]>
Commit | Line | Data |
---|---|---|
fecd2382 | 1 | /* atof_generic.c - turn a string of digits into a Flonum |
3340f7e5 | 2 | Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc. |
6221fe20 | 3 | |
a39116f1 | 4 | This file is part of GAS, the GNU Assembler. |
6221fe20 | 5 | |
a39116f1 RP |
6 | GAS is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
6221fe20 | 10 | |
a39116f1 RP |
11 | GAS is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
6221fe20 | 15 | |
a39116f1 RP |
16 | You should have received a copy of the GNU General Public License |
17 | along with GAS; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
fecd2382 RP |
19 | |
20 | #include <ctype.h> | |
21 | #include <string.h> | |
22 | ||
23 | #include "as.h" | |
24 | ||
25 | #ifdef __GNUC__ | |
26 | #define alloca __builtin_alloca | |
27 | #else | |
28 | #ifdef sparc | |
29 | #include <alloca.h> | |
30 | #endif | |
31 | #endif | |
32 | ||
6221fe20 KR |
33 | #ifndef FALSE |
34 | #define FALSE (0) | |
35 | #endif | |
36 | #ifndef TRUE | |
37 | #define TRUE (1) | |
fecd2382 | 38 | #endif |
fecd2382 RP |
39 | |
40 | /***********************************************************************\ | |
a39116f1 RP |
41 | * * |
42 | * Given a string of decimal digits , with optional decimal * | |
43 | * mark and optional decimal exponent (place value) of the * | |
44 | * lowest_order decimal digit: produce a floating point * | |
45 | * number. The number is 'generic' floating point: our * | |
46 | * caller will encode it for a specific machine architecture. * | |
47 | * * | |
48 | * Assumptions * | |
49 | * uses base (radix) 2 * | |
50 | * this machine uses 2's complement binary integers * | |
51 | * target flonums use " " " " * | |
6221fe20 | 52 | * target flonums exponents fit in a long * |
a39116f1 RP |
53 | * * |
54 | \***********************************************************************/ | |
fecd2382 RP |
55 | |
56 | /* | |
6221fe20 | 57 | |
a39116f1 | 58 | Syntax: |
6221fe20 | 59 | |
3340f7e5 RP |
60 | <flonum> ::= <optional-sign> <decimal-number> <optional-exponent> |
61 | <optional-sign> ::= '+' | '-' | {empty} | |
62 | <decimal-number> ::= <integer> | |
6221fe20 KR |
63 | | <integer> <radix-character> |
64 | | <integer> <radix-character> <integer> | |
3340f7e5 RP |
65 | | <radix-character> <integer> |
66 | ||
67 | <optional-exponent> ::= {empty} | |
68 | | <exponent-character> <optional-sign> <integer> | |
69 | ||
70 | <integer> ::= <digit> | <digit> <integer> | |
71 | <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | |
72 | <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"} | |
73 | <radix-character> ::= {one character from "string_of_decimal_marks"} | |
6221fe20 | 74 | |
a39116f1 | 75 | */ |
3340f7e5 | 76 | |
6221fe20 KR |
77 | int |
78 | atof_generic (address_of_string_pointer, | |
79 | string_of_decimal_marks, | |
80 | string_of_decimal_exponent_marks, | |
81 | address_of_generic_floating_point_number) | |
82 | /* return pointer to just AFTER number we read. */ | |
83 | char **address_of_string_pointer; | |
84 | /* At most one per number. */ | |
85 | const char *string_of_decimal_marks; | |
86 | const char *string_of_decimal_exponent_marks; | |
87 | FLONUM_TYPE *address_of_generic_floating_point_number; | |
fecd2382 | 88 | { |
6221fe20 KR |
89 | int return_value; /* 0 means OK. */ |
90 | char *first_digit; | |
91 | /* char *last_digit; JF unused */ | |
92 | int number_of_digits_before_decimal; | |
93 | int number_of_digits_after_decimal; | |
94 | long decimal_exponent; | |
95 | int number_of_digits_available; | |
96 | char digits_sign_char; | |
97 | ||
98 | /* | |
99 | * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent. | |
100 | * It would be simpler to modify the string, but we don't; just to be nice | |
101 | * to caller. | |
102 | * We need to know how many digits we have, so we can allocate space for | |
103 | * the digits' value. | |
104 | */ | |
105 | ||
106 | char *p; | |
107 | char c; | |
108 | int seen_significant_digit; | |
109 | ||
110 | first_digit = *address_of_string_pointer; | |
111 | c = *first_digit; | |
112 | ||
113 | if (c == '-' || c == '+') | |
114 | { | |
115 | digits_sign_char = c; | |
116 | first_digit++; | |
117 | } | |
118 | else | |
119 | digits_sign_char = '+'; | |
120 | ||
121 | if ((first_digit[0] == 'n' || first_digit[0] == 'N') | |
122 | && (first_digit[1] == 'a' || first_digit[1] == 'A') | |
123 | && (first_digit[2] == 'n' || first_digit[2] == 'N')) | |
124 | { | |
125 | address_of_generic_floating_point_number->sign = 0; | |
126 | address_of_generic_floating_point_number->exponent = 0; | |
127 | address_of_generic_floating_point_number->leader = | |
128 | address_of_generic_floating_point_number->low; | |
129 | *address_of_string_pointer = first_digit + 3; | |
130 | return 0; | |
131 | } | |
132 | ||
133 | if ((first_digit[0] == 'i' || first_digit[0] == 'I') | |
134 | && (first_digit[1] == 'n' || first_digit[1] == 'N') | |
135 | && (first_digit[2] == 'f' || first_digit[2] == 'F')) | |
136 | { | |
137 | address_of_generic_floating_point_number->sign = | |
138 | digits_sign_char == '+' ? 'P' : 'N'; | |
139 | address_of_generic_floating_point_number->exponent = 0; | |
140 | address_of_generic_floating_point_number->leader = | |
141 | address_of_generic_floating_point_number->low; | |
142 | ||
143 | if ((first_digit[3] == 'i' | |
144 | || first_digit[3] == 'I') | |
145 | && (first_digit[4] == 'n' | |
146 | || first_digit[4] == 'N') | |
147 | && (first_digit[5] == 'i' | |
148 | || first_digit[5] == 'I') | |
149 | && (first_digit[6] == 't' | |
150 | || first_digit[6] == 'T') | |
151 | && (first_digit[7] == 'y' | |
152 | || first_digit[7] == 'Y')) | |
153 | { | |
154 | *address_of_string_pointer = first_digit + 8; | |
3340f7e5 | 155 | } |
6221fe20 KR |
156 | else |
157 | { | |
158 | *address_of_string_pointer = first_digit + 3; | |
3340f7e5 | 159 | } |
6221fe20 KR |
160 | return 0; |
161 | } | |
162 | ||
163 | number_of_digits_before_decimal = 0; | |
164 | number_of_digits_after_decimal = 0; | |
165 | decimal_exponent = 0; | |
166 | seen_significant_digit = 0; | |
167 | for (p = first_digit; | |
168 | (((c = *p) != '\0') | |
169 | && (!c || !strchr (string_of_decimal_marks, c)) | |
170 | && (!c || !strchr (string_of_decimal_exponent_marks, c))); | |
171 | p++) | |
172 | { | |
173 | if (isdigit (c)) | |
174 | { | |
175 | if (seen_significant_digit || c > '0') | |
176 | { | |
177 | ++number_of_digits_before_decimal; | |
178 | seen_significant_digit = 1; | |
179 | } | |
180 | else | |
181 | { | |
182 | first_digit++; | |
183 | } | |
184 | } | |
185 | else | |
186 | { | |
187 | break; /* p -> char after pre-decimal digits. */ | |
188 | } | |
189 | } /* For each digit before decimal mark. */ | |
190 | ||
3340f7e5 | 191 | #ifndef OLD_FLOAT_READS |
6221fe20 KR |
192 | /* Ignore trailing 0's after the decimal point. The original code here |
193 | * (ifdef'd out) does not do this, and numbers like | |
194 | * 4.29496729600000000000e+09 (2**31) | |
195 | * come out inexact for some reason related to length of the digit | |
196 | * string. | |
197 | */ | |
198 | if (c && strchr (string_of_decimal_marks, c)) | |
199 | { | |
200 | int zeros = 0; /* Length of current string of zeros */ | |
201 | ||
202 | for (p++; (c = *p) && isdigit (c); p++) | |
203 | { | |
204 | if (c == '0') | |
205 | { | |
206 | zeros++; | |
207 | } | |
208 | else | |
209 | { | |
210 | number_of_digits_after_decimal += 1 + zeros; | |
211 | zeros = 0; | |
212 | } | |
3340f7e5 | 213 | } |
6221fe20 | 214 | } |
3340f7e5 | 215 | #else |
6221fe20 KR |
216 | if (c && strchr (string_of_decimal_marks, c)) |
217 | { | |
218 | for (p++; | |
219 | (((c = *p) != '\0') | |
220 | && (!c || !strchr (string_of_decimal_exponent_marks, c))); | |
221 | p++) | |
222 | { | |
223 | if (isdigit (c)) | |
224 | { | |
225 | /* This may be retracted below. */ | |
226 | number_of_digits_after_decimal++; | |
227 | ||
228 | if ( /* seen_significant_digit || */ c > '0') | |
229 | { | |
230 | seen_significant_digit = TRUE; | |
fecd2382 | 231 | } |
6221fe20 KR |
232 | } |
233 | else | |
234 | { | |
235 | if (!seen_significant_digit) | |
236 | { | |
237 | number_of_digits_after_decimal = 0; | |
3340f7e5 | 238 | } |
6221fe20 KR |
239 | break; |
240 | } | |
241 | } /* For each digit after decimal mark. */ | |
242 | } | |
243 | ||
244 | while (number_of_digits_after_decimal | |
245 | && first_digit[number_of_digits_before_decimal | |
246 | + number_of_digits_after_decimal] == '0') | |
247 | --number_of_digits_after_decimal; | |
248 | #endif | |
249 | ||
250 | if (c && strchr (string_of_decimal_exponent_marks, c)) | |
251 | { | |
252 | char digits_exponent_sign_char; | |
253 | ||
254 | c = *++p; | |
255 | if (c && strchr ("+-", c)) | |
256 | { | |
257 | digits_exponent_sign_char = c; | |
258 | c = *++p; | |
259 | } | |
260 | else | |
261 | { | |
262 | digits_exponent_sign_char = '+'; | |
fecd2382 | 263 | } |
6221fe20 KR |
264 | |
265 | for (; (c); c = *++p) | |
266 | { | |
267 | if (isdigit (c)) | |
268 | { | |
269 | decimal_exponent = decimal_exponent * 10 + c - '0'; | |
270 | /* | |
271 | * BUG! If we overflow here, we lose! | |
272 | */ | |
273 | } | |
274 | else | |
275 | { | |
276 | break; | |
277 | } | |
278 | } | |
279 | ||
280 | if (digits_exponent_sign_char == '-') | |
281 | { | |
282 | decimal_exponent = -decimal_exponent; | |
283 | } | |
284 | } | |
285 | ||
286 | *address_of_string_pointer = p; | |
287 | ||
288 | ||
289 | ||
290 | number_of_digits_available = | |
291 | number_of_digits_before_decimal + number_of_digits_after_decimal; | |
292 | return_value = 0; | |
293 | if (number_of_digits_available == 0) | |
294 | { | |
295 | address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */ | |
296 | address_of_generic_floating_point_number->leader | |
297 | = -1 + address_of_generic_floating_point_number->low; | |
298 | address_of_generic_floating_point_number->sign = digits_sign_char; | |
299 | /* We have just concocted (+/-)0.0E0 */ | |
300 | ||
301 | } | |
302 | else | |
303 | { | |
304 | int count; /* Number of useful digits left to scan. */ | |
305 | ||
306 | LITTLENUM_TYPE *digits_binary_low; | |
307 | unsigned int precision; | |
308 | unsigned int maximum_useful_digits; | |
309 | unsigned int number_of_digits_to_use; | |
310 | unsigned int more_than_enough_bits_for_digits; | |
311 | unsigned int more_than_enough_littlenums_for_digits; | |
312 | unsigned int size_of_digits_in_littlenums; | |
313 | unsigned int size_of_digits_in_chars; | |
314 | FLONUM_TYPE power_of_10_flonum; | |
315 | FLONUM_TYPE digits_flonum; | |
316 | ||
317 | precision = (address_of_generic_floating_point_number->high | |
318 | - address_of_generic_floating_point_number->low | |
319 | + 1); /* Number of destination littlenums. */ | |
320 | ||
321 | /* Includes guard bits (two littlenums worth) */ | |
a5ac3a14 KR |
322 | #if 0 /* The integer version below is very close, and it doesn't |
323 | require floating point support (which is currently buggy on | |
324 | the Alpha). */ | |
6221fe20 KR |
325 | maximum_useful_digits = (((double) (precision - 2)) |
326 | * ((double) (LITTLENUM_NUMBER_OF_BITS)) | |
327 | / (LOG_TO_BASE_2_OF_10)) | |
328 | + 2; /* 2 :: guard digits. */ | |
a5ac3a14 KR |
329 | #else |
330 | maximum_useful_digits = (((precision - 2)) | |
331 | * ( (LITTLENUM_NUMBER_OF_BITS)) | |
332 | * 1000000 / 3321928) | |
333 | + 2; /* 2 :: guard digits. */ | |
334 | #endif | |
6221fe20 KR |
335 | |
336 | if (number_of_digits_available > maximum_useful_digits) | |
337 | { | |
338 | number_of_digits_to_use = maximum_useful_digits; | |
339 | } | |
340 | else | |
341 | { | |
342 | number_of_digits_to_use = number_of_digits_available; | |
343 | } | |
344 | ||
345 | /* Cast these to SIGNED LONG first, otherwise, on systems with | |
346 | LONG wider than INT (such as Alpha OSF/1), unsignedness may | |
347 | cause unexpected results. */ | |
348 | decimal_exponent += ((long) number_of_digits_before_decimal | |
349 | - (long) number_of_digits_to_use); | |
350 | ||
351 | more_than_enough_bits_for_digits | |
352 | = ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1); | |
353 | ||
354 | more_than_enough_littlenums_for_digits | |
355 | = (more_than_enough_bits_for_digits | |
356 | / LITTLENUM_NUMBER_OF_BITS) | |
357 | + 2; | |
358 | ||
359 | /* Compute (digits) part. In "12.34E56" this is the "1234" part. | |
360 | Arithmetic is exact here. If no digits are supplied then this | |
361 | part is a 0 valued binary integer. Allocate room to build up | |
362 | the binary number as littlenums. We want this memory to | |
363 | disappear when we leave this function. Assume no alignment | |
364 | problems => (room for n objects) == n * (room for 1 | |
365 | object). */ | |
366 | ||
367 | size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits; | |
368 | size_of_digits_in_chars = size_of_digits_in_littlenums | |
369 | * sizeof (LITTLENUM_TYPE); | |
370 | ||
371 | digits_binary_low = (LITTLENUM_TYPE *) | |
372 | alloca (size_of_digits_in_chars); | |
373 | ||
374 | memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars); | |
375 | ||
376 | /* Digits_binary_low[] is allocated and zeroed. */ | |
377 | ||
378 | /* | |
379 | * Parse the decimal digits as if * digits_low was in the units position. | |
380 | * Emit a binary number into digits_binary_low[]. | |
381 | * | |
382 | * Use a large-precision version of: | |
383 | * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit | |
384 | */ | |
385 | ||
386 | for (p = first_digit, count = number_of_digits_to_use; count; p++, --count) | |
387 | { | |
388 | c = *p; | |
389 | if (isdigit (c)) | |
390 | { | |
391 | /* | |
392 | * Multiply by 10. Assume can never overflow. | |
393 | * Add this digit to digits_binary_low[]. | |
394 | */ | |
395 | ||
396 | long carry; | |
397 | LITTLENUM_TYPE *littlenum_pointer; | |
398 | LITTLENUM_TYPE *littlenum_limit; | |
399 | ||
400 | littlenum_limit = digits_binary_low | |
401 | + more_than_enough_littlenums_for_digits | |
402 | - 1; | |
403 | ||
404 | carry = c - '0'; /* char -> binary */ | |
405 | ||
406 | for (littlenum_pointer = digits_binary_low; | |
407 | littlenum_pointer <= littlenum_limit; | |
408 | littlenum_pointer++) | |
409 | { | |
410 | long work; | |
411 | ||
412 | work = carry + 10 * (long) (*littlenum_pointer); | |
413 | *littlenum_pointer = work & LITTLENUM_MASK; | |
414 | carry = work >> LITTLENUM_NUMBER_OF_BITS; | |
3340f7e5 | 415 | } |
6221fe20 KR |
416 | |
417 | if (carry != 0) | |
3340f7e5 | 418 | { |
6221fe20 KR |
419 | /* |
420 | * We have a GROSS internal error. | |
421 | * This should never happen. | |
422 | */ | |
423 | as_fatal ("failed sanity check."); | |
424 | } | |
425 | } | |
426 | else | |
427 | { | |
428 | ++count; /* '.' doesn't alter digits used count. */ | |
429 | } | |
430 | } | |
431 | ||
432 | ||
433 | /* | |
434 | * Digits_binary_low[] properly encodes the value of the digits. | |
435 | * Forget about any high-order littlenums that are 0. | |
436 | */ | |
437 | while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0 | |
438 | && size_of_digits_in_littlenums >= 2) | |
439 | size_of_digits_in_littlenums--; | |
440 | ||
441 | digits_flonum.low = digits_binary_low; | |
442 | digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1; | |
443 | digits_flonum.leader = digits_flonum.high; | |
444 | digits_flonum.exponent = 0; | |
445 | /* | |
446 | * The value of digits_flonum . sign should not be important. | |
447 | * We have already decided the output's sign. | |
448 | * We trust that the sign won't influence the other parts of the number! | |
449 | * So we give it a value for these reasons: | |
450 | * (1) courtesy to humans reading/debugging | |
451 | * these numbers so they don't get excited about strange values | |
452 | * (2) in future there may be more meaning attached to sign, | |
453 | * and what was | |
454 | * harmless noise may become disruptive, ill-conditioned (or worse) | |
455 | * input. | |
456 | */ | |
457 | digits_flonum.sign = '+'; | |
458 | ||
459 | { | |
460 | /* | |
461 | * Compute the mantssa (& exponent) of the power of 10. | |
462 | * If sucessful, then multiply the power of 10 by the digits | |
463 | * giving return_binary_mantissa and return_binary_exponent. | |
464 | */ | |
465 | ||
466 | LITTLENUM_TYPE *power_binary_low; | |
467 | int decimal_exponent_is_negative; | |
468 | /* This refers to the "-56" in "12.34E-56". */ | |
469 | /* FALSE: decimal_exponent is positive (or 0) */ | |
470 | /* TRUE: decimal_exponent is negative */ | |
471 | FLONUM_TYPE temporary_flonum; | |
472 | LITTLENUM_TYPE *temporary_binary_low; | |
473 | unsigned int size_of_power_in_littlenums; | |
474 | unsigned int size_of_power_in_chars; | |
475 | ||
476 | size_of_power_in_littlenums = precision; | |
477 | /* Precision has a built-in fudge factor so we get a few guard bits. */ | |
478 | ||
479 | decimal_exponent_is_negative = decimal_exponent < 0; | |
480 | if (decimal_exponent_is_negative) | |
481 | { | |
482 | decimal_exponent = -decimal_exponent; | |
483 | } | |
484 | ||
485 | /* From now on: the decimal exponent is > 0. Its sign is seperate. */ | |
486 | ||
487 | size_of_power_in_chars = size_of_power_in_littlenums | |
488 | * sizeof (LITTLENUM_TYPE) + 2; | |
489 | ||
490 | power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars); | |
491 | temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars); | |
492 | memset ((char *) power_binary_low, '\0', size_of_power_in_chars); | |
493 | *power_binary_low = 1; | |
494 | power_of_10_flonum.exponent = 0; | |
495 | power_of_10_flonum.low = power_binary_low; | |
496 | power_of_10_flonum.leader = power_binary_low; | |
497 | power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1; | |
498 | power_of_10_flonum.sign = '+'; | |
499 | temporary_flonum.low = temporary_binary_low; | |
500 | temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1; | |
501 | /* | |
502 | * (power) == 1. | |
503 | * Space for temporary_flonum allocated. | |
504 | */ | |
505 | ||
506 | /* | |
507 | * ... | |
508 | * | |
509 | * WHILE more bits | |
510 | * DO find next bit (with place value) | |
511 | * multiply into power mantissa | |
512 | * OD | |
513 | */ | |
514 | { | |
515 | int place_number_limit; | |
516 | /* Any 10^(2^n) whose "n" exceeds this */ | |
517 | /* value will fall off the end of */ | |
518 | /* flonum_XXXX_powers_of_ten[]. */ | |
519 | int place_number; | |
520 | const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */ | |
521 | ||
522 | place_number_limit = table_size_of_flonum_powers_of_ten; | |
523 | ||
524 | multiplicand = (decimal_exponent_is_negative | |
525 | ? flonum_negative_powers_of_ten | |
526 | : flonum_positive_powers_of_ten); | |
527 | ||
528 | for (place_number = 1;/* Place value of this bit of exponent. */ | |
529 | decimal_exponent;/* Quit when no more 1 bits in exponent. */ | |
530 | decimal_exponent >>= 1, place_number++) | |
531 | { | |
532 | if (decimal_exponent & 1) | |
533 | { | |
534 | if (place_number > place_number_limit) | |
535 | { | |
536 | /* The decimal exponent has a magnitude so great | |
537 | that our tables can't help us fragment it. | |
538 | Although this routine is in error because it | |
539 | can't imagine a number that big, signal an | |
540 | error as if it is the user's fault for | |
541 | presenting such a big number. */ | |
542 | return_value = ERROR_EXPONENT_OVERFLOW; | |
543 | /* quit out of loop gracefully */ | |
544 | decimal_exponent = 0; | |
545 | } | |
546 | else | |
547 | { | |
fecd2382 | 548 | #ifdef TRACE |
6221fe20 KR |
549 | printf ("before multiply, place_number = %d., power_of_10_flonum:\n", |
550 | place_number); | |
3340f7e5 | 551 | |
6221fe20 KR |
552 | flonum_print (&power_of_10_flonum); |
553 | (void) putchar ('\n'); | |
fecd2382 | 554 | #endif |
6221fe20 KR |
555 | flonum_multip (multiplicand + place_number, |
556 | &power_of_10_flonum, &temporary_flonum); | |
557 | flonum_copy (&temporary_flonum, &power_of_10_flonum); | |
558 | } /* If this bit of decimal_exponent was computable.*/ | |
559 | } /* If this bit of decimal_exponent was set. */ | |
560 | } /* For each bit of binary representation of exponent */ | |
fecd2382 | 561 | #ifdef TRACE |
6221fe20 KR |
562 | printf (" after computing power_of_10_flonum: "); |
563 | flonum_print (&power_of_10_flonum); | |
564 | (void) putchar ('\n'); | |
fecd2382 | 565 | #endif |
6221fe20 KR |
566 | } |
567 | ||
568 | } | |
569 | ||
570 | /* | |
571 | * power_of_10_flonum is power of ten in binary (mantissa) , (exponent). | |
572 | * It may be the number 1, in which case we don't NEED to multiply. | |
573 | * | |
574 | * Multiply (decimal digits) by power_of_10_flonum. | |
575 | */ | |
576 | ||
577 | flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number); | |
578 | /* Assert sign of the number we made is '+'. */ | |
579 | address_of_generic_floating_point_number->sign = digits_sign_char; | |
580 | ||
581 | } | |
582 | return return_value; | |
583 | } | |
fecd2382 | 584 | |
a39116f1 | 585 | /* end of atof_generic.c */ |