]>
Commit | Line | Data |
---|---|---|
d95a8903 AC |
1 | /* Target-dependent code for Renesas M32R, for GDB. |
2 | ||
cea15572 | 3 | Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
d95a8903 AC |
4 | Foundation, Inc. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "frame-unwind.h" | |
26 | #include "frame-base.h" | |
27 | #include "symtab.h" | |
28 | #include "gdbtypes.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "gdbcore.h" | |
31 | #include "gdb_string.h" | |
32 | #include "value.h" | |
33 | #include "inferior.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
36 | #include "language.h" | |
37 | #include "arch-utils.h" | |
38 | #include "regcache.h" | |
39 | #include "trad-frame.h" | |
73e8eb51 | 40 | #include "dis-asm.h" |
d95a8903 AC |
41 | |
42 | #include "gdb_assert.h" | |
43 | ||
9b32d526 | 44 | #include "m32r-tdep.h" |
d95a8903 AC |
45 | |
46 | /* Local functions */ | |
47 | ||
48 | extern void _initialize_m32r_tdep (void); | |
49 | ||
50 | static CORE_ADDR | |
51 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
52 | { | |
53 | /* Align to the size of an instruction (so that they can safely be | |
54 | pushed onto the stack. */ | |
55 | return sp & ~3; | |
56 | } | |
57 | ||
d95a8903 AC |
58 | |
59 | /* BREAKPOINT */ | |
60 | #define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00} | |
61 | #define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70} | |
62 | #define M32R_BE_BREAKPOINT16 {0x10, 0xf1} | |
63 | #define M32R_LE_BREAKPOINT16 {0xf1, 0x10} | |
64 | ||
65 | static int | |
66 | m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) | |
67 | { | |
68 | int val; | |
69 | unsigned char *bp; | |
70 | int bplen; | |
71 | ||
72 | bplen = (addr & 3) ? 2 : 4; | |
73 | ||
74 | /* Save the memory contents. */ | |
75 | val = target_read_memory (addr, contents_cache, bplen); | |
76 | if (val != 0) | |
77 | return val; /* return error */ | |
78 | ||
79 | /* Determine appropriate breakpoint contents and size for this address. */ | |
80 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
81 | { | |
7e3dd49e AC |
82 | if (((addr & 3) == 0) |
83 | && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80))) | |
d95a8903 AC |
84 | { |
85 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
86 | bp = insn; | |
87 | bplen = sizeof (insn); | |
88 | } | |
89 | else | |
90 | { | |
91 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
92 | bp = insn; | |
93 | bplen = sizeof (insn); | |
94 | } | |
95 | } | |
96 | else | |
97 | { /* little-endian */ | |
7e3dd49e AC |
98 | if (((addr & 3) == 0) |
99 | && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80))) | |
d95a8903 AC |
100 | { |
101 | static unsigned char insn[] = M32R_LE_BREAKPOINT32; | |
102 | bp = insn; | |
103 | bplen = sizeof (insn); | |
104 | } | |
105 | else | |
106 | { | |
107 | static unsigned char insn[] = M32R_LE_BREAKPOINT16; | |
108 | bp = insn; | |
109 | bplen = sizeof (insn); | |
110 | } | |
111 | } | |
112 | ||
113 | /* Write the breakpoint. */ | |
114 | val = target_write_memory (addr, (char *) bp, bplen); | |
115 | return val; | |
116 | } | |
117 | ||
118 | static int | |
119 | m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) | |
120 | { | |
121 | int val; | |
122 | int bplen; | |
123 | ||
124 | /* Determine appropriate breakpoint contents and size for this address. */ | |
125 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
126 | { | |
7e3dd49e AC |
127 | if (((addr & 3) == 0) |
128 | && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80))) | |
d95a8903 AC |
129 | { |
130 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
131 | bplen = sizeof (insn); | |
132 | } | |
133 | else | |
134 | { | |
135 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
136 | bplen = sizeof (insn); | |
137 | } | |
138 | } | |
139 | else | |
140 | { | |
141 | /* little-endian */ | |
7e3dd49e AC |
142 | if (((addr & 3) == 0) |
143 | && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80))) | |
d95a8903 AC |
144 | { |
145 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
146 | bplen = sizeof (insn); | |
147 | } | |
148 | else | |
149 | { | |
150 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
151 | bplen = sizeof (insn); | |
152 | } | |
153 | } | |
154 | ||
155 | /* Write contents. */ | |
156 | val = target_write_memory (addr, contents_cache, bplen); | |
157 | return val; | |
158 | } | |
159 | ||
160 | static const unsigned char * | |
161 | m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
162 | { | |
163 | unsigned char *bp; | |
164 | ||
165 | /* Determine appropriate breakpoint. */ | |
166 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
167 | { | |
168 | if ((*pcptr & 3) == 0) | |
169 | { | |
170 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
171 | bp = insn; | |
172 | *lenptr = sizeof (insn); | |
173 | } | |
174 | else | |
175 | { | |
176 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
177 | bp = insn; | |
178 | *lenptr = sizeof (insn); | |
179 | } | |
180 | } | |
181 | else | |
182 | { | |
183 | if ((*pcptr & 3) == 0) | |
184 | { | |
185 | static unsigned char insn[] = M32R_LE_BREAKPOINT32; | |
186 | bp = insn; | |
187 | *lenptr = sizeof (insn); | |
188 | } | |
189 | else | |
190 | { | |
191 | static unsigned char insn[] = M32R_LE_BREAKPOINT16; | |
192 | bp = insn; | |
193 | *lenptr = sizeof (insn); | |
194 | } | |
195 | } | |
196 | ||
197 | return bp; | |
198 | } | |
199 | ||
200 | ||
201 | char *m32r_register_names[] = { | |
202 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
203 | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | |
204 | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | |
205 | "evb" | |
206 | }; | |
207 | ||
d95a8903 AC |
208 | static const char * |
209 | m32r_register_name (int reg_nr) | |
210 | { | |
211 | if (reg_nr < 0) | |
212 | return NULL; | |
9b32d526 | 213 | if (reg_nr >= M32R_NUM_REGS) |
d95a8903 AC |
214 | return NULL; |
215 | return m32r_register_names[reg_nr]; | |
216 | } | |
217 | ||
218 | ||
219 | /* Return the GDB type object for the "standard" data type | |
220 | of data in register N. */ | |
221 | ||
222 | static struct type * | |
223 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | |
224 | { | |
225 | if (reg_nr == M32R_PC_REGNUM) | |
226 | return builtin_type_void_func_ptr; | |
227 | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | |
228 | return builtin_type_void_data_ptr; | |
229 | else | |
230 | return builtin_type_int32; | |
231 | } | |
232 | ||
233 | ||
234 | /* Write into appropriate registers a function return value | |
235 | of type TYPE, given in virtual format. | |
236 | ||
237 | Things always get returned in RET1_REGNUM, RET2_REGNUM. */ | |
238 | ||
239 | static void | |
240 | m32r_store_return_value (struct type *type, struct regcache *regcache, | |
241 | const void *valbuf) | |
242 | { | |
243 | CORE_ADDR regval; | |
244 | int len = TYPE_LENGTH (type); | |
245 | ||
246 | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len); | |
247 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | |
248 | ||
249 | if (len > 4) | |
250 | { | |
880bc914 | 251 | regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4); |
d95a8903 AC |
252 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); |
253 | } | |
254 | } | |
255 | ||
d95a8903 AC |
256 | /* This is required by skip_prologue. The results of decoding a prologue |
257 | should be cached because this thrashing is getting nuts. */ | |
258 | ||
cea15572 | 259 | static int |
d95a8903 | 260 | decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, |
cea15572 | 261 | CORE_ADDR *pl_endptr, unsigned long *framelength) |
d95a8903 AC |
262 | { |
263 | unsigned long framesize; | |
264 | int insn; | |
265 | int op1; | |
d95a8903 | 266 | CORE_ADDR after_prologue = 0; |
cea15572 | 267 | CORE_ADDR after_push = 0; |
d95a8903 AC |
268 | CORE_ADDR after_stack_adjust = 0; |
269 | CORE_ADDR current_pc; | |
cea15572 | 270 | LONGEST return_value; |
d95a8903 AC |
271 | |
272 | framesize = 0; | |
273 | after_prologue = 0; | |
274 | ||
275 | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | |
276 | { | |
cea15572 KI |
277 | /* Check if current pc's location is readable. */ |
278 | if (!safe_read_memory_integer (current_pc, 2, &return_value)) | |
279 | return -1; | |
280 | ||
d95a8903 AC |
281 | insn = read_memory_unsigned_integer (current_pc, 2); |
282 | ||
cea15572 KI |
283 | if (insn == 0x0000) |
284 | break; | |
285 | ||
d95a8903 AC |
286 | /* If this is a 32 bit instruction, we dont want to examine its |
287 | immediate data as though it were an instruction */ | |
288 | if (current_pc & 0x02) | |
289 | { | |
d95a8903 AC |
290 | /* decode this instruction further */ |
291 | insn &= 0x7fff; | |
292 | } | |
293 | else | |
294 | { | |
d95a8903 AC |
295 | if (insn & 0x8000) |
296 | { | |
297 | if (current_pc == scan_limit) | |
298 | scan_limit += 2; /* extend the search */ | |
cea15572 | 299 | |
d95a8903 | 300 | current_pc += 2; /* skip the immediate data */ |
cea15572 KI |
301 | |
302 | /* Check if current pc's location is readable. */ | |
303 | if (!safe_read_memory_integer (current_pc, 2, &return_value)) | |
304 | return -1; | |
305 | ||
d95a8903 AC |
306 | if (insn == 0x8faf) /* add3 sp, sp, xxxx */ |
307 | /* add 16 bit sign-extended offset */ | |
308 | { | |
309 | framesize += | |
310 | -((short) read_memory_unsigned_integer (current_pc, 2)); | |
311 | } | |
312 | else | |
313 | { | |
7e3dd49e | 314 | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ |
cea15572 KI |
315 | && safe_read_memory_integer (current_pc + 2, 2, |
316 | &return_value) | |
7e3dd49e AC |
317 | && read_memory_unsigned_integer (current_pc + 2, |
318 | 2) == 0x0f24) | |
d95a8903 AC |
319 | /* subtract 24 bit sign-extended negative-offset */ |
320 | { | |
321 | insn = read_memory_unsigned_integer (current_pc - 2, 4); | |
322 | if (insn & 0x00800000) /* sign extend */ | |
323 | insn |= 0xff000000; /* negative */ | |
324 | else | |
325 | insn &= 0x00ffffff; /* positive */ | |
326 | framesize += insn; | |
327 | } | |
328 | } | |
cea15572 | 329 | after_push = current_pc + 2; |
d95a8903 AC |
330 | continue; |
331 | } | |
332 | } | |
333 | op1 = insn & 0xf000; /* isolate just the first nibble */ | |
334 | ||
335 | if ((insn & 0xf0ff) == 0x207f) | |
336 | { /* st reg, @-sp */ | |
337 | int regno; | |
338 | framesize += 4; | |
339 | regno = ((insn >> 8) & 0xf); | |
340 | after_prologue = 0; | |
341 | continue; | |
342 | } | |
343 | if ((insn >> 8) == 0x4f) /* addi sp, xx */ | |
344 | /* add 8 bit sign-extended offset */ | |
345 | { | |
346 | int stack_adjust = (char) (insn & 0xff); | |
347 | ||
348 | /* there are probably two of these stack adjustments: | |
349 | 1) A negative one in the prologue, and | |
350 | 2) A positive one in the epilogue. | |
351 | We are only interested in the first one. */ | |
352 | ||
353 | if (stack_adjust < 0) | |
354 | { | |
355 | framesize -= stack_adjust; | |
356 | after_prologue = 0; | |
357 | /* A frameless function may have no "mv fp, sp". | |
358 | In that case, this is the end of the prologue. */ | |
359 | after_stack_adjust = current_pc + 2; | |
360 | } | |
361 | continue; | |
362 | } | |
363 | if (insn == 0x1d8f) | |
364 | { /* mv fp, sp */ | |
365 | after_prologue = current_pc + 2; | |
366 | break; /* end of stack adjustments */ | |
367 | } | |
cea15572 | 368 | |
d95a8903 AC |
369 | /* Nop looks like a branch, continue explicitly */ |
370 | if (insn == 0x7000) | |
371 | { | |
372 | after_prologue = current_pc + 2; | |
373 | continue; /* nop occurs between pushes */ | |
374 | } | |
cea15572 KI |
375 | /* End of prolog if any of these are trap instructions */ |
376 | if ((insn & 0xfff0) == 0x10f0) | |
377 | { | |
378 | after_prologue = current_pc; | |
379 | break; | |
380 | } | |
d95a8903 AC |
381 | /* End of prolog if any of these are branch instructions */ |
382 | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | |
383 | { | |
384 | after_prologue = current_pc; | |
d95a8903 AC |
385 | continue; |
386 | } | |
387 | /* Some of the branch instructions are mixed with other types */ | |
388 | if (op1 == 0x1000) | |
389 | { | |
390 | int subop = insn & 0x0ff0; | |
391 | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | |
392 | { | |
393 | after_prologue = current_pc; | |
d95a8903 AC |
394 | continue; /* jmp , jl */ |
395 | } | |
396 | } | |
397 | } | |
398 | ||
cea15572 KI |
399 | if (framelength) |
400 | *framelength = framesize; | |
401 | ||
d95a8903 AC |
402 | if (current_pc >= scan_limit) |
403 | { | |
404 | if (pl_endptr) | |
405 | { | |
406 | if (after_stack_adjust != 0) | |
407 | /* We did not find a "mv fp,sp", but we DID find | |
408 | a stack_adjust. Is it safe to use that as the | |
409 | end of the prologue? I just don't know. */ | |
410 | { | |
411 | *pl_endptr = after_stack_adjust; | |
412 | } | |
cea15572 KI |
413 | else if (after_push != 0) |
414 | /* We did not find a "mv fp,sp", but we DID find | |
415 | a push. Is it safe to use that as the | |
416 | end of the prologue? I just don't know. */ | |
417 | { | |
418 | *pl_endptr = after_push; | |
419 | } | |
d95a8903 AC |
420 | else |
421 | /* We reached the end of the loop without finding the end | |
422 | of the prologue. No way to win -- we should report failure. | |
423 | The way we do that is to return the original start_pc. | |
424 | GDB will set a breakpoint at the start of the function (etc.) */ | |
425 | *pl_endptr = start_pc; | |
426 | } | |
cea15572 | 427 | return 0; |
d95a8903 | 428 | } |
cea15572 | 429 | |
d95a8903 AC |
430 | if (after_prologue == 0) |
431 | after_prologue = current_pc; | |
432 | ||
433 | if (pl_endptr) | |
434 | *pl_endptr = after_prologue; | |
cea15572 KI |
435 | |
436 | return 0; | |
d95a8903 AC |
437 | } /* decode_prologue */ |
438 | ||
439 | /* Function: skip_prologue | |
440 | Find end of function prologue */ | |
441 | ||
cea15572 | 442 | #define DEFAULT_SEARCH_LIMIT 128 |
d95a8903 AC |
443 | |
444 | CORE_ADDR | |
445 | m32r_skip_prologue (CORE_ADDR pc) | |
446 | { | |
447 | CORE_ADDR func_addr, func_end; | |
448 | struct symtab_and_line sal; | |
cea15572 | 449 | LONGEST return_value; |
d95a8903 AC |
450 | |
451 | /* See what the symbol table says */ | |
452 | ||
453 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
454 | { | |
455 | sal = find_pc_line (func_addr, 0); | |
456 | ||
457 | if (sal.line != 0 && sal.end <= func_end) | |
458 | { | |
459 | func_end = sal.end; | |
460 | } | |
461 | else | |
462 | /* Either there's no line info, or the line after the prologue is after | |
463 | the end of the function. In this case, there probably isn't a | |
464 | prologue. */ | |
465 | { | |
466 | func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | |
467 | } | |
468 | } | |
469 | else | |
470 | func_end = pc + DEFAULT_SEARCH_LIMIT; | |
cea15572 KI |
471 | |
472 | /* If pc's location is not readable, just quit. */ | |
473 | if (!safe_read_memory_integer (pc, 4, &return_value)) | |
474 | return pc; | |
475 | ||
476 | /* Find the end of prologue. */ | |
477 | if (decode_prologue (pc, func_end, &sal.end, NULL) < 0) | |
478 | return pc; | |
479 | ||
d95a8903 AC |
480 | return sal.end; |
481 | } | |
482 | ||
d95a8903 AC |
483 | struct m32r_unwind_cache |
484 | { | |
485 | /* The previous frame's inner most stack address. Used as this | |
486 | frame ID's stack_addr. */ | |
487 | CORE_ADDR prev_sp; | |
488 | /* The frame's base, optionally used by the high-level debug info. */ | |
489 | CORE_ADDR base; | |
490 | int size; | |
491 | /* How far the SP and r13 (FP) have been offset from the start of | |
492 | the stack frame (as defined by the previous frame's stack | |
493 | pointer). */ | |
494 | LONGEST sp_offset; | |
495 | LONGEST r13_offset; | |
496 | int uses_frame; | |
497 | /* Table indicating the location of each and every register. */ | |
498 | struct trad_frame_saved_reg *saved_regs; | |
499 | }; | |
500 | ||
501 | /* Put here the code to store, into fi->saved_regs, the addresses of | |
502 | the saved registers of frame described by FRAME_INFO. This | |
503 | includes special registers such as pc and fp saved in special ways | |
504 | in the stack frame. sp is even more special: the address we return | |
505 | for it IS the sp for the next frame. */ | |
506 | ||
507 | static struct m32r_unwind_cache * | |
508 | m32r_frame_unwind_cache (struct frame_info *next_frame, | |
509 | void **this_prologue_cache) | |
510 | { | |
cea15572 | 511 | CORE_ADDR pc, scan_limit; |
d95a8903 AC |
512 | ULONGEST prev_sp; |
513 | ULONGEST this_base; | |
cea15572 | 514 | unsigned long op, op2; |
d95a8903 AC |
515 | int i; |
516 | struct m32r_unwind_cache *info; | |
517 | ||
cea15572 | 518 | |
d95a8903 AC |
519 | if ((*this_prologue_cache)) |
520 | return (*this_prologue_cache); | |
521 | ||
522 | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | |
523 | (*this_prologue_cache) = info; | |
524 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
525 | ||
526 | info->size = 0; | |
527 | info->sp_offset = 0; | |
d95a8903 | 528 | info->uses_frame = 0; |
cea15572 KI |
529 | |
530 | scan_limit = frame_pc_unwind (next_frame); | |
d95a8903 | 531 | for (pc = frame_func_unwind (next_frame); |
cea15572 | 532 | pc > 0 && pc < scan_limit; pc += 2) |
d95a8903 AC |
533 | { |
534 | if ((pc & 2) == 0) | |
535 | { | |
536 | op = get_frame_memory_unsigned (next_frame, pc, 4); | |
537 | if ((op & 0x80000000) == 0x80000000) | |
538 | { | |
539 | /* 32-bit instruction */ | |
540 | if ((op & 0xffff0000) == 0x8faf0000) | |
541 | { | |
542 | /* add3 sp,sp,xxxx */ | |
543 | short n = op & 0xffff; | |
544 | info->sp_offset += n; | |
545 | } | |
cea15572 KI |
546 | else if (((op >> 8) == 0xe4) |
547 | && get_frame_memory_unsigned (next_frame, pc + 2, | |
7e3dd49e | 548 | 2) == 0x0f24) |
d95a8903 | 549 | { |
cea15572 | 550 | /* ld24 r4, xxxxxx; sub sp, r4 */ |
d95a8903 AC |
551 | unsigned long n = op & 0xffffff; |
552 | info->sp_offset += n; | |
cea15572 | 553 | pc += 2; /* skip sub instruction */ |
d95a8903 | 554 | } |
d95a8903 | 555 | |
cea15572 KI |
556 | if (pc == scan_limit) |
557 | scan_limit += 2; /* extend the search */ | |
558 | pc += 2; /* skip the immediate data */ | |
d95a8903 AC |
559 | continue; |
560 | } | |
561 | } | |
562 | ||
563 | /* 16-bit instructions */ | |
564 | op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff; | |
565 | if ((op & 0xf0ff) == 0x207f) | |
566 | { | |
567 | /* st rn, @-sp */ | |
568 | int regno = ((op >> 8) & 0xf); | |
569 | info->sp_offset -= 4; | |
570 | info->saved_regs[regno].addr = info->sp_offset; | |
571 | } | |
572 | else if ((op & 0xff00) == 0x4f00) | |
573 | { | |
574 | /* addi sp, xx */ | |
575 | int n = (char) (op & 0xff); | |
576 | info->sp_offset += n; | |
577 | } | |
578 | else if (op == 0x1d8f) | |
579 | { | |
580 | /* mv fp, sp */ | |
581 | info->uses_frame = 1; | |
582 | info->r13_offset = info->sp_offset; | |
cea15572 KI |
583 | break; /* end of stack adjustments */ |
584 | } | |
585 | else if ((op & 0xfff0) == 0x10f0) | |
586 | { | |
587 | /* end of prologue if this is a trap instruction */ | |
588 | break; /* end of stack adjustments */ | |
d95a8903 | 589 | } |
d95a8903 AC |
590 | } |
591 | ||
592 | info->size = -info->sp_offset; | |
593 | ||
594 | /* Compute the previous frame's stack pointer (which is also the | |
595 | frame's ID's stack address), and this frame's base pointer. */ | |
596 | if (info->uses_frame) | |
597 | { | |
598 | /* The SP was moved to the FP. This indicates that a new frame | |
599 | was created. Get THIS frame's FP value by unwinding it from | |
600 | the next frame. */ | |
7e3dd49e | 601 | this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM); |
d95a8903 AC |
602 | /* The FP points at the last saved register. Adjust the FP back |
603 | to before the first saved register giving the SP. */ | |
604 | prev_sp = this_base + info->size; | |
605 | } | |
606 | else | |
607 | { | |
608 | /* Assume that the FP is this frame's SP but with that pushed | |
609 | stack space added back. */ | |
7e3dd49e | 610 | this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
611 | prev_sp = this_base + info->size; |
612 | } | |
613 | ||
614 | /* Convert that SP/BASE into real addresses. */ | |
615 | info->prev_sp = prev_sp; | |
616 | info->base = this_base; | |
617 | ||
618 | /* Adjust all the saved registers so that they contain addresses and | |
619 | not offsets. */ | |
620 | for (i = 0; i < NUM_REGS - 1; i++) | |
621 | if (trad_frame_addr_p (info->saved_regs, i)) | |
622 | info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); | |
623 | ||
624 | /* The call instruction moves the caller's PC in the callee's LR. | |
625 | Since this is an unwind, do the reverse. Copy the location of LR | |
626 | into PC (the address / regnum) so that a request for PC will be | |
627 | converted into a request for the LR. */ | |
628 | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
629 | ||
630 | /* The previous frame's SP needed to be computed. Save the computed | |
631 | value. */ | |
632 | trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); | |
633 | ||
634 | return info; | |
635 | } | |
636 | ||
637 | static CORE_ADDR | |
638 | m32r_read_pc (ptid_t ptid) | |
639 | { | |
640 | ptid_t save_ptid; | |
7e3dd49e | 641 | ULONGEST pc; |
d95a8903 AC |
642 | |
643 | save_ptid = inferior_ptid; | |
644 | inferior_ptid = ptid; | |
7e3dd49e | 645 | regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc); |
d95a8903 AC |
646 | inferior_ptid = save_ptid; |
647 | return pc; | |
648 | } | |
649 | ||
650 | static void | |
651 | m32r_write_pc (CORE_ADDR val, ptid_t ptid) | |
652 | { | |
653 | ptid_t save_ptid; | |
654 | ||
655 | save_ptid = inferior_ptid; | |
656 | inferior_ptid = ptid; | |
657 | write_register (M32R_PC_REGNUM, val); | |
658 | inferior_ptid = save_ptid; | |
659 | } | |
660 | ||
661 | static CORE_ADDR | |
662 | m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
663 | { | |
7e3dd49e | 664 | return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
665 | } |
666 | ||
667 | ||
668 | static CORE_ADDR | |
7d9b040b | 669 | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
d95a8903 AC |
670 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
671 | struct value **args, CORE_ADDR sp, int struct_return, | |
672 | CORE_ADDR struct_addr) | |
673 | { | |
674 | int stack_offset, stack_alloc; | |
675 | int argreg = ARG1_REGNUM; | |
676 | int argnum; | |
677 | struct type *type; | |
678 | enum type_code typecode; | |
679 | CORE_ADDR regval; | |
680 | char *val; | |
681 | char valbuf[MAX_REGISTER_SIZE]; | |
682 | int len; | |
683 | int odd_sized_struct; | |
684 | ||
685 | /* first force sp to a 4-byte alignment */ | |
686 | sp = sp & ~3; | |
687 | ||
688 | /* Set the return address. For the m32r, the return breakpoint is | |
689 | always at BP_ADDR. */ | |
690 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | |
691 | ||
692 | /* If STRUCT_RETURN is true, then the struct return address (in | |
693 | STRUCT_ADDR) will consume the first argument-passing register. | |
694 | Both adjust the register count and store that value. */ | |
695 | if (struct_return) | |
696 | { | |
697 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
698 | argreg++; | |
699 | } | |
700 | ||
701 | /* Now make sure there's space on the stack */ | |
702 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | |
703 | stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); | |
704 | sp -= stack_alloc; /* make room on stack for args */ | |
705 | ||
706 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
707 | { | |
708 | type = VALUE_TYPE (args[argnum]); | |
709 | typecode = TYPE_CODE (type); | |
710 | len = TYPE_LENGTH (type); | |
711 | ||
712 | memset (valbuf, 0, sizeof (valbuf)); | |
713 | ||
714 | /* Passes structures that do not fit in 2 registers by reference. */ | |
715 | if (len > 8 | |
716 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
717 | { | |
718 | store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum])); | |
719 | typecode = TYPE_CODE_PTR; | |
720 | len = 4; | |
721 | val = valbuf; | |
722 | } | |
723 | else if (len < 4) | |
724 | { | |
725 | /* value gets right-justified in the register or stack word */ | |
7e3dd49e | 726 | memcpy (valbuf + (register_size (gdbarch, argreg) - len), |
d95a8903 AC |
727 | (char *) VALUE_CONTENTS (args[argnum]), len); |
728 | val = valbuf; | |
729 | } | |
730 | else | |
731 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
732 | ||
733 | while (len > 0) | |
734 | { | |
735 | if (argreg > ARGN_REGNUM) | |
736 | { | |
737 | /* must go on the stack */ | |
738 | write_memory (sp + stack_offset, val, 4); | |
739 | stack_offset += 4; | |
740 | } | |
741 | else if (argreg <= ARGN_REGNUM) | |
742 | { | |
743 | /* there's room in a register */ | |
744 | regval = | |
7e3dd49e AC |
745 | extract_unsigned_integer (val, |
746 | register_size (gdbarch, argreg)); | |
d95a8903 AC |
747 | regcache_cooked_write_unsigned (regcache, argreg++, regval); |
748 | } | |
749 | ||
750 | /* Store the value 4 bytes at a time. This means that things | |
751 | larger than 4 bytes may go partly in registers and partly | |
752 | on the stack. */ | |
7e3dd49e AC |
753 | len -= register_size (gdbarch, argreg); |
754 | val += register_size (gdbarch, argreg); | |
d95a8903 AC |
755 | } |
756 | } | |
757 | ||
758 | /* Finally, update the SP register. */ | |
759 | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | |
760 | ||
761 | return sp; | |
762 | } | |
763 | ||
764 | ||
765 | /* Given a return value in `regbuf' with a type `valtype', | |
766 | extract and copy its value into `valbuf'. */ | |
767 | ||
768 | static void | |
769 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | |
770 | void *dst) | |
771 | { | |
772 | bfd_byte *valbuf = dst; | |
773 | int len = TYPE_LENGTH (type); | |
774 | ULONGEST tmp; | |
775 | ||
776 | /* By using store_unsigned_integer we avoid having to do | |
777 | anything special for small big-endian values. */ | |
778 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | |
779 | store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp); | |
780 | ||
781 | /* Ignore return values more than 8 bytes in size because the m32r | |
782 | returns anything more than 8 bytes in the stack. */ | |
783 | if (len > 4) | |
784 | { | |
785 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | |
786 | store_unsigned_integer (valbuf + len - 4, 4, tmp); | |
787 | } | |
788 | } | |
789 | ||
14588880 KI |
790 | enum return_value_convention |
791 | m32r_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
792 | struct regcache *regcache, void *readbuf, | |
793 | const void *writebuf) | |
794 | { | |
795 | if (TYPE_LENGTH (valtype) > 8) | |
796 | return RETURN_VALUE_STRUCT_CONVENTION; | |
797 | else | |
798 | { | |
799 | if (readbuf != NULL) | |
800 | m32r_extract_return_value (valtype, regcache, readbuf); | |
801 | if (writebuf != NULL) | |
802 | m32r_store_return_value (valtype, regcache, writebuf); | |
803 | return RETURN_VALUE_REGISTER_CONVENTION; | |
804 | } | |
805 | } | |
806 | ||
807 | ||
d95a8903 AC |
808 | |
809 | static CORE_ADDR | |
810 | m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
811 | { | |
7e3dd49e | 812 | return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); |
d95a8903 AC |
813 | } |
814 | ||
815 | /* Given a GDB frame, determine the address of the calling function's | |
816 | frame. This will be used to create a new GDB frame struct. */ | |
817 | ||
818 | static void | |
819 | m32r_frame_this_id (struct frame_info *next_frame, | |
820 | void **this_prologue_cache, struct frame_id *this_id) | |
821 | { | |
822 | struct m32r_unwind_cache *info | |
823 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
824 | CORE_ADDR base; | |
825 | CORE_ADDR func; | |
826 | struct minimal_symbol *msym_stack; | |
827 | struct frame_id id; | |
828 | ||
829 | /* The FUNC is easy. */ | |
830 | func = frame_func_unwind (next_frame); | |
831 | ||
d95a8903 AC |
832 | /* Check if the stack is empty. */ |
833 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
834 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
835 | return; | |
836 | ||
837 | /* Hopefully the prologue analysis either correctly determined the | |
838 | frame's base (which is the SP from the previous frame), or set | |
839 | that base to "NULL". */ | |
840 | base = info->prev_sp; | |
841 | if (base == 0) | |
842 | return; | |
843 | ||
844 | id = frame_id_build (base, func); | |
d95a8903 AC |
845 | (*this_id) = id; |
846 | } | |
847 | ||
848 | static void | |
849 | m32r_frame_prev_register (struct frame_info *next_frame, | |
850 | void **this_prologue_cache, | |
851 | int regnum, int *optimizedp, | |
852 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
853 | int *realnump, void *bufferp) | |
854 | { | |
855 | struct m32r_unwind_cache *info | |
856 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
1f67027d AC |
857 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
858 | optimizedp, lvalp, addrp, realnump, bufferp); | |
d95a8903 AC |
859 | } |
860 | ||
861 | static const struct frame_unwind m32r_frame_unwind = { | |
862 | NORMAL_FRAME, | |
863 | m32r_frame_this_id, | |
864 | m32r_frame_prev_register | |
865 | }; | |
866 | ||
867 | static const struct frame_unwind * | |
7e3dd49e | 868 | m32r_frame_sniffer (struct frame_info *next_frame) |
d95a8903 AC |
869 | { |
870 | return &m32r_frame_unwind; | |
871 | } | |
872 | ||
873 | static CORE_ADDR | |
874 | m32r_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
875 | { | |
876 | struct m32r_unwind_cache *info | |
877 | = m32r_frame_unwind_cache (next_frame, this_cache); | |
878 | return info->base; | |
879 | } | |
880 | ||
881 | static const struct frame_base m32r_frame_base = { | |
882 | &m32r_frame_unwind, | |
883 | m32r_frame_base_address, | |
884 | m32r_frame_base_address, | |
885 | m32r_frame_base_address | |
886 | }; | |
887 | ||
888 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
889 | dummy frame. The frame ID's base needs to match the TOS value | |
890 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
891 | breakpoint. */ | |
892 | ||
893 | static struct frame_id | |
894 | m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
895 | { | |
896 | return frame_id_build (m32r_unwind_sp (gdbarch, next_frame), | |
897 | frame_pc_unwind (next_frame)); | |
898 | } | |
899 | ||
900 | ||
901 | static gdbarch_init_ftype m32r_gdbarch_init; | |
902 | ||
903 | static struct gdbarch * | |
904 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
905 | { | |
906 | struct gdbarch *gdbarch; | |
907 | struct gdbarch_tdep *tdep; | |
908 | ||
909 | /* If there is already a candidate, use it. */ | |
910 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
911 | if (arches != NULL) | |
912 | return arches->gdbarch; | |
913 | ||
914 | /* Allocate space for the new architecture. */ | |
915 | tdep = XMALLOC (struct gdbarch_tdep); | |
916 | gdbarch = gdbarch_alloc (&info, tdep); | |
917 | ||
918 | set_gdbarch_read_pc (gdbarch, m32r_read_pc); | |
919 | set_gdbarch_write_pc (gdbarch, m32r_write_pc); | |
920 | set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); | |
921 | ||
9b32d526 | 922 | set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); |
d95a8903 AC |
923 | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); |
924 | set_gdbarch_register_name (gdbarch, m32r_register_name); | |
925 | set_gdbarch_register_type (gdbarch, m32r_register_type); | |
926 | ||
d95a8903 | 927 | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); |
14588880 | 928 | set_gdbarch_return_value (gdbarch, m32r_return_value); |
d95a8903 AC |
929 | |
930 | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | |
931 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
d95a8903 AC |
932 | set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); |
933 | set_gdbarch_memory_insert_breakpoint (gdbarch, | |
934 | m32r_memory_insert_breakpoint); | |
935 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
936 | m32r_memory_remove_breakpoint); | |
937 | ||
d95a8903 AC |
938 | set_gdbarch_frame_align (gdbarch, m32r_frame_align); |
939 | ||
7e3dd49e | 940 | frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer); |
d95a8903 AC |
941 | frame_base_set_default (gdbarch, &m32r_frame_base); |
942 | ||
943 | /* Methods for saving / extracting a dummy frame's ID. The ID's | |
944 | stack address must match the SP value returned by | |
945 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
946 | set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id); | |
947 | ||
948 | /* Return the unwound PC value. */ | |
949 | set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); | |
950 | ||
951 | set_gdbarch_print_insn (gdbarch, print_insn_m32r); | |
952 | ||
953 | return gdbarch; | |
954 | } | |
955 | ||
956 | void | |
957 | _initialize_m32r_tdep (void) | |
958 | { | |
959 | register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); | |
960 | } |