]>
Commit | Line | Data |
---|---|---|
ca048722 RP |
1 | /* Machine-dependent hooks for the unix child process stratum. This |
2 | code is for the HP PA-RISC cpu. | |
3 | ||
4 | Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
24 | ||
25 | #include "defs.h" | |
26 | #include "inferior.h" | |
27 | ||
28 | #ifndef PT_ATTACH | |
29 | #define PT_ATTACH PTRACE_ATTACH | |
30 | #endif | |
31 | #ifndef PT_DETACH | |
32 | #define PT_DETACH PTRACE_DETACH | |
33 | #endif | |
34 | ||
35 | /* This function simply calls ptrace with the given arguments. | |
36 | It exists so that all calls to ptrace are isolated in this | |
37 | machine-dependent file. */ | |
38 | #ifdef WANT_NATIVE_TARGET | |
39 | int | |
40 | call_ptrace (request, pid, addr, data) | |
41 | int request, pid; | |
42 | PTRACE_ARG3_TYPE addr; | |
43 | int data; | |
44 | { | |
45 | return ptrace (request, pid, addr, data); | |
46 | } | |
47 | #endif /* WANT_NATIVE_TARGET */ | |
48 | ||
49 | #ifdef DEBUG_PTRACE | |
50 | /* For the rest of the file, use an extra level of indirection */ | |
51 | /* This lets us breakpoint usefully on call_ptrace. */ | |
52 | #define ptrace call_ptrace | |
53 | #endif | |
54 | ||
55 | void | |
56 | kill_inferior () | |
57 | { | |
58 | if (inferior_pid == 0) | |
59 | return; | |
60 | ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0); | |
61 | wait ((int *)0); | |
62 | target_mourn_inferior (); | |
63 | } | |
64 | ||
65 | #ifdef ATTACH_DETACH | |
ca048722 RP |
66 | |
67 | /* Start debugging the process whose number is PID. */ | |
68 | int | |
69 | attach (pid) | |
70 | int pid; | |
71 | { | |
72 | errno = 0; | |
73 | ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); | |
74 | if (errno) | |
75 | perror_with_name ("ptrace"); | |
76 | attach_flag = 1; | |
77 | return pid; | |
78 | } | |
79 | ||
80 | /* Stop debugging the process whose number is PID | |
81 | and continue it with signal number SIGNAL. | |
82 | SIGNAL = 0 means just continue it. */ | |
83 | ||
84 | void | |
85 | detach (signal) | |
86 | int signal; | |
87 | { | |
88 | errno = 0; | |
89 | ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); | |
90 | if (errno) | |
91 | perror_with_name ("ptrace"); | |
92 | attach_flag = 0; | |
93 | } | |
94 | #endif /* ATTACH_DETACH */ | |
95 | \f | |
96 | ||
97 | ||
98 | #if !defined (FETCH_INFERIOR_REGISTERS) | |
99 | ||
100 | /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0 | |
101 | to get the offset in the core file of the register values. */ | |
102 | #if defined (KERNEL_U_ADDR_BSD) | |
103 | /* Get kernel_u_addr using BSD-style nlist(). */ | |
104 | CORE_ADDR kernel_u_addr; | |
105 | ||
106 | #include <a.out.gnu.h> /* For struct nlist */ | |
107 | ||
108 | void | |
109 | _initialize_kernel_u_addr () | |
110 | { | |
111 | struct nlist names[2]; | |
112 | ||
113 | names[0].n_un.n_name = "_u"; | |
114 | names[1].n_un.n_name = NULL; | |
115 | if (nlist ("/vmunix", names) == 0) | |
116 | kernel_u_addr = names[0].n_value; | |
117 | else | |
118 | fatal ("Unable to get kernel u area address."); | |
119 | } | |
120 | #endif /* KERNEL_U_ADDR_BSD. */ | |
121 | ||
122 | #if defined (KERNEL_U_ADDR_HPUX) | |
123 | /* Get kernel_u_addr using HPUX-style nlist(). */ | |
124 | CORE_ADDR kernel_u_addr; | |
125 | ||
126 | struct hpnlist { | |
127 | char * n_name; | |
128 | long n_value; | |
129 | unsigned char n_type; | |
130 | unsigned char n_length; | |
131 | short n_almod; | |
132 | short n_unused; | |
133 | }; | |
134 | static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }}; | |
135 | ||
136 | /* read the value of the u area from the hp-ux kernel */ | |
137 | void _initialize_kernel_u_addr () | |
138 | { | |
139 | struct user u; | |
140 | nlist ("/hp-ux", &nl); | |
141 | kernel_u_addr = nl[0].n_value; | |
142 | } | |
143 | #endif /* KERNEL_U_ADDR_HPUX. */ | |
144 | ||
145 | #if !defined (offsetof) | |
146 | #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) | |
147 | #endif | |
148 | ||
149 | /* U_REGS_OFFSET is the offset of the registers within the u area. */ | |
150 | #if !defined (U_REGS_OFFSET) | |
151 | #define U_REGS_OFFSET \ | |
152 | ptrace (PT_READ_U, inferior_pid, \ | |
153 | (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \ | |
154 | - KERNEL_U_ADDR | |
155 | #endif | |
156 | ||
157 | /* Registers we shouldn't try to fetch. */ | |
158 | #if !defined (CANNOT_FETCH_REGISTER) | |
159 | #define CANNOT_FETCH_REGISTER(regno) 0 | |
160 | #endif | |
161 | ||
162 | /* Fetch one register. */ | |
163 | ||
164 | static void | |
165 | fetch_register (regno) | |
166 | int regno; | |
167 | { | |
168 | register unsigned int regaddr; | |
169 | char buf[MAX_REGISTER_RAW_SIZE]; | |
170 | char mess[128]; /* For messages */ | |
171 | register int i; | |
172 | ||
173 | /* Offset of registers within the u area. */ | |
174 | unsigned int offset; | |
175 | ||
176 | if (CANNOT_FETCH_REGISTER (regno)) | |
177 | { | |
178 | bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */ | |
179 | supply_register (regno, buf); | |
180 | return; | |
181 | } | |
182 | ||
183 | offset = U_REGS_OFFSET; | |
184 | ||
185 | regaddr = register_addr (regno, offset); | |
186 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) | |
187 | { | |
188 | errno = 0; | |
189 | *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid, | |
190 | (PTRACE_ARG3_TYPE) regaddr, 0); | |
191 | regaddr += sizeof (int); | |
192 | if (errno != 0) | |
193 | { | |
194 | sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno); | |
195 | perror_with_name (mess); | |
196 | } | |
197 | } | |
198 | supply_register (regno, buf); | |
199 | } | |
200 | ||
201 | #endif /* !defined (FETCH_INFERIOR_REGISTERS). */ | |
202 | /* Fetch all registers, or just one, from the child process. */ | |
203 | ||
204 | #ifndef FETCH_INFERIOR_REGISTERS | |
205 | void | |
206 | fetch_inferior_registers (regno) | |
207 | int regno; | |
208 | { | |
209 | if (regno == -1) | |
210 | for (regno = 0; regno < NUM_REGS; regno++) | |
211 | fetch_register (regno); | |
212 | else | |
213 | fetch_register (regno); | |
214 | } | |
215 | ||
216 | /* Registers we shouldn't try to store. */ | |
217 | #if !defined (CANNOT_STORE_REGISTER) | |
218 | #define CANNOT_STORE_REGISTER(regno) 0 | |
219 | #endif | |
220 | ||
221 | /* Store our register values back into the inferior. | |
222 | If REGNO is -1, do this for all registers. | |
223 | Otherwise, REGNO specifies which register (so we can save time). */ | |
224 | ||
225 | void | |
226 | store_inferior_registers (regno) | |
227 | int regno; | |
228 | { | |
229 | register unsigned int regaddr; | |
230 | char buf[80]; | |
231 | extern char registers[]; | |
232 | register int i; | |
233 | ||
234 | unsigned int offset = U_REGS_OFFSET; | |
235 | ||
236 | if (regno >= 0) | |
237 | { | |
238 | regaddr = register_addr (regno, offset); | |
239 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) | |
240 | { | |
241 | errno = 0; | |
242 | ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
243 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); | |
244 | if (errno != 0) | |
245 | { | |
246 | sprintf (buf, "writing register number %d(%d)", regno, i); | |
247 | perror_with_name (buf); | |
248 | } | |
249 | regaddr += sizeof(int); | |
250 | } | |
251 | } | |
252 | else | |
253 | { | |
254 | for (regno = 0; regno < NUM_REGS; regno++) | |
255 | { | |
256 | if (CANNOT_STORE_REGISTER (regno)) | |
257 | continue; | |
258 | regaddr = register_addr (regno, offset); | |
259 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) | |
260 | { | |
261 | errno = 0; | |
262 | ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
263 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); | |
264 | if (errno != 0) | |
265 | { | |
266 | sprintf (buf, "writing register number %d(%d)", regno, i); | |
267 | perror_with_name (buf); | |
268 | } | |
269 | regaddr += sizeof(int); | |
270 | } | |
271 | } | |
272 | } | |
273 | return; | |
274 | } | |
275 | #endif /* !defined(FETCH_INFERIOR_REGISTERS) */ | |
276 | ||
277 | /* Resume execution of the inferior process. | |
278 | If STEP is nonzero, single-step it. | |
279 | If SIGNAL is nonzero, give it that signal. */ | |
280 | ||
281 | void | |
282 | child_resume (step, signal) | |
283 | int step; | |
284 | int signal; | |
285 | { | |
286 | errno = 0; | |
287 | ||
288 | /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where | |
289 | it was. (If GDB wanted it to start some other way, we have already | |
290 | written a new PC value to the child.) */ | |
291 | ||
292 | if (step) | |
293 | ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); | |
294 | else | |
295 | ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); | |
296 | ||
297 | if (errno) | |
298 | perror_with_name ("ptrace"); | |
299 | } | |
300 | ||
301 | /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory | |
302 | in the NEW_SUN_PTRACE case. | |
303 | It ought to be straightforward. But it appears that writing did | |
304 | not write the data that I specified. I cannot understand where | |
305 | it got the data that it actually did write. */ | |
306 | ||
307 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR | |
308 | to debugger memory starting at MYADDR. Copy to inferior if | |
309 | WRITE is nonzero. | |
310 | ||
311 | Returns the length copied, which is either the LEN argument or zero. | |
312 | This xfer function does not do partial moves, since child_ops | |
313 | doesn't allow memory operations to cross below us in the target stack | |
314 | anyway. */ | |
315 | ||
316 | int | |
317 | child_xfer_memory (memaddr, myaddr, len, write, target) | |
318 | CORE_ADDR memaddr; | |
319 | char *myaddr; | |
320 | int len; | |
321 | int write; | |
322 | struct target_ops *target; /* ignored */ | |
323 | { | |
324 | register int i; | |
325 | /* Round starting address down to longword boundary. */ | |
326 | register CORE_ADDR addr = memaddr & - sizeof (int); | |
327 | /* Round ending address up; get number of longwords that makes. */ | |
328 | register int count | |
329 | = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); | |
330 | /* Allocate buffer of that many longwords. */ | |
331 | register int *buffer = (int *) alloca (count * sizeof (int)); | |
332 | ||
333 | if (write) | |
334 | { | |
335 | /* Fill start and end extra bytes of buffer with existing memory data. */ | |
336 | ||
337 | if (addr != memaddr || len < (int)sizeof (int)) { | |
338 | /* Need part of initial word -- fetch it. */ | |
339 | buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, | |
340 | 0); | |
341 | } | |
342 | ||
343 | if (count > 1) /* FIXME, avoid if even boundary */ | |
344 | { | |
345 | buffer[count - 1] | |
346 | = ptrace (PT_READ_I, inferior_pid, | |
347 | (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)), | |
348 | 0); | |
349 | } | |
350 | ||
351 | /* Copy data to be written over corresponding part of buffer */ | |
352 | ||
353 | bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); | |
354 | ||
355 | /* Write the entire buffer. */ | |
356 | ||
357 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
358 | { | |
359 | errno = 0; | |
360 | ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, | |
361 | buffer[i]); | |
362 | if (errno) | |
363 | { | |
364 | /* Using the appropriate one (I or D) is necessary for | |
365 | Gould NP1, at least. */ | |
366 | errno = 0; | |
367 | ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, | |
368 | buffer[i]); | |
369 | } | |
370 | if (errno) | |
371 | return 0; | |
372 | } | |
373 | } | |
374 | else | |
375 | { | |
376 | /* Read all the longwords */ | |
377 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
378 | { | |
379 | errno = 0; | |
380 | buffer[i] = ptrace (PT_READ_I, inferior_pid, | |
381 | (PTRACE_ARG3_TYPE) addr, 0); | |
382 | if (errno) | |
383 | return 0; | |
384 | QUIT; | |
385 | } | |
386 | ||
387 | /* Copy appropriate bytes out of the buffer. */ | |
388 | bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); | |
389 | } | |
390 | return len; | |
391 | } | |
392 |