 | */ | |
1918 | ||
1919 | static void | |
1920 | DEFUN(record_line, (line, pc), int line AND CORE_ADDR pc) | |
1921 | { | |
1922 | struct linetable_entry *e; | |
1923 | int nbytes; | |
1924 | ||
1925 | /* Make sure line vector is big enough. */ | |
1926 | ||
1927 | if (line_vector_index + 2 >= line_vector_length) | |
1928 | { | |
1929 | line_vector_length *= 2; | |
1930 | nbytes = sizeof (struct linetable); | |
1931 | nbytes += (line_vector_length * sizeof (struct linetable_entry)); | |
1932 | line_vector = (struct linetable *) xrealloc (line_vector, nbytes); | |
1933 | } | |
1934 | e = line_vector -> item + line_vector_index++; | |
1935 | e -> line = line; | |
1936 | e -> pc = pc; | |
1937 | } | |
1938 | ||
1939 | /* | |
1940 | ||
1941 | LOCAL FUNCTION | |
1942 | ||
1943 | decode_line_numbers -- decode a line number table fragment | |
1944 | ||
1945 | SYNOPSIS | |
1946 | ||
1947 | static void decode_line_numbers (char *tblscan, char *tblend, | |
1948 | long length, long base, long line, long pc) | |
1949 | ||
1950 | DESCRIPTION | |
1951 | ||
1952 | Translate the DWARF line number information to gdb form. | |
1953 | ||
1954 | The ".line" section contains one or more line number tables, one for | |
1955 | each ".line" section from the objects that were linked. | |
1956 | ||
1957 | The AT_stmt_list attribute for each TAG_source_file entry in the | |
1958 | ".debug" section contains the offset into the ".line" section for the | |
1959 | start of the table for that file. | |
1960 | ||
1961 | The table itself has the following structure: | |
1962 | ||
1963 | <table length><base address><source statement entry> | |
1964 | 4 bytes 4 bytes 10 bytes | |
1965 | ||
1966 | The table length is the total size of the table, including the 4 bytes | |
1967 | for the length information. | |
1968 | ||
1969 | The base address is the address of the first instruction generated | |
1970 | for the source file. | |
1971 | ||
1972 | Each source statement entry has the following structure: | |
1973 | ||
1974 | <line number><statement position><address delta> | |
1975 | 4 bytes 2 bytes 4 bytes | |
1976 | ||
1977 | The line number is relative to the start of the file, starting with | |
1978 | line 1. | |
1979 | ||
1980 | The statement position either -1 (0xFFFF) or the number of characters | |
1981 | from the beginning of the line to the beginning of the statement. | |
1982 | ||
1983 | The address delta is the difference between the base address and | |
1984 | the address of the first instruction for the statement. | |
1985 | ||
1986 | Note that we must copy the bytes from the packed table to our local | |
1987 | variables before attempting to use them, to avoid alignment problems | |
1988 | on some machines, particularly RISC processors. | |
1989 | ||
1990 | BUGS | |
1991 | ||
1992 | Does gdb expect the line numbers to be sorted? They are now by | |
1993 | chance/luck, but are not required to be. (FIXME) | |
1994 | ||
1995 | The line with number 0 is unused, gdb apparently can discover the | |
1996 | span of the last line some other way. How? (FIXME) | |
1997 | */ | |
1998 | ||
1999 | static void | |
2000 | DEFUN(decode_line_numbers, (linetable), char *linetable) | |
2001 | { | |
2002 | char *tblscan; | |
2003 | char *tblend; | |
2004 | long length; | |
2005 | long base; | |
2006 | long line; | |
2007 | long pc; | |
2008 | ||
2009 | if (linetable != NULL) | |
2010 | { | |
2011 | tblscan = tblend = linetable; | |
2012 | (void) memcpy (&length, tblscan, sizeof (long)); | |
2013 | tblscan += sizeof (long); | |
2014 | tblend += length; | |
2015 | (void) memcpy (&base, tblscan, sizeof (long)); | |
2016 | base += baseaddr; | |
2017 | tblscan += sizeof (long); | |
2018 | while (tblscan < tblend) | |
2019 | { | |
2020 | (void) memcpy (&line, tblscan, sizeof (long)); | |
2021 | tblscan += sizeof (long) + sizeof (short); | |
2022 | (void) memcpy (&pc, tblscan, sizeof (long)); | |
2023 | tblscan += sizeof (long); | |
2024 | pc += base; | |
2025 | if (line > 0) | |
2026 | { | |
2027 | record_line (line, pc); | |
2028 | } | |
2029 | } | |
2030 | } | |
2031 | } | |
2032 | ||
2033 | /* | |
2034 | ||
2035 | LOCAL FUNCTION | |
2036 | ||
2037 | add_symbol_to_list -- add a symbol to head of current symbol list | |
2038 | ||
2039 | SYNOPSIS | |
2040 | ||
2041 | static void add_symbol_to_list (struct symbol *symbol, struct | |
2042 | pending_symbol **listhead) | |
2043 | ||
2044 | DESCRIPTION | |
2045 | ||
2046 | Given a pointer to a symbol and a pointer to a pointer to a | |
2047 | list of symbols, add this symbol as the current head of the | |
2048 | list. Typically used for example to add a symbol to the | |
2049 | symbol list for the current scope. | |
2050 | ||
2051 | */ | |
2052 | ||
2053 | static void | |
2054 | DEFUN(add_symbol_to_list, (symbol, listhead), | |
2055 | struct symbol *symbol AND struct pending_symbol **listhead) | |
2056 | { | |
2057 | struct pending_symbol *link; | |
2058 | ||
2059 | if (symbol != NULL) | |
2060 | { | |
2061 | link = (struct pending_symbol *) xmalloc (sizeof (*link)); | |
2062 | link -> next = *listhead; | |
2063 | link -> symbol = symbol; | |
2064 | *listhead = link; | |
2065 | } | |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | ||
2070 | LOCAL FUNCTION | |
2071 | ||
2072 | gatherblocks -- walk a scope tree and build block vectors | |
2073 | ||
2074 | SYNOPSIS | |
2075 | ||
2076 | static struct block **gatherblocks (struct block **dest, | |
2077 | struct scopenode *node) | |
2078 | ||
2079 | DESCRIPTION | |
2080 | ||
2081 | Recursively walk a scope tree rooted in the given node, adding blocks | |
2082 | to the array pointed to by DEST, in preorder. I.E., first we add the | |
2083 | block for the current scope, then all the blocks for child scopes, | |
2084 | and finally all the blocks for sibling scopes. | |
2085 | */ | |
2086 | ||
2087 | static struct block ** | |
2088 | DEFUN(gatherblocks, (dest, node), | |
2089 | struct block **dest AND struct scopenode *node) | |
2090 | { | |
2091 | if (node != NULL) | |
2092 | { | |
2093 | *dest++ = node -> block; | |
2094 | dest = gatherblocks (dest, node -> child); | |
2095 | dest = gatherblocks (dest, node -> sibling); | |
2096 | } | |
2097 | return (dest); | |
2098 | } | |
2099 | ||
2100 | /* | |
2101 | ||
2102 | LOCAL FUNCTION | |
2103 | ||
2104 | make_blockvector -- make a block vector from current scope tree | |
2105 | ||
2106 | SYNOPSIS | |
2107 | ||
2108 | static struct blockvector *make_blockvector (void) | |
2109 | ||
2110 | DESCRIPTION | |
2111 | ||
2112 | Make a blockvector from all the blocks in the current scope tree. | |
2113 | The first block is always the global symbol block, followed by the | |
2114 | block for the root of the scope tree which is the local symbol block, | |
2115 | followed by all the remaining blocks in the scope tree, which are all | |
2116 | local scope blocks. | |
2117 | ||
2118 | NOTES | |
2119 | ||
2120 | Note that since the root node of the scope tree is created at the time | |
2121 | each file scope is entered, there are always at least two blocks, | |
2122 | neither of which may have any symbols, but always contribute a block | |
2123 | to the block vector. So the test for number of blocks greater than 1 | |
2124 | below is unnecessary given bug free code. | |
2125 | ||
2126 | The resulting block structure varies slightly from that produced | |
2127 | by dbxread.c, in that block 0 and block 1 are sibling blocks while | |
2128 | with dbxread.c, block 1 is a child of block 0. This does not | |
2129 | seem to cause any problems, but probably should be fixed. (FIXME) | |
2130 | */ | |
2131 | ||
2132 | static struct blockvector * | |
2133 | DEFUN_VOID(make_blockvector) | |
2134 | { | |
2135 | struct blockvector *blockvector = NULL; | |
2136 | int i; | |
2137 | int nbytes; | |
2138 | ||
2139 | /* Recursively walk down the tree, counting the number of blocks. | |
2140 | Then add one to account for the global's symbol block */ | |
2141 | ||
2142 | i = scopecount (scopetree) + 1; | |
2143 | nbytes = sizeof (struct blockvector); | |
2144 | if (i > 1) | |
2145 | { | |
2146 | nbytes += (i - 1) * sizeof (struct block *); | |
2147 | } | |
2148 | blockvector = (struct blockvector *) | |
2149 | obstack_alloc (symbol_obstack, nbytes); | |
2150 | ||
2151 | /* Copy the blocks into the blockvector. */ | |
2152 | ||
2153 | BLOCKVECTOR_NBLOCKS (blockvector) = i; | |
2154 | BLOCKVECTOR_BLOCK (blockvector, 0) = global_symbol_block; | |
2155 | gatherblocks (&BLOCKVECTOR_BLOCK (blockvector, 1), scopetree); | |
2156 | ||
2157 | return (blockvector); | |
2158 | } | |
2159 | ||
2160 | /* | |
2161 | ||
2162 | LOCAL FUNCTION | |
2163 | ||
2164 | locval -- compute the value of a location attribute | |
2165 | ||
2166 | SYNOPSIS | |
2167 | ||
2168 | static int locval (char *loc) | |
2169 | ||
2170 | DESCRIPTION | |
2171 | ||
2172 | Given pointer to a string of bytes that define a location, compute | |
2173 | the location and return the value. | |
2174 | ||
2175 | When computing values involving the current value of the frame pointer, | |
2176 | the value zero is used, which results in a value relative to the frame | |
2177 | pointer, rather than the absolute value. This is what GDB wants | |
2178 | anyway. | |
2179 | ||
2180 | When the result is a register number, the global isreg flag is set, | |
2181 | otherwise it is cleared. This is a kludge until we figure out a better | |
2182 | way to handle the problem. Gdb's design does not mesh well with the | |
2183 | DWARF notion of a location computing interpreter, which is a shame | |
2184 | because the flexibility goes unused. | |
2185 | ||
2186 | NOTES | |
2187 | ||
2188 | Note that stack[0] is unused except as a default error return. | |
2189 | Note that stack overflow is not yet handled. | |
2190 | */ | |
2191 | ||
2192 | static int | |
2193 | DEFUN(locval, (loc), char *loc) | |
2194 | { | |
2195 | unsigned short nbytes; | |
2196 | auto int stack[64]; | |
2197 | int stacki; | |
2198 | char *end; | |
2199 | long regno; | |
2200 | ||
2201 | (void) memcpy (&nbytes, loc, sizeof (short)); | |
2202 | end = loc + sizeof (short) + nbytes; | |
2203 | stacki = 0; | |
2204 | stack[stacki] = 0; | |
2205 | isreg = 0; | |
2206 | for (loc += sizeof (short); loc < end; loc += sizeof (long)) | |
2207 | { | |
2208 | switch (*loc++) { | |
2209 | case 0: | |
2210 | /* error */ | |
2211 | loc = end; | |
2212 | break; | |
2213 | case OP_REG: | |
2214 | /* push register (number) */ | |
2215 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2216 | isreg = 1; | |
2217 | break; | |
2218 | case OP_BASEREG: | |
2219 | /* push value of register (number) */ | |
2220 | /* Actually, we compute the value as if register has 0 */ | |
2221 | (void) memcpy (®no, loc, sizeof (long)); | |
2222 | if (regno == R_FP) | |
2223 | { | |
2224 | stack[++stacki] = 0; | |
2225 | } | |
2226 | else | |
2227 | { | |
2228 | stack[++stacki] = 0; | |
2229 | SQUAWK (("BASEREG %d not handled!", regno)); | |
2230 | } | |
2231 | break; | |
2232 | case OP_ADDR: | |
2233 | /* push address (relocated address) */ | |
2234 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2235 | break; | |
2236 | case OP_CONST: | |
2237 | /* push constant (number) */ | |
2238 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2239 | break; | |
2240 | case OP_DEREF2: | |
2241 | /* pop, deref and push 2 bytes (as a long) */ | |
2242 | SQUAWK (("OP_DEREF2 address %#x not handled", stack[stacki])); | |
2243 | break; | |
2244 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2245 | SQUAWK (("OP_DEREF4 address %#x not handled", stack[stacki])); | |
2246 | break; | |
2247 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2248 | stack[stacki - 1] += stack[stacki]; | |
2249 | stacki--; | |
2250 | break; | |
2251 | } | |
2252 | } | |
2253 | return (stack[stacki]); | |
2254 | } | |
2255 | ||
2256 | /* | |
2257 | ||
2258 | LOCAL FUNCTION | |
2259 | ||
2260 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's | |
2261 | ||
2262 | SYNOPSIS | |
2263 | ||
2264 | static struct symtab *read_ofile_symtab (struct partial_symtab *pst, | |
2265 | int desc) | |
2266 | ||
2267 | DESCRIPTION | |
2268 | ||
2269 | DESC is the file descriptor for the file, positioned at the | |
2270 | beginning of the symtab | |
2271 | SYM_SIZE is the size of the symbol section to read | |
2272 | TEXT_OFFSET is the beginning of the text segment we are reading | |
2273 | symbols for | |
2274 | TEXT_SIZE is the size of the text segment read in. | |
2275 | OFFSET is a relocation offset which gets added to each symbol | |
2276 | ||
2277 | */ | |
2278 | ||
2279 | static struct symtab * | |
2280 | DEFUN(read_ofile_symtab, (pst, desc), | |
2281 | struct partial_symtab *pst AND | |
2282 | int desc) | |
2283 | { | |
2284 | struct cleanup *back_to; | |
2285 | long lnsize; | |
2286 | int foffset; | |
2287 | ||
2288 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2289 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2290 | ||
2291 | diecount = 0; | |
2292 | dbbase = xmalloc (DBLENGTH(pst)); | |
2293 | dbroff = DBROFF(pst); | |
2294 | foffset = DBFOFF(pst) + dbroff; | |
2295 | if ((lseek (desc, foffset, 0) != foffset) || | |
2296 | (read (desc, dbbase, DBLENGTH(pst)) != DBLENGTH(pst))) | |
2297 | { | |
2298 | free (dbbase); | |
2299 | error ("can't read DWARF data"); | |
2300 | } | |
2301 | back_to = make_cleanup (free, dbbase); | |
2302 | ||
2303 | /* If there is a line number table associated with this compilation unit | |
2304 | then read the first long word from the line number table fragment, which | |
2305 | contains the size of the fragment in bytes (including the long word | |
2306 | itself). Allocate a buffer for the fragment and read it in for future | |
2307 | processing. */ | |
2308 | ||
2309 | lnbase = NULL; | |
2310 | if (LNFOFF (pst)) | |
2311 | { | |
2312 | if ((lseek (desc, LNFOFF (pst), 0) != LNFOFF (pst)) || | |
2313 | (read (desc, &lnsize, sizeof(long)) != sizeof(long))) | |
2314 | { | |
2315 | error ("can't read DWARF line number table size"); | |
2316 | } | |
2317 | lnbase = xmalloc (lnsize); | |
2318 | if ((lseek (desc, LNFOFF (pst), 0) != LNFOFF (pst)) || | |
2319 | (read (desc, lnbase, lnsize) != lnsize)) | |
2320 | { | |
2321 | free (lnbase); | |
2322 | error ("can't read DWARF line numbers"); | |
2323 | } | |
2324 | make_cleanup (free, lnbase); | |
2325 | } | |
2326 | ||
2327 | process_dies (dbbase, dbbase + DBLENGTH(pst)); | |
2328 | do_cleanups (back_to); | |
2329 | return (symtab_list); | |
2330 | } | |
2331 | ||
2332 | /* | |
2333 | ||
2334 | LOCAL FUNCTION | |
2335 | ||
2336 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry | |
2337 | ||
2338 | SYNOPSIS | |
2339 | ||
2340 | static void psymtab_to_symtab_1 (struct partial_symtab *pst, int desc) | |
2341 | ||
2342 | DESCRIPTION | |
2343 | ||
2344 | Called once for each partial symbol table entry that needs to be | |
2345 | expanded into a full symbol table entry. | |
2346 | ||
2347 | */ | |
2348 | ||
2349 | static void | |
2350 | DEFUN(psymtab_to_symtab_1, | |
2351 | (pst, desc), | |
2352 | struct partial_symtab *pst AND | |
2353 | int desc) | |
2354 | { | |
2355 | int i; | |
2356 | ||
2357 | if (!pst) | |
2358 | { | |
2359 | return; | |
2360 | } | |
2361 | if (pst->readin) | |
2362 | { | |
2363 | fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
2364 | pst -> filename); | |
2365 | return; | |
2366 | } | |
2367 | ||
2368 | /* Read in all partial symtabs on which this one is dependent */ | |
2369 | for (i = 0; i < pst -> number_of_dependencies; i++) | |
2370 | if (!pst -> dependencies[i] -> readin) | |
2371 | { | |
2372 | /* Inform about additional files that need to be read in. */ | |
2373 | if (info_verbose) | |
2374 | { | |
2375 | fputs_filtered (" ", stdout); | |
2376 | wrap_here (""); | |
2377 | fputs_filtered ("and ", stdout); | |
2378 | wrap_here (""); | |
2379 | printf_filtered ("%s...", pst -> dependencies[i] -> filename); | |
2380 | wrap_here (""); /* Flush output */ | |
2381 | fflush (stdout); | |
2382 | } | |
2383 | psymtab_to_symtab_1 (pst -> dependencies[i], desc); | |
2384 | } | |
2385 | ||
2386 | if (DBLENGTH(pst)) /* Otherwise it's a dummy */ | |
2387 | { | |
2388 | /* Init stuff necessary for reading in symbols */ | |
2389 | pst -> symtab = read_ofile_symtab (pst, desc); | |
2390 | if (info_verbose) | |
2391 | { | |
2392 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2393 | fflush (stdout); | |
2394 | } | |
2395 | sort_symtab_syms (pst -> symtab); | |
2396 | } | |
2397 | pst -> readin = 1; | |
2398 | } | |
2399 | ||
2400 | /* | |
2401 | ||
2402 | LOCAL FUNCTION | |
2403 | ||
2404 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one | |
2405 | ||
2406 | SYNOPSIS | |
2407 | ||
2408 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |
2409 | ||
2410 | DESCRIPTION | |
2411 | ||
2412 | This is the DWARF support entry point for building a full symbol | |
2413 | table entry from a partial symbol table entry. We are passed a | |
2414 | pointer to the partial symbol table entry that needs to be expanded. | |
2415 | ||
2416 | */ | |
2417 | ||
2418 | static void | |
2419 | DEFUN(dwarf_psymtab_to_symtab, (pst), struct partial_symtab *pst) | |
2420 | { | |
2421 | int desc; | |
2422 | struct cleanup *old_chain; | |
2423 | bfd *sym_bfd; | |
2424 | ||
2425 | if (!pst) | |
2426 | { | |
2427 | return; | |
2428 | } | |
2429 | if (pst -> readin) | |
2430 | { | |
2431 | fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
2432 | pst -> filename); | |
2433 | return; | |
2434 | } | |
2435 | ||
2436 | if (DBLENGTH(pst) || pst -> number_of_dependencies) | |
2437 | { | |
2438 | /* Print the message now, before starting serious work, to avoid | |
2439 | disconcerting pauses. */ | |
2440 | if (info_verbose) | |
2441 | { | |
2442 | printf_filtered ("Reading in symbols for %s...", pst -> filename); | |
2443 | fflush (stdout); | |
2444 | } | |
2445 | ||
2446 | /* Open symbol file. Symbol_file_command guarantees that the symbol | |
2447 | file name will be absolute, so there is no need for openp. */ | |
2448 | desc = open (pst -> symfile_name, O_RDONLY, 0); | |
2449 | ||
2450 | if (desc < 0) | |
2451 | { | |
2452 | perror_with_name (pst -> symfile_name); | |
2453 | } | |
2454 | ||
2455 | sym_bfd = bfd_fdopenr (pst -> symfile_name, NULL, desc); | |
2456 | if (!sym_bfd) | |
2457 | { | |
2458 | (void) close (desc); | |
2459 | error ("Could not open `%s' to read symbols: %s", | |
2460 | pst -> symfile_name, bfd_errmsg (bfd_error)); | |
2461 | } | |
2462 | old_chain = make_cleanup (bfd_close, sym_bfd); | |
2463 | if (!bfd_check_format (sym_bfd, bfd_object)) | |
2464 | { | |
2465 | error ("\"%s\": can't read symbols: %s.", | |
2466 | pst -> symfile_name, bfd_errmsg (bfd_error)); | |
2467 | } | |
2468 | ||
2469 | psymtab_to_symtab_1 (pst, desc); | |
2470 | ||
2471 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2472 | we need to do an equivalent or is this something peculiar to | |
2473 | stabs/a.out format. */ | |
2474 | /* Match with global symbols. This only needs to be done once, | |
2475 | after all of the symtabs and dependencies have been read in. */ | |
2476 | scan_file_globals (); | |
2477 | #endif | |
2478 | ||
2479 | do_cleanups (old_chain); | |
2480 | ||
2481 | /* Finish up the debug error message. */ | |
2482 | if (info_verbose) | |
2483 | { | |
2484 | printf_filtered ("done.\n"); | |
2485 | } | |
2486 | } | |
2487 | } | |
2488 | ||
2489 | /* | |
2490 | ||
2491 | LOCAL FUNCTION | |
2492 | ||
2493 | init_psymbol_list -- initialize storage for partial symbols | |
2494 | ||
2495 | SYNOPSIS | |
2496 | ||
2497 | static void init_psymbol_list (int total_symbols) | |
2498 | ||
2499 | DESCRIPTION | |
2500 | ||
2501 | Initializes storage for all of the partial symbols that will be | |
2502 | created by dwarf_build_psymtabs and subsidiaries. | |
2503 | */ | |
2504 | ||
2505 | static void | |
2506 | DEFUN(init_psymbol_list, (total_symbols), int total_symbols) | |
2507 | { | |
2508 | /* Free any previously allocated psymbol lists. */ | |
2509 | ||
2510 | if (global_psymbols.list) | |
2511 | { | |
2512 | free (global_psymbols.list); | |
2513 | } | |
2514 | if (static_psymbols.list) | |
2515 | { | |
2516 | free (static_psymbols.list); | |
2517 | } | |
2518 | ||
2519 | /* Current best guess is that there are approximately a twentieth | |
2520 | of the total symbols (in a debugging file) are global or static | |
2521 | oriented symbols */ | |
2522 | ||
2523 | global_psymbols.size = total_symbols / 10; | |
2524 | static_psymbols.size = total_symbols / 10; | |
2525 | global_psymbols.next = global_psymbols.list = (struct partial_symbol *) | |
2526 | xmalloc (global_psymbols.size * sizeof (struct partial_symbol)); | |
2527 | static_psymbols.next = static_psymbols.list = (struct partial_symbol *) | |
2528 | xmalloc (static_psymbols.size * sizeof (struct partial_symbol)); | |
2529 | } | |
2530 | ||
2531 | /* | |
2532 | ||
2533 | LOCAL FUNCTION | |
2534 | ||
2535 | start_psymtab -- allocate and partially fill a partial symtab entry | |
2536 | ||
2537 | DESCRIPTION | |
2538 | ||
2539 | Allocate and partially fill a partial symtab. It will be completely | |
2540 | filled at the end of the symbol list. | |
2541 | ||
2542 | SYMFILE_NAME is the name of the symbol-file we are reading from, and | |
2543 | ADDR is the address relative to which its symbols are (incremental) | |
2544 | or 0 (normal). FILENAME is the name of the compilation unit that | |
2545 | these symbols were defined in, and they appear starting a address | |
2546 | TEXTLOW. DBROFF is the absolute file offset in SYMFILE_NAME where | |
2547 | the full symbols can be read for compilation unit FILENAME. | |
2548 | GLOBAL_SYMS and STATIC_SYMS are pointers to the current end of the | |
2549 | psymtab vector. | |
2550 | ||
2551 | */ | |
2552 | ||
2553 | static struct partial_symtab * | |
2554 | DEFUN(start_psymtab, | |
2555 | (symfile_name, addr, filename, textlow, texthigh, dbfoff, curoff, | |
2556 | culength, lnfoff, global_syms, static_syms), | |
2557 | char *symfile_name AND | |
2558 | CORE_ADDR addr AND | |
2559 | char *filename AND | |
2560 | CORE_ADDR textlow AND | |
2561 | CORE_ADDR texthigh AND | |
2562 | int dbfoff AND | |
2563 | int curoff AND | |
2564 | int culength AND | |
2565 | int lnfoff AND | |
2566 | struct partial_symbol *global_syms AND | |
2567 | struct partial_symbol *static_syms) | |
2568 | { | |
2569 | struct partial_symtab *result; | |
2570 | ||
2571 | result = (struct partial_symtab *) | |
2572 | obstack_alloc (psymbol_obstack, sizeof (struct partial_symtab)); | |
2573 | (void) memset (result, 0, sizeof (struct partial_symtab)); | |
2574 | result -> addr = addr; | |
2575 | result -> symfile_name = create_name (symfile_name, psymbol_obstack); | |
2576 | result -> filename = create_name (filename, psymbol_obstack); | |
2577 | result -> textlow = textlow; | |
2578 | result -> texthigh = texthigh; | |
2579 | result -> read_symtab_private = (char *) obstack_alloc (psymbol_obstack, | |
2580 | sizeof (struct dwfinfo)); | |
2581 | DBFOFF (result) = dbfoff; | |
2582 | DBROFF (result) = curoff; | |
2583 | DBLENGTH (result) = culength; | |
2584 | LNFOFF (result) = lnfoff; | |
2585 | result -> readin = 0; | |
2586 | result -> symtab = NULL; | |
2587 | result -> read_symtab = dwarf_psymtab_to_symtab; | |
2588 | result -> globals_offset = global_syms - global_psymbols.list; | |
2589 | result -> statics_offset = static_syms - static_psymbols.list; | |
2590 | ||
2591 | result->n_global_syms = 0; | |
2592 | result->n_static_syms = 0; | |
2593 | ||
2594 | return result; | |
2595 | } | |
2596 | ||
2597 | /* | |
2598 | ||
2599 | LOCAL FUNCTION | |
2600 | ||
2601 | add_psymbol_to_list -- add a partial symbol to given list | |
2602 | ||
2603 | DESCRIPTION | |
2604 | ||
2605 | Add a partial symbol to one of the partial symbol vectors (pointed to | |
2606 | by listp). The vector is grown as necessary. | |
2607 | ||
2608 | */ | |
2609 | ||
2610 | static void | |
2611 | DEFUN(add_psymbol_to_list, | |
2612 | (listp, name, space, class, value), | |
2613 | struct psymbol_allocation_list *listp AND | |
2614 | char *name AND | |
2615 | enum namespace space AND | |
2616 | enum address_class class AND | |
2617 | CORE_ADDR value) | |
2618 | { | |
2619 | struct partial_symbol *psym; | |
2620 | int newsize; | |
2621 | ||
2622 | if (listp -> next >= listp -> list + listp -> size) | |
2623 | { | |
2624 | newsize = listp -> size * 2; | |
2625 | listp -> list = (struct partial_symbol *) | |
2626 | xrealloc (listp -> list, (newsize * sizeof (struct partial_symbol))); | |
2627 | /* Next assumes we only went one over. Should be good if program works | |
2628 | correctly */ | |
2629 | listp -> next = listp -> list + listp -> size; | |
2630 | listp -> size = newsize; | |
2631 | } | |
2632 | psym = listp -> next++; | |
2633 | SYMBOL_NAME (psym) = create_name (name, psymbol_obstack); | |
2634 | SYMBOL_NAMESPACE (psym) = space; | |
2635 | SYMBOL_CLASS (psym) = class; | |
2636 | SYMBOL_VALUE (psym) = value; | |
2637 | } | |
2638 | ||
2639 | /* | |
2640 | ||
2641 | LOCAL FUNCTION | |
2642 | ||
2643 | add_partial_symbol -- add symbol to partial symbol table | |
2644 | ||
2645 | DESCRIPTION | |
2646 | ||
2647 | Given a DIE, if it is one of the types that we want to | |
2648 | add to a partial symbol table, finish filling in the die info | |
2649 | and then add a partial symbol table entry for it. | |
2650 | ||
2651 | */ | |
2652 | ||
2653 | static void | |
2654 | DEFUN(add_partial_symbol, (dip), struct dieinfo *dip) | |
2655 | { | |
2656 | switch (dip -> dietag) | |
2657 | { | |
2658 | case TAG_global_subroutine: | |
2659 | record_misc_function (dip -> at_name, dip -> at_low_pc); | |
2660 | add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2661 | LOC_BLOCK, dip -> at_low_pc); | |
2662 | break; | |
2663 | case TAG_global_variable: | |
2664 | add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2665 | LOC_STATIC, 0); | |
2666 | break; | |
2667 | case TAG_subroutine: | |
2668 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2669 | LOC_BLOCK, dip -> at_low_pc); | |
2670 | break; | |
2671 | case TAG_local_variable: | |
2672 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2673 | LOC_STATIC, 0); | |
2674 | break; | |
2675 | case TAG_typedef: | |
2676 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2677 | LOC_TYPEDEF, 0); | |
2678 | break; | |
2679 | case TAG_structure_type: | |
2680 | case TAG_union_type: | |
2681 | case TAG_enumeration_type: | |
2682 | add_psymbol_to_list (&static_psymbols, dip -> at_name, STRUCT_NAMESPACE, | |
2683 | LOC_TYPEDEF, 0); | |
2684 | break; | |
2685 | } | |
2686 | } | |
2687 | ||
2688 | /* | |
2689 | ||
2690 | LOCAL FUNCTION | |
2691 | ||
2692 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2693 | ||
2694 | DESCRIPTION | |
2695 | ||
2696 | Process the DIE's within a single compilation unit, looking for | |
2697 | interesting DIE's that contribute to the partial symbol table entry | |
2698 | for this compilation unit. Since we cannot follow any sibling | |
2699 | chains without reading the complete DIE info for every DIE, | |
2700 | it is probably faster to just sequentially check each one to | |
2701 | see if it is one of the types we are interested in, and if | |
2702 | so, then extracting all the attributes info and generating a | |
2703 | partial symbol table entry. | |
2704 | ||
2705 | */ | |
2706 | ||
2707 | static void | |
2708 | DEFUN(scan_partial_symbols, (thisdie, enddie), char *thisdie AND char *enddie) | |
2709 | { | |
2710 | char *nextdie; | |
2711 | struct dieinfo di; | |
2712 | ||
2713 | while (thisdie < enddie) | |
2714 | { | |
2715 | basicdieinfo (&di, thisdie); | |
2716 | if (di.dielength < sizeof (long)) | |
2717 | { | |
2718 | break; | |
2719 | } | |
2720 | else | |
2721 | { | |
2722 | nextdie = thisdie + di.dielength; | |
2723 | switch (di.dietag) | |
2724 | { | |
2725 | case TAG_global_subroutine: | |
2726 | case TAG_global_variable: | |
2727 | case TAG_subroutine: | |
2728 | case TAG_local_variable: | |
2729 | case TAG_typedef: | |
2730 | case TAG_structure_type: | |
2731 | case TAG_union_type: | |
2732 | case TAG_enumeration_type: | |
2733 | completedieinfo (&di); | |
2734 | /* Don't attempt to add anonymous structures, unions, or | |
2735 | enumerations since they have no name. Also check that | |
2736 | this is the place where the actual definition occurs, | |
2737 | rather than just a reference to an external. */ | |
2738 | if (di.at_name != NULL && !di.at_is_external_p) | |
2739 | { | |
2740 | add_partial_symbol (&di); | |
2741 | } | |
2742 | break; | |
2743 | } | |
2744 | } | |
2745 | thisdie = nextdie; | |
2746 | } | |
2747 | } | |
2748 | ||
2749 | /* | |
2750 | ||
2751 | LOCAL FUNCTION | |
2752 | ||
2753 | scan_compilation_units -- build a psymtab entry for each compilation | |
2754 | ||
2755 | DESCRIPTION | |
2756 | ||
2757 | This is the top level dwarf parsing routine for building partial | |
2758 | symbol tables. | |
2759 | ||
2760 | It scans from the beginning of the DWARF table looking for the first | |
2761 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2762 | each additional TAG_compile_unit DIE. | |
2763 | ||
2764 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2765 | calls a subordinate routine to collect all the compilation unit's | |
2766 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2767 | new partial symtab structure into the partial symbol table. It also | |
2768 | records the appropriate information in the partial symbol table entry | |
2769 | to allow the chunk of DIE's and line number table for this compilation | |
2770 | unit to be located and re-read later, to generate a complete symbol | |
2771 | table entry for the compilation unit. | |
2772 | ||
2773 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2774 | compilation units into smaller DIE chunks and line number tables, | |
2775 | and associates them with a partial symbol table entry. | |
2776 | ||
2777 | NOTES | |
2778 | ||
2779 | If any compilation unit has no line number table associated with | |
2780 | it for some reason (a missing at_stmt_list attribute, rather than | |
2781 | just one with a value of zero, which is valid) then we ensure that | |
2782 | the recorded file offset is zero so that the routine which later | |
2783 | reads line number table fragments knows that there is no fragment | |
2784 | to read. | |
2785 | ||
2786 | RETURNS | |
2787 | ||
2788 | Returns no value. | |
2789 | ||
2790 | */ | |
2791 | ||
2792 | static void | |
2793 | DEFUN(scan_compilation_units, | |
2794 | (filename, addr, thisdie, enddie, dbfoff, lnoffset), | |
2795 | char *filename AND | |
2796 | CORE_ADDR addr AND | |
2797 | char *thisdie AND | |
2798 | char *enddie AND | |
2799 | unsigned int dbfoff AND | |
2800 | unsigned int lnoffset) | |
2801 | { | |
2802 | char *nextdie; | |
2803 | struct dieinfo di; | |
2804 | struct partial_symtab *pst; | |
2805 | int culength; | |
2806 | int curoff; | |
2807 | int curlnoffset; | |
2808 | ||
2809 | while (thisdie < enddie) | |
2810 | { | |
2811 | basicdieinfo (&di, thisdie); | |
2812 | if (di.dielength < sizeof (long)) | |
2813 | { | |
2814 | break; | |
2815 | } | |
2816 | else if (di.dietag != TAG_compile_unit) | |
2817 | { | |
2818 | nextdie = thisdie + di.dielength; | |
2819 | } | |
2820 | else | |
2821 | { | |
2822 | completedieinfo (&di); | |
2823 | if (di.at_sibling != 0) | |
2824 | { | |
2825 | nextdie = dbbase + di.at_sibling - dbroff; | |
2826 | } | |
2827 | else | |
2828 | { | |
2829 | nextdie = thisdie + di.dielength; | |
2830 | } | |
2831 | curoff = thisdie - dbbase; | |
2832 | culength = nextdie - thisdie; | |
2833 | curlnoffset = di.at_stmt_list_p ? lnoffset + di.at_stmt_list : 0; | |
2834 | pst = start_psymtab (filename, addr, di.at_name, | |
2835 | di.at_low_pc, di.at_high_pc, | |
2836 | dbfoff, curoff, culength, curlnoffset, | |
2837 | global_psymbols.next, | |
2838 | static_psymbols.next); | |
2839 | scan_partial_symbols (thisdie + di.dielength, nextdie); | |
2840 | pst -> n_global_syms = global_psymbols.next - | |
2841 | (global_psymbols.list + pst -> globals_offset); | |
2842 | pst -> n_static_syms = static_psymbols.next - | |
2843 | (static_psymbols.list + pst -> statics_offset); | |
2844 | /* Sort the global list; don't sort the static list */ | |
2845 | qsort (global_psymbols.list + pst -> globals_offset, | |
2846 | pst -> n_global_syms, sizeof (struct partial_symbol), | |
2847 | compare_psymbols); | |
2848 | /* If there is already a psymtab or symtab for a file of this name, | |
2849 | remove it. (If there is a symtab, more drastic things also | |
2850 | happen.) This happens in VxWorks. */ | |
2851 | free_named_symtabs (pst -> filename); | |
2852 | /* Place the partial symtab on the partial symtab list */ | |
2853 | pst -> next = partial_symtab_list; | |
2854 | partial_symtab_list = pst; | |
2855 | } | |
2856 | thisdie = nextdie; | |
2857 | } | |
2858 | } | |
2859 | ||
2860 | /* | |
2861 | ||
2862 | LOCAL FUNCTION | |
2863 | ||
2864 | new_symbol -- make a symbol table entry for a new symbol | |
2865 | ||
2866 | SYNOPSIS | |
2867 | ||
2868 | static struct symbol *new_symbol (struct dieinfo *dip) | |
2869 | ||
2870 | DESCRIPTION | |
2871 | ||
2872 | Given a pointer to a DWARF information entry, figure out if we need | |
2873 | to make a symbol table entry for it, and if so, create a new entry | |
2874 | and return a pointer to it. | |
2875 | */ | |
2876 | ||
2877 | static struct symbol * | |
2878 | DEFUN(new_symbol, (dip), struct dieinfo *dip) | |
2879 | { | |
2880 | struct symbol *sym = NULL; | |
2881 | ||
2882 | if (dip -> at_name != NULL) | |
2883 | { | |
2884 | sym = (struct symbol *) obstack_alloc (symbol_obstack, | |
2885 | sizeof (struct symbol)); | |
2886 | (void) memset (sym, 0, sizeof (struct symbol)); | |
2887 | SYMBOL_NAME (sym) = create_name (dip -> at_name, symbol_obstack); | |
2888 | /* default assumptions */ | |
2889 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2890 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2891 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2892 | switch (dip -> dietag) | |
2893 | { | |
2894 | case TAG_label: | |
2895 | SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr; | |
2896 | SYMBOL_CLASS (sym) = LOC_LABEL; | |
2897 | break; | |
2898 | case TAG_global_subroutine: | |
2899 | case TAG_subroutine: | |
2900 | SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr; | |
2901 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); | |
2902 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
2903 | if (dip -> dietag == TAG_global_subroutine) | |
2904 | { | |
2905 | add_symbol_to_list (sym, &global_symbols); | |
2906 | } | |
2907 | else | |
2908 | { | |
2909 | add_symbol_to_list (sym, &scope -> symbols); | |
2910 | } | |
2911 | break; | |
2912 | case TAG_global_variable: | |
2913 | case TAG_local_variable: | |
2914 | if (dip -> at_location != NULL) | |
2915 | { | |
2916 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2917 | } | |
2918 | if (dip -> dietag == TAG_global_variable) | |
2919 | { | |
2920 | add_symbol_to_list (sym, &global_symbols); | |
2921 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2922 | SYMBOL_VALUE (sym) += baseaddr; | |
2923 | } | |
2924 | else | |
2925 | { | |
2926 | add_symbol_to_list (sym, &scope -> symbols); | |
2927 | if (scope -> parent != NULL) | |
2928 | { | |
2929 | if (isreg) | |
2930 | { | |
2931 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2932 | } | |
2933 | else | |
2934 | { | |
2935 | SYMBOL_CLASS (sym) = LOC_LOCAL; | |
2936 | } | |
2937 | } | |
2938 | else | |
2939 | { | |
2940 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2941 | SYMBOL_VALUE (sym) += baseaddr; | |
2942 | } | |
2943 | } | |
2944 | break; | |
2945 | case TAG_formal_parameter: | |
2946 | if (dip -> at_location != NULL) | |
2947 | { | |
2948 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2949 | } | |
2950 | add_symbol_to_list (sym, &scope -> symbols); | |
2951 | if (isreg) | |
2952 | { | |
2953 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2954 | } | |
2955 | else | |
2956 | { | |
2957 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2958 | } | |
2959 | break; | |
2960 | case TAG_unspecified_parameters: | |
2961 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2962 | this information, so just ignore it for now. (FIXME?) */ | |
2963 | break; | |
2964 | case TAG_structure_type: | |
2965 | case TAG_union_type: | |
2966 | case TAG_enumeration_type: | |
2967 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2968 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
2969 | add_symbol_to_list (sym, &scope -> symbols); | |
2970 | break; | |
2971 | case TAG_typedef: | |
2972 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2973 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2974 | add_symbol_to_list (sym, &scope -> symbols); | |
2975 | break; | |
2976 | default: | |
2977 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2978 | data, but since we must specifically ignore things we don't | |
2979 | recognize, there is nothing else we should do at this point. */ | |
2980 | break; | |
2981 | } | |
2982 | } | |
2983 | return (sym); | |
2984 | } | |
2985 | ||
2986 | /* | |
2987 | ||
2988 | LOCAL FUNCTION | |
2989 | ||
2990 | decode_mod_fund_type -- decode a modified fundamental type | |
2991 | ||
2992 | SYNOPSIS | |
2993 | ||
2994 | static struct type *decode_mod_fund_type (char *typedata) | |
2995 | ||
2996 | DESCRIPTION | |
2997 | ||
2998 | Decode a block of data containing a modified fundamental | |
2999 | type specification. TYPEDATA is a pointer to the block, | |
3000 | which consists of a two byte length, containing the size | |
3001 | of the rest of the block. At the end of the block is a | |
3002 | two byte value that gives the fundamental type. Everything | |
3003 | in between are type modifiers. | |
3004 | ||
3005 | We simply compute the number of modifiers and call the general | |
3006 | function decode_modified_type to do the actual work. | |
3007 | */ | |
3008 | ||
3009 | static struct type * | |
3010 | DEFUN(decode_mod_fund_type, (typedata), char *typedata) | |
3011 | { | |
3012 | struct type *typep = NULL; | |
3013 | unsigned short modcount; | |
3014 | unsigned char *modifiers; | |
3015 | ||
3016 | /* Get the total size of the block, exclusive of the size itself */ | |
3017 | (void) memcpy (&modcount, typedata, sizeof (short)); | |
3018 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
3019 | modcount -= sizeof (short); | |
3020 | /* Skip over the two size bytes at the beginning of the block. */ | |
c8c0a2bd | 3021 | modifiers = (unsigned char *) typedata + sizeof (short); |
35f5886e FF |
3022 | /* Now do the actual decoding */ |
3023 | typep = decode_modified_type (modifiers, modcount, AT_mod_fund_type); | |
3024 | return (typep); | |
3025 | } | |
3026 | ||
3027 | /* | |
3028 | ||
3029 | LOCAL FUNCTION | |
3030 | ||
3031 | decode_mod_u_d_type -- decode a modified user defined type | |
3032 | ||
3033 | SYNOPSIS | |
3034 | ||
3035 | static struct type *decode_mod_u_d_type (char *typedata) | |
3036 | ||
3037 | DESCRIPTION | |
3038 | ||
3039 | Decode a block of data containing a modified user defined | |
3040 | type specification. TYPEDATA is a pointer to the block, | |
3041 | which consists of a two byte length, containing the size | |
3042 | of the rest of the block. At the end of the block is a | |
3043 | four byte value that gives a reference to a user defined type. | |
3044 | Everything in between are type modifiers. | |
3045 | ||
3046 | We simply compute the number of modifiers and call the general | |
3047 | function decode_modified_type to do the actual work. | |
3048 | */ | |
3049 | ||
3050 | static struct type * | |
3051 | DEFUN(decode_mod_u_d_type, (typedata), char *typedata) | |
3052 | { | |
3053 | struct type *typep = NULL; | |
3054 | unsigned short modcount; | |
3055 | unsigned char *modifiers; | |
3056 | ||
3057 | /* Get the total size of the block, exclusive of the size itself */ | |
3058 | (void) memcpy (&modcount, typedata, sizeof (short)); | |
3059 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3060 | modcount -= sizeof (long); | |
3061 | /* Skip over the two size bytes at the beginning of the block. */ | |
c8c0a2bd | 3062 | modifiers = (unsigned char *) typedata + sizeof (short); |
35f5886e FF |
3063 | /* Now do the actual decoding */ |
3064 | typep = decode_modified_type (modifiers, modcount, AT_mod_u_d_type); | |
3065 | return (typep); | |
3066 | } | |
3067 | ||
3068 | /* | |
3069 | ||
3070 | LOCAL FUNCTION | |
3071 | ||
3072 | decode_modified_type -- decode modified user or fundamental type | |
3073 | ||
3074 | SYNOPSIS | |
3075 | ||
3076 | static struct type *decode_modified_type (unsigned char *modifiers, | |
3077 | unsigned short modcount, int mtype) | |
3078 | ||
3079 | DESCRIPTION | |
3080 | ||
3081 | Decode a modified type, either a modified fundamental type or | |
3082 | a modified user defined type. MODIFIERS is a pointer to the | |
3083 | block of bytes that define MODCOUNT modifiers. Immediately | |
3084 | following the last modifier is a short containing the fundamental | |
3085 | type or a long containing the reference to the user defined | |
3086 | type. Which one is determined by MTYPE, which is either | |
3087 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3088 | type we are generating. | |
3089 | ||
3090 | We call ourself recursively to generate each modified type,` | |
3091 | until MODCOUNT reaches zero, at which point we have consumed | |
3092 | all the modifiers and generate either the fundamental type or | |
3093 | user defined type. When the recursion unwinds, each modifier | |
3094 | is applied in turn to generate the full modified type. | |
3095 | ||
3096 | NOTES | |
3097 | ||
3098 | If we find a modifier that we don't recognize, and it is not one | |
3099 | of those reserved for application specific use, then we issue a | |
3100 | warning and simply ignore the modifier. | |
3101 | ||
3102 | BUGS | |
3103 | ||
3104 | We currently ignore MOD_const and MOD_volatile. (FIXME) | |
3105 | ||
3106 | */ | |
3107 | ||
3108 | static struct type * | |
3109 | DEFUN(decode_modified_type, | |
3110 | (modifiers, modcount, mtype), | |
3111 | unsigned char *modifiers AND unsigned short modcount AND int mtype) | |
3112 | { | |
3113 | struct type *typep = NULL; | |
3114 | unsigned short fundtype; | |
3115 | DIEREF dieref; | |
3116 | unsigned char modifier; | |
3117 | ||
3118 | if (modcount == 0) | |
3119 | { | |
3120 | switch (mtype) | |
3121 | { | |
3122 | case AT_mod_fund_type: | |
3123 | (void) memcpy (&fundtype, modifiers, sizeof (short)); | |
3124 | typep = decode_fund_type (fundtype); | |
3125 | break; | |
3126 | case AT_mod_u_d_type: | |
3127 | (void) memcpy (&dieref, modifiers, sizeof (DIEREF)); | |
3128 | if ((typep = lookup_utype (dieref)) == NULL) | |
3129 | { | |
3130 | typep = alloc_utype (dieref, NULL); | |
3131 | } | |
3132 | break; | |
3133 | default: | |
3134 | SQUAWK (("botched modified type decoding (mtype 0x%x)", mtype)); | |
3135 | typep = builtin_type_int; | |
3136 | break; | |
3137 | } | |
3138 | } | |
3139 | else | |
3140 | { | |
3141 | modifier = *modifiers++; | |
3142 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3143 | switch (modifier) | |
3144 | { | |
3145 | case MOD_pointer_to: | |
3146 | typep = lookup_pointer_type (typep); | |
3147 | break; | |
3148 | case MOD_reference_to: | |
3149 | typep = lookup_reference_type (typep); | |
3150 | break; | |
3151 | case MOD_const: | |
3152 | SQUAWK (("type modifier 'const' ignored")); /* FIXME */ | |
3153 | break; | |
3154 | case MOD_volatile: | |
3155 | SQUAWK (("type modifier 'volatile' ignored")); /* FIXME */ | |
3156 | break; | |
3157 | default: | |
3158 | if (!(MOD_lo_user <= modifier && modifier <= MOD_hi_user)) | |
3159 | { | |
3160 | SQUAWK (("unknown type modifier %u", modifier)); | |
3161 | } | |
3162 | break; | |
3163 | } | |
3164 | } | |
3165 | return (typep); | |
3166 | } | |
3167 | ||
3168 | /* | |
3169 | ||
3170 | LOCAL FUNCTION | |
3171 | ||
3172 | decode_fund_type -- translate basic DWARF type to gdb base type | |
3173 | ||
3174 | DESCRIPTION | |
3175 | ||
3176 | Given an integer that is one of the fundamental DWARF types, | |
3177 | translate it to one of the basic internal gdb types and return | |
3178 | a pointer to the appropriate gdb type (a "struct type *"). | |
3179 | ||
3180 | NOTES | |
3181 | ||
3182 | If we encounter a fundamental type that we are unprepared to | |
3183 | deal with, and it is not in the range of those types defined | |
3184 | as application specific types, then we issue a warning and | |
3185 | treat the type as builtin_type_int. | |
3186 | */ | |
3187 | ||
3188 | static struct type * | |
3189 | DEFUN(decode_fund_type, (fundtype), unsigned short fundtype) | |
3190 | { | |
3191 | struct type *typep = NULL; | |
3192 | ||
3193 | switch (fundtype) | |
3194 | { | |
3195 | ||
3196 | case FT_void: | |
3197 | typep = builtin_type_void; | |
3198 | break; | |
3199 | ||
3200 | case FT_pointer: /* (void *) */ | |
3201 | typep = lookup_pointer_type (builtin_type_void); | |
3202 | break; | |
3203 | ||
3204 | case FT_char: | |
3205 | case FT_signed_char: | |
3206 | typep = builtin_type_char; | |
3207 | break; | |
3208 | ||
3209 | case FT_short: | |
3210 | case FT_signed_short: | |
3211 | typep = builtin_type_short; | |
3212 | break; | |
3213 | ||
3214 | case FT_integer: | |
3215 | case FT_signed_integer: | |
3216 | case FT_boolean: /* Was FT_set in AT&T version */ | |
3217 | typep = builtin_type_int; | |
3218 | break; | |
3219 | ||
3220 | case FT_long: | |
3221 | case FT_signed_long: | |
3222 | typep = builtin_type_long; | |
3223 | break; | |
3224 | ||
3225 | case FT_float: | |
3226 | typep = builtin_type_float; | |
3227 | break; | |
3228 | ||
3229 | case FT_dbl_prec_float: | |
3230 | typep = builtin_type_double; | |
3231 | break; | |
3232 | ||
3233 | case FT_unsigned_char: | |
3234 | typep = builtin_type_unsigned_char; | |
3235 | break; | |
3236 | ||
3237 | case FT_unsigned_short: | |
3238 | typep = builtin_type_unsigned_short; | |
3239 | break; | |
3240 | ||
3241 | case FT_unsigned_integer: | |
3242 | typep = builtin_type_unsigned_int; | |
3243 | break; | |
3244 | ||
3245 | case FT_unsigned_long: | |
3246 | typep = builtin_type_unsigned_long; | |
3247 | break; | |
3248 | ||
3249 | case FT_ext_prec_float: | |
3250 | typep = builtin_type_long_double; | |
3251 | break; | |
3252 | ||
3253 | case FT_complex: | |
3254 | typep = builtin_type_complex; | |
3255 | break; | |
3256 | ||
3257 | case FT_dbl_prec_complex: | |
3258 | typep = builtin_type_double_complex; | |
3259 | break; | |
3260 | ||
3261 | case FT_long_long: | |
3262 | case FT_signed_long_long: | |
3263 | typep = builtin_type_long_long; | |
3264 | break; | |
3265 | ||
3266 | case FT_unsigned_long_long: | |
3267 | typep = builtin_type_unsigned_long_long; | |
3268 | break; | |
3269 | ||
3270 | } | |
3271 | ||
3272 | if ((typep == NULL) && !(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3273 | { | |
3274 | SQUAWK (("unexpected fundamental type 0x%x", fundtype)); | |
3275 | typep = builtin_type_void; | |
3276 | } | |
3277 | ||
3278 | return (typep); | |
3279 | } | |
3280 | ||
3281 | /* | |
3282 | ||
3283 | LOCAL FUNCTION | |
3284 | ||
3285 | create_name -- allocate a fresh copy of a string on an obstack | |
3286 | ||
3287 | DESCRIPTION | |
3288 | ||
3289 | Given a pointer to a string and a pointer to an obstack, allocates | |
3290 | a fresh copy of the string on the specified obstack. | |
3291 | ||
3292 | */ | |
3293 | ||
3294 | static char * | |
3295 | DEFUN(create_name, (name, obstackp), char *name AND struct obstack *obstackp) | |
3296 | { | |
3297 | int length; | |
3298 | char *newname; | |
3299 | ||
3300 | length = strlen (name) + 1; | |
3301 | newname = (char *) obstack_alloc (obstackp, length); | |
3302 | (void) strcpy (newname, name); | |
3303 | return (newname); | |
3304 | } | |
3305 | ||
3306 | /* | |
3307 | ||
3308 | LOCAL FUNCTION | |
3309 | ||
3310 | basicdieinfo -- extract the minimal die info from raw die data | |
3311 | ||
3312 | SYNOPSIS | |
3313 | ||
3314 | void basicdieinfo (char *diep, struct dieinfo *dip) | |
3315 | ||
3316 | DESCRIPTION | |
3317 | ||
3318 | Given a pointer to raw DIE data, and a pointer to an instance of a | |
3319 | die info structure, this function extracts the basic information | |
3320 | from the DIE data required to continue processing this DIE, along | |
3321 | with some bookkeeping information about the DIE. | |
3322 | ||
3323 | The information we absolutely must have includes the DIE tag, | |
3324 | and the DIE length. If we need the sibling reference, then we | |
3325 | will have to call completedieinfo() to process all the remaining | |
3326 | DIE information. | |
3327 | ||
3328 | Note that since there is no guarantee that the data is properly | |
3329 | aligned in memory for the type of access required (indirection | |
3330 | through anything other than a char pointer), we use memcpy to | |
3331 | shuffle data items larger than a char. Possibly inefficient, but | |
3332 | quite portable. | |
3333 | ||
3334 | We also take care of some other basic things at this point, such | |
3335 | as ensuring that the instance of the die info structure starts | |
3336 | out completely zero'd and that curdie is initialized for use | |
3337 | in error reporting if we have a problem with the current die. | |
3338 | ||
3339 | NOTES | |
3340 | ||
3341 | All DIE's must have at least a valid length, thus the minimum | |
3342 | DIE size is sizeof (long). In order to have a valid tag, the | |
3343 | DIE size must be at least sizeof (short) larger, otherwise they | |
3344 | are forced to be TAG_padding DIES. | |
3345 | ||
3346 | Padding DIES must be at least sizeof(long) in length, implying that | |
3347 | if a padding DIE is used for alignment and the amount needed is less | |
3348 | than sizeof(long) then the padding DIE has to be big enough to align | |
3349 | to the next alignment boundry. | |
3350 | */ | |
3351 | ||
3352 | static void | |
3353 | DEFUN(basicdieinfo, (dip, diep), struct dieinfo *dip AND char *diep) | |
3354 | { | |
3355 | curdie = dip; | |
3356 | (void) memset (dip, 0, sizeof (struct dieinfo)); | |
3357 | dip -> die = diep; | |
3358 | dip -> dieref = dbroff + (diep - dbbase); | |
3359 | (void) memcpy (&dip -> dielength, diep, sizeof (long)); | |
3360 | if (dip -> dielength < sizeof (long)) | |
3361 | { | |
3362 | dwarfwarn ("malformed DIE, bad length (%d bytes)", dip -> dielength); | |
3363 | } | |
3364 | else if (dip -> dielength < (sizeof (long) + sizeof (short))) | |
3365 | { | |
3366 | dip -> dietag = TAG_padding; | |
3367 | } | |
3368 | else | |
3369 | { | |
3370 | (void) memcpy (&dip -> dietag, diep + sizeof (long), sizeof (short)); | |
3371 | } | |
3372 | } | |
3373 | ||
3374 | /* | |
3375 | ||
3376 | LOCAL FUNCTION | |
3377 | ||
3378 | completedieinfo -- finish reading the information for a given DIE | |
3379 | ||
3380 | SYNOPSIS | |
3381 | ||
3382 | void completedieinfo (struct dieinfo *dip) | |
3383 | ||
3384 | DESCRIPTION | |
3385 | ||
3386 | Given a pointer to an already partially initialized die info structure, | |
3387 | scan the raw DIE data and finish filling in the die info structure | |
3388 | from the various attributes found. | |
3389 | ||
3390 | Note that since there is no guarantee that the data is properly | |
3391 | aligned in memory for the type of access required (indirection | |
3392 | through anything other than a char pointer), we use memcpy to | |
3393 | shuffle data items larger than a char. Possibly inefficient, but | |
3394 | quite portable. | |
3395 | ||
3396 | NOTES | |
3397 | ||
3398 | Each time we are called, we increment the diecount variable, which | |
3399 | keeps an approximate count of the number of dies processed for | |
3400 | each compilation unit. This information is presented to the user | |
3401 | if the info_verbose flag is set. | |
3402 | ||
3403 | */ | |
3404 | ||
3405 | static void | |
3406 | DEFUN(completedieinfo, (dip), struct dieinfo *dip) | |
3407 | { | |
3408 | char *diep; /* Current pointer into raw DIE data */ | |
3409 | char *end; /* Terminate DIE scan here */ | |
3410 | unsigned short attr; /* Current attribute being scanned */ | |
3411 | unsigned short form; /* Form of the attribute */ | |
3412 | short block2sz; /* Size of a block2 attribute field */ | |
3413 | long block4sz; /* Size of a block4 attribute field */ | |
3414 | ||
3415 | diecount++; | |
3416 | diep = dip -> die; | |
3417 | end = diep + dip -> dielength; | |
3418 | diep += sizeof (long) + sizeof (short); | |
3419 | while (diep < end) | |
3420 | { | |
3421 | (void) memcpy (&attr, diep, sizeof (short)); | |
3422 | diep += sizeof (short); | |
3423 | switch (attr) | |
3424 | { | |
3425 | case AT_fund_type: | |
3426 | (void) memcpy (&dip -> at_fund_type, diep, sizeof (short)); | |
3427 | break; | |
3428 | case AT_ordering: | |
3429 | (void) memcpy (&dip -> at_ordering, diep, sizeof (short)); | |
3430 | break; | |
3431 | case AT_bit_offset: | |
3432 | (void) memcpy (&dip -> at_bit_offset, diep, sizeof (short)); | |
3433 | break; | |
3434 | case AT_visibility: | |
3435 | (void) memcpy (&dip -> at_visibility, diep, sizeof (short)); | |
3436 | break; | |
3437 | case AT_sibling: | |
3438 | (void) memcpy (&dip -> at_sibling, diep, sizeof (long)); | |
3439 | break; | |
3440 | case AT_stmt_list: | |
3441 | (void) memcpy (&dip -> at_stmt_list, diep, sizeof (long)); | |
3442 | dip -> at_stmt_list_p = 1; | |
3443 | break; | |
3444 | case AT_low_pc: | |
3445 | (void) memcpy (&dip -> at_low_pc, diep, sizeof (long)); | |
3446 | break; | |
3447 | case AT_high_pc: | |
3448 | (void) memcpy (&dip -> at_high_pc, diep, sizeof (long)); | |
3449 | break; | |
3450 | case AT_language: | |
3451 | (void) memcpy (&dip -> at_language, diep, sizeof (long)); | |
3452 | break; | |
3453 | case AT_user_def_type: | |
3454 | (void) memcpy (&dip -> at_user_def_type, diep, sizeof (long)); | |
3455 | break; | |
3456 | case AT_byte_size: | |
3457 | (void) memcpy (&dip -> at_byte_size, diep, sizeof (long)); | |
3458 | break; | |
3459 | case AT_bit_size: | |
3460 | (void) memcpy (&dip -> at_bit_size, diep, sizeof (long)); | |
3461 | break; | |
3462 | case AT_member: | |
3463 | (void) memcpy (&dip -> at_member, diep, sizeof (long)); | |
3464 | break; | |
3465 | case AT_discr: | |
3466 | (void) memcpy (&dip -> at_discr, diep, sizeof (long)); | |
3467 | break; | |
3468 | case AT_import: | |
3469 | (void) memcpy (&dip -> at_import, diep, sizeof (long)); | |
3470 | break; | |
3471 | case AT_location: | |
3472 | dip -> at_location = diep; | |
3473 | break; | |
3474 | case AT_mod_fund_type: | |
3475 | dip -> at_mod_fund_type = diep; | |
3476 | break; | |
3477 | case AT_subscr_data: | |
3478 | dip -> at_subscr_data = diep; | |
3479 | break; | |
3480 | case AT_mod_u_d_type: | |
3481 | dip -> at_mod_u_d_type = diep; | |
3482 | break; | |
3483 | case AT_deriv_list: | |
3484 | dip -> at_deriv_list = diep; | |
3485 | break; | |
3486 | case AT_element_list: | |
3487 | dip -> at_element_list = diep; | |
3488 | break; | |
3489 | case AT_discr_value: | |
3490 | dip -> at_discr_value = diep; | |
3491 | break; | |
3492 | case AT_string_length: | |
3493 | dip -> at_string_length = diep; | |
3494 | break; | |
3495 | case AT_name: | |
3496 | dip -> at_name = diep; | |
3497 | break; | |
3498 | case AT_comp_dir: | |
3499 | dip -> at_comp_dir = diep; | |
3500 | break; | |
3501 | case AT_producer: | |
3502 | dip -> at_producer = diep; | |
3503 | break; | |
3504 | case AT_loclist: | |
3505 | (void) memcpy (&dip -> at_loclist, diep, sizeof (long)); | |
3506 | break; | |
3507 | case AT_frame_base: | |
3508 | (void) memcpy (&dip -> at_frame_base, diep, sizeof (long)); | |
3509 | break; | |
3510 | case AT_incomplete: | |
3511 | (void) memcpy (&dip -> at_incomplete, diep, sizeof (short)); | |
3512 | break; | |
3513 | case AT_start_scope: | |
3514 | (void) memcpy (&dip -> at_start_scope, diep, sizeof (long)); | |
3515 | break; | |
3516 | case AT_stride_size: | |
3517 | (void) memcpy (&dip -> at_stride_size, diep, sizeof (long)); | |
3518 | break; | |
3519 | case AT_src_info: | |
3520 | (void) memcpy (&dip -> at_src_info, diep, sizeof (long)); | |
3521 | break; | |
3522 | case AT_prototyped: | |
3523 | (void) memcpy (&dip -> at_prototyped, diep, sizeof (short)); | |
3524 | break; | |
3525 | case AT_const_data: | |
3526 | dip -> at_const_data = diep; | |
3527 | break; | |
3528 | case AT_is_external: | |
3529 | (void) memcpy (&dip -> at_is_external, diep, sizeof (short)); | |
3530 | dip -> at_is_external_p = 1; | |
3531 | break; | |
3532 | default: | |
3533 | /* Found an attribute that we are unprepared to handle. However | |
3534 | it is specifically one of the design goals of DWARF that | |
3535 | consumers should ignore unknown attributes. As long as the | |
3536 | form is one that we recognize (so we know how to skip it), | |
3537 | we can just ignore the unknown attribute. */ | |
3538 | break; | |
3539 | } | |
3540 | form = attr & 0xF; | |
3541 | switch (form) | |
3542 | { | |
3543 | case FORM_DATA2: | |
3544 | diep += sizeof (short); | |
3545 | break; | |
3546 | case FORM_DATA4: | |
3547 | diep += sizeof (long); | |
3548 | break; | |
3549 | case FORM_DATA8: | |
3550 | diep += 8 * sizeof (char); /* sizeof (long long) ? */ | |
3551 | break; | |
3552 | case FORM_ADDR: | |
3553 | case FORM_REF: | |
3554 | diep += sizeof (long); | |
3555 | break; | |
3556 | case FORM_BLOCK2: | |
3557 | (void) memcpy (&block2sz, diep, sizeof (short)); | |
3558 | block2sz += sizeof (short); | |
3559 | diep += block2sz; | |
3560 | break; | |
3561 | case FORM_BLOCK4: | |
3562 | (void) memcpy (&block4sz, diep, sizeof (long)); | |
3563 | block4sz += sizeof (long); | |
3564 | diep += block4sz; | |
3565 | break; | |
3566 | case FORM_STRING: | |
3567 | diep += strlen (diep) + 1; | |
3568 | break; | |
3569 | default: | |
3570 | SQUAWK (("unknown attribute form (0x%x), skipped rest", form)); | |
3571 | diep = end; | |
3572 | break; | |
3573 | } | |
3574 | } | |
3575 | } |