]>
Commit | Line | Data |
---|---|---|
f9e3b3cc | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
012be3ce | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996 |
94d4b713 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
5259796b | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
5259796b JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
5259796b | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
5259796b | 18 | along with this program; if not, write to the Free Software |
673e1bab | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 20 | |
8b0f5a9d DE |
21 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ |
22 | ||
bd5635a1 | 23 | #include "defs.h" |
bd5635a1 RP |
24 | #include "frame.h" |
25 | #include "inferior.h" | |
26 | #include "obstack.h" | |
bd5635a1 | 27 | #include "target.h" |
48792545 | 28 | #include "value.h" |
91550191 | 29 | #include "bfd.h" |
4365c36c | 30 | |
8f86a4e4 JG |
31 | #ifdef USE_PROC_FS |
32 | #include <sys/procfs.h> | |
8f86a4e4 | 33 | #endif |
bd5635a1 | 34 | |
bd5635a1 RP |
35 | #include "gdbcore.h" |
36 | ||
8b0f5a9d | 37 | #ifdef GDB_TARGET_IS_SPARC64 |
012be3ce | 38 | #define FP_REGISTER_BYTES (64 * 4) |
8b0f5a9d | 39 | #else |
012be3ce DP |
40 | #define FP_REGISTER_BYTES (32 * 4) |
41 | #endif | |
42 | ||
43 | /* If not defined, assume 32 bit sparc. */ | |
44 | #ifndef FP_MAX_REGNUM | |
45 | #define FP_MAX_REGNUM (FP0_REGNUM + 32) | |
8b0f5a9d DE |
46 | #endif |
47 | ||
48 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) | |
49 | ||
bd5635a1 RP |
50 | /* From infrun.c */ |
51 | extern int stop_after_trap; | |
52 | ||
b38f304c JG |
53 | /* We don't store all registers immediately when requested, since they |
54 | get sent over in large chunks anyway. Instead, we accumulate most | |
55 | of the changes and send them over once. "deferred_stores" keeps | |
56 | track of which sets of registers we have locally-changed copies of, | |
57 | so we only need send the groups that have changed. */ | |
58 | ||
59 | int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ | |
60 | ||
8b0f5a9d DE |
61 | /* Branches with prediction are treated like their non-predicting cousins. */ |
62 | /* FIXME: What about floating point branches? */ | |
63 | ||
ee7b9e92 JK |
64 | /* Macros to extract fields from sparc instructions. */ |
65 | #define X_OP(i) (((i) >> 30) & 0x3) | |
66 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
67 | #define X_A(i) (((i) >> 29) & 1) | |
68 | #define X_COND(i) (((i) >> 25) & 0xf) | |
69 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
70 | #define X_IMM22(i) ((i) & 0x3fffff) | |
71 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
72 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
73 | #define X_I(i) (((i) >> 13) & 1) | |
74 | #define X_IMM13(i) ((i) & 0x1fff) | |
75 | /* Sign extension macros. */ | |
76 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
77 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
8b0f5a9d DE |
78 | #ifdef GDB_TARGET_IS_SPARC64 |
79 | #define X_CC(i) (((i) >> 20) & 3) | |
80 | #define X_P(i) (((i) >> 19) & 1) | |
81 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
82 | #define X_RCOND(i) (((i) >> 25) & 7) | |
83 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
84 | #define X_FCN(i) (((i) >> 25) & 31) | |
85 | #endif | |
ee7b9e92 | 86 | |
bd5635a1 RP |
87 | typedef enum |
88 | { | |
8b0f5a9d DE |
89 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, |
90 | #ifdef GDB_TARGET_IS_SPARC64 | |
91 | done_retry | |
92 | #endif | |
bd5635a1 RP |
93 | } branch_type; |
94 | ||
95 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
96 | Beihl ([email protected]). */ | |
97 | ||
98 | /* npc4 and next_pc describe the situation at the time that the | |
99 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
100 | static CORE_ADDR next_pc, npc4, target; | |
101 | static int brknpc4, brktrg; | |
102 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
103 | static binsn_quantum break_mem[3]; | |
104 | ||
105 | /* Non-zero if we just simulated a single-step ptrace call. This is | |
106 | needed because we cannot remove the breakpoints in the inferior | |
107 | process until after the `wait' in `wait_for_inferior'. Used for | |
108 | sun4. */ | |
109 | ||
110 | int one_stepped; | |
111 | ||
d11c44f1 JG |
112 | /* single_step() is called just before we want to resume the inferior, |
113 | if we want to single-step it but there is no hardware or kernel single-step | |
114 | support (as on all SPARCs). We find all the possible targets of the | |
115 | coming instruction and breakpoint them. | |
116 | ||
117 | single_step is also called just after the inferior stops. If we had | |
118 | set up a simulated single-step, we undo our damage. */ | |
119 | ||
bd5635a1 | 120 | void |
8f86a4e4 JG |
121 | single_step (ignore) |
122 | int ignore; /* pid, but we don't need it */ | |
bd5635a1 | 123 | { |
8b0f5a9d | 124 | branch_type br, isbranch(); |
bd5635a1 RP |
125 | CORE_ADDR pc; |
126 | long pc_instruction; | |
127 | ||
128 | if (!one_stepped) | |
129 | { | |
130 | /* Always set breakpoint for NPC. */ | |
131 | next_pc = read_register (NPC_REGNUM); | |
132 | npc4 = next_pc + 4; /* branch not taken */ | |
133 | ||
134 | target_insert_breakpoint (next_pc, break_mem[0]); | |
f1de67d3 | 135 | /* printf_unfiltered ("set break at %x\n",next_pc); */ |
bd5635a1 RP |
136 | |
137 | pc = read_register (PC_REGNUM); | |
ee7b9e92 | 138 | pc_instruction = read_memory_integer (pc, 4); |
8b0f5a9d | 139 | br = isbranch (pc_instruction, pc, &target); |
bd5635a1 RP |
140 | brknpc4 = brktrg = 0; |
141 | ||
142 | if (br == bicca) | |
143 | { | |
144 | /* Conditional annulled branch will either end up at | |
145 | npc (if taken) or at npc+4 (if not taken). | |
146 | Trap npc+4. */ | |
147 | brknpc4 = 1; | |
148 | target_insert_breakpoint (npc4, break_mem[1]); | |
149 | } | |
150 | else if (br == baa && target != next_pc) | |
151 | { | |
152 | /* Unconditional annulled branch will always end up at | |
153 | the target. */ | |
154 | brktrg = 1; | |
155 | target_insert_breakpoint (target, break_mem[2]); | |
156 | } | |
8b0f5a9d DE |
157 | #ifdef GDB_TARGET_IS_SPARC64 |
158 | else if (br == done_retry) | |
159 | { | |
160 | brktrg = 1; | |
161 | target_insert_breakpoint (target, break_mem[2]); | |
162 | } | |
163 | #endif | |
bd5635a1 | 164 | |
d11c44f1 | 165 | /* We are ready to let it go */ |
bd5635a1 RP |
166 | one_stepped = 1; |
167 | return; | |
168 | } | |
169 | else | |
170 | { | |
171 | /* Remove breakpoints */ | |
172 | target_remove_breakpoint (next_pc, break_mem[0]); | |
173 | ||
174 | if (brknpc4) | |
175 | target_remove_breakpoint (npc4, break_mem[1]); | |
176 | ||
177 | if (brktrg) | |
178 | target_remove_breakpoint (target, break_mem[2]); | |
179 | ||
180 | one_stepped = 0; | |
181 | } | |
182 | } | |
183 | \f | |
84bdfea6 PS |
184 | /* Call this for each newly created frame. For SPARC, we need to calculate |
185 | the bottom of the frame, and do some extra work if the prologue | |
186 | has been generated via the -mflat option to GCC. In particular, | |
187 | we need to know where the previous fp and the pc have been stashed, | |
188 | since their exact position within the frame may vary. */ | |
189 | ||
190 | void | |
191 | sparc_init_extra_frame_info (fromleaf, fi) | |
192 | int fromleaf; | |
193 | struct frame_info *fi; | |
194 | { | |
195 | char *name; | |
196 | CORE_ADDR addr; | |
ee7b9e92 | 197 | int insn; |
84bdfea6 PS |
198 | |
199 | fi->bottom = | |
200 | (fi->next ? | |
201 | (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) : | |
202 | read_register (SP_REGNUM)); | |
203 | ||
ee7b9e92 JK |
204 | /* If fi->next is NULL, then we already set ->frame by passing read_fp() |
205 | to create_new_frame. */ | |
206 | if (fi->next) | |
207 | { | |
208 | char buf[MAX_REGISTER_RAW_SIZE]; | |
209 | int err; | |
210 | ||
211 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
212 | it later. */ | |
213 | /* FIXME: If error reading memory, should just stop backtracing, rather | |
214 | than error(). */ | |
215 | get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); | |
216 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); | |
217 | } | |
218 | ||
84bdfea6 PS |
219 | /* Decide whether this is a function with a ``flat register window'' |
220 | frame. For such functions, the frame pointer is actually in %i7. */ | |
221 | fi->flat = 0; | |
222 | if (find_pc_partial_function (fi->pc, &name, &addr, NULL)) | |
223 | { | |
224 | /* See if the function starts with an add (which will be of a | |
ee7b9e92 JK |
225 | negative number if a flat frame) to the sp. FIXME: Does not |
226 | handle large frames which will need more than one instruction | |
227 | to adjust the sp. */ | |
228 | insn = read_memory_integer (addr, 4); | |
229 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 | |
230 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
84bdfea6 | 231 | { |
ee7b9e92 JK |
232 | int offset = X_SIMM13 (insn); |
233 | ||
84bdfea6 | 234 | /* Then look for a save of %i7 into the frame. */ |
ee7b9e92 JK |
235 | insn = read_memory_integer (addr + 4, 4); |
236 | if (X_OP (insn) == 3 | |
237 | && X_RD (insn) == 31 | |
238 | && X_OP3 (insn) == 4 | |
239 | && X_RS1 (insn) == 14) | |
84bdfea6 | 240 | { |
ee7b9e92 JK |
241 | char buf[MAX_REGISTER_RAW_SIZE]; |
242 | ||
84bdfea6 PS |
243 | /* We definitely have a flat frame now. */ |
244 | fi->flat = 1; | |
ee7b9e92 JK |
245 | |
246 | fi->sp_offset = offset; | |
247 | ||
84bdfea6 | 248 | /* Overwrite the frame's address with the value in %i7. */ |
ee7b9e92 JK |
249 | get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); |
250 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); | |
251 | ||
84bdfea6 | 252 | /* Record where the fp got saved. */ |
ee7b9e92 JK |
253 | fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); |
254 | ||
84bdfea6 PS |
255 | /* Also try to collect where the pc got saved to. */ |
256 | fi->pc_addr = 0; | |
ee7b9e92 JK |
257 | insn = read_memory_integer (addr + 12, 4); |
258 | if (X_OP (insn) == 3 | |
259 | && X_RD (insn) == 15 | |
260 | && X_OP3 (insn) == 4 | |
261 | && X_RS1 (insn) == 14) | |
262 | fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
84bdfea6 PS |
263 | } |
264 | } | |
265 | } | |
ee7b9e92 JK |
266 | if (fi->next && fi->frame == 0) |
267 | { | |
268 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
269 | fi->frame = fi->next->frame; | |
270 | fi->pc = fi->next->pc; | |
271 | } | |
84bdfea6 PS |
272 | } |
273 | ||
d11c44f1 | 274 | CORE_ADDR |
84bdfea6 PS |
275 | sparc_frame_chain (frame) |
276 | struct frame_info *frame; | |
d11c44f1 | 277 | { |
ee7b9e92 JK |
278 | /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain |
279 | value. If it realy is zero, we detect it later in | |
280 | sparc_init_prev_frame. */ | |
281 | return (CORE_ADDR)1; | |
d11c44f1 JG |
282 | } |
283 | ||
284 | CORE_ADDR | |
285 | sparc_extract_struct_value_address (regbuf) | |
286 | char regbuf[REGISTER_BYTES]; | |
287 | { | |
b9e58503 PS |
288 | #ifdef GDB_TARGET_IS_SPARC64 |
289 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
290 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
291 | #else | |
8b0f5a9d | 292 | return read_memory_integer (((int *)(regbuf)) [SP_REGNUM] + (16 * SPARC_INTREG_SIZE), |
f1de67d3 | 293 | TARGET_PTR_BIT / TARGET_CHAR_BIT); |
b9e58503 | 294 | #endif |
d11c44f1 JG |
295 | } |
296 | ||
f9e3b3cc JG |
297 | /* Find the pc saved in frame FRAME. */ |
298 | ||
bd5635a1 | 299 | CORE_ADDR |
8bf94f44 | 300 | sparc_frame_saved_pc (frame) |
84bdfea6 | 301 | struct frame_info *frame; |
bd5635a1 | 302 | { |
f1de67d3 | 303 | char buf[MAX_REGISTER_RAW_SIZE]; |
34df79fc | 304 | CORE_ADDR addr; |
f9e3b3cc | 305 | |
48792545 JK |
306 | if (frame->signal_handler_caller) |
307 | { | |
308 | /* This is the signal trampoline frame. | |
309 | Get the saved PC from the sigcontext structure. */ | |
310 | ||
311 | #ifndef SIGCONTEXT_PC_OFFSET | |
312 | #define SIGCONTEXT_PC_OFFSET 12 | |
313 | #endif | |
314 | ||
315 | CORE_ADDR sigcontext_addr; | |
316 | char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; | |
94d4b713 JK |
317 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
318 | char *name = NULL; | |
319 | ||
320 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext | |
321 | as the third parameter. The offset to the saved pc is 12. */ | |
322 | find_pc_partial_function (frame->pc, &name, | |
323 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
324 | if (name && STREQ (name, "ucbsigvechandler")) | |
325 | saved_pc_offset = 12; | |
48792545 JK |
326 | |
327 | /* The sigcontext address is contained in register O2. */ | |
328 | get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, | |
329 | frame, O0_REGNUM + 2, (enum lval_type *)NULL); | |
8b0f5a9d | 330 | sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); |
48792545 JK |
331 | |
332 | /* Don't cause a memory_error when accessing sigcontext in case the | |
333 | stack layout has changed or the stack is corrupt. */ | |
94d4b713 | 334 | target_read_memory (sigcontext_addr + saved_pc_offset, |
48792545 JK |
335 | scbuf, sizeof (scbuf)); |
336 | return extract_address (scbuf, sizeof (scbuf)); | |
337 | } | |
84bdfea6 PS |
338 | if (frame->flat) |
339 | addr = frame->pc_addr; | |
340 | else | |
341 | addr = frame->bottom + FRAME_SAVED_I0 + | |
8b0f5a9d | 342 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
ee7b9e92 JK |
343 | |
344 | if (addr == 0) | |
345 | /* A flat frame leaf function might not save the PC anywhere, | |
346 | just leave it in %o7. */ | |
347 | return PC_ADJUST (read_register (O7_REGNUM)); | |
348 | ||
8b0f5a9d DE |
349 | read_memory (addr, buf, SPARC_INTREG_SIZE); |
350 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
351 | } |
352 | ||
84bdfea6 PS |
353 | /* Since an individual frame in the frame cache is defined by two |
354 | arguments (a frame pointer and a stack pointer), we need two | |
355 | arguments to get info for an arbitrary stack frame. This routine | |
356 | takes two arguments and makes the cached frames look as if these | |
357 | two arguments defined a frame on the cache. This allows the rest | |
358 | of info frame to extract the important arguments without | |
359 | difficulty. */ | |
360 | ||
361 | struct frame_info * | |
2093fe68 RP |
362 | setup_arbitrary_frame (argc, argv) |
363 | int argc; | |
84bdfea6 | 364 | CORE_ADDR *argv; |
bd5635a1 | 365 | { |
84bdfea6 | 366 | struct frame_info *frame; |
2093fe68 RP |
367 | |
368 | if (argc != 2) | |
369 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
370 | ||
84bdfea6 | 371 | frame = create_new_frame (argv[0], 0); |
bd5635a1 | 372 | |
84bdfea6 PS |
373 | if (!frame) |
374 | fatal ("internal: create_new_frame returned invalid frame"); | |
bd5635a1 | 375 | |
84bdfea6 PS |
376 | frame->bottom = argv[1]; |
377 | frame->pc = FRAME_SAVED_PC (frame); | |
378 | return frame; | |
bd5635a1 RP |
379 | } |
380 | ||
5259796b JG |
381 | /* Given a pc value, skip it forward past the function prologue by |
382 | disassembling instructions that appear to be a prologue. | |
383 | ||
384 | If FRAMELESS_P is set, we are only testing to see if the function | |
385 | is frameless. This allows a quicker answer. | |
386 | ||
387 | This routine should be more specific in its actions; making sure | |
192cbba9 | 388 | that it uses the same register in the initial prologue section. */ |
84bdfea6 | 389 | |
ee7b9e92 JK |
390 | static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *, |
391 | struct frame_saved_regs *)); | |
392 | ||
393 | static CORE_ADDR | |
394 | examine_prologue (start_pc, frameless_p, fi, saved_regs) | |
192cbba9 | 395 | CORE_ADDR start_pc; |
5259796b | 396 | int frameless_p; |
ee7b9e92 JK |
397 | struct frame_info *fi; |
398 | struct frame_saved_regs *saved_regs; | |
bd5635a1 | 399 | { |
ee7b9e92 | 400 | int insn; |
bd5635a1 | 401 | int dest = -1; |
192cbba9 | 402 | CORE_ADDR pc = start_pc; |
84bdfea6 | 403 | int is_flat = 0; |
bd5635a1 | 404 | |
ee7b9e92 | 405 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
406 | |
407 | /* Recognize the `sethi' insn and record its destination. */ | |
ee7b9e92 | 408 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) |
bd5635a1 | 409 | { |
ee7b9e92 | 410 | dest = X_RD (insn); |
bd5635a1 | 411 | pc += 4; |
ee7b9e92 | 412 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
413 | } |
414 | ||
415 | /* Recognize an add immediate value to register to either %g1 or | |
416 | the destination register recorded above. Actually, this might | |
192cbba9 JK |
417 | well recognize several different arithmetic operations. |
418 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
419 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
420 | I imagine any compiler really does that, however). */ | |
ee7b9e92 JK |
421 | if (X_OP (insn) == 2 |
422 | && X_I (insn) | |
423 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
bd5635a1 RP |
424 | { |
425 | pc += 4; | |
ee7b9e92 | 426 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
427 | } |
428 | ||
ee7b9e92 JK |
429 | /* Recognize any SAVE insn. */ |
430 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
bd5635a1 RP |
431 | { |
432 | pc += 4; | |
5259796b JG |
433 | if (frameless_p) /* If the save is all we care about, */ |
434 | return pc; /* return before doing more work */ | |
ee7b9e92 | 435 | insn = read_memory_integer (pc, 4); |
bd5635a1 | 436 | } |
ee7b9e92 JK |
437 | /* Recognize add to %sp. */ |
438 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
5259796b | 439 | { |
84bdfea6 PS |
440 | pc += 4; |
441 | if (frameless_p) /* If the add is all we care about, */ | |
442 | return pc; /* return before doing more work */ | |
ee7b9e92 JK |
443 | is_flat = 1; |
444 | insn = read_memory_integer (pc, 4); | |
445 | /* Recognize store of frame pointer (i7). */ | |
446 | if (X_OP (insn) == 3 | |
447 | && X_RD (insn) == 31 | |
448 | && X_OP3 (insn) == 4 | |
449 | && X_RS1 (insn) == 14) | |
450 | { | |
451 | pc += 4; | |
452 | insn = read_memory_integer (pc, 4); | |
453 | ||
454 | /* Recognize sub %sp, <anything>, %i7. */ | |
455 | if (X_OP (insn) == 2 | |
456 | && X_OP3 (insn) == 4 | |
457 | && X_RS1 (insn) == 14 | |
458 | && X_RD (insn) == 31) | |
459 | { | |
460 | pc += 4; | |
461 | insn = read_memory_integer (pc, 4); | |
462 | } | |
463 | else | |
464 | return pc; | |
465 | } | |
466 | else | |
467 | return pc; | |
5259796b | 468 | } |
84bdfea6 PS |
469 | else |
470 | /* Without a save or add instruction, it's not a prologue. */ | |
471 | return start_pc; | |
bd5635a1 | 472 | |
ee7b9e92 | 473 | while (1) |
bd5635a1 | 474 | { |
ee7b9e92 JK |
475 | /* Recognize stores into the frame from the input registers. |
476 | This recognizes all non alternate stores of input register, | |
477 | into a location offset from the frame pointer. */ | |
478 | if ((X_OP (insn) == 3 | |
479 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
480 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
481 | && X_I (insn) /* Immediate mode. */ | |
482 | && X_RS1 (insn) == 30 /* Off of frame pointer. */ | |
483 | /* Into reserved stack space. */ | |
484 | && X_SIMM13 (insn) >= 0x44 | |
485 | && X_SIMM13 (insn) < 0x5b)) | |
486 | ; | |
487 | else if (is_flat | |
488 | && X_OP (insn) == 3 | |
489 | && X_OP3 (insn) == 4 | |
490 | && X_RS1 (insn) == 14 | |
491 | ) | |
492 | { | |
493 | if (saved_regs && X_I (insn)) | |
494 | saved_regs->regs[X_RD (insn)] = | |
495 | fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
496 | } | |
497 | else | |
498 | break; | |
bd5635a1 | 499 | pc += 4; |
ee7b9e92 | 500 | insn = read_memory_integer (pc, 4); |
bd5635a1 | 501 | } |
84bdfea6 | 502 | |
5259796b | 503 | return pc; |
bd5635a1 RP |
504 | } |
505 | ||
ee7b9e92 JK |
506 | CORE_ADDR |
507 | skip_prologue (start_pc, frameless_p) | |
508 | CORE_ADDR start_pc; | |
509 | int frameless_p; | |
510 | { | |
511 | return examine_prologue (start_pc, frameless_p, NULL, NULL); | |
512 | } | |
513 | ||
8b0f5a9d DE |
514 | /* Check instruction at ADDR to see if it is a branch. |
515 | All non-annulled instructions will go to NPC or will trap. | |
516 | Set *TARGET if we find a candidate branch; set to zero if not. | |
517 | ||
518 | This isn't static as it's used by remote-sa.sparc.c. */ | |
519 | ||
bd5635a1 | 520 | branch_type |
8b0f5a9d | 521 | isbranch (instruction, addr, target) |
bd5635a1 RP |
522 | long instruction; |
523 | CORE_ADDR addr, *target; | |
524 | { | |
525 | branch_type val = not_branch; | |
526 | long int offset; /* Must be signed for sign-extend. */ | |
bd5635a1 RP |
527 | |
528 | *target = 0; | |
bd5635a1 | 529 | |
ee7b9e92 JK |
530 | if (X_OP (instruction) == 0 |
531 | && (X_OP2 (instruction) == 2 | |
532 | || X_OP2 (instruction) == 6 | |
8b0f5a9d DE |
533 | #ifdef GDB_TARGET_IS_SPARC64 |
534 | || X_OP2 (instruction) == 1 | |
535 | || X_OP2 (instruction) == 3 | |
536 | || X_OP2 (instruction) == 5 | |
537 | #else | |
538 | || X_OP2 (instruction) == 7 | |
539 | #endif | |
540 | )) | |
bd5635a1 | 541 | { |
ee7b9e92 JK |
542 | if (X_COND (instruction) == 8) |
543 | val = X_A (instruction) ? baa : ba; | |
bd5635a1 | 544 | else |
ee7b9e92 | 545 | val = X_A (instruction) ? bicca : bicc; |
673e1bab | 546 | switch (X_OP2 (instruction)) |
8b0f5a9d DE |
547 | { |
548 | case 2: | |
549 | case 6: | |
550 | #ifndef GDB_TARGET_IS_SPARC64 | |
551 | case 7: | |
552 | #endif | |
553 | offset = 4 * X_DISP22 (instruction); | |
554 | break; | |
555 | #ifdef GDB_TARGET_IS_SPARC64 | |
556 | case 1: | |
557 | case 5: | |
558 | offset = 4 * X_DISP19 (instruction); | |
559 | break; | |
560 | case 3: | |
561 | offset = 4 * X_DISP16 (instruction); | |
562 | break; | |
563 | #endif | |
564 | } | |
bd5635a1 RP |
565 | *target = addr + offset; |
566 | } | |
8b0f5a9d DE |
567 | #ifdef GDB_TARGET_IS_SPARC64 |
568 | else if (X_OP (instruction) == 2 | |
569 | && X_OP3 (instruction) == 62) | |
570 | { | |
571 | if (X_FCN (instruction) == 0) | |
572 | { | |
573 | /* done */ | |
574 | *target = read_register (TNPC_REGNUM); | |
575 | val = done_retry; | |
576 | } | |
577 | else if (X_FCN (instruction) == 1) | |
578 | { | |
579 | /* retry */ | |
580 | *target = read_register (TPC_REGNUM); | |
581 | val = done_retry; | |
582 | } | |
583 | } | |
584 | #endif | |
bd5635a1 RP |
585 | |
586 | return val; | |
587 | } | |
ee7b9e92 JK |
588 | \f |
589 | /* Find register number REGNUM relative to FRAME and put its | |
590 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
591 | was optimized out (and thus can't be fetched). If the variable | |
592 | was fetched from memory, set *ADDRP to where it was fetched from, | |
593 | otherwise it was fetched from a register. | |
594 | ||
595 | The argument RAW_BUFFER must point to aligned memory. */ | |
596 | ||
597 | void | |
598 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
599 | char *raw_buffer; | |
600 | int *optimized; | |
601 | CORE_ADDR *addrp; | |
602 | struct frame_info *frame; | |
603 | int regnum; | |
604 | enum lval_type *lval; | |
605 | { | |
606 | struct frame_info *frame1; | |
607 | CORE_ADDR addr; | |
608 | ||
888a18ee JK |
609 | if (!target_has_registers) |
610 | error ("No registers."); | |
611 | ||
ee7b9e92 JK |
612 | if (optimized) |
613 | *optimized = 0; | |
614 | ||
615 | addr = 0; | |
012be3ce DP |
616 | |
617 | /* FIXME This code extracted from infcmd.c; should put elsewhere! */ | |
618 | if (frame == NULL) | |
619 | { | |
620 | /* error ("No selected frame."); */ | |
621 | if (!target_has_registers) | |
622 | error ("The program has no registers now."); | |
623 | if (selected_frame == NULL) | |
624 | error ("No selected frame."); | |
625 | /* Try to use selected frame */ | |
626 | frame = get_prev_frame (selected_frame); | |
627 | if (frame == 0) | |
628 | error ("Cmd not meaningful in the outermost frame."); | |
629 | } | |
630 | ||
631 | ||
ee7b9e92 JK |
632 | frame1 = frame->next; |
633 | while (frame1 != NULL) | |
634 | { | |
635 | if (frame1->pc >= (frame1->bottom ? frame1->bottom : | |
636 | read_register (SP_REGNUM)) | |
637 | && frame1->pc <= FRAME_FP (frame1)) | |
638 | { | |
012be3ce DP |
639 | /* Dummy frame. All but the window regs are in there somewhere. |
640 | The window registers are saved on the stack, just like in a | |
641 | normal frame. */ | |
ee7b9e92 | 642 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) |
8b0f5a9d | 643 | addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
012be3ce | 644 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); |
ee7b9e92 | 645 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) |
012be3ce DP |
646 | addr = (frame1->prev->bottom |
647 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE | |
648 | + FRAME_SAVED_I0); | |
649 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
650 | addr = (frame1->prev->bottom | |
651 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE | |
652 | + FRAME_SAVED_L0); | |
653 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
654 | addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
655 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); | |
656 | #ifdef FP0_REGNUM | |
657 | else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) | |
8b0f5a9d | 658 | addr = frame1->frame + (regnum - FP0_REGNUM) * 4 |
012be3ce DP |
659 | - (FP_REGISTER_BYTES); |
660 | #ifdef GDB_TARGET_IS_SPARC64 | |
661 | else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) | |
662 | addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 | |
663 | - (FP_REGISTER_BYTES); | |
664 | #endif | |
665 | #endif /* FP0_REGNUM */ | |
ee7b9e92 | 666 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
8b0f5a9d | 667 | addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE |
012be3ce | 668 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); |
ee7b9e92 JK |
669 | } |
670 | else if (frame1->flat) | |
671 | { | |
672 | ||
673 | if (regnum == RP_REGNUM) | |
674 | addr = frame1->pc_addr; | |
675 | else if (regnum == I7_REGNUM) | |
676 | addr = frame1->fp_addr; | |
677 | else | |
678 | { | |
679 | CORE_ADDR func_start; | |
680 | struct frame_saved_regs regs; | |
681 | memset (®s, 0, sizeof (regs)); | |
682 | ||
683 | find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); | |
684 | examine_prologue (func_start, 0, frame1, ®s); | |
685 | addr = regs.regs[regnum]; | |
686 | } | |
687 | } | |
688 | else | |
689 | { | |
690 | /* Normal frame. Local and In registers are saved on stack. */ | |
691 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
692 | addr = (frame1->prev->bottom | |
8b0f5a9d | 693 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
694 | + FRAME_SAVED_I0); |
695 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
696 | addr = (frame1->prev->bottom | |
8b0f5a9d | 697 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
698 | + FRAME_SAVED_L0); |
699 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
700 | { | |
701 | /* Outs become ins. */ | |
702 | get_saved_register (raw_buffer, optimized, addrp, frame1, | |
703 | (regnum - O0_REGNUM + I0_REGNUM), lval); | |
704 | return; | |
705 | } | |
706 | } | |
707 | if (addr != 0) | |
708 | break; | |
709 | frame1 = frame1->next; | |
710 | } | |
711 | if (addr != 0) | |
712 | { | |
713 | if (lval != NULL) | |
714 | *lval = lval_memory; | |
715 | if (regnum == SP_REGNUM) | |
716 | { | |
717 | if (raw_buffer != NULL) | |
718 | { | |
719 | /* Put it back in target format. */ | |
720 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
721 | } | |
722 | if (addrp != NULL) | |
723 | *addrp = 0; | |
724 | return; | |
725 | } | |
726 | if (raw_buffer != NULL) | |
727 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
728 | } | |
729 | else | |
730 | { | |
731 | if (lval != NULL) | |
732 | *lval = lval_register; | |
733 | addr = REGISTER_BYTE (regnum); | |
734 | if (raw_buffer != NULL) | |
735 | read_register_gen (regnum, raw_buffer); | |
736 | } | |
737 | if (addrp != NULL) | |
738 | *addrp = addr; | |
739 | } | |
740 | ||
741 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
742 | ||
743 | We save the non-windowed registers and the ins. The locals and outs | |
744 | are new; they don't need to be saved. The i's and l's of | |
745 | the last frame were already saved on the stack. */ | |
746 | ||
747 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
748 | ||
8b0f5a9d DE |
749 | #ifdef GDB_TARGET_IS_SPARC64 |
750 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
751 | #else | |
752 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
753 | #endif | |
754 | ||
755 | /* See tm-sparc.h for how this is calculated. */ | |
012be3ce | 756 | #ifdef FP0_REGNUM |
8b0f5a9d DE |
757 | #define DUMMY_STACK_REG_BUF_SIZE \ |
758 | (((8+8+8) * SPARC_INTREG_SIZE) + (32 * REGISTER_RAW_SIZE (FP0_REGNUM))) | |
012be3ce DP |
759 | #else |
760 | #define DUMMY_STACK_REG_BUF_SIZE \ | |
761 | (((8+8+8) * SPARC_INTREG_SIZE) ) | |
762 | #endif /* FP0_REGNUM */ | |
8b0f5a9d DE |
763 | #define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) |
764 | ||
ee7b9e92 JK |
765 | void |
766 | sparc_push_dummy_frame () | |
767 | { | |
768 | CORE_ADDR sp, old_sp; | |
8b0f5a9d | 769 | char register_temp[DUMMY_STACK_SIZE]; |
ee7b9e92 JK |
770 | |
771 | old_sp = sp = read_register (SP_REGNUM); | |
772 | ||
8b0f5a9d DE |
773 | #ifdef GDB_TARGET_IS_SPARC64 |
774 | /* FIXME: not sure what needs to be saved here. */ | |
775 | #else | |
ee7b9e92 JK |
776 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ |
777 | read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], | |
778 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
8b0f5a9d | 779 | #endif |
ee7b9e92 | 780 | |
8b0f5a9d DE |
781 | read_register_bytes (REGISTER_BYTE (O0_REGNUM), |
782 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
783 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 784 | |
8b0f5a9d DE |
785 | read_register_bytes (REGISTER_BYTE (G0_REGNUM), |
786 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
787 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 788 | |
012be3ce | 789 | #ifdef FP0_REGNUM |
8b0f5a9d DE |
790 | read_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
791 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
012be3ce DP |
792 | FP_REGISTER_BYTES); |
793 | #endif /* FP0_REGNUM */ | |
ee7b9e92 | 794 | |
8b0f5a9d | 795 | sp -= DUMMY_STACK_SIZE; |
ee7b9e92 JK |
796 | |
797 | write_register (SP_REGNUM, sp); | |
798 | ||
8b0f5a9d DE |
799 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], |
800 | DUMMY_STACK_REG_BUF_SIZE); | |
ee7b9e92 JK |
801 | |
802 | write_register (FP_REGNUM, old_sp); | |
803 | ||
804 | /* Set return address register for the call dummy to the current PC. */ | |
805 | write_register (I7_REGNUM, read_pc() - 8); | |
806 | } | |
bd5635a1 | 807 | |
ee7b9e92 JK |
808 | /* sparc_frame_find_saved_regs (). This function is here only because |
809 | pop_frame uses it. Note there is an interesting corner case which | |
810 | I think few ports of GDB get right--if you are popping a frame | |
811 | which does not save some register that *is* saved by a more inner | |
812 | frame (such a frame will never be a dummy frame because dummy | |
813 | frames save all registers). Rewriting pop_frame to use | |
814 | get_saved_register would solve this problem and also get rid of the | |
815 | ugly duplication between sparc_frame_find_saved_regs and | |
816 | get_saved_register. | |
bd5635a1 RP |
817 | |
818 | Stores, into a struct frame_saved_regs, | |
819 | the addresses of the saved registers of frame described by FRAME_INFO. | |
820 | This includes special registers such as pc and fp saved in special | |
821 | ways in the stack frame. sp is even more special: | |
822 | the address we return for it IS the sp for the next frame. | |
823 | ||
824 | Note that on register window machines, we are currently making the | |
825 | assumption that window registers are being saved somewhere in the | |
826 | frame in which they are being used. If they are stored in an | |
827 | inferior frame, find_saved_register will break. | |
828 | ||
829 | On the Sun 4, the only time all registers are saved is when | |
830 | a dummy frame is involved. Otherwise, the only saved registers | |
831 | are the LOCAL and IN registers which are saved as a result | |
832 | of the "save/restore" opcodes. This condition is determined | |
833 | by address rather than by value. | |
834 | ||
835 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
836 | is a return address minus 8.) sparc_pop_frame knows how to | |
837 | deal with that. Other routines might or might not. | |
838 | ||
839 | See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information | |
840 | about how this works. */ | |
841 | ||
ee7b9e92 JK |
842 | static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *, |
843 | struct frame_saved_regs *)); | |
844 | ||
845 | static void | |
bd5635a1 RP |
846 | sparc_frame_find_saved_regs (fi, saved_regs_addr) |
847 | struct frame_info *fi; | |
848 | struct frame_saved_regs *saved_regs_addr; | |
849 | { | |
850 | register int regnum; | |
84bdfea6 | 851 | CORE_ADDR frame_addr = FRAME_FP (fi); |
bd5635a1 | 852 | |
84bdfea6 | 853 | if (!fi) |
bd5635a1 RP |
854 | fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); |
855 | ||
b38f304c | 856 | memset (saved_regs_addr, 0, sizeof (*saved_regs_addr)); |
bd5635a1 | 857 | |
bd5635a1 RP |
858 | if (fi->pc >= (fi->bottom ? fi->bottom : |
859 | read_register (SP_REGNUM)) | |
860 | && fi->pc <= FRAME_FP(fi)) | |
861 | { | |
862 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
863 | for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) | |
864 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 865 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
012be3ce | 866 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); |
bd5635a1 RP |
867 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) |
868 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 869 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
012be3ce DP |
870 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); |
871 | #ifdef FP0_REGNUM | |
bd5635a1 RP |
872 | for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) |
873 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 874 | frame_addr + (regnum - FP0_REGNUM) * 4 |
012be3ce DP |
875 | - (FP_REGISTER_BYTES); |
876 | #ifdef GDB_TARGET_IS_SPARC64 | |
877 | for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++) | |
878 | saved_regs_addr->regs[regnum] = | |
879 | frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 | |
880 | - (FP_REGISTER_BYTES); | |
881 | #endif | |
882 | #endif /* FP0_REGNUM */ | |
bd5635a1 RP |
883 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) |
884 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 885 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE - 0xe0; |
012be3ce | 886 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); |
84bdfea6 | 887 | frame_addr = fi->bottom ? |
bd5635a1 RP |
888 | fi->bottom : read_register (SP_REGNUM); |
889 | } | |
84bdfea6 PS |
890 | else if (fi->flat) |
891 | { | |
ee7b9e92 JK |
892 | CORE_ADDR func_start; |
893 | find_pc_partial_function (fi->pc, NULL, &func_start, NULL); | |
894 | examine_prologue (func_start, 0, fi, saved_regs_addr); | |
895 | ||
84bdfea6 PS |
896 | /* Flat register window frame. */ |
897 | saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr; | |
898 | saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr; | |
84bdfea6 | 899 | } |
bd5635a1 RP |
900 | else |
901 | { | |
902 | /* Normal frame. Just Local and In registers */ | |
84bdfea6 | 903 | frame_addr = fi->bottom ? |
bd5635a1 | 904 | fi->bottom : read_register (SP_REGNUM); |
84bdfea6 | 905 | for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++) |
16726dd1 | 906 | saved_regs_addr->regs[regnum] = |
8b0f5a9d | 907 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
908 | + FRAME_SAVED_L0); |
909 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) | |
910 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 911 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 | 912 | + FRAME_SAVED_I0); |
bd5635a1 RP |
913 | } |
914 | if (fi->next) | |
915 | { | |
84bdfea6 PS |
916 | if (fi->flat) |
917 | { | |
918 | saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr; | |
919 | } | |
920 | else | |
921 | { | |
922 | /* Pull off either the next frame pointer or the stack pointer */ | |
923 | CORE_ADDR next_next_frame_addr = | |
924 | (fi->next->bottom ? | |
925 | fi->next->bottom : | |
926 | read_register (SP_REGNUM)); | |
927 | for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) | |
928 | saved_regs_addr->regs[regnum] = | |
929 | (next_next_frame_addr | |
8b0f5a9d | 930 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
931 | + FRAME_SAVED_I0); |
932 | } | |
bd5635a1 RP |
933 | } |
934 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
935 | saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); | |
936 | } | |
937 | ||
bd5635a1 RP |
938 | /* Discard from the stack the innermost frame, restoring all saved registers. |
939 | ||
940 | Note that the values stored in fsr by get_frame_saved_regs are *in | |
941 | the context of the called frame*. What this means is that the i | |
942 | regs of fsr must be restored into the o regs of the (calling) frame that | |
943 | we pop into. We don't care about the output regs of the calling frame, | |
944 | since unless it's a dummy frame, it won't have any output regs in it. | |
945 | ||
946 | We never have to bother with %l (local) regs, since the called routine's | |
947 | locals get tossed, and the calling routine's locals are already saved | |
948 | on its stack. */ | |
949 | ||
950 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
951 | ||
952 | void | |
953 | sparc_pop_frame () | |
954 | { | |
84bdfea6 | 955 | register struct frame_info *frame = get_current_frame (); |
bd5635a1 RP |
956 | register CORE_ADDR pc; |
957 | struct frame_saved_regs fsr; | |
bd5635a1 | 958 | char raw_buffer[REGISTER_BYTES]; |
84bdfea6 | 959 | int regnum; |
bd5635a1 | 960 | |
ee7b9e92 | 961 | sparc_frame_find_saved_regs (frame, &fsr); |
012be3ce | 962 | #ifdef FP0_REGNUM |
bd5635a1 RP |
963 | if (fsr.regs[FP0_REGNUM]) |
964 | { | |
012be3ce | 965 | read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); |
8b0f5a9d | 966 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
012be3ce | 967 | raw_buffer, FP_REGISTER_BYTES); |
bd5635a1 | 968 | } |
8b0f5a9d | 969 | #ifndef GDB_TARGET_IS_SPARC64 |
f1de67d3 PS |
970 | if (fsr.regs[FPS_REGNUM]) |
971 | { | |
972 | read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4); | |
973 | write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4); | |
974 | } | |
975 | if (fsr.regs[CPS_REGNUM]) | |
976 | { | |
977 | read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4); | |
978 | write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4); | |
979 | } | |
8b0f5a9d | 980 | #endif |
012be3ce | 981 | #endif /* FP0_REGNUM */ |
bd5635a1 RP |
982 | if (fsr.regs[G1_REGNUM]) |
983 | { | |
8b0f5a9d DE |
984 | read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
985 | write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, | |
986 | 7 * SPARC_INTREG_SIZE); | |
bd5635a1 | 987 | } |
84bdfea6 PS |
988 | |
989 | if (frame->flat) | |
990 | { | |
991 | /* Each register might or might not have been saved, need to test | |
992 | individually. */ | |
993 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) | |
994 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
995 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
996 | SPARC_INTREG_SIZE)); | |
84bdfea6 PS |
997 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) |
998 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
999 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1000 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
1001 | |
1002 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
1003 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
84bdfea6 | 1004 | if (fsr.regs[regnum]) |
8b0f5a9d DE |
1005 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1006 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
1007 | if (fsr.regs[O0_REGNUM + 7]) |
1008 | write_register (O0_REGNUM + 7, | |
8b0f5a9d DE |
1009 | read_memory_integer (fsr.regs[O0_REGNUM + 7], |
1010 | SPARC_INTREG_SIZE)); | |
ee7b9e92 | 1011 | |
6cb4e9e0 | 1012 | write_register (SP_REGNUM, frame->frame); |
84bdfea6 PS |
1013 | } |
1014 | else if (fsr.regs[I0_REGNUM]) | |
bd5635a1 | 1015 | { |
dd99f8e4 JK |
1016 | CORE_ADDR sp; |
1017 | ||
1018 | char reg_temp[REGISTER_BYTES]; | |
1019 | ||
8b0f5a9d | 1020 | read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
dd99f8e4 JK |
1021 | |
1022 | /* Get the ins and locals which we are about to restore. Just | |
1023 | moving the stack pointer is all that is really needed, except | |
1024 | store_inferior_registers is then going to write the ins and | |
1025 | locals from the registers array, so we need to muck with the | |
1026 | registers array. */ | |
1027 | sp = fsr.regs[SP_REGNUM]; | |
8b0f5a9d | 1028 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
dd99f8e4 JK |
1029 | |
1030 | /* Restore the out registers. | |
1031 | Among other things this writes the new stack pointer. */ | |
1032 | write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, | |
8b0f5a9d | 1033 | SPARC_INTREG_SIZE * 8); |
dd99f8e4 JK |
1034 | |
1035 | write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, | |
8b0f5a9d | 1036 | SPARC_INTREG_SIZE * 16); |
bd5635a1 | 1037 | } |
8b0f5a9d | 1038 | #ifndef GDB_TARGET_IS_SPARC64 |
bd5635a1 RP |
1039 | if (fsr.regs[PS_REGNUM]) |
1040 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
8b0f5a9d | 1041 | #endif |
bd5635a1 | 1042 | if (fsr.regs[Y_REGNUM]) |
8b0f5a9d | 1043 | write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM))); |
bd5635a1 RP |
1044 | if (fsr.regs[PC_REGNUM]) |
1045 | { | |
1046 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
8b0f5a9d DE |
1047 | write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], |
1048 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
bd5635a1 RP |
1049 | if (fsr.regs[NPC_REGNUM]) |
1050 | write_register (NPC_REGNUM, | |
8b0f5a9d DE |
1051 | read_memory_integer (fsr.regs[NPC_REGNUM], |
1052 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
bd5635a1 | 1053 | } |
ee7b9e92 | 1054 | else if (frame->flat) |
84bdfea6 | 1055 | { |
ee7b9e92 | 1056 | if (frame->pc_addr) |
8b0f5a9d DE |
1057 | pc = PC_ADJUST ((CORE_ADDR) |
1058 | read_memory_integer (frame->pc_addr, | |
1059 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
ee7b9e92 JK |
1060 | else |
1061 | { | |
1062 | /* I think this happens only in the innermost frame, if so then | |
1063 | it is a complicated way of saying | |
1064 | "pc = read_register (O7_REGNUM);". */ | |
1065 | char buf[MAX_REGISTER_RAW_SIZE]; | |
1066 | get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); | |
1067 | pc = PC_ADJUST (extract_address | |
1068 | (buf, REGISTER_RAW_SIZE (O7_REGNUM))); | |
1069 | } | |
1070 | ||
84bdfea6 PS |
1071 | write_register (PC_REGNUM, pc); |
1072 | write_register (NPC_REGNUM, pc + 4); | |
1073 | } | |
bd5635a1 RP |
1074 | else if (fsr.regs[I7_REGNUM]) |
1075 | { | |
1076 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
8b0f5a9d DE |
1077 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM], |
1078 | SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
1079 | write_register (PC_REGNUM, pc); |
1080 | write_register (NPC_REGNUM, pc + 4); | |
1081 | } | |
1082 | flush_cached_frames (); | |
bd5635a1 RP |
1083 | } |
1084 | ||
5e5215eb JG |
1085 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which |
1086 | encodes the structure size being returned. If we detect such | |
1087 | a fake insn, step past it. */ | |
1088 | ||
1089 | CORE_ADDR | |
1090 | sparc_pc_adjust(pc) | |
1091 | CORE_ADDR pc; | |
1092 | { | |
34df79fc JK |
1093 | unsigned long insn; |
1094 | char buf[4]; | |
5e5215eb JG |
1095 | int err; |
1096 | ||
34df79fc JK |
1097 | err = target_read_memory (pc + 8, buf, sizeof(long)); |
1098 | insn = extract_unsigned_integer (buf, 4); | |
e4dbd248 | 1099 | if ((err == 0) && (insn & 0xffc00000) == 0) |
5e5215eb JG |
1100 | return pc+12; |
1101 | else | |
1102 | return pc+8; | |
1103 | } | |
84bdfea6 PS |
1104 | |
1105 | /* If pc is in a shared library trampoline, return its target. | |
1106 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1107 | compiled modules in the main executable to bypass the dynamic linker | |
1108 | with jumps of the form | |
1109 | sethi %hi(addr),%g1 | |
1110 | jmp %g1+%lo(addr) | |
1111 | and removes the corresponding jump table relocation entry in the | |
1112 | dynamic relocations. | |
1113 | find_solib_trampoline_target relies on the presence of the jump | |
1114 | table relocation entry, so we have to detect these jump instructions | |
1115 | by hand. */ | |
1116 | ||
1117 | CORE_ADDR | |
1118 | sunos4_skip_trampoline_code (pc) | |
1119 | CORE_ADDR pc; | |
1120 | { | |
1121 | unsigned long insn1; | |
1122 | char buf[4]; | |
1123 | int err; | |
1124 | ||
1125 | err = target_read_memory (pc, buf, 4); | |
1126 | insn1 = extract_unsigned_integer (buf, 4); | |
1127 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1128 | { | |
1129 | unsigned long insn2; | |
1130 | ||
1131 | err = target_read_memory (pc + 4, buf, 4); | |
1132 | insn2 = extract_unsigned_integer (buf, 4); | |
1133 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1134 | { | |
1135 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1136 | int delta = insn2 & 0x1fff; | |
1137 | ||
1138 | /* Sign extend the displacement. */ | |
1139 | if (delta & 0x1000) | |
1140 | delta |= ~0x1fff; | |
1141 | return target_pc + delta; | |
1142 | } | |
1143 | } | |
1144 | return find_solib_trampoline_target (pc); | |
1145 | } | |
8f86a4e4 JG |
1146 | \f |
1147 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ | |
1148 | ||
1149 | /* The /proc interface divides the target machine's register set up into | |
1150 | two different sets, the general register set (gregset) and the floating | |
1151 | point register set (fpregset). For each set, there is an ioctl to get | |
1152 | the current register set and another ioctl to set the current values. | |
1153 | ||
1154 | The actual structure passed through the ioctl interface is, of course, | |
1155 | naturally machine dependent, and is different for each set of registers. | |
1156 | For the sparc for example, the general register set is typically defined | |
1157 | by: | |
1158 | ||
1159 | typedef int gregset_t[38]; | |
1160 | ||
1161 | #define R_G0 0 | |
1162 | ... | |
1163 | #define R_TBR 37 | |
1164 | ||
1165 | and the floating point set by: | |
1166 | ||
1167 | typedef struct prfpregset { | |
1168 | union { | |
1169 | u_long pr_regs[32]; | |
1170 | double pr_dregs[16]; | |
1171 | } pr_fr; | |
1172 | void * pr_filler; | |
1173 | u_long pr_fsr; | |
1174 | u_char pr_qcnt; | |
1175 | u_char pr_q_entrysize; | |
1176 | u_char pr_en; | |
1177 | u_long pr_q[64]; | |
1178 | } prfpregset_t; | |
1179 | ||
1180 | These routines provide the packing and unpacking of gregset_t and | |
1181 | fpregset_t formatted data. | |
1182 | ||
1183 | */ | |
1184 | ||
8b0f5a9d DE |
1185 | /* Given a pointer to a general register set in /proc format (gregset_t *), |
1186 | unpack the register contents and supply them as gdb's idea of the current | |
1187 | register values. */ | |
8f86a4e4 JG |
1188 | |
1189 | void | |
1190 | supply_gregset (gregsetp) | |
1191 | prgregset_t *gregsetp; | |
1192 | { | |
b38f304c | 1193 | register int regi; |
8f86a4e4 | 1194 | register prgreg_t *regp = (prgreg_t *) gregsetp; |
e4dbd248 | 1195 | static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; |
8f86a4e4 JG |
1196 | |
1197 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
b38f304c | 1198 | for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++) |
8f86a4e4 | 1199 | { |
b38f304c | 1200 | supply_register (regi, (char *) (regp + regi)); |
8f86a4e4 JG |
1201 | } |
1202 | ||
1203 | /* These require a bit more care. */ | |
1204 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
1205 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
1206 | supply_register (NPC_REGNUM,(char *) (regp + R_nPC)); | |
1207 | supply_register (Y_REGNUM, (char *) (regp + R_Y)); | |
e4dbd248 PS |
1208 | |
1209 | /* Fill inaccessible registers with zero. */ | |
1210 | supply_register (WIM_REGNUM, zerobuf); | |
1211 | supply_register (TBR_REGNUM, zerobuf); | |
1212 | supply_register (CPS_REGNUM, zerobuf); | |
8f86a4e4 JG |
1213 | } |
1214 | ||
1215 | void | |
1216 | fill_gregset (gregsetp, regno) | |
1217 | prgregset_t *gregsetp; | |
1218 | int regno; | |
1219 | { | |
1220 | int regi; | |
1221 | register prgreg_t *regp = (prgreg_t *) gregsetp; | |
8f86a4e4 JG |
1222 | |
1223 | for (regi = 0 ; regi <= R_I7 ; regi++) | |
1224 | { | |
1225 | if ((regno == -1) || (regno == regi)) | |
1226 | { | |
b38f304c | 1227 | *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; |
8f86a4e4 JG |
1228 | } |
1229 | } | |
1230 | if ((regno == -1) || (regno == PS_REGNUM)) | |
1231 | { | |
1232 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
1233 | } | |
1234 | if ((regno == -1) || (regno == PC_REGNUM)) | |
1235 | { | |
1236 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
1237 | } | |
1238 | if ((regno == -1) || (regno == NPC_REGNUM)) | |
1239 | { | |
1240 | *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)]; | |
1241 | } | |
1242 | if ((regno == -1) || (regno == Y_REGNUM)) | |
1243 | { | |
1244 | *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)]; | |
1245 | } | |
1246 | } | |
1247 | ||
1248 | #if defined (FP0_REGNUM) | |
1249 | ||
1250 | /* Given a pointer to a floating point register set in /proc format | |
1251 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
1252 | idea of the current floating point register values. */ | |
1253 | ||
1254 | void | |
1255 | supply_fpregset (fpregsetp) | |
1256 | prfpregset_t *fpregsetp; | |
1257 | { | |
1258 | register int regi; | |
1259 | char *from; | |
1260 | ||
012be3ce | 1261 | for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) |
8f86a4e4 JG |
1262 | { |
1263 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
1264 | supply_register (regi, from); | |
1265 | } | |
1266 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1267 | } | |
1268 | ||
1269 | /* Given a pointer to a floating point register set in /proc format | |
1270 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
1271 | of the current floating point register set. If REGNO is -1, update | |
1272 | them all. */ | |
8b0f5a9d | 1273 | /* ??? This will probably need some changes for sparc64. */ |
8f86a4e4 JG |
1274 | |
1275 | void | |
1276 | fill_fpregset (fpregsetp, regno) | |
1277 | prfpregset_t *fpregsetp; | |
1278 | int regno; | |
1279 | { | |
1280 | int regi; | |
1281 | char *to; | |
1282 | char *from; | |
8f86a4e4 | 1283 | |
012be3ce | 1284 | for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) |
8f86a4e4 JG |
1285 | { |
1286 | if ((regno == -1) || (regno == regi)) | |
1287 | { | |
1288 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
1289 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
b38f304c | 1290 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
8f86a4e4 JG |
1291 | } |
1292 | } | |
1293 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1294 | { | |
1295 | fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | #endif /* defined (FP0_REGNUM) */ | |
1300 | ||
1301 | #endif /* USE_PROC_FS */ | |
1302 | ||
1303 | ||
1304 | #ifdef GET_LONGJMP_TARGET | |
f9e3b3cc JG |
1305 | |
1306 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1307 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1308 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1309 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1310 | This routine returns true on success */ | |
1311 | ||
1312 | int | |
84bdfea6 | 1313 | get_longjmp_target (pc) |
f9e3b3cc JG |
1314 | CORE_ADDR *pc; |
1315 | { | |
1316 | CORE_ADDR jb_addr; | |
34df79fc JK |
1317 | #define LONGJMP_TARGET_SIZE 4 |
1318 | char buf[LONGJMP_TARGET_SIZE]; | |
f9e3b3cc | 1319 | |
84bdfea6 | 1320 | jb_addr = read_register (O0_REGNUM); |
f9e3b3cc | 1321 | |
84bdfea6 PS |
1322 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, |
1323 | LONGJMP_TARGET_SIZE)) | |
f9e3b3cc JG |
1324 | return 0; |
1325 | ||
34df79fc | 1326 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); |
f9e3b3cc JG |
1327 | |
1328 | return 1; | |
1329 | } | |
8f86a4e4 | 1330 | #endif /* GET_LONGJMP_TARGET */ |
8b0f5a9d DE |
1331 | \f |
1332 | #ifdef STATIC_TRANSFORM_NAME | |
1333 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1334 | related to C++ mangling, it is done for C too. */ | |
1335 | ||
1336 | char * | |
b9e58503 | 1337 | sunpro_static_transform_name (name) |
8b0f5a9d DE |
1338 | char *name; |
1339 | { | |
1340 | char *p; | |
1341 | if (name[0] == '$') | |
1342 | { | |
1343 | /* For file-local statics there will be a dollar sign, a bunch | |
1344 | of junk (the contents of which match a string given in the | |
1345 | N_OPT), a period and the name. For function-local statics | |
1346 | there will be a bunch of junk (which seems to change the | |
1347 | second character from 'A' to 'B'), a period, the name of the | |
1348 | function, and the name. So just skip everything before the | |
1349 | last period. */ | |
1350 | p = strrchr (name, '.'); | |
1351 | if (p != NULL) | |
1352 | name = p + 1; | |
1353 | } | |
1354 | return name; | |
1355 | } | |
1356 | #endif /* STATIC_TRANSFORM_NAME */ | |
1357 | \f | |
1358 | #ifdef GDB_TARGET_IS_SPARC64 | |
1359 | ||
8b0f5a9d DE |
1360 | /* Utilities for printing registers. |
1361 | Page numbers refer to the SPARC Architecture Manual. */ | |
1362 | ||
b9e58503 PS |
1363 | static void dump_ccreg PARAMS ((char *, int)); |
1364 | ||
8b0f5a9d DE |
1365 | static void |
1366 | dump_ccreg (reg, val) | |
1367 | char *reg; | |
1368 | int val; | |
1369 | { | |
1370 | /* page 41 */ | |
1371 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
1372 | val & 8 ? "N" : "NN", | |
1373 | val & 4 ? "Z" : "NZ", | |
1374 | val & 2 ? "O" : "NO", | |
1375 | val & 1 ? "C" : "NC" | |
1376 | ); | |
1377 | } | |
1378 | ||
1379 | static char * | |
1380 | decode_asi (val) | |
1381 | int val; | |
1382 | { | |
1383 | /* page 72 */ | |
1384 | switch (val) | |
1385 | { | |
1386 | case 4 : return "ASI_NUCLEUS"; | |
1387 | case 0x0c : return "ASI_NUCLEUS_LITTLE"; | |
1388 | case 0x10 : return "ASI_AS_IF_USER_PRIMARY"; | |
1389 | case 0x11 : return "ASI_AS_IF_USER_SECONDARY"; | |
1390 | case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1391 | case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1392 | case 0x80 : return "ASI_PRIMARY"; | |
1393 | case 0x81 : return "ASI_SECONDARY"; | |
1394 | case 0x82 : return "ASI_PRIMARY_NOFAULT"; | |
1395 | case 0x83 : return "ASI_SECONDARY_NOFAULT"; | |
1396 | case 0x88 : return "ASI_PRIMARY_LITTLE"; | |
1397 | case 0x89 : return "ASI_SECONDARY_LITTLE"; | |
1398 | case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1399 | case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1400 | default : return NULL; | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | /* PRINT_REGISTER_HOOK routine. | |
1405 | Pretty print various registers. */ | |
1406 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ | |
1407 | ||
1408 | void | |
1409 | sparc_print_register_hook (regno) | |
1410 | int regno; | |
1411 | { | |
1412 | unsigned LONGEST val; | |
1413 | ||
012be3ce DP |
1414 | /* Handle double/quad versions of lower 32 fp regs. */ |
1415 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 | |
1416 | && (regno & 1) == 0) | |
1417 | { | |
1418 | char value[16]; | |
1419 | ||
1420 | if (!read_relative_register_raw_bytes (regno, value) | |
1421 | && !read_relative_register_raw_bytes (regno + 1, value + 4)) | |
1422 | { | |
1423 | printf_unfiltered ("\t"); | |
1424 | print_floating (value, builtin_type_double, gdb_stdout); | |
1425 | } | |
1426 | #if 0 /* FIXME: gdb doesn't handle long doubles */ | |
1427 | if ((regno & 3) == 0) | |
1428 | { | |
1429 | if (!read_relative_register_raw_bytes (regno + 2, value + 8) | |
1430 | && !read_relative_register_raw_bytes (regno + 3, value + 12)) | |
1431 | { | |
1432 | printf_unfiltered ("\t"); | |
1433 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1434 | } | |
1435 | } | |
1436 | #endif | |
1437 | return; | |
1438 | } | |
1439 | ||
1440 | #if 0 /* FIXME: gdb doesn't handle long doubles */ | |
1441 | /* Print upper fp regs as long double if appropriate. */ | |
1442 | if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM | |
1443 | /* We test for even numbered regs and not a multiple of 4 because | |
1444 | the upper fp regs are recorded as doubles. */ | |
1445 | && (regno & 1) == 0) | |
8b0f5a9d | 1446 | { |
012be3ce DP |
1447 | char value[16]; |
1448 | ||
1449 | if (!read_relative_register_raw_bytes (regno, value) | |
1450 | && !read_relative_register_raw_bytes (regno + 1, value + 8)) | |
8b0f5a9d | 1451 | { |
012be3ce DP |
1452 | printf_unfiltered ("\t"); |
1453 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
8b0f5a9d DE |
1454 | } |
1455 | return; | |
1456 | } | |
012be3ce | 1457 | #endif |
8b0f5a9d DE |
1458 | |
1459 | /* FIXME: Some of these are priviledged registers. | |
1460 | Not sure how they should be handled. */ | |
1461 | ||
1462 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1463 | ||
1464 | val = read_register (regno); | |
1465 | ||
1466 | /* pages 40 - 60 */ | |
1467 | switch (regno) | |
1468 | { | |
1469 | case CCR_REGNUM : | |
1470 | printf_unfiltered("\t"); | |
1471 | dump_ccreg ("xcc", val >> 4); | |
1472 | printf_unfiltered(", "); | |
1473 | dump_ccreg ("icc", val & 15); | |
1474 | break; | |
1475 | case FPRS_REGNUM : | |
1476 | printf ("\tfef:%d, du:%d, dl:%d", | |
1477 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
1478 | break; | |
1479 | case FSR_REGNUM : | |
1480 | { | |
1481 | static char *fcc[4] = { "=", "<", ">", "?" }; | |
1482 | static char *rd[4] = { "N", "0", "+", "-" }; | |
1483 | /* Long, yes, but I'd rather leave it as is and use a wide screen. */ | |
1484 | printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1485 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1486 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1487 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
1488 | BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1489 | break; | |
1490 | } | |
1491 | case ASI_REGNUM : | |
1492 | { | |
1493 | char *asi = decode_asi (val); | |
1494 | if (asi != NULL) | |
1495 | printf ("\t%s", asi); | |
1496 | break; | |
1497 | } | |
1498 | case VER_REGNUM : | |
1499 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1500 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1501 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1502 | break; | |
1503 | case PSTATE_REGNUM : | |
1504 | { | |
1505 | static char *mm[4] = { "tso", "pso", "rso", "?" }; | |
1506 | printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
1507 | BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1), | |
1508 | BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1), | |
1509 | BITS (0, 1)); | |
1510 | break; | |
1511 | } | |
1512 | case TSTATE_REGNUM : | |
1513 | /* FIXME: print all 4? */ | |
1514 | break; | |
1515 | case TT_REGNUM : | |
1516 | /* FIXME: print all 4? */ | |
1517 | break; | |
1518 | case TPC_REGNUM : | |
1519 | /* FIXME: print all 4? */ | |
1520 | break; | |
1521 | case TNPC_REGNUM : | |
1522 | /* FIXME: print all 4? */ | |
1523 | break; | |
1524 | case WSTATE_REGNUM : | |
1525 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
1526 | break; | |
1527 | case CWP_REGNUM : | |
1528 | printf ("\t%d", BITS (0, 31)); | |
1529 | break; | |
1530 | case CANSAVE_REGNUM : | |
1531 | printf ("\t%-2d before spill", BITS (0, 31)); | |
1532 | break; | |
1533 | case CANRESTORE_REGNUM : | |
1534 | printf ("\t%-2d before fill", BITS (0, 31)); | |
1535 | break; | |
1536 | case CLEANWIN_REGNUM : | |
1537 | printf ("\t%-2d before clean", BITS (0, 31)); | |
1538 | break; | |
1539 | case OTHERWIN_REGNUM : | |
1540 | printf ("\t%d", BITS (0, 31)); | |
1541 | break; | |
1542 | } | |
1543 | ||
1544 | #undef BITS | |
1545 | } | |
1546 | ||
1547 | #endif | |
1548 | \f | |
1549 | void | |
1550 | _initialize_sparc_tdep () | |
1551 | { | |
91550191 SG |
1552 | tm_print_insn = print_insn_sparc; |
1553 | tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ | |
8b0f5a9d | 1554 | } |