]>
Commit | Line | Data |
---|---|---|
7d9884b9 | 1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. |
97e091b2 | 2 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 |
0434c1a0 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | Contributed by Alessandro Forin([email protected]) at CMU |
5 | and by Per Bothner([email protected]) at U.Wisconsin. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
361bf6ee | 9 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 10 | it under the terms of the GNU General Public License as published by |
361bf6ee JG |
11 | the Free Software Foundation; either version 2 of the License, or |
12 | (at your option) any later version. | |
bd5635a1 | 13 | |
361bf6ee | 14 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
361bf6ee | 20 | along with this program; if not, write to the Free Software |
09af5868 | 21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 22 | |
bd5635a1 | 23 | #include "defs.h" |
09af5868 | 24 | #include "gdb_string.h" |
bd5635a1 RP |
25 | #include "frame.h" |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "value.h" | |
29 | #include "gdbcmd.h" | |
ef08856f | 30 | #include "language.h" |
bd5635a1 | 31 | #include "gdbcore.h" |
62a469e1 SG |
32 | #include "symfile.h" |
33 | #include "objfiles.h" | |
3fed1c4a | 34 | #include "gdbtypes.h" |
28444bf3 | 35 | #include "target.h" |
bd5635a1 | 36 | |
ee5fb959 JK |
37 | #include "opcode/mips.h" |
38 | ||
28444bf3 | 39 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 |
70126bf9 KH |
40 | |
41 | /* FIXME: Put this declaration in frame.h. */ | |
42 | extern struct obstack frame_cache_obstack; | |
28444bf3 DP |
43 | |
44 | /* FIXME! this code assumes 4-byte instructions. */ | |
96431497 | 45 | #define MIPS_INSTLEN 4 /* Length of an instruction */ |
20fa0902 | 46 | #define MIPS16_INSTLEN 2 /* Length of an instruction on MIPS16*/ |
96431497 MA |
47 | #define MIPS_NUMREGS 32 /* Number of integer or float registers */ |
48 | typedef unsigned long t_inst; /* Integer big enough to hold an instruction */ | |
28444bf3 | 49 | |
c1fc0935 MA |
50 | /* MIPS16 function addresses are odd (bit 0 is set). Here are some |
51 | macros to test, set, or clear bit 0 of addresses. */ | |
52 | #define IS_MIPS16_ADDR(addr) ((addr) & 1) | |
53 | #define MAKE_MIPS16_ADDR(addr) ((addr) | 1) | |
54 | #define UNMAKE_MIPS16_ADDR(addr) ((addr) & ~1) | |
55 | ||
002a422b | 56 | #if 0 |
ee5fb959 | 57 | static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); |
002a422b | 58 | #endif |
ee5fb959 | 59 | |
28444bf3 DP |
60 | static int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); |
61 | ||
f2bf454e FF |
62 | static void mips_print_register PARAMS ((int, int)); |
63 | ||
64 | static mips_extra_func_info_t | |
65 | heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); | |
66 | ||
67 | static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); | |
68 | ||
28444bf3 | 69 | static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); |
f2bf454e | 70 | |
e4dbd248 PS |
71 | static void mips_set_fpu_command PARAMS ((char *, int, |
72 | struct cmd_list_element *)); | |
73 | ||
74 | static void mips_show_fpu_command PARAMS ((char *, int, | |
75 | struct cmd_list_element *)); | |
76 | ||
9f9f94aa SS |
77 | void mips_set_processor_type_command PARAMS ((char *, int)); |
78 | ||
1d9489c1 JK |
79 | int mips_set_processor_type PARAMS ((char *)); |
80 | ||
81 | static void mips_show_processor_type_command PARAMS ((char *, int)); | |
82 | ||
9f9f94aa SS |
83 | static void reinit_frame_cache_sfunc PARAMS ((char *, int, |
84 | struct cmd_list_element *)); | |
85 | ||
f2bf454e FF |
86 | static mips_extra_func_info_t |
87 | find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); | |
88 | ||
89 | static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, | |
90 | mips_extra_func_info_t proc_desc)); | |
91 | ||
9f9f94aa SS |
92 | /* This value is the model of MIPS in use. It is derived from the value |
93 | of the PrID register. */ | |
94 | ||
95 | char *mips_processor_type; | |
96 | ||
97 | char *tmp_mips_processor_type; | |
98 | ||
c2a0f1cb ILT |
99 | /* Some MIPS boards don't support floating point, so we permit the |
100 | user to turn it off. */ | |
9f9f94aa | 101 | |
e4dbd248 PS |
102 | enum mips_fpu_type mips_fpu; |
103 | ||
104 | static char *mips_fpu_string; | |
c2a0f1cb | 105 | |
9f9f94aa SS |
106 | /* A set of original names, to be used when restoring back to generic |
107 | registers from a specific set. */ | |
108 | ||
109 | char *mips_generic_reg_names[] = REGISTER_NAMES; | |
110 | ||
111 | /* Names of IDT R3041 registers. */ | |
112 | ||
113 | char *mips_r3041_reg_names[] = { | |
114 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
115 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
116 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
117 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
118 | "sr", "lo", "hi", "bad", "cause","pc", | |
119 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
120 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
121 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
122 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
123 | "fsr", "fir", "fp", "", | |
124 | "", "", "bus", "ccfg", "", "", "", "", | |
125 | "", "", "port", "cmp", "", "", "epc", "prid", | |
126 | }; | |
127 | ||
128 | /* Names of IDT R3051 registers. */ | |
129 | ||
130 | char *mips_r3051_reg_names[] = { | |
131 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
132 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
133 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
134 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
135 | "sr", "lo", "hi", "bad", "cause","pc", | |
136 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
137 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
138 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
139 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
140 | "fsr", "fir", "fp", "", | |
141 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
142 | "", "", "ehi", "", "", "", "epc", "prid", | |
143 | }; | |
144 | ||
145 | /* Names of IDT R3081 registers. */ | |
146 | ||
147 | char *mips_r3081_reg_names[] = { | |
148 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
149 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
150 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
151 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
152 | "sr", "lo", "hi", "bad", "cause","pc", | |
153 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
154 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
155 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
156 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
157 | "fsr", "fir", "fp", "", | |
158 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
159 | "", "", "ehi", "", "", "", "epc", "prid", | |
160 | }; | |
161 | ||
e4dbd248 PS |
162 | /* Names of LSI 33k registers. */ |
163 | ||
164 | char *mips_lsi33k_reg_names[] = { | |
165 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
166 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
167 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
168 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
169 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
170 | "dcic", "bpc", "bda", "", "", "", "", "", | |
171 | "", "", "", "", "", "", "", "", | |
172 | "", "", "", "", "", "", "", "", | |
173 | "", "", "", "", "", "", "", "", | |
174 | "", "", "", "", | |
175 | "", "", "", "", "", "", "", "", | |
176 | "", "", "", "", "", "", "", "", | |
177 | }; | |
178 | ||
9f9f94aa SS |
179 | struct { |
180 | char *name; | |
181 | char **regnames; | |
182 | } mips_processor_type_table[] = { | |
183 | { "generic", mips_generic_reg_names }, | |
184 | { "r3041", mips_r3041_reg_names }, | |
185 | { "r3051", mips_r3051_reg_names }, | |
186 | { "r3071", mips_r3081_reg_names }, | |
187 | { "r3081", mips_r3081_reg_names }, | |
e4dbd248 | 188 | { "lsi33k", mips_lsi33k_reg_names }, |
9f9f94aa SS |
189 | { NULL, NULL } |
190 | }; | |
191 | ||
f9f8c14b MA |
192 | /* Table to translate MIPS16 register field to actual register number. */ |
193 | static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; | |
194 | ||
3127785a RP |
195 | /* Heuristic_proc_start may hunt through the text section for a long |
196 | time across a 2400 baud serial line. Allows the user to limit this | |
197 | search. */ | |
9f9f94aa | 198 | |
3127785a RP |
199 | static unsigned int heuristic_fence_post = 0; |
200 | ||
0f552c5f | 201 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ |
28444bf3 | 202 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ |
0f552c5f JG |
203 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) |
204 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
205 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
206 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
207 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
208 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
209 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
210 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
bd5635a1 | 211 | #define _PROC_MAGIC_ 0x0F0F0F0F |
0f552c5f JG |
212 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) |
213 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
bd5635a1 RP |
214 | |
215 | struct linked_proc_info | |
216 | { | |
217 | struct mips_extra_func_info info; | |
218 | struct linked_proc_info *next; | |
dac4929a | 219 | } *linked_proc_desc_table = NULL; |
bd5635a1 | 220 | |
f2bf454e FF |
221 | |
222 | /* This returns the PC of the first inst after the prologue. If we can't | |
223 | find the prologue, then return 0. */ | |
224 | ||
225 | static CORE_ADDR | |
226 | after_prologue (pc, proc_desc) | |
227 | CORE_ADDR pc; | |
228 | mips_extra_func_info_t proc_desc; | |
229 | { | |
230 | struct symtab_and_line sal; | |
231 | CORE_ADDR func_addr, func_end; | |
232 | ||
233 | if (!proc_desc) | |
234 | proc_desc = find_proc_desc (pc, NULL); | |
235 | ||
236 | if (proc_desc) | |
237 | { | |
238 | /* If function is frameless, then we need to do it the hard way. I | |
239 | strongly suspect that frameless always means prologueless... */ | |
240 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
241 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
242 | return 0; | |
243 | } | |
244 | ||
245 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
246 | return 0; /* Unknown */ | |
247 | ||
248 | sal = find_pc_line (func_addr, 0); | |
249 | ||
250 | if (sal.end < func_end) | |
251 | return sal.end; | |
252 | ||
253 | /* The line after the prologue is after the end of the function. In this | |
254 | case, tell the caller to find the prologue the hard way. */ | |
255 | ||
256 | return 0; | |
257 | } | |
258 | ||
f9f8c14b MA |
259 | /* Decode a MIPS32 instruction that saves a register in the stack, and |
260 | set the appropriate bit in the general register mask or float register mask | |
261 | to indicate which register is saved. This is a helper function | |
262 | for mips_find_saved_regs. */ | |
263 | ||
264 | static void | |
265 | mips32_decode_reg_save (inst, gen_mask, float_mask) | |
266 | t_inst inst; | |
267 | unsigned long *gen_mask; | |
268 | unsigned long *float_mask; | |
269 | { | |
270 | int reg; | |
271 | ||
272 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
273 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
274 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
275 | { | |
276 | /* It might be possible to use the instruction to | |
277 | find the offset, rather than the code below which | |
278 | is based on things being in a certain order in the | |
279 | frame, but figuring out what the instruction's offset | |
280 | is relative to might be a little tricky. */ | |
281 | reg = (inst & 0x001f0000) >> 16; | |
282 | *gen_mask |= (1 << reg); | |
283 | } | |
284 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
285 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ | |
286 | || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */ | |
287 | ||
288 | { | |
289 | reg = ((inst & 0x001f0000) >> 16); | |
290 | *float_mask |= (1 << reg); | |
291 | } | |
292 | } | |
293 | ||
294 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
295 | set the appropriate bit in the general register or float register mask | |
296 | to indicate which register is saved. This is a helper function | |
297 | for mips_find_saved_regs. */ | |
298 | ||
299 | static void | |
300 | mips16_decode_reg_save (inst, gen_mask) | |
301 | t_inst inst; | |
302 | unsigned long *gen_mask; | |
303 | { | |
b348b9fd | 304 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ |
f9f8c14b | 305 | { |
b348b9fd MA |
306 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; |
307 | *gen_mask |= (1 << reg); | |
308 | } | |
309 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
310 | { | |
311 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
f9f8c14b MA |
312 | *gen_mask |= (1 << reg); |
313 | } | |
314 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ | |
315 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
316 | *gen_mask |= (1 << 31); | |
317 | } | |
318 | ||
70126bf9 KH |
319 | /* Guaranteed to set fci->saved_regs to some values (it never leaves it |
320 | NULL). */ | |
321 | ||
322 | void | |
323 | mips_find_saved_regs (fci) | |
9f9f94aa | 324 | struct frame_info *fci; |
70126bf9 KH |
325 | { |
326 | int ireg; | |
327 | CORE_ADDR reg_position; | |
328 | /* r0 bit means kernel trap */ | |
329 | int kernel_trap; | |
330 | /* What registers have been saved? Bitmasks. */ | |
331 | unsigned long gen_mask, float_mask; | |
332 | mips_extra_func_info_t proc_desc; | |
333 | ||
334 | fci->saved_regs = (struct frame_saved_regs *) | |
335 | obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs)); | |
336 | memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs)); | |
337 | ||
e4dbd248 PS |
338 | /* If it is the frame for sigtramp, the saved registers are located |
339 | in a sigcontext structure somewhere on the stack. | |
340 | If the stack layout for sigtramp changes we might have to change these | |
341 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
342 | #ifndef SIGFRAME_BASE | |
343 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
344 | above the sigtramp frame. */ | |
28444bf3 DP |
345 | #define SIGFRAME_BASE MIPS_REGSIZE |
346 | /* FIXME! Are these correct?? */ | |
347 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
348 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
349 | #define SIGFRAME_FPREGSAVE_OFF \ | |
350 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
e4dbd248 PS |
351 | #endif |
352 | #ifndef SIGFRAME_REG_SIZE | |
28444bf3 DP |
353 | /* FIXME! Is this correct?? */ |
354 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
e4dbd248 PS |
355 | #endif |
356 | if (fci->signal_handler_caller) | |
357 | { | |
28444bf3 | 358 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
359 | { |
360 | reg_position = fci->frame + SIGFRAME_REGSAVE_OFF | |
361 | + ireg * SIGFRAME_REG_SIZE; | |
362 | fci->saved_regs->regs[ireg] = reg_position; | |
363 | } | |
28444bf3 | 364 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) |
e4dbd248 PS |
365 | { |
366 | reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF | |
367 | + ireg * SIGFRAME_REG_SIZE; | |
368 | fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position; | |
369 | } | |
370 | fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; | |
371 | return; | |
372 | } | |
373 | ||
70126bf9 KH |
374 | proc_desc = fci->proc_desc; |
375 | if (proc_desc == NULL) | |
376 | /* I'm not sure how/whether this can happen. Normally when we can't | |
377 | find a proc_desc, we "synthesize" one using heuristic_proc_desc | |
378 | and set the saved_regs right away. */ | |
379 | return; | |
380 | ||
381 | kernel_trap = PROC_REG_MASK(proc_desc) & 1; | |
382 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); | |
383 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); | |
384 | ||
f9f8c14b MA |
385 | if (/* In any frame other than the innermost or a frame interrupted by |
386 | a signal, we assume that all registers have been saved. | |
387 | This assumes that all register saves in a function happen before | |
388 | the first function call. */ | |
389 | (fci->next == NULL || fci->next->signal_handler_caller) | |
70126bf9 KH |
390 | |
391 | /* In a dummy frame we know exactly where things are saved. */ | |
392 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
393 | ||
f2bf454e FF |
394 | /* Don't bother unless we are inside a function prologue. Outside the |
395 | prologue, we know where everything is. */ | |
396 | ||
397 | && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) | |
398 | ||
70126bf9 KH |
399 | /* Not sure exactly what kernel_trap means, but if it means |
400 | the kernel saves the registers without a prologue doing it, | |
401 | we better not examine the prologue to see whether registers | |
402 | have been saved yet. */ | |
403 | && !kernel_trap) | |
404 | { | |
405 | /* We need to figure out whether the registers that the proc_desc | |
406 | claims are saved have been saved yet. */ | |
407 | ||
408 | CORE_ADDR addr; | |
409 | int status; | |
28444bf3 DP |
410 | char buf[MIPS_INSTLEN]; |
411 | t_inst inst; | |
f9f8c14b | 412 | int instlen; |
70126bf9 KH |
413 | |
414 | /* Bitmasks; set if we have found a save for the register. */ | |
415 | unsigned long gen_save_found = 0; | |
416 | unsigned long float_save_found = 0; | |
417 | ||
c1fc0935 MA |
418 | /* If the address is odd, assume this is MIPS16 code. */ |
419 | addr = PROC_LOW_ADDR (proc_desc); | |
420 | if (IS_MIPS16_ADDR (addr)) | |
70126bf9 | 421 | { |
c1fc0935 MA |
422 | instlen = MIPS16_INSTLEN; |
423 | addr = UNMAKE_MIPS16_ADDR (addr); | |
f9f8c14b MA |
424 | } |
425 | else | |
c1fc0935 | 426 | instlen = MIPS_INSTLEN; |
f9f8c14b | 427 | |
20fa0902 MA |
428 | /* Scan through this function's instructions preceding the current |
429 | PC, and look for those that save registers. */ | |
f9f8c14b MA |
430 | while (addr < fci->pc) |
431 | { | |
432 | status = read_memory_nobpt (addr, buf, instlen); | |
70126bf9 KH |
433 | if (status) |
434 | memory_error (status, addr); | |
f9f8c14b | 435 | inst = extract_unsigned_integer (buf, instlen); |
20fa0902 | 436 | if (instlen == MIPS16_INSTLEN) |
f9f8c14b MA |
437 | mips16_decode_reg_save (inst, &gen_save_found); |
438 | else | |
439 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
440 | addr += instlen; | |
70126bf9 KH |
441 | } |
442 | gen_mask = gen_save_found; | |
443 | float_mask = float_save_found; | |
444 | } | |
445 | ||
446 | /* Fill in the offsets for the registers which gen_mask says | |
447 | were saved. */ | |
448 | reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); | |
28444bf3 | 449 | for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) |
70126bf9 KH |
450 | if (gen_mask & 0x80000000) |
451 | { | |
452 | fci->saved_regs->regs[ireg] = reg_position; | |
453 | reg_position -= MIPS_REGSIZE; | |
454 | } | |
455 | /* Fill in the offsets for the registers which float_mask says | |
456 | were saved. */ | |
457 | reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); | |
458 | ||
459 | /* The freg_offset points to where the first *double* register | |
460 | is saved. So skip to the high-order word. */ | |
28444bf3 DP |
461 | if (! GDB_TARGET_IS_MIPS64) |
462 | reg_position += 4; | |
463 | ||
20fa0902 MA |
464 | /* Fill in the offsets for the float registers which float_mask says |
465 | were saved. */ | |
28444bf3 | 466 | for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) |
70126bf9 KH |
467 | if (float_mask & 0x80000000) |
468 | { | |
469 | fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position; | |
470 | reg_position -= MIPS_REGSIZE; | |
471 | } | |
472 | ||
473 | fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM]; | |
474 | } | |
bd5635a1 | 475 | |
28444bf3 | 476 | static CORE_ADDR |
bd5635a1 | 477 | read_next_frame_reg(fi, regno) |
9f9f94aa | 478 | struct frame_info *fi; |
bd5635a1 RP |
479 | int regno; |
480 | { | |
bd5635a1 | 481 | for (; fi; fi = fi->next) |
70126bf9 | 482 | { |
e4dbd248 PS |
483 | /* We have to get the saved sp from the sigcontext |
484 | if it is a signal handler frame. */ | |
485 | if (regno == SP_REGNUM && !fi->signal_handler_caller) | |
486 | return fi->frame; | |
70126bf9 KH |
487 | else |
488 | { | |
489 | if (fi->saved_regs == NULL) | |
490 | mips_find_saved_regs (fi); | |
491 | if (fi->saved_regs->regs[regno]) | |
492 | return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE); | |
493 | } | |
494 | } | |
495 | return read_register (regno); | |
bd5635a1 RP |
496 | } |
497 | ||
96431497 MA |
498 | /* mips_addr_bits_remove - remove useless address bits */ |
499 | ||
500 | CORE_ADDR | |
501 | mips_addr_bits_remove (addr) | |
502 | CORE_ADDR addr; | |
503 | { | |
97e091b2 MA |
504 | #if GDB_TARGET_IS_MIPS64 |
505 | if ((addr >> 32 == (CORE_ADDR)0xffffffff) | |
96431497 MA |
506 | && (strcmp(target_shortname,"pmon")==0 |
507 | || strcmp(target_shortname,"ddb")==0 | |
508 | || strcmp(target_shortname,"sim")==0)) | |
509 | { | |
510 | /* This hack is a work-around for existing boards using PMON, | |
511 | the simulator, and any other 64-bit targets that doesn't have | |
512 | true 64-bit addressing. On these targets, the upper 32 bits | |
513 | of addresses are ignored by the hardware. Thus, the PC or SP | |
514 | are likely to have been sign extended to all 1s by instruction | |
515 | sequences that load 32-bit addresses. For example, a typical | |
516 | piece of code that loads an address is this: | |
517 | lui $r2, <upper 16 bits> | |
518 | ori $r2, <lower 16 bits> | |
519 | But the lui sign-extends the value such that the upper 32 bits | |
520 | may be all 1s. The workaround is simply to mask off these bits. | |
521 | In the future, gcc may be changed to support true 64-bit | |
522 | addressing, and this masking will have to be disabled. */ | |
523 | addr &= (CORE_ADDR)0xffffffff; | |
524 | } | |
f9f8c14b MA |
525 | #else |
526 | /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), | |
527 | BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. | |
528 | So we still have to mask off useless bits from addresses. */ | |
529 | addr &= (CORE_ADDR)0xffffffff; | |
97e091b2 | 530 | #endif |
96431497 MA |
531 | |
532 | return addr; | |
533 | } | |
534 | ||
28444bf3 | 535 | CORE_ADDR |
bd5635a1 | 536 | mips_frame_saved_pc(frame) |
9f9f94aa | 537 | struct frame_info *frame; |
bd5635a1 | 538 | { |
28444bf3 | 539 | CORE_ADDR saved_pc; |
0f552c5f | 540 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
0434c1a0 PS |
541 | /* We have to get the saved pc from the sigcontext |
542 | if it is a signal handler frame. */ | |
543 | int pcreg = frame->signal_handler_caller ? PC_REGNUM | |
544 | : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); | |
0f552c5f | 545 | |
bd5635a1 | 546 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
28444bf3 DP |
547 | saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); |
548 | else | |
549 | saved_pc = read_next_frame_reg(frame, pcreg); | |
0f552c5f | 550 | |
96431497 | 551 | return ADDR_BITS_REMOVE (saved_pc); |
bd5635a1 RP |
552 | } |
553 | ||
554 | static struct mips_extra_func_info temp_proc_desc; | |
555 | static struct frame_saved_regs temp_saved_regs; | |
556 | ||
a8172eea RP |
557 | /* This fencepost looks highly suspicious to me. Removing it also |
558 | seems suspicious as it could affect remote debugging across serial | |
3127785a | 559 | lines. */ |
a8172eea | 560 | |
0f552c5f JG |
561 | static CORE_ADDR |
562 | heuristic_proc_start(pc) | |
bd5635a1 RP |
563 | CORE_ADDR pc; |
564 | { | |
32dab603 MA |
565 | CORE_ADDR start_pc; |
566 | CORE_ADDR fence; | |
20fa0902 | 567 | int instlen; |
b348b9fd | 568 | int seen_adjsp = 0; |
0f552c5f | 569 | |
32dab603 MA |
570 | pc = ADDR_BITS_REMOVE (pc); |
571 | start_pc = pc; | |
572 | fence = start_pc - heuristic_fence_post; | |
0f552c5f | 573 | if (start_pc == 0) return 0; |
3127785a RP |
574 | |
575 | if (heuristic_fence_post == UINT_MAX | |
576 | || fence < VM_MIN_ADDRESS) | |
577 | fence = VM_MIN_ADDRESS; | |
0f552c5f | 578 | |
c1fc0935 | 579 | instlen = IS_MIPS16_ADDR (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; |
20fa0902 | 580 | |
bd5635a1 | 581 | /* search back for previous return */ |
20fa0902 | 582 | for (start_pc -= instlen; ; start_pc -= instlen) |
a8172eea RP |
583 | if (start_pc < fence) |
584 | { | |
3127785a RP |
585 | /* It's not clear to me why we reach this point when |
586 | stop_soon_quietly, but with this test, at least we | |
587 | don't print out warnings for every child forked (eg, on | |
588 | decstation). 22apr93 [email protected]. */ | |
589 | if (!stop_soon_quietly) | |
590 | { | |
23d35572 JK |
591 | static int blurb_printed = 0; |
592 | ||
3127785a RP |
593 | if (fence == VM_MIN_ADDRESS) |
594 | warning("Hit beginning of text section without finding"); | |
595 | else | |
596 | warning("Hit heuristic-fence-post without finding"); | |
597 | ||
96431497 | 598 | warning("enclosing function for address 0x%s", paddr (pc)); |
23d35572 JK |
599 | if (!blurb_printed) |
600 | { | |
601 | printf_filtered ("\ | |
602 | This warning occurs if you are debugging a function without any symbols\n\ | |
603 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
604 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
605 | \n\ | |
606 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
607 | (more likely) you have encountered a bug in GDB.\n"); | |
608 | blurb_printed = 1; | |
609 | } | |
3127785a RP |
610 | } |
611 | ||
a8172eea RP |
612 | return 0; |
613 | } | |
c1fc0935 | 614 | else if (IS_MIPS16_ADDR (start_pc)) |
20fa0902 | 615 | { |
c1fc0935 MA |
616 | unsigned short inst; |
617 | ||
b348b9fd MA |
618 | /* On MIPS16, any one of the following is likely to be the |
619 | start of a function: | |
620 | entry | |
621 | addiu sp,-n | |
622 | daddiu sp,-n | |
623 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
c1fc0935 | 624 | inst = read_memory_integer (UNMAKE_MIPS16_ADDR (start_pc), 2); |
b348b9fd MA |
625 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ |
626 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
627 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
628 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
629 | break; | |
630 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
631 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
632 | seen_adjsp = 1; | |
633 | else | |
634 | seen_adjsp = 0; | |
20fa0902 | 635 | } |
bd5635a1 | 636 | else if (ABOUT_TO_RETURN(start_pc)) |
20fa0902 MA |
637 | { |
638 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
bd5635a1 | 639 | break; |
20fa0902 | 640 | } |
bd5635a1 | 641 | |
bd5635a1 RP |
642 | #if 0 |
643 | /* skip nops (usually 1) 0 - is this */ | |
28444bf3 DP |
644 | while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) |
645 | start_pc += MIPS_INSTLEN; | |
bd5635a1 RP |
646 | #endif |
647 | return start_pc; | |
648 | } | |
649 | ||
b348b9fd MA |
650 | /* Fetch the immediate value from the current instruction. |
651 | If the previous instruction was an EXTEND, use it to extend | |
652 | the upper bits of the immediate value. This is a helper function | |
653 | for mips16_heuristic_proc_desc. */ | |
654 | ||
655 | static int | |
656 | mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) | |
657 | unsigned short prev_inst; /* previous instruction */ | |
658 | unsigned short inst; /* current current instruction */ | |
659 | int nbits; /* number of bits in imm field */ | |
660 | int scale; /* scale factor to be applied to imm */ | |
661 | int is_signed; /* is the imm field signed? */ | |
662 | { | |
663 | int offset; | |
664 | ||
665 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
666 | { | |
7d9e8fac | 667 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); |
b348b9fd MA |
668 | if (offset & 0x8000) /* check for negative extend */ |
669 | offset = 0 - (0x10000 - (offset & 0xffff)); | |
670 | return offset | (inst & 0x1f); | |
671 | } | |
672 | else | |
673 | { | |
674 | int max_imm = 1 << nbits; | |
675 | int mask = max_imm - 1; | |
676 | int sign_bit = max_imm >> 1; | |
677 | ||
678 | offset = inst & mask; | |
679 | if (is_signed && (offset & sign_bit)) | |
680 | offset = 0 - (max_imm - offset); | |
681 | return offset * scale; | |
682 | } | |
683 | } | |
684 | ||
685 | ||
686 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
687 | stream from start_pc to limit_pc. */ | |
688 | ||
689 | static void | |
690 | mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
bd5635a1 | 691 | CORE_ADDR start_pc, limit_pc; |
9f9f94aa | 692 | struct frame_info *next_frame; |
b348b9fd | 693 | CORE_ADDR sp; |
bd5635a1 | 694 | { |
b348b9fd MA |
695 | CORE_ADDR cur_pc; |
696 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
697 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
698 | unsigned inst = 0; /* current instruction */ | |
bd5635a1 | 699 | |
b348b9fd | 700 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; |
34df79fc | 701 | |
b348b9fd MA |
702 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) |
703 | { | |
704 | char buf[MIPS16_INSTLEN]; | |
705 | int status, reg, offset; | |
706 | ||
707 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
708 | the immediate offset extension from it in mips16_get_imm. */ | |
709 | prev_inst = inst; | |
710 | ||
711 | /* Fetch the instruction. */ | |
c1fc0935 MA |
712 | status = read_memory_nobpt (UNMAKE_MIPS16_ADDR (cur_pc), buf, |
713 | MIPS16_INSTLEN); | |
b348b9fd MA |
714 | if (status) memory_error (status, cur_pc); |
715 | inst = (unsigned short) extract_unsigned_integer (buf, MIPS16_INSTLEN); | |
716 | ||
717 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
718 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
719 | { | |
720 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
721 | if (offset < 0) /* negative stack adjustment? */ | |
722 | PROC_FRAME_OFFSET(&temp_proc_desc) -= offset; | |
723 | else | |
724 | /* Exit loop if a positive stack adjustment is found, which | |
725 | usually means that the stack cleanup code in the function | |
726 | epilogue is reached. */ | |
727 | break; | |
728 | } | |
729 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
730 | { | |
731 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
732 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
733 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
734 | temp_saved_regs.regs[reg] = sp + offset; | |
735 | } | |
736 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
737 | { | |
738 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
739 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
740 | PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); | |
741 | temp_saved_regs.regs[reg] = sp + offset; | |
742 | } | |
743 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
744 | { | |
745 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
746 | PROC_REG_MASK(&temp_proc_desc) |= (1 << 31); | |
747 | temp_saved_regs.regs[31] = sp + offset; | |
97e091b2 | 748 | } |
b348b9fd MA |
749 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ |
750 | { | |
751 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
752 | PROC_REG_MASK(&temp_proc_desc) |= (1 << 31); | |
753 | temp_saved_regs.regs[31] = sp + offset; | |
bd5635a1 | 754 | } |
b348b9fd MA |
755 | else if (inst == 0x673d) /* move $s1, $sp */ |
756 | { | |
757 | frame_addr = read_next_frame_reg(next_frame, 30); | |
758 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
97e091b2 | 759 | } |
32dab603 MA |
760 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ |
761 | { | |
762 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
763 | frame_addr = sp + offset; | |
764 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
765 | } | |
b348b9fd MA |
766 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ |
767 | { | |
768 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
769 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
770 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
771 | temp_saved_regs.regs[reg] = frame_addr + offset; | |
772 | } | |
773 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
774 | { | |
775 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
776 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
777 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
778 | temp_saved_regs.regs[reg] = frame_addr + offset; | |
779 | } | |
780 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
781 | { | |
782 | int areg_count = (inst >> 8) & 7; | |
783 | int sreg_count = (inst >> 6) & 3; | |
784 | ||
785 | /* The entry instruction always subtracts 32 from the SP. */ | |
786 | PROC_FRAME_OFFSET(&temp_proc_desc) += 32; | |
787 | ||
788 | /* Check if a0-a3 were saved in the caller's argument save area. */ | |
789 | for (reg = 4, offset = 32; reg < areg_count+4; reg++, offset += 4) | |
790 | { | |
791 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
792 | temp_saved_regs.regs[reg] = sp + offset; | |
793 | } | |
794 | ||
795 | /* Check if the ra register was pushed on the stack. */ | |
796 | offset = 28; | |
797 | if (inst & 0x20) | |
798 | { | |
799 | PROC_REG_MASK(&temp_proc_desc) |= 1 << 31; | |
800 | temp_saved_regs.regs[31] = sp + offset; | |
801 | offset -= 4; | |
802 | } | |
803 | ||
804 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
805 | for (reg = 16; reg < sreg_count+16; reg++, offset -= 4) | |
806 | { | |
807 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
808 | temp_saved_regs.regs[reg] = sp + offset; | |
809 | } | |
810 | } | |
7d9e8fac MA |
811 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ |
812 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ | |
b348b9fd MA |
813 | } |
814 | } | |
815 | ||
816 | static void | |
817 | mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) | |
818 | CORE_ADDR start_pc, limit_pc; | |
819 | struct frame_info *next_frame; | |
820 | CORE_ADDR sp; | |
821 | { | |
822 | CORE_ADDR cur_pc; | |
823 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ | |
824 | restart: | |
825 | PROC_FRAME_OFFSET(&temp_proc_desc) = 0; | |
826 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
827 | { | |
828 | char buf[MIPS_INSTLEN]; | |
829 | unsigned long inst, high_word, low_word; | |
830 | int status, reg; | |
831 | ||
832 | /* Fetch the instruction. */ | |
833 | status = (unsigned long) read_memory_nobpt (cur_pc, buf, MIPS_INSTLEN); | |
834 | if (status) memory_error (status, cur_pc); | |
835 | inst = (unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN); | |
836 | ||
837 | /* Save some code by pre-extracting some useful fields. */ | |
838 | high_word = (inst >> 16) & 0xffff; | |
839 | low_word = inst & 0xffff; | |
840 | reg = high_word & 0x1f; | |
841 | ||
842 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ | |
843 | || high_word == 0x23bd /* addi $sp,$sp,-i */ | |
844 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
845 | { | |
846 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
847 | PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word; | |
848 | else | |
849 | /* Exit loop if a positive stack adjustment is found, which | |
850 | usually means that the stack cleanup code in the function | |
851 | epilogue is reached. */ | |
852 | break; | |
853 | } | |
854 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
855 | { | |
856 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
857 | temp_saved_regs.regs[reg] = sp + low_word; | |
858 | } | |
859 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
860 | { | |
861 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
862 | but the register size used is only 32 bits. Make the address | |
863 | for the saved register point to the lower 32 bits. */ | |
864 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
865 | temp_saved_regs.regs[reg] = sp + low_word + 8 - MIPS_REGSIZE; | |
866 | } | |
867 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ | |
868 | { | |
869 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
32dab603 | 870 | if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc)) |
b348b9fd MA |
871 | frame_addr = sp + low_word; |
872 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
873 | { | |
874 | unsigned alloca_adjust; | |
875 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
876 | frame_addr = read_next_frame_reg(next_frame, 30); | |
877 | alloca_adjust = (unsigned)(frame_addr - (sp + low_word)); | |
878 | if (alloca_adjust > 0) | |
879 | { | |
880 | /* FP > SP + frame_size. This may be because | |
881 | * of an alloca or somethings similar. | |
882 | * Fix sp to "pre-alloca" value, and try again. | |
883 | */ | |
884 | sp += alloca_adjust; | |
885 | goto restart; | |
bd5635a1 RP |
886 | } |
887 | } | |
888 | } | |
b348b9fd MA |
889 | /* move $30,$sp. With different versions of gas this will be either |
890 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
891 | Accept any one of these. */ | |
892 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
893 | { | |
894 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
895 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
896 | { | |
897 | unsigned alloca_adjust; | |
898 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
899 | frame_addr = read_next_frame_reg(next_frame, 30); | |
900 | alloca_adjust = (unsigned)(frame_addr - sp); | |
901 | if (alloca_adjust > 0) | |
902 | { | |
903 | /* FP > SP + frame_size. This may be because | |
904 | * of an alloca or somethings similar. | |
905 | * Fix sp to "pre-alloca" value, and try again. | |
906 | */ | |
907 | sp += alloca_adjust; | |
908 | goto restart; | |
97e091b2 MA |
909 | } |
910 | } | |
911 | } | |
b348b9fd MA |
912 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ |
913 | { | |
914 | PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; | |
915 | temp_saved_regs.regs[reg] = frame_addr + low_word; | |
bd5635a1 RP |
916 | } |
917 | } | |
b348b9fd MA |
918 | } |
919 | ||
920 | static mips_extra_func_info_t | |
921 | heuristic_proc_desc(start_pc, limit_pc, next_frame) | |
922 | CORE_ADDR start_pc, limit_pc; | |
923 | struct frame_info *next_frame; | |
924 | { | |
925 | CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); | |
926 | ||
927 | if (start_pc == 0) return NULL; | |
928 | memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); | |
929 | memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); | |
930 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; | |
931 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
932 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
933 | ||
934 | if (start_pc + 200 < limit_pc) | |
935 | limit_pc = start_pc + 200; | |
c1fc0935 | 936 | if (IS_MIPS16_ADDR (start_pc)) |
b348b9fd MA |
937 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); |
938 | else | |
939 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
940 | return &temp_proc_desc; | |
bd5635a1 RP |
941 | } |
942 | ||
0f552c5f | 943 | static mips_extra_func_info_t |
c1fc0935 | 944 | non_heuristic_proc_desc (pc, addrptr) |
9f9f94aa | 945 | CORE_ADDR pc; |
c1fc0935 | 946 | CORE_ADDR *addrptr; |
bd5635a1 | 947 | { |
c1fc0935 | 948 | CORE_ADDR startaddr; |
bd5635a1 | 949 | mips_extra_func_info_t proc_desc; |
0f552c5f | 950 | struct block *b = block_for_pc(pc); |
48be4c35 | 951 | struct symbol *sym; |
48be4c35 JK |
952 | |
953 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
c1fc0935 MA |
954 | if (addrptr) |
955 | *addrptr = startaddr; | |
97e091b2 | 956 | if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) |
48be4c35 JK |
957 | sym = NULL; |
958 | else | |
959 | { | |
960 | if (startaddr > BLOCK_START (b)) | |
961 | /* This is the "pathological" case referred to in a comment in | |
962 | print_frame_info. It might be better to move this check into | |
963 | symbol reading. */ | |
964 | sym = NULL; | |
965 | else | |
c1fc0935 | 966 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); |
48be4c35 | 967 | } |
0f552c5f | 968 | |
e4dbd248 PS |
969 | /* If we never found a PDR for this function in symbol reading, then |
970 | examine prologues to find the information. */ | |
0f552c5f | 971 | if (sym) |
bd5635a1 | 972 | { |
c1fc0935 MA |
973 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); |
974 | if (PROC_FRAME_REG (proc_desc) == -1) | |
975 | return NULL; | |
976 | else | |
977 | return proc_desc; | |
978 | } | |
979 | else | |
980 | return NULL; | |
981 | } | |
982 | ||
983 | ||
984 | static mips_extra_func_info_t | |
985 | find_proc_desc (pc, next_frame) | |
986 | CORE_ADDR pc; | |
987 | struct frame_info *next_frame; | |
988 | { | |
989 | mips_extra_func_info_t proc_desc; | |
990 | CORE_ADDR startaddr; | |
991 | ||
992 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
993 | ||
994 | if (proc_desc) | |
995 | { | |
996 | /* IF this is the topmost frame AND | |
997 | * (this proc does not have debugging information OR | |
998 | * the PC is in the procedure prologue) | |
999 | * THEN create a "heuristic" proc_desc (by analyzing | |
1000 | * the actual code) to replace the "official" proc_desc. | |
1001 | */ | |
1002 | if (next_frame == NULL) | |
1003 | { | |
1004 | struct symtab_and_line val; | |
1005 | struct symbol *proc_symbol = | |
1006 | PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); | |
1007 | ||
1008 | if (proc_symbol) | |
1009 | { | |
1010 | val = find_pc_line (BLOCK_START | |
1011 | (SYMBOL_BLOCK_VALUE(proc_symbol)), | |
1012 | 0); | |
1013 | val.pc = val.end ? val.end : pc; | |
bd5635a1 | 1014 | } |
c1fc0935 MA |
1015 | if (!proc_symbol || pc < val.pc) |
1016 | { | |
1017 | mips_extra_func_info_t found_heuristic = | |
1018 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), | |
1019 | pc, next_frame); | |
1020 | if (found_heuristic) | |
1021 | proc_desc = found_heuristic; | |
bd5635a1 RP |
1022 | } |
1023 | } | |
1024 | } | |
1025 | else | |
1026 | { | |
0f552c5f JG |
1027 | /* Is linked_proc_desc_table really necessary? It only seems to be used |
1028 | by procedure call dummys. However, the procedures being called ought | |
1029 | to have their own proc_descs, and even if they don't, | |
1030 | heuristic_proc_desc knows how to create them! */ | |
1031 | ||
bd5635a1 | 1032 | register struct linked_proc_info *link; |
9f9f94aa | 1033 | |
bd5635a1 | 1034 | for (link = linked_proc_desc_table; link; link = link->next) |
9f9f94aa SS |
1035 | if (PROC_LOW_ADDR(&link->info) <= pc |
1036 | && PROC_HIGH_ADDR(&link->info) > pc) | |
1037 | return &link->info; | |
23d35572 | 1038 | |
48be4c35 JK |
1039 | if (startaddr == 0) |
1040 | startaddr = heuristic_proc_start (pc); | |
1041 | ||
bd5635a1 | 1042 | proc_desc = |
48be4c35 | 1043 | heuristic_proc_desc (startaddr, pc, next_frame); |
bd5635a1 RP |
1044 | } |
1045 | return proc_desc; | |
1046 | } | |
1047 | ||
96431497 MA |
1048 | static CORE_ADDR |
1049 | get_frame_pointer(frame, proc_desc) | |
1050 | struct frame_info *frame; | |
1051 | mips_extra_func_info_t proc_desc; | |
1052 | { | |
1053 | return ADDR_BITS_REMOVE (read_next_frame_reg (frame, | |
1054 | PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc)); | |
1055 | } | |
1056 | ||
bd5635a1 RP |
1057 | mips_extra_func_info_t cached_proc_desc; |
1058 | ||
9f9f94aa | 1059 | CORE_ADDR |
0f552c5f | 1060 | mips_frame_chain(frame) |
9f9f94aa | 1061 | struct frame_info *frame; |
bd5635a1 | 1062 | { |
bd5635a1 RP |
1063 | mips_extra_func_info_t proc_desc; |
1064 | CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); | |
be772100 | 1065 | |
0f552c5f JG |
1066 | if (saved_pc == 0 || inside_entry_file (saved_pc)) |
1067 | return 0; | |
1068 | ||
bd5635a1 | 1069 | proc_desc = find_proc_desc(saved_pc, frame); |
0f552c5f JG |
1070 | if (!proc_desc) |
1071 | return 0; | |
1072 | ||
bd5635a1 | 1073 | cached_proc_desc = proc_desc; |
e797b4bc JK |
1074 | |
1075 | /* If no frame pointer and frame size is zero, we must be at end | |
1076 | of stack (or otherwise hosed). If we don't check frame size, | |
1077 | we loop forever if we see a zero size frame. */ | |
1078 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
3f528883 | 1079 | && PROC_FRAME_OFFSET (proc_desc) == 0 |
199b2450 TL |
1080 | /* The previous frame from a sigtramp frame might be frameless |
1081 | and have frame size zero. */ | |
1082 | && !frame->signal_handler_caller) | |
bdef72d2 JK |
1083 | return 0; |
1084 | else | |
96431497 | 1085 | return get_frame_pointer (frame, proc_desc); |
bd5635a1 RP |
1086 | } |
1087 | ||
1088 | void | |
1089 | init_extra_frame_info(fci) | |
1090 | struct frame_info *fci; | |
1091 | { | |
96431497 MA |
1092 | int regnum; |
1093 | ||
bd5635a1 | 1094 | /* Use proc_desc calculated in frame_chain */ |
ee5fb959 JK |
1095 | mips_extra_func_info_t proc_desc = |
1096 | fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); | |
0f552c5f | 1097 | |
70126bf9 | 1098 | fci->saved_regs = NULL; |
bd5635a1 | 1099 | fci->proc_desc = |
ee5fb959 | 1100 | proc_desc == &temp_proc_desc ? 0 : proc_desc; |
bd5635a1 RP |
1101 | if (proc_desc) |
1102 | { | |
c2a0f1cb | 1103 | /* Fixup frame-pointer - only needed for top frame */ |
5efd597b PS |
1104 | /* This may not be quite right, if proc has a real frame register. |
1105 | Get the value of the frame relative sp, procedure might have been | |
1106 | interrupted by a signal at it's very start. */ | |
70126bf9 KH |
1107 | if (fci->pc == PROC_LOW_ADDR (proc_desc) |
1108 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
1109 | fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); | |
c2a0f1cb | 1110 | else |
96431497 | 1111 | fci->frame = get_frame_pointer (fci->next, proc_desc); |
bd5635a1 | 1112 | |
48be4c35 | 1113 | if (proc_desc == &temp_proc_desc) |
ee5fb959 | 1114 | { |
09af5868 PS |
1115 | char *name; |
1116 | ||
1117 | /* Do not set the saved registers for a sigtramp frame, | |
1118 | mips_find_saved_registers will do that for us. | |
1119 | We can't use fci->signal_handler_caller, it is not yet set. */ | |
1120 | find_pc_partial_function (fci->pc, &name, | |
1121 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
1122 | if (!IN_SIGTRAMP (fci->pc, name)) | |
1123 | { | |
1124 | fci->saved_regs = (struct frame_saved_regs*) | |
1125 | obstack_alloc (&frame_cache_obstack, | |
1126 | sizeof (struct frame_saved_regs)); | |
1127 | *fci->saved_regs = temp_saved_regs; | |
1128 | fci->saved_regs->regs[PC_REGNUM] | |
1129 | = fci->saved_regs->regs[RA_REGNUM]; | |
1130 | } | |
ee5fb959 | 1131 | } |
bd5635a1 RP |
1132 | |
1133 | /* hack: if argument regs are saved, guess these contain args */ | |
96431497 MA |
1134 | fci->num_args = -1; /* assume we can't tell how many args for now */ |
1135 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) | |
1136 | { | |
1137 | if (PROC_REG_MASK(proc_desc) & (1 << regnum)) | |
1138 | { | |
1139 | fci->num_args = regnum - A0_REGNUM + 1; | |
1140 | break; | |
1141 | } | |
1142 | } | |
bd5635a1 | 1143 | } |
bd5635a1 RP |
1144 | } |
1145 | ||
a70dc898 RP |
1146 | /* MIPS stack frames are almost impenetrable. When execution stops, |
1147 | we basically have to look at symbol information for the function | |
1148 | that we stopped in, which tells us *which* register (if any) is | |
1149 | the base of the frame pointer, and what offset from that register | |
1150 | the frame itself is at. | |
1151 | ||
1152 | This presents a problem when trying to examine a stack in memory | |
1153 | (that isn't executing at the moment), using the "frame" command. We | |
1154 | don't have a PC, nor do we have any registers except SP. | |
1155 | ||
1156 | This routine takes two arguments, SP and PC, and tries to make the | |
1157 | cached frames look as if these two arguments defined a frame on the | |
1158 | cache. This allows the rest of info frame to extract the important | |
1159 | arguments without difficulty. */ | |
1160 | ||
9f9f94aa | 1161 | struct frame_info * |
c2a0f1cb ILT |
1162 | setup_arbitrary_frame (argc, argv) |
1163 | int argc; | |
9f9f94aa | 1164 | CORE_ADDR *argv; |
a70dc898 | 1165 | { |
c2a0f1cb ILT |
1166 | if (argc != 2) |
1167 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
1168 | ||
1169 | return create_new_frame (argv[0], argv[1]); | |
a70dc898 RP |
1170 | } |
1171 | ||
0f552c5f JG |
1172 | CORE_ADDR |
1173 | mips_push_arguments(nargs, args, sp, struct_return, struct_addr) | |
97e091b2 MA |
1174 | int nargs; |
1175 | value_ptr *args; | |
1176 | CORE_ADDR sp; | |
1177 | int struct_return; | |
1178 | CORE_ADDR struct_addr; | |
bd5635a1 | 1179 | { |
97e091b2 MA |
1180 | int argreg; |
1181 | int float_argreg; | |
1182 | int argnum; | |
1183 | int len = 0; | |
1184 | int stack_offset; | |
1185 | ||
1186 | /* Macros to round N up or down to the next A boundary; A must be | |
1187 | a power of two. */ | |
1188 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
1189 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
28444bf3 DP |
1190 | |
1191 | /* First ensure that the stack and structure return address (if any) | |
97e091b2 MA |
1192 | are properly aligned. The stack has to be 64-bit aligned even |
1193 | on 32-bit machines, because doubles must be 64-bit aligned. */ | |
1194 | sp = ROUND_DOWN (sp, 8); | |
1195 | struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE); | |
28444bf3 | 1196 | |
97e091b2 MA |
1197 | /* Now make space on the stack for the args. We allocate more |
1198 | than necessary for EABI, because the first few arguments are | |
1199 | passed in registers, but that's OK. */ | |
1200 | for (argnum = 0; argnum < nargs; argnum++) | |
1201 | len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE); | |
61d2d19a | 1202 | sp -= ROUND_UP (len, 8); |
97e091b2 MA |
1203 | |
1204 | /* Initialize the integer and float register pointers. */ | |
1205 | argreg = A0_REGNUM; | |
1206 | float_argreg = FPA0_REGNUM; | |
1207 | ||
1208 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
5efd597b | 1209 | if (struct_return) |
97e091b2 MA |
1210 | write_register (argreg++, struct_addr); |
1211 | ||
1212 | /* The offset onto the stack at which we will start copying parameters | |
1213 | (after the registers are used up) begins at 16 in the old ABI. | |
1214 | This leaves room for the "home" area for register parameters. */ | |
1215 | stack_offset = MIPS_EABI ? 0 : MIPS_REGSIZE * 4; | |
1216 | ||
1217 | /* Now load as many as possible of the first arguments into | |
1218 | registers, and push the rest onto the stack. Loop thru args | |
1219 | from first to last. */ | |
1220 | for (argnum = 0; argnum < nargs; argnum++) | |
5efd597b | 1221 | { |
97e091b2 MA |
1222 | char *val; |
1223 | char valbuf[REGISTER_RAW_SIZE(A0_REGNUM)]; | |
1224 | value_ptr arg = args[argnum]; | |
1225 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1226 | int len = TYPE_LENGTH (arg_type); | |
1227 | enum type_code typecode = TYPE_CODE (arg_type); | |
1228 | ||
61d2d19a PS |
1229 | /* The EABI passes structures that do not fit in a register by |
1230 | reference. In all other cases, pass the structure by value. */ | |
1231 | if (typecode == TYPE_CODE_STRUCT && MIPS_EABI && len > MIPS_REGSIZE) | |
97e091b2 MA |
1232 | { |
1233 | store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg)); | |
1234 | len = MIPS_REGSIZE; | |
1235 | val = valbuf; | |
1236 | } | |
1237 | else | |
1238 | val = (char *)VALUE_CONTENTS (arg); | |
1239 | ||
1240 | /* 32-bit ABIs always start floating point arguments in an | |
1241 | even-numbered floating point register. */ | |
1242 | if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT | |
1243 | && (float_argreg & 1)) | |
1244 | float_argreg++; | |
1245 | ||
1246 | /* Floating point arguments passed in registers have to be | |
1247 | treated specially. On 32-bit architectures, doubles | |
1248 | are passed in register pairs; the even register gets | |
1249 | the low word, and the odd register gets the high word. */ | |
1250 | if (typecode == TYPE_CODE_FLT | |
1251 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM | |
1252 | && mips_fpu != MIPS_FPU_NONE) | |
1253 | { | |
1254 | if (!GDB_TARGET_IS_MIPS64 && len == 8) | |
1255 | { | |
1256 | int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; | |
1257 | unsigned long regval; | |
1258 | ||
1259 | regval = extract_unsigned_integer (val+low_offset, 4); | |
1260 | write_register (float_argreg++, regval); /* low word */ | |
1261 | regval = extract_unsigned_integer (val+4-low_offset, 4); | |
1262 | write_register (float_argreg++, regval); /* high word */ | |
1263 | ||
1264 | } | |
1265 | else | |
1266 | { | |
1267 | CORE_ADDR regval = extract_address (val, len); | |
1268 | write_register (float_argreg++, regval); | |
1269 | } | |
5efd597b | 1270 | |
97e091b2 MA |
1271 | /* If this is the old ABI, skip one or two general registers. */ |
1272 | if (!MIPS_EABI) | |
1273 | argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2; | |
1274 | } | |
1275 | else | |
1276 | { | |
1277 | /* Copy the argument to general registers or the stack in | |
1278 | register-sized pieces. Large arguments are split between | |
1279 | registers and stack. */ | |
1280 | while (len > 0) | |
1281 | { | |
1282 | int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE; | |
61d2d19a | 1283 | |
97e091b2 MA |
1284 | if (argreg <= MIPS_LAST_ARG_REGNUM) |
1285 | { | |
61d2d19a PS |
1286 | CORE_ADDR regval = extract_address (val, partial_len); |
1287 | ||
1288 | /* It's a simple argument being passed in a general | |
1289 | register. | |
1290 | If the argument length is smaller than the register size, | |
b348b9fd MA |
1291 | we have to adjust the argument on big endian targets. |
1292 | But don't do this adjustment on EABI targets. */ | |
61d2d19a | 1293 | if (TARGET_BYTE_ORDER == BIG_ENDIAN |
b348b9fd MA |
1294 | && partial_len < MIPS_REGSIZE |
1295 | && !MIPS_EABI) | |
61d2d19a | 1296 | regval <<= ((MIPS_REGSIZE - partial_len) * TARGET_CHAR_BIT); |
97e091b2 MA |
1297 | write_register (argreg, regval); |
1298 | argreg++; | |
1299 | ||
1300 | /* If this is the old ABI, prevent subsequent floating | |
1301 | point arguments from being passed in floating point | |
1302 | registers. */ | |
1303 | if (!MIPS_EABI) | |
1304 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
1305 | } | |
1306 | else | |
1307 | { | |
61d2d19a PS |
1308 | /* Write this portion of the argument to the stack. */ |
1309 | partial_len = len; | |
1310 | write_memory (sp + stack_offset, val, partial_len); | |
1311 | stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE); | |
97e091b2 MA |
1312 | } |
1313 | ||
1314 | len -= partial_len; | |
1315 | val += partial_len; | |
1316 | } | |
1317 | } | |
5efd597b | 1318 | } |
97e091b2 MA |
1319 | |
1320 | /* Set the return address register to point to the entry | |
1321 | point of the program, where a breakpoint lies in wait. */ | |
1322 | write_register (RA_REGNUM, CALL_DUMMY_ADDRESS()); | |
1323 | ||
1324 | /* Return adjusted stack pointer. */ | |
bd5635a1 RP |
1325 | return sp; |
1326 | } | |
1327 | ||
28444bf3 DP |
1328 | void |
1329 | mips_push_register(CORE_ADDR *sp, int regno) | |
1330 | { | |
1331 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1332 | int regsize = REGISTER_RAW_SIZE (regno); | |
1333 | ||
1334 | *sp -= regsize; | |
1335 | read_register_gen (regno, buffer); | |
1336 | write_memory (*sp, buffer, regsize); | |
1337 | } | |
1338 | ||
1339 | /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ | |
e03c0cc6 | 1340 | #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) |
bd5635a1 RP |
1341 | |
1342 | void | |
1343 | mips_push_dummy_frame() | |
1344 | { | |
1345 | int ireg; | |
1346 | struct linked_proc_info *link = (struct linked_proc_info*) | |
1347 | xmalloc(sizeof(struct linked_proc_info)); | |
1348 | mips_extra_func_info_t proc_desc = &link->info; | |
96431497 | 1349 | CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); |
28444bf3 | 1350 | CORE_ADDR old_sp = sp; |
bd5635a1 RP |
1351 | link->next = linked_proc_desc_table; |
1352 | linked_proc_desc_table = link; | |
28444bf3 DP |
1353 | |
1354 | /* FIXME! are these correct ? */ | |
bd5635a1 | 1355 | #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ |
28444bf3 | 1356 | #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) |
bd5635a1 | 1357 | #define FLOAT_REG_SAVE_MASK MASK(0,19) |
e4dbd248 PS |
1358 | #define FLOAT_SINGLE_REG_SAVE_MASK \ |
1359 | ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) | |
bd5635a1 RP |
1360 | /* |
1361 | * The registers we must save are all those not preserved across | |
1362 | * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. | |
28444bf3 DP |
1363 | * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI |
1364 | * and FP Control/Status registers. | |
1365 | * | |
bd5635a1 RP |
1366 | * |
1367 | * Dummy frame layout: | |
1368 | * (high memory) | |
1369 | * Saved PC | |
1370 | * Saved MMHI, MMLO, FPC_CSR | |
1371 | * Saved R31 | |
1372 | * Saved R28 | |
1373 | * ... | |
1374 | * Saved R1 | |
1375 | * Saved D18 (i.e. F19, F18) | |
1376 | * ... | |
1377 | * Saved D0 (i.e. F1, F0) | |
f9f8c14b | 1378 | * Argument build area and stack arguments written via mips_push_arguments |
bd5635a1 RP |
1379 | * (low memory) |
1380 | */ | |
28444bf3 DP |
1381 | |
1382 | /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ | |
28444bf3 DP |
1383 | PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; |
1384 | PROC_FRAME_OFFSET(proc_desc) = 0; | |
1385 | mips_push_register (&sp, PC_REGNUM); | |
1386 | mips_push_register (&sp, HI_REGNUM); | |
1387 | mips_push_register (&sp, LO_REGNUM); | |
1388 | mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); | |
1389 | ||
1390 | /* Save general CPU registers */ | |
bd5635a1 | 1391 | PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; |
28444bf3 | 1392 | PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */ |
bd5635a1 RP |
1393 | for (ireg = 32; --ireg >= 0; ) |
1394 | if (PROC_REG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 1395 | mips_push_register (&sp, ireg); |
3fed1c4a | 1396 | |
28444bf3 DP |
1397 | /* Save floating point registers starting with high order word */ |
1398 | PROC_FREG_MASK(proc_desc) = | |
1399 | mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK | |
1400 | : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; | |
1401 | PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */ | |
bd5635a1 RP |
1402 | for (ireg = 32; --ireg >= 0; ) |
1403 | if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) | |
28444bf3 | 1404 | mips_push_register (&sp, ireg + FP0_REGNUM); |
3fed1c4a | 1405 | |
f9f8c14b MA |
1406 | /* Update the frame pointer for the call dummy and the stack pointer. |
1407 | Set the procedure's starting and ending addresses to point to the | |
1408 | call dummy address at the entry point. */ | |
1409 | write_register (PUSH_FP_REGNUM, old_sp); | |
bd5635a1 | 1410 | write_register (SP_REGNUM, sp); |
97e091b2 MA |
1411 | PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS(); |
1412 | PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4; | |
bd5635a1 RP |
1413 | SET_PROC_DESC_IS_DUMMY(proc_desc); |
1414 | PROC_PC_REG(proc_desc) = RA_REGNUM; | |
1415 | } | |
1416 | ||
1417 | void | |
1418 | mips_pop_frame() | |
dac4929a SG |
1419 | { |
1420 | register int regnum; | |
9f9f94aa SS |
1421 | struct frame_info *frame = get_current_frame (); |
1422 | CORE_ADDR new_sp = FRAME_FP (frame); | |
dac4929a | 1423 | |
a70dc898 | 1424 | mips_extra_func_info_t proc_desc = frame->proc_desc; |
dac4929a SG |
1425 | |
1426 | write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); | |
70126bf9 KH |
1427 | if (frame->saved_regs == NULL) |
1428 | mips_find_saved_regs (frame); | |
61d2d19a | 1429 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
dac4929a | 1430 | { |
61d2d19a PS |
1431 | if (regnum != SP_REGNUM && regnum != PC_REGNUM |
1432 | && frame->saved_regs->regs[regnum]) | |
1433 | write_register (regnum, | |
1434 | read_memory_integer (frame->saved_regs->regs[regnum], | |
1435 | MIPS_REGSIZE)); | |
dac4929a SG |
1436 | } |
1437 | write_register (SP_REGNUM, new_sp); | |
1438 | flush_cached_frames (); | |
dac4929a | 1439 | |
199b2450 | 1440 | if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) |
bd5635a1 | 1441 | { |
dac4929a SG |
1442 | struct linked_proc_info *pi_ptr, *prev_ptr; |
1443 | ||
1444 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
1445 | pi_ptr != NULL; | |
1446 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
1447 | { | |
1448 | if (&pi_ptr->info == proc_desc) | |
1449 | break; | |
1450 | } | |
1451 | ||
1452 | if (pi_ptr == NULL) | |
1453 | error ("Can't locate dummy extra frame info\n"); | |
1454 | ||
1455 | if (prev_ptr != NULL) | |
1456 | prev_ptr->next = pi_ptr->next; | |
1457 | else | |
1458 | linked_proc_desc_table = pi_ptr->next; | |
1459 | ||
1460 | free (pi_ptr); | |
1461 | ||
28444bf3 DP |
1462 | write_register (HI_REGNUM, |
1463 | read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); | |
1464 | write_register (LO_REGNUM, | |
1465 | read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); | |
e4dbd248 | 1466 | if (mips_fpu != MIPS_FPU_NONE) |
28444bf3 DP |
1467 | write_register (FCRCS_REGNUM, |
1468 | read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); | |
bd5635a1 | 1469 | } |
bd5635a1 RP |
1470 | } |
1471 | ||
0f552c5f | 1472 | static void |
a70dc898 | 1473 | mips_print_register (regnum, all) |
bd5635a1 RP |
1474 | int regnum, all; |
1475 | { | |
e4dbd248 | 1476 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 1477 | |
48be4c35 JK |
1478 | /* Get the data in raw format. */ |
1479 | if (read_relative_register_raw_bytes (regnum, raw_buffer)) | |
1480 | { | |
1481 | printf_filtered ("%s: [Invalid]", reg_names[regnum]); | |
1482 | return; | |
1483 | } | |
1484 | ||
1485 | /* If an even floating pointer register, also print as double. */ | |
28444bf3 | 1486 | if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS |
e4dbd248 PS |
1487 | && !((regnum-FP0_REGNUM) & 1)) |
1488 | { | |
1489 | char dbuffer[MAX_REGISTER_RAW_SIZE]; | |
48be4c35 | 1490 | |
e4dbd248 | 1491 | read_relative_register_raw_bytes (regnum, dbuffer); |
28444bf3 | 1492 | read_relative_register_raw_bytes (regnum+1, dbuffer+4); /* FIXME!! */ |
ac8cf67d | 1493 | #ifdef REGISTER_CONVERT_TO_TYPE |
e4dbd248 | 1494 | REGISTER_CONVERT_TO_TYPE(regnum, builtin_type_double, dbuffer); |
ac8cf67d | 1495 | #endif |
e4dbd248 PS |
1496 | printf_filtered ("(d%d: ", regnum-FP0_REGNUM); |
1497 | val_print (builtin_type_double, dbuffer, 0, | |
1498 | gdb_stdout, 0, 1, 0, Val_pretty_default); | |
1499 | printf_filtered ("); "); | |
1500 | } | |
199b2450 | 1501 | fputs_filtered (reg_names[regnum], gdb_stdout); |
48be4c35 JK |
1502 | |
1503 | /* The problem with printing numeric register names (r26, etc.) is that | |
1504 | the user can't use them on input. Probably the best solution is to | |
1505 | fix it so that either the numeric or the funky (a2, etc.) names | |
1506 | are accepted on input. */ | |
28444bf3 | 1507 | if (regnum < MIPS_NUMREGS) |
48be4c35 JK |
1508 | printf_filtered ("(r%d): ", regnum); |
1509 | else | |
1510 | printf_filtered (": "); | |
bd5635a1 | 1511 | |
48be4c35 | 1512 | /* If virtual format is floating, print it that way. */ |
ac57e5ad | 1513 | if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) |
48be4c35 | 1514 | val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, |
199b2450 | 1515 | gdb_stdout, 0, 1, 0, Val_pretty_default); |
48be4c35 JK |
1516 | /* Else print as integer in hex. */ |
1517 | else | |
ac57e5ad SS |
1518 | print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), |
1519 | 'x', 0, gdb_stdout); | |
bd5635a1 RP |
1520 | } |
1521 | ||
d8b3b00e | 1522 | /* Replacement for generic do_registers_info. */ |
9f9f94aa | 1523 | |
0f552c5f | 1524 | void |
361bf6ee | 1525 | mips_do_registers_info (regnum, fpregs) |
bd5635a1 | 1526 | int regnum; |
361bf6ee | 1527 | int fpregs; |
bd5635a1 | 1528 | { |
9f9f94aa SS |
1529 | if (regnum != -1) |
1530 | { | |
1531 | if (*(reg_names[regnum]) == '\0') | |
1532 | error ("Not a valid register for the current processor type"); | |
1533 | ||
bd5635a1 RP |
1534 | mips_print_register (regnum, 0); |
1535 | printf_filtered ("\n"); | |
9f9f94aa SS |
1536 | } |
1537 | else | |
1538 | { | |
09af5868 | 1539 | int did_newline = 0; |
9f9f94aa SS |
1540 | |
1541 | for (regnum = 0; regnum < NUM_REGS; ) | |
1542 | { | |
1543 | if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM) | |
1544 | || *(reg_names[regnum]) == '\0') | |
1545 | { | |
1546 | regnum++; | |
1547 | continue; | |
1548 | } | |
bd5635a1 RP |
1549 | mips_print_register (regnum, 1); |
1550 | regnum++; | |
9f9f94aa SS |
1551 | printf_filtered ("; "); |
1552 | did_newline = 0; | |
1553 | if ((regnum & 3) == 0) | |
1554 | { | |
1555 | printf_filtered ("\n"); | |
1556 | did_newline = 1; | |
1557 | } | |
1558 | } | |
1559 | if (!did_newline) | |
1560 | printf_filtered ("\n"); | |
1561 | } | |
bd5635a1 | 1562 | } |
9f9f94aa | 1563 | |
bd5635a1 RP |
1564 | /* Return number of args passed to a frame. described by FIP. |
1565 | Can return -1, meaning no way to tell. */ | |
1566 | ||
0f552c5f | 1567 | int |
9f9f94aa SS |
1568 | mips_frame_num_args (frame) |
1569 | struct frame_info *frame; | |
bd5635a1 | 1570 | { |
9f9f94aa SS |
1571 | #if 0 /* FIXME Use or lose this! */ |
1572 | struct chain_info_t *p; | |
bd5635a1 | 1573 | |
9f9f94aa SS |
1574 | p = mips_find_cached_frame (FRAME_FP (frame)); |
1575 | if (p->valid) | |
1576 | return p->the_info.numargs; | |
bd5635a1 | 1577 | #endif |
9f9f94aa | 1578 | return -1; |
bd5635a1 | 1579 | } |
96431497 | 1580 | |
427fec5d | 1581 | /* Is this a branch with a delay slot? */ |
9f9f94aa | 1582 | |
b5aff268 JK |
1583 | static int is_delayed PARAMS ((unsigned long)); |
1584 | ||
ee5fb959 JK |
1585 | static int |
1586 | is_delayed (insn) | |
1587 | unsigned long insn; | |
1588 | { | |
1589 | int i; | |
1590 | for (i = 0; i < NUMOPCODES; ++i) | |
1591 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
1592 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
1593 | break; | |
427fec5d JK |
1594 | return (i < NUMOPCODES |
1595 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
1596 | | INSN_COND_BRANCH_DELAY | |
1597 | | INSN_COND_BRANCH_LIKELY))); | |
ee5fb959 | 1598 | } |
b5aff268 JK |
1599 | |
1600 | int | |
1601 | mips_step_skips_delay (pc) | |
1602 | CORE_ADDR pc; | |
1603 | { | |
96431497 | 1604 | char buf[MIPS_INSTLEN]; |
b5aff268 | 1605 | |
f9f8c14b | 1606 | /* There is no branch delay slot on MIPS16. */ |
c1fc0935 | 1607 | if (IS_MIPS16_ADDR (pc)) |
f9f8c14b MA |
1608 | return 0; |
1609 | ||
96431497 | 1610 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) |
b5aff268 JK |
1611 | /* If error reading memory, guess that it is not a delayed branch. */ |
1612 | return 0; | |
96431497 | 1613 | return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); |
b5aff268 | 1614 | } |
ee5fb959 | 1615 | |
bd5635a1 | 1616 | |
20fa0902 MA |
1617 | /* Skip the PC past function prologue instructions (32-bit version). |
1618 | This is a helper function for mips_skip_prologue. */ | |
1619 | ||
1620 | static CORE_ADDR | |
1621 | mips32_skip_prologue (pc, lenient) | |
1622 | CORE_ADDR pc; /* starting PC to search from */ | |
ee5fb959 | 1623 | int lenient; |
bd5635a1 | 1624 | { |
28444bf3 | 1625 | t_inst inst; |
20fa0902 | 1626 | CORE_ADDR end_pc; |
0b0d6c3f | 1627 | int seen_sp_adjust = 0; |
ac57e5ad | 1628 | int load_immediate_bytes = 0; |
bd5635a1 | 1629 | |
e157305c PS |
1630 | /* Skip the typical prologue instructions. These are the stack adjustment |
1631 | instruction and the instructions that save registers on the stack | |
1632 | or in the gcc frame. */ | |
20fa0902 | 1633 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) |
ee5fb959 | 1634 | { |
28444bf3 | 1635 | char buf[MIPS_INSTLEN]; |
ee5fb959 | 1636 | int status; |
b348b9fd | 1637 | unsigned long high_word; |
ee5fb959 | 1638 | |
20fa0902 | 1639 | status = read_memory_nobpt (pc, buf, MIPS_INSTLEN); |
ee5fb959 | 1640 | if (status) |
20fa0902 | 1641 | memory_error (status, pc); |
28444bf3 | 1642 | inst = (unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN); |
b348b9fd | 1643 | high_word = (inst >> 16) & 0xffff; |
ee5fb959 | 1644 | |
002a422b | 1645 | #if 0 |
ee5fb959 JK |
1646 | if (lenient && is_delayed (inst)) |
1647 | continue; | |
002a422b | 1648 | #endif |
ee5fb959 | 1649 | |
b348b9fd MA |
1650 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ |
1651 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
0b0d6c3f | 1652 | seen_sp_adjust = 1; |
ac57e5ad SS |
1653 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ |
1654 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
1655 | seen_sp_adjust = 1; | |
97e091b2 MA |
1656 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ |
1657 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
1658 | && (inst & 0x001F0000)) /* reg != $zero */ | |
1659 | continue; | |
1660 | ||
e157305c PS |
1661 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ |
1662 | continue; | |
1663 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
1664 | /* sx reg,n($s8) */ | |
1665 | continue; /* reg != $zero */ | |
1d9489c1 JK |
1666 | |
1667 | /* move $s8,$sp. With different versions of gas this will be either | |
20fa0902 MA |
1668 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. |
1669 | Accept any one of these. */ | |
1670 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
0b0d6c3f | 1671 | continue; |
1d9489c1 | 1672 | |
1b71de8e PS |
1673 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ |
1674 | continue; | |
b348b9fd | 1675 | else if (high_word == 0x3c1c) /* lui $gp,n */ |
e03c0cc6 | 1676 | continue; |
b348b9fd | 1677 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ |
e03c0cc6 ILT |
1678 | continue; |
1679 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
1680 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
1681 | continue; | |
ac57e5ad SS |
1682 | /* The following instructions load $at or $t0 with an immediate |
1683 | value in preparation for a stack adjustment via | |
1684 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
1685 | a local variable, so we accept them only before a stack adjustment | |
1686 | instruction was seen. */ | |
1687 | else if (!seen_sp_adjust) | |
1688 | { | |
b348b9fd MA |
1689 | if (high_word == 0x3c01 || /* lui $at,n */ |
1690 | high_word == 0x3c08) /* lui $t0,n */ | |
ac57e5ad | 1691 | { |
28444bf3 | 1692 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
1693 | continue; |
1694 | } | |
b348b9fd MA |
1695 | else if (high_word == 0x3421 || /* ori $at,$at,n */ |
1696 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
1697 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
1698 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
ac57e5ad | 1699 | { |
28444bf3 | 1700 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ |
ac57e5ad SS |
1701 | continue; |
1702 | } | |
1703 | else | |
1704 | break; | |
1705 | } | |
0b0d6c3f | 1706 | else |
ac57e5ad | 1707 | break; |
d747e0af | 1708 | } |
e157305c | 1709 | |
ac57e5ad SS |
1710 | /* In a frameless function, we might have incorrectly |
1711 | skipped some load immediate instructions. Undo the skipping | |
1712 | if the load immediate was not followed by a stack adjustment. */ | |
1713 | if (load_immediate_bytes && !seen_sp_adjust) | |
20fa0902 MA |
1714 | pc -= load_immediate_bytes; |
1715 | return pc; | |
1716 | } | |
1717 | ||
1718 | /* Skip the PC past function prologue instructions (16-bit version). | |
1719 | This is a helper function for mips_skip_prologue. */ | |
1720 | ||
1721 | static CORE_ADDR | |
1722 | mips16_skip_prologue (pc, lenient) | |
1723 | CORE_ADDR pc; /* starting PC to search from */ | |
1724 | int lenient; | |
1725 | { | |
1726 | CORE_ADDR end_pc; | |
1727 | ||
1728 | /* Table of instructions likely to be found in a function prologue. */ | |
1729 | static struct | |
1730 | { | |
1731 | unsigned short inst; | |
1732 | unsigned short mask; | |
1733 | } table[] = | |
1734 | { | |
1735 | { 0x6300, 0xff00 }, /* addiu $sp,offset */ | |
1736 | { 0xfb00, 0xff00 }, /* daddiu $sp,offset */ | |
1737 | { 0xd000, 0xf800 }, /* sw reg,n($sp) */ | |
1738 | { 0xf900, 0xff00 }, /* sd reg,n($sp) */ | |
1739 | { 0x6200, 0xff00 }, /* sw $ra,n($sp) */ | |
1740 | { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */ | |
1741 | { 0x673d, 0xffff }, /* move $s1,sp */ | |
1742 | { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */ | |
1743 | { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */ | |
1744 | { 0xe809, 0xf81f }, /* entry pseudo-op */ | |
32dab603 | 1745 | { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */ |
20fa0902 MA |
1746 | { 0, 0 } /* end of table marker */ |
1747 | }; | |
1748 | ||
1749 | /* Skip the typical prologue instructions. These are the stack adjustment | |
1750 | instruction and the instructions that save registers on the stack | |
1751 | or in the gcc frame. */ | |
1752 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
1753 | { | |
1754 | char buf[MIPS16_INSTLEN]; | |
1755 | int status; | |
1756 | unsigned short inst; | |
32dab603 | 1757 | int extend_bytes = 0; |
20fa0902 MA |
1758 | int prev_extend_bytes; |
1759 | int i; | |
1760 | ||
c1fc0935 MA |
1761 | status = read_memory_nobpt (UNMAKE_MIPS16_ADDR (pc), buf, |
1762 | MIPS16_INSTLEN); | |
20fa0902 MA |
1763 | if (status) |
1764 | memory_error (status, pc); | |
1765 | inst = (unsigned long)extract_unsigned_integer (buf, MIPS16_INSTLEN); | |
1766 | ||
1767 | #if 0 | |
1768 | if (lenient && is_delayed (inst)) | |
1769 | continue; | |
1770 | #endif | |
1771 | ||
1772 | /* Normally we ignore an extend instruction. However, if it is | |
1773 | not followed by a valid prologue instruction, we must adjust | |
1774 | the pc back over the extend so that it won't be considered | |
1775 | part of the prologue. */ | |
1776 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
1777 | { | |
1778 | extend_bytes = MIPS16_INSTLEN; | |
1779 | continue; | |
1780 | } | |
1781 | prev_extend_bytes = extend_bytes; | |
1782 | extend_bytes = 0; | |
1783 | ||
1784 | /* Check for other valid prologue instructions besides extend. */ | |
1785 | for (i = 0; table[i].mask != 0; i++) | |
1786 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
1787 | break; | |
1788 | if (table[i].mask != 0) /* it was in table? */ | |
32dab603 | 1789 | continue; /* ignore it */ |
20fa0902 MA |
1790 | else /* non-prologue */ |
1791 | { | |
1792 | /* Return the current pc, adjusted backwards by 2 if | |
1793 | the previous instruction was an extend. */ | |
1794 | return pc - prev_extend_bytes; | |
1795 | } | |
1796 | } | |
32dab603 | 1797 | return pc; |
20fa0902 MA |
1798 | } |
1799 | ||
1800 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1801 | if the code at PC does not look like a function prologue; otherwise | |
1802 | returns an address that (if we're lucky) follows the prologue. If | |
1803 | LENIENT, then we must skip everything which is involved in setting | |
1804 | up the frame (it's OK to skip more, just so long as we don't skip | |
1805 | anything which might clobber the registers which are being saved. | |
1806 | We must skip more in the case where part of the prologue is in the | |
1807 | delay slot of a non-prologue instruction). */ | |
1808 | ||
1809 | CORE_ADDR | |
1810 | mips_skip_prologue (pc, lenient) | |
1811 | CORE_ADDR pc; | |
1812 | int lenient; | |
1813 | { | |
1814 | /* See if we can determine the end of the prologue via the symbol table. | |
1815 | If so, then return either PC, or the PC after the prologue, whichever | |
1816 | is greater. */ | |
1817 | ||
1818 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
1819 | ||
1820 | if (post_prologue_pc != 0) | |
1821 | return max (pc, post_prologue_pc); | |
1822 | ||
1823 | /* Can't determine prologue from the symbol table, need to examine | |
1824 | instructions. */ | |
1825 | ||
c1fc0935 | 1826 | if (IS_MIPS16_ADDR (pc)) |
20fa0902 MA |
1827 | return mips16_skip_prologue (pc, lenient); |
1828 | else | |
1829 | return mips32_skip_prologue (pc, lenient); | |
bd5635a1 | 1830 | } |
c2a0f1cb | 1831 | |
002a422b | 1832 | #if 0 |
20fa0902 | 1833 | /* The lenient prologue stuff should be superseded by the code in |
002a422b JK |
1834 | init_extra_frame_info which looks to see whether the stores mentioned |
1835 | in the proc_desc have actually taken place. */ | |
1836 | ||
ee5fb959 JK |
1837 | /* Is address PC in the prologue (loosely defined) for function at |
1838 | STARTADDR? */ | |
1839 | ||
1840 | static int | |
1841 | mips_in_lenient_prologue (startaddr, pc) | |
1842 | CORE_ADDR startaddr; | |
1843 | CORE_ADDR pc; | |
1844 | { | |
1845 | CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); | |
1846 | return pc >= startaddr && pc < end_prologue; | |
1847 | } | |
002a422b | 1848 | #endif |
ee5fb959 | 1849 | |
ac8cf67d PS |
1850 | /* Given a return value in `regbuf' with a type `valtype', |
1851 | extract and copy its value into `valbuf'. */ | |
1852 | void | |
1853 | mips_extract_return_value (valtype, regbuf, valbuf) | |
1854 | struct type *valtype; | |
1855 | char regbuf[REGISTER_BYTES]; | |
1856 | char *valbuf; | |
1857 | { | |
1858 | int regnum; | |
92a6d600 | 1859 | int offset = 0; |
ac8cf67d | 1860 | |
e4dbd248 PS |
1861 | regnum = 2; |
1862 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
1863 | && (mips_fpu == MIPS_FPU_DOUBLE | |
28444bf3 | 1864 | || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) /* FIXME!! */ |
e4dbd248 | 1865 | regnum = FP0_REGNUM; |
ac8cf67d | 1866 | |
92a6d600 PS |
1867 | if (TARGET_BYTE_ORDER == BIG_ENDIAN |
1868 | && TYPE_CODE (valtype) != TYPE_CODE_FLT | |
1869 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (regnum)) | |
1870 | offset = REGISTER_RAW_SIZE (regnum) - TYPE_LENGTH (valtype); | |
1871 | ||
1872 | memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, | |
1873 | TYPE_LENGTH (valtype)); | |
ac8cf67d PS |
1874 | #ifdef REGISTER_CONVERT_TO_TYPE |
1875 | REGISTER_CONVERT_TO_TYPE(regnum, valtype, valbuf); | |
1876 | #endif | |
1877 | } | |
1878 | ||
1879 | /* Given a return value in `regbuf' with a type `valtype', | |
1880 | write it's value into the appropriate register. */ | |
1881 | void | |
1882 | mips_store_return_value (valtype, valbuf) | |
1883 | struct type *valtype; | |
1884 | char *valbuf; | |
1885 | { | |
1886 | int regnum; | |
1887 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1888 | ||
e4dbd248 PS |
1889 | regnum = 2; |
1890 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
1891 | && (mips_fpu == MIPS_FPU_DOUBLE | |
28444bf3 | 1892 | || (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4))) /* FIXME!! */ |
e4dbd248 PS |
1893 | regnum = FP0_REGNUM; |
1894 | ||
ac8cf67d PS |
1895 | memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype)); |
1896 | ||
1897 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
1898 | REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); | |
1899 | #endif | |
1900 | ||
1901 | write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype)); | |
1902 | } | |
1903 | ||
e03c0cc6 ILT |
1904 | /* Exported procedure: Is PC in the signal trampoline code */ |
1905 | ||
1906 | int | |
1907 | in_sigtramp (pc, ignore) | |
1908 | CORE_ADDR pc; | |
1909 | char *ignore; /* function name */ | |
1910 | { | |
1911 | if (sigtramp_address == 0) | |
1912 | fixup_sigtramp (); | |
1913 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
1914 | } | |
1915 | ||
e4dbd248 PS |
1916 | /* Command to set FPU type. mips_fpu_string will have been set to the |
1917 | user's argument. Set mips_fpu based on mips_fpu_string, and then | |
1918 | canonicalize mips_fpu_string. */ | |
1919 | ||
1920 | /*ARGSUSED*/ | |
1921 | static void | |
1922 | mips_set_fpu_command (args, from_tty, c) | |
1923 | char *args; | |
1924 | int from_tty; | |
1925 | struct cmd_list_element *c; | |
1926 | { | |
1927 | char *err = NULL; | |
1928 | ||
1929 | if (mips_fpu_string == NULL || *mips_fpu_string == '\0') | |
1930 | mips_fpu = MIPS_FPU_DOUBLE; | |
1931 | else if (strcasecmp (mips_fpu_string, "double") == 0 | |
1932 | || strcasecmp (mips_fpu_string, "on") == 0 | |
1933 | || strcasecmp (mips_fpu_string, "1") == 0 | |
1934 | || strcasecmp (mips_fpu_string, "yes") == 0) | |
1935 | mips_fpu = MIPS_FPU_DOUBLE; | |
1936 | else if (strcasecmp (mips_fpu_string, "none") == 0 | |
1937 | || strcasecmp (mips_fpu_string, "off") == 0 | |
1938 | || strcasecmp (mips_fpu_string, "0") == 0 | |
1939 | || strcasecmp (mips_fpu_string, "no") == 0) | |
1940 | mips_fpu = MIPS_FPU_NONE; | |
1941 | else if (strcasecmp (mips_fpu_string, "single") == 0) | |
1942 | mips_fpu = MIPS_FPU_SINGLE; | |
1943 | else | |
1944 | err = strsave (mips_fpu_string); | |
1945 | ||
1946 | if (mips_fpu_string != NULL) | |
1947 | free (mips_fpu_string); | |
1948 | ||
1949 | switch (mips_fpu) | |
1950 | { | |
1951 | case MIPS_FPU_DOUBLE: | |
1952 | mips_fpu_string = strsave ("double"); | |
1953 | break; | |
1954 | case MIPS_FPU_SINGLE: | |
1955 | mips_fpu_string = strsave ("single"); | |
1956 | break; | |
1957 | case MIPS_FPU_NONE: | |
1958 | mips_fpu_string = strsave ("none"); | |
1959 | break; | |
1960 | } | |
1961 | ||
1962 | if (err != NULL) | |
1963 | { | |
1964 | struct cleanup *cleanups = make_cleanup (free, err); | |
1965 | error ("Unknown FPU type `%s'. Use `double', `none', or `single'.", | |
1966 | err); | |
1967 | do_cleanups (cleanups); | |
1968 | } | |
1969 | } | |
1970 | ||
1971 | static void | |
1972 | mips_show_fpu_command (args, from_tty, c) | |
1973 | char *args; | |
1974 | int from_tty; | |
1975 | struct cmd_list_element *c; | |
1976 | { | |
1977 | } | |
1978 | ||
9f9f94aa SS |
1979 | /* Command to set the processor type. */ |
1980 | ||
1981 | void | |
1982 | mips_set_processor_type_command (args, from_tty) | |
1983 | char *args; | |
1984 | int from_tty; | |
1985 | { | |
1986 | int i; | |
1987 | ||
1988 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
1989 | { | |
1990 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
1991 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
1992 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
1993 | ||
1994 | /* Restore the value. */ | |
1995 | tmp_mips_processor_type = strsave (mips_processor_type); | |
1996 | ||
1997 | return; | |
1998 | } | |
1999 | ||
2000 | if (!mips_set_processor_type (tmp_mips_processor_type)) | |
2001 | { | |
2002 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
2003 | /* Restore its value. */ | |
2004 | tmp_mips_processor_type = strsave (mips_processor_type); | |
2005 | } | |
2006 | } | |
2007 | ||
2008 | static void | |
2009 | mips_show_processor_type_command (args, from_tty) | |
2010 | char *args; | |
2011 | int from_tty; | |
2012 | { | |
2013 | } | |
2014 | ||
2015 | /* Modify the actual processor type. */ | |
2016 | ||
2017 | int | |
2018 | mips_set_processor_type (str) | |
2019 | char *str; | |
2020 | { | |
2021 | int i, j; | |
2022 | ||
2023 | if (str == NULL) | |
1d9489c1 | 2024 | return 0; |
9f9f94aa SS |
2025 | |
2026 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
2027 | { | |
2028 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
2029 | { | |
2030 | mips_processor_type = str; | |
2031 | ||
2032 | for (j = 0; j < NUM_REGS; ++j) | |
2033 | reg_names[j] = mips_processor_type_table[i].regnames[j]; | |
2034 | ||
2035 | return 1; | |
2036 | ||
2037 | /* FIXME tweak fpu flag too */ | |
2038 | } | |
2039 | } | |
2040 | ||
2041 | return 0; | |
2042 | } | |
2043 | ||
2044 | /* Attempt to identify the particular processor model by reading the | |
2045 | processor id. */ | |
2046 | ||
2047 | char * | |
2048 | mips_read_processor_type () | |
2049 | { | |
28444bf3 | 2050 | CORE_ADDR prid; |
9f9f94aa SS |
2051 | |
2052 | prid = read_register (PRID_REGNUM); | |
2053 | ||
80e0e92a | 2054 | if ((prid & ~0xf) == 0x700) |
9f9f94aa SS |
2055 | return savestring ("r3041", strlen("r3041")); |
2056 | ||
2057 | return NULL; | |
2058 | } | |
427fec5d JK |
2059 | |
2060 | /* Just like reinit_frame_cache, but with the right arguments to be | |
2061 | callable as an sfunc. */ | |
9f9f94aa | 2062 | |
427fec5d JK |
2063 | static void |
2064 | reinit_frame_cache_sfunc (args, from_tty, c) | |
2065 | char *args; | |
2066 | int from_tty; | |
2067 | struct cmd_list_element *c; | |
2068 | { | |
2069 | reinit_frame_cache (); | |
2070 | } | |
c2a0f1cb | 2071 | |
28444bf3 | 2072 | static int |
18b46e7c SS |
2073 | gdb_print_insn_mips (memaddr, info) |
2074 | bfd_vma memaddr; | |
2075 | disassemble_info *info; | |
2076 | { | |
f9f8c14b MA |
2077 | mips_extra_func_info_t proc_desc; |
2078 | ||
2079 | /* Search for the function containing this address. Set the low bit | |
2080 | of the address when searching, in case we were given an even address | |
2081 | that is the start of a 16-bit function. If we didn't do this, | |
2082 | the search would fail because the symbol table says the function | |
2083 | starts at an odd address, i.e. 1 byte past the given address. */ | |
c1fc0935 MA |
2084 | memaddr = ADDR_BITS_REMOVE (memaddr); |
2085 | proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); | |
f9f8c14b MA |
2086 | |
2087 | /* Make an attempt to determine if this is a 16-bit function. If | |
2088 | the procedure descriptor exists and the address therein is odd, | |
2089 | it's definitely a 16-bit function. Otherwise, we have to just | |
2090 | guess that if the address passed in is odd, it's 16-bits. */ | |
2091 | if (proc_desc) | |
c1fc0935 | 2092 | info->mach = IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)) ? 16 : 0; |
f9f8c14b | 2093 | else |
c1fc0935 | 2094 | info->mach = IS_MIPS16_ADDR (memaddr) ? 16 : 0; |
f9f8c14b | 2095 | |
c1fc0935 | 2096 | /* Round down the instruction address to the appropriate boundary. */ |
f9f8c14b MA |
2097 | memaddr &= (info->mach == 16 ? ~1 : ~3); |
2098 | ||
2099 | /* Call the appropriate disassembler based on the target endian-ness. */ | |
18b46e7c SS |
2100 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
2101 | return print_insn_big_mips (memaddr, info); | |
2102 | else | |
2103 | return print_insn_little_mips (memaddr, info); | |
2104 | } | |
2105 | ||
f9f8c14b MA |
2106 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program |
2107 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
2108 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
2109 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
2110 | (if necessary) to point to the actual memory location where the | |
2111 | breakpoint should be inserted. */ | |
2112 | ||
2113 | unsigned char *mips_breakpoint_from_pc (pcptr, lenptr) | |
2114 | CORE_ADDR *pcptr; | |
2115 | int *lenptr; | |
2116 | { | |
2117 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
2118 | { | |
c1fc0935 | 2119 | if (IS_MIPS16_ADDR (*pcptr)) |
f9f8c14b MA |
2120 | { |
2121 | static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; | |
c1fc0935 | 2122 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2123 | *lenptr = sizeof(mips16_big_breakpoint); |
2124 | return mips16_big_breakpoint; | |
2125 | } | |
2126 | else | |
2127 | { | |
2128 | static char big_breakpoint[] = BIG_BREAKPOINT; | |
2129 | *lenptr = sizeof(big_breakpoint); | |
2130 | return big_breakpoint; | |
2131 | } | |
2132 | } | |
2133 | else | |
2134 | { | |
c1fc0935 | 2135 | if (IS_MIPS16_ADDR (*pcptr)) |
f9f8c14b MA |
2136 | { |
2137 | static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; | |
c1fc0935 | 2138 | *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); |
f9f8c14b MA |
2139 | *lenptr = sizeof(mips16_little_breakpoint); |
2140 | return mips16_little_breakpoint; | |
2141 | } | |
2142 | else | |
2143 | { | |
2144 | static char little_breakpoint[] = LITTLE_BREAKPOINT; | |
2145 | *lenptr = sizeof(little_breakpoint); | |
2146 | return little_breakpoint; | |
2147 | } | |
2148 | } | |
2149 | } | |
2150 | ||
2151 | /* Test whether the PC points to the return instruction at the | |
2152 | end of a function. This implements the ABOUT_TO_RETURN macro. */ | |
2153 | ||
2154 | int | |
2155 | mips_about_to_return (pc) | |
2156 | CORE_ADDR pc; | |
2157 | { | |
c1fc0935 | 2158 | if (IS_MIPS16_ADDR (pc)) |
f9f8c14b MA |
2159 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler |
2160 | generates a "jr $ra"; other times it generates code to load | |
2161 | the return address from the stack to an accessible register (such | |
2162 | as $a3), then a "jr" using that register. This second case | |
2163 | is almost impossible to distinguish from an indirect jump | |
2164 | used for switch statements, so we don't even try. */ | |
c1fc0935 | 2165 | return read_memory_integer (UNMAKE_MIPS16_ADDR (pc), 2) == 0xe820; /* jr $ra */ |
f9f8c14b MA |
2166 | else |
2167 | return read_memory_integer (pc, 4) == 0x3e00008; /* jr $ra */ | |
2168 | } | |
2169 | ||
2170 | ||
c2a0f1cb ILT |
2171 | void |
2172 | _initialize_mips_tdep () | |
2173 | { | |
427fec5d JK |
2174 | struct cmd_list_element *c; |
2175 | ||
18b46e7c SS |
2176 | tm_print_insn = gdb_print_insn_mips; |
2177 | ||
427fec5d JK |
2178 | /* Let the user turn off floating point and set the fence post for |
2179 | heuristic_proc_start. */ | |
2180 | ||
e4dbd248 PS |
2181 | c = add_set_cmd ("mipsfpu", class_support, var_string_noescape, |
2182 | (char *) &mips_fpu_string, | |
2183 | "Set use of floating point coprocessor.\n\ | |
2184 | Set to `none' to avoid using floating point instructions when calling\n\ | |
2185 | functions or dealing with return values. Set to `single' to use only\n\ | |
2186 | single precision floating point as on the R4650. Set to `double' for\n\ | |
2187 | normal floating point support.", | |
2188 | &setlist); | |
2189 | c->function.sfunc = mips_set_fpu_command; | |
2190 | c = add_show_from_set (c, &showlist); | |
2191 | c->function.sfunc = mips_show_fpu_command; | |
2192 | ||
2193 | mips_fpu = MIPS_FPU_DOUBLE; | |
2194 | mips_fpu_string = strsave ("double"); | |
3127785a | 2195 | |
9f9f94aa SS |
2196 | c = add_set_cmd ("processor", class_support, var_string_noescape, |
2197 | (char *) &tmp_mips_processor_type, | |
2198 | "Set the type of MIPS processor in use.\n\ | |
2199 | Set this to be able to access processor-type-specific registers.\n\ | |
2200 | ", | |
2201 | &setlist); | |
2202 | c->function.cfunc = mips_set_processor_type_command; | |
2203 | c = add_show_from_set (c, &showlist); | |
2204 | c->function.cfunc = mips_show_processor_type_command; | |
2205 | ||
2206 | tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); | |
2207 | mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); | |
2208 | ||
bdef72d2 JK |
2209 | /* We really would like to have both "0" and "unlimited" work, but |
2210 | command.c doesn't deal with that. So make it a var_zinteger | |
2211 | because the user can always use "999999" or some such for unlimited. */ | |
2212 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
427fec5d JK |
2213 | (char *) &heuristic_fence_post, |
2214 | "\ | |
23d35572 JK |
2215 | Set the distance searched for the start of a function.\n\ |
2216 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
2217 | program for the start of a function. This command sets the distance of the\n\ | |
2218 | search. The only need to set it is when debugging a stripped executable.", | |
427fec5d JK |
2219 | &setlist); |
2220 | /* We need to throw away the frame cache when we set this, since it | |
2221 | might change our ability to get backtraces. */ | |
2222 | c->function.sfunc = reinit_frame_cache_sfunc; | |
2223 | add_show_from_set (c, &showlist); | |
c2a0f1cb | 2224 | } |