]>
Commit | Line | Data |
---|---|---|
56eec3c7 | 1 | /* Sequent Symmetry host interface, for GDB when running under Unix. |
82a2edfb | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc. |
56eec3c7 JK |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
6c9638b4 | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
56eec3c7 JK |
19 | |
20 | /* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be | |
21 | merged back in. */ | |
22 | ||
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
82a2edfb | 27 | #include "target.h" |
56eec3c7 | 28 | |
82a2edfb JK |
29 | /* FIXME: What is the _INKERNEL define for? */ |
30 | #define _INKERNEL | |
56eec3c7 | 31 | #include <signal.h> |
82a2edfb JK |
32 | #undef _INKERNEL |
33 | #include <sys/wait.h> | |
56eec3c7 JK |
34 | #include <sys/param.h> |
35 | #include <sys/user.h> | |
82a2edfb | 36 | #include <sys/proc.h> |
56eec3c7 JK |
37 | #include <sys/dir.h> |
38 | #include <sys/ioctl.h> | |
2b576293 | 39 | #include "gdb_stat.h" |
db2302cb | 40 | #ifdef _SEQUENT_ |
82a2edfb | 41 | #include <sys/ptrace.h> |
db2302cb PS |
42 | #else |
43 | /* Dynix has only machine/ptrace.h, which is already included by sys/user.h */ | |
44 | /* Dynix has no mptrace call */ | |
45 | #define mptrace ptrace | |
46 | #endif | |
56eec3c7 JK |
47 | #include "gdbcore.h" |
48 | #include <fcntl.h> | |
49 | #include <sgtty.h> | |
50 | #define TERMINAL struct sgttyb | |
51 | ||
52 | #include "gdbcore.h" | |
53 | ||
54 | void | |
55 | store_inferior_registers(regno) | |
56 | int regno; | |
57 | { | |
58 | struct pt_regset regs; | |
db2302cb | 59 | int i; |
56eec3c7 | 60 | extern char registers[]; |
db2302cb PS |
61 | |
62 | /* FIXME: Fetching the registers is a kludge to initialize all elements | |
63 | in the fpu and fpa status. This works for normal debugging, but | |
64 | might cause problems when calling functions in the inferior. | |
65 | At least fpu_control and fpa_pcr (probably more) should be added | |
66 | to the registers array to solve this properly. */ | |
67 | mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0); | |
68 | ||
56eec3c7 JK |
69 | regs.pr_eax = *(int *)®isters[REGISTER_BYTE(0)]; |
70 | regs.pr_ebx = *(int *)®isters[REGISTER_BYTE(5)]; | |
71 | regs.pr_ecx = *(int *)®isters[REGISTER_BYTE(2)]; | |
72 | regs.pr_edx = *(int *)®isters[REGISTER_BYTE(1)]; | |
73 | regs.pr_esi = *(int *)®isters[REGISTER_BYTE(6)]; | |
74 | regs.pr_edi = *(int *)®isters[REGISTER_BYTE(7)]; | |
75 | regs.pr_esp = *(int *)®isters[REGISTER_BYTE(14)]; | |
76 | regs.pr_ebp = *(int *)®isters[REGISTER_BYTE(15)]; | |
77 | regs.pr_eip = *(int *)®isters[REGISTER_BYTE(16)]; | |
78 | regs.pr_flags = *(int *)®isters[REGISTER_BYTE(17)]; | |
79 | for (i = 0; i < 31; i++) | |
80 | { | |
81 | regs.pr_fpa.fpa_regs[i] = | |
82 | *(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)]; | |
83 | } | |
db2302cb PS |
84 | memcpy (regs.pr_fpu.fpu_stack[0], ®isters[REGISTER_BYTE(ST0_REGNUM)], 10); |
85 | memcpy (regs.pr_fpu.fpu_stack[1], ®isters[REGISTER_BYTE(ST1_REGNUM)], 10); | |
86 | memcpy (regs.pr_fpu.fpu_stack[2], ®isters[REGISTER_BYTE(ST2_REGNUM)], 10); | |
87 | memcpy (regs.pr_fpu.fpu_stack[3], ®isters[REGISTER_BYTE(ST3_REGNUM)], 10); | |
88 | memcpy (regs.pr_fpu.fpu_stack[4], ®isters[REGISTER_BYTE(ST4_REGNUM)], 10); | |
89 | memcpy (regs.pr_fpu.fpu_stack[5], ®isters[REGISTER_BYTE(ST5_REGNUM)], 10); | |
90 | memcpy (regs.pr_fpu.fpu_stack[6], ®isters[REGISTER_BYTE(ST6_REGNUM)], 10); | |
91 | memcpy (regs.pr_fpu.fpu_stack[7], ®isters[REGISTER_BYTE(ST7_REGNUM)], 10); | |
82a2edfb | 92 | mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0); |
56eec3c7 JK |
93 | } |
94 | ||
95 | void | |
96 | fetch_inferior_registers (regno) | |
97 | int regno; | |
98 | { | |
99 | int i; | |
100 | struct pt_regset regs; | |
101 | extern char registers[]; | |
102 | ||
103 | registers_fetched (); | |
104 | ||
db2302cb | 105 | mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0); |
56eec3c7 JK |
106 | *(int *)®isters[REGISTER_BYTE(EAX_REGNUM)] = regs.pr_eax; |
107 | *(int *)®isters[REGISTER_BYTE(EBX_REGNUM)] = regs.pr_ebx; | |
108 | *(int *)®isters[REGISTER_BYTE(ECX_REGNUM)] = regs.pr_ecx; | |
109 | *(int *)®isters[REGISTER_BYTE(EDX_REGNUM)] = regs.pr_edx; | |
110 | *(int *)®isters[REGISTER_BYTE(ESI_REGNUM)] = regs.pr_esi; | |
111 | *(int *)®isters[REGISTER_BYTE(EDI_REGNUM)] = regs.pr_edi; | |
112 | *(int *)®isters[REGISTER_BYTE(EBP_REGNUM)] = regs.pr_ebp; | |
113 | *(int *)®isters[REGISTER_BYTE(ESP_REGNUM)] = regs.pr_esp; | |
114 | *(int *)®isters[REGISTER_BYTE(EIP_REGNUM)] = regs.pr_eip; | |
115 | *(int *)®isters[REGISTER_BYTE(EFLAGS_REGNUM)] = regs.pr_flags; | |
116 | for (i = 0; i < FPA_NREGS; i++) | |
117 | { | |
118 | *(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)] = | |
119 | regs.pr_fpa.fpa_regs[i]; | |
120 | } | |
121 | memcpy (®isters[REGISTER_BYTE(ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10); | |
122 | memcpy (®isters[REGISTER_BYTE(ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10); | |
123 | memcpy (®isters[REGISTER_BYTE(ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10); | |
124 | memcpy (®isters[REGISTER_BYTE(ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10); | |
125 | memcpy (®isters[REGISTER_BYTE(ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10); | |
126 | memcpy (®isters[REGISTER_BYTE(ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10); | |
127 | memcpy (®isters[REGISTER_BYTE(ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10); | |
128 | memcpy (®isters[REGISTER_BYTE(ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10); | |
129 | } | |
130 | \f | |
131 | /* FIXME: This should be merged with i387-tdep.c as well. */ | |
132 | static | |
133 | print_fpu_status(ep) | |
134 | struct pt_regset ep; | |
135 | { | |
136 | int i; | |
137 | int bothstatus; | |
138 | int top; | |
139 | int fpreg; | |
140 | unsigned char *p; | |
141 | ||
199b2450 | 142 | printf_unfiltered("80387:"); |
56eec3c7 | 143 | if (ep.pr_fpu.fpu_ip == 0) { |
199b2450 | 144 | printf_unfiltered(" not in use.\n"); |
56eec3c7 JK |
145 | return; |
146 | } else { | |
199b2450 | 147 | printf_unfiltered("\n"); |
56eec3c7 JK |
148 | } |
149 | if (ep.pr_fpu.fpu_status != 0) { | |
150 | print_387_status_word (ep.pr_fpu.fpu_status); | |
151 | } | |
152 | print_387_control_word (ep.pr_fpu.fpu_control); | |
199b2450 TL |
153 | printf_unfiltered ("last exception: "); |
154 | printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4); | |
155 | printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip); | |
156 | printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel); | |
56eec3c7 JK |
157 | |
158 | top = (ep.pr_fpu.fpu_status >> 11) & 7; | |
159 | ||
199b2450 | 160 | printf_unfiltered ("regno tag msb lsb value\n"); |
56eec3c7 JK |
161 | for (fpreg = 7; fpreg >= 0; fpreg--) |
162 | { | |
163 | double val; | |
164 | ||
199b2450 | 165 | printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg); |
56eec3c7 JK |
166 | |
167 | switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3) | |
168 | { | |
199b2450 TL |
169 | case 0: printf_unfiltered ("valid "); break; |
170 | case 1: printf_unfiltered ("zero "); break; | |
171 | case 2: printf_unfiltered ("trap "); break; | |
172 | case 3: printf_unfiltered ("empty "); break; | |
56eec3c7 JK |
173 | } |
174 | for (i = 9; i >= 0; i--) | |
199b2450 | 175 | printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]); |
56eec3c7 | 176 | |
82a2edfb | 177 | i387_to_double ((char *)ep.pr_fpu.fpu_stack[fpreg], (char *)&val); |
199b2450 | 178 | printf_unfiltered (" %g\n", val); |
56eec3c7 JK |
179 | } |
180 | if (ep.pr_fpu.fpu_rsvd1) | |
181 | warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1); | |
182 | if (ep.pr_fpu.fpu_rsvd2) | |
183 | warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2); | |
184 | if (ep.pr_fpu.fpu_rsvd3) | |
185 | warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3); | |
186 | if (ep.pr_fpu.fpu_rsvd5) | |
187 | warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5); | |
188 | } | |
189 | ||
190 | ||
191 | print_1167_control_word(pcr) | |
192 | unsigned int pcr; | |
193 | ||
194 | { | |
195 | int pcr_tmp; | |
196 | ||
197 | pcr_tmp = pcr & FPA_PCR_MODE; | |
199b2450 | 198 | printf_unfiltered("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12); |
56eec3c7 JK |
199 | switch (pcr_tmp & 12) { |
200 | case 0: | |
199b2450 | 201 | printf_unfiltered("RN (Nearest Value)"); |
56eec3c7 JK |
202 | break; |
203 | case 1: | |
199b2450 | 204 | printf_unfiltered("RZ (Zero)"); |
56eec3c7 JK |
205 | break; |
206 | case 2: | |
199b2450 | 207 | printf_unfiltered("RP (Positive Infinity)"); |
56eec3c7 JK |
208 | break; |
209 | case 3: | |
199b2450 | 210 | printf_unfiltered("RM (Negative Infinity)"); |
56eec3c7 JK |
211 | break; |
212 | } | |
199b2450 | 213 | printf_unfiltered("; IRND= %d ", pcr_tmp & 2); |
56eec3c7 | 214 | if (0 == pcr_tmp & 2) { |
199b2450 | 215 | printf_unfiltered("(same as RND)\n"); |
56eec3c7 | 216 | } else { |
199b2450 | 217 | printf_unfiltered("(toward zero)\n"); |
56eec3c7 JK |
218 | } |
219 | pcr_tmp = pcr & FPA_PCR_EM; | |
199b2450 TL |
220 | printf_unfiltered("\tEM= %#x", pcr_tmp); |
221 | if (pcr_tmp & FPA_PCR_EM_DM) printf_unfiltered(" DM"); | |
222 | if (pcr_tmp & FPA_PCR_EM_UOM) printf_unfiltered(" UOM"); | |
223 | if (pcr_tmp & FPA_PCR_EM_PM) printf_unfiltered(" PM"); | |
224 | if (pcr_tmp & FPA_PCR_EM_UM) printf_unfiltered(" UM"); | |
225 | if (pcr_tmp & FPA_PCR_EM_OM) printf_unfiltered(" OM"); | |
226 | if (pcr_tmp & FPA_PCR_EM_ZM) printf_unfiltered(" ZM"); | |
227 | if (pcr_tmp & FPA_PCR_EM_IM) printf_unfiltered(" IM"); | |
228 | printf_unfiltered("\n"); | |
56eec3c7 | 229 | pcr_tmp = FPA_PCR_CC; |
199b2450 TL |
230 | printf_unfiltered("\tCC= %#x", pcr_tmp); |
231 | if (pcr_tmp & FPA_PCR_20MHZ) printf_unfiltered(" 20MHZ"); | |
232 | if (pcr_tmp & FPA_PCR_CC_Z) printf_unfiltered(" Z"); | |
233 | if (pcr_tmp & FPA_PCR_CC_C2) printf_unfiltered(" C2"); | |
82a2edfb JK |
234 | |
235 | /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines | |
236 | FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume | |
237 | the OS knows what it is doing. */ | |
238 | #ifdef FPA_PCR_CC_C1 | |
199b2450 | 239 | if (pcr_tmp & FPA_PCR_CC_C1) printf_unfiltered(" C1"); |
db2302cb PS |
240 | #else |
241 | if (pcr_tmp & FPA_PCR_CC_C0) printf_unfiltered(" C0"); | |
82a2edfb JK |
242 | #endif |
243 | ||
244 | switch (pcr_tmp) | |
245 | { | |
246 | case FPA_PCR_CC_Z: | |
199b2450 | 247 | printf_unfiltered(" (Equal)"); |
56eec3c7 | 248 | break; |
82a2edfb JK |
249 | #ifdef FPA_PCR_CC_C1 |
250 | case FPA_PCR_CC_C1: | |
db2302cb | 251 | #else |
82a2edfb JK |
252 | case FPA_PCR_CC_C0: |
253 | #endif | |
199b2450 | 254 | printf_unfiltered(" (Less than)"); |
56eec3c7 | 255 | break; |
82a2edfb | 256 | case 0: |
199b2450 | 257 | printf_unfiltered(" (Greater than)"); |
56eec3c7 | 258 | break; |
82a2edfb JK |
259 | case FPA_PCR_CC_Z | |
260 | #ifdef FPA_PCR_CC_C1 | |
261 | FPA_PCR_CC_C1 | |
262 | #else | |
263 | FPA_PCR_CC_C0 | |
264 | #endif | |
265 | | FPA_PCR_CC_C2: | |
199b2450 | 266 | printf_unfiltered(" (Unordered)"); |
56eec3c7 | 267 | break; |
82a2edfb | 268 | default: |
199b2450 | 269 | printf_unfiltered(" (Undefined)"); |
56eec3c7 | 270 | break; |
82a2edfb | 271 | } |
199b2450 | 272 | printf_unfiltered("\n"); |
56eec3c7 | 273 | pcr_tmp = pcr & FPA_PCR_AE; |
199b2450 TL |
274 | printf_unfiltered("\tAE= %#x", pcr_tmp); |
275 | if (pcr_tmp & FPA_PCR_AE_DE) printf_unfiltered(" DE"); | |
276 | if (pcr_tmp & FPA_PCR_AE_UOE) printf_unfiltered(" UOE"); | |
277 | if (pcr_tmp & FPA_PCR_AE_PE) printf_unfiltered(" PE"); | |
278 | if (pcr_tmp & FPA_PCR_AE_UE) printf_unfiltered(" UE"); | |
279 | if (pcr_tmp & FPA_PCR_AE_OE) printf_unfiltered(" OE"); | |
280 | if (pcr_tmp & FPA_PCR_AE_ZE) printf_unfiltered(" ZE"); | |
281 | if (pcr_tmp & FPA_PCR_AE_EE) printf_unfiltered(" EE"); | |
282 | if (pcr_tmp & FPA_PCR_AE_IE) printf_unfiltered(" IE"); | |
283 | printf_unfiltered("\n"); | |
56eec3c7 JK |
284 | } |
285 | ||
286 | print_1167_regs(regs) | |
287 | long regs[FPA_NREGS]; | |
288 | ||
289 | { | |
290 | int i; | |
291 | ||
292 | union { | |
293 | double d; | |
294 | long l[2]; | |
295 | } xd; | |
296 | union { | |
297 | float f; | |
298 | long l; | |
299 | } xf; | |
300 | ||
301 | ||
302 | for (i = 0; i < FPA_NREGS; i++) { | |
303 | xf.l = regs[i]; | |
199b2450 | 304 | printf_unfiltered("%%fp%d: raw= %#x, single= %f", i+1, regs[i], xf.f); |
56eec3c7 | 305 | if (!(i & 1)) { |
199b2450 | 306 | printf_unfiltered("\n"); |
56eec3c7 JK |
307 | } else { |
308 | xd.l[1] = regs[i]; | |
309 | xd.l[0] = regs[i+1]; | |
199b2450 | 310 | printf_unfiltered(", double= %f\n", xd.d); |
56eec3c7 JK |
311 | } |
312 | } | |
313 | } | |
314 | ||
315 | print_fpa_status(ep) | |
316 | struct pt_regset ep; | |
317 | ||
318 | { | |
319 | ||
199b2450 | 320 | printf_unfiltered("WTL 1167:"); |
56eec3c7 | 321 | if (ep.pr_fpa.fpa_pcr !=0) { |
199b2450 | 322 | printf_unfiltered("\n"); |
56eec3c7 JK |
323 | print_1167_control_word(ep.pr_fpa.fpa_pcr); |
324 | print_1167_regs(ep.pr_fpa.fpa_regs); | |
325 | } else { | |
199b2450 | 326 | printf_unfiltered(" not in use.\n"); |
56eec3c7 JK |
327 | } |
328 | } | |
329 | ||
82a2edfb | 330 | #if 0 /* disabled because it doesn't go through the target vector. */ |
56eec3c7 JK |
331 | i386_float_info () |
332 | { | |
333 | char ubuf[UPAGES*NBPG]; | |
334 | struct pt_regset regset; | |
335 | ||
336 | if (have_inferior_p()) | |
337 | { | |
338 | PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) ®set); | |
339 | } | |
340 | else | |
341 | { | |
342 | int corechan = bfd_cache_lookup (core_bfd); | |
343 | if (lseek (corechan, 0, 0) < 0) | |
344 | { | |
345 | perror ("seek on core file"); | |
346 | } | |
347 | if (myread (corechan, ubuf, UPAGES*NBPG) < 0) | |
348 | { | |
349 | perror ("read on core file"); | |
350 | } | |
351 | /* only interested in the floating point registers */ | |
352 | regset.pr_fpu = ((struct user *) ubuf)->u_fpusave; | |
353 | regset.pr_fpa = ((struct user *) ubuf)->u_fpasave; | |
354 | } | |
355 | print_fpu_status(regset); | |
356 | print_fpa_status(regset); | |
357 | } | |
82a2edfb JK |
358 | #endif |
359 | ||
360 | static volatile int got_sigchld; | |
361 | ||
362 | /*ARGSUSED*/ | |
363 | /* This will eventually be more interesting. */ | |
364 | void | |
365 | sigchld_handler(signo) | |
366 | int signo; | |
367 | { | |
368 | got_sigchld++; | |
369 | } | |
370 | ||
371 | /* | |
372 | * Signals for which the default action does not cause the process | |
373 | * to die. See <sys/signal.h> for where this came from (alas, we | |
374 | * can't use those macros directly) | |
375 | */ | |
376 | #ifndef sigmask | |
377 | #define sigmask(s) (1 << ((s) - 1)) | |
378 | #endif | |
379 | #define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \ | |
380 | sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \ | |
381 | sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \ | |
382 | sigmask(SIGURG) | sigmask(SIGPOLL) | |
383 | ||
59144a81 | 384 | #ifdef ATTACH_DETACH |
82a2edfb JK |
385 | /* |
386 | * Thanks to XPT_MPDEBUGGER, we have to mange child_wait(). | |
387 | */ | |
388 | int | |
389 | child_wait(pid, status) | |
390 | int pid; | |
391 | struct target_waitstatus *status; | |
392 | { | |
393 | int save_errno, rv, xvaloff, saoff, sa_hand; | |
394 | struct pt_stop pt; | |
395 | struct user u; | |
396 | sigset_t set; | |
397 | /* Host signal number for a signal which the inferior terminates with, or | |
398 | 0 if it hasn't terminated due to a signal. */ | |
399 | static int death_by_signal = 0; | |
400 | #ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */ | |
401 | prstatus_t pstatus; | |
402 | #endif | |
403 | ||
404 | do { | |
1e75b5f5 JK |
405 | set_sigint_trap(); /* Causes SIGINT to be passed on to the |
406 | attached process. */ | |
82a2edfb JK |
407 | save_errno = errno; |
408 | ||
409 | got_sigchld = 0; | |
410 | ||
411 | sigemptyset(&set); | |
412 | ||
413 | while (got_sigchld == 0) { | |
414 | sigsuspend(&set); | |
415 | } | |
416 | ||
1e75b5f5 | 417 | clear_sigint_trap(); |
82a2edfb JK |
418 | |
419 | rv = mptrace(XPT_STOPSTAT, 0, (char *)&pt, 0); | |
420 | if (-1 == rv) { | |
421 | printf("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */ | |
422 | continue; | |
423 | } | |
424 | ||
425 | pid = pt.ps_pid; | |
426 | ||
427 | if (pid != inferior_pid) { | |
428 | /* NOTE: the mystery fork in csh/tcsh needs to be ignored. | |
429 | * We should not return new children for the initial run | |
430 | * of a process until it has done the exec. | |
431 | */ | |
432 | /* inferior probably forked; send it on its way */ | |
433 | rv = mptrace(XPT_UNDEBUG, pid, 0, 0); | |
434 | if (-1 == rv) { | |
435 | printf("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid, | |
436 | safe_strerror(errno)); | |
437 | } | |
438 | continue; | |
439 | } | |
440 | /* FIXME: Do we deal with fork notification correctly? */ | |
441 | switch (pt.ps_reason) { | |
442 | case PTS_FORK: | |
443 | /* multi proc: treat like PTS_EXEC */ | |
444 | /* | |
445 | * Pretend this didn't happen, since gdb isn't set up | |
446 | * to deal with stops on fork. | |
447 | */ | |
448 | rv = ptrace(PT_CONTSIG, pid, 1, 0); | |
449 | if (-1 == rv) { | |
450 | printf("PTS_FORK: PT_CONTSIG: error %d\n", errno); | |
451 | } | |
452 | continue; | |
453 | case PTS_EXEC: | |
454 | /* | |
455 | * Pretend this is a SIGTRAP. | |
456 | */ | |
457 | status->kind = TARGET_WAITKIND_STOPPED; | |
458 | status->value.sig = TARGET_SIGNAL_TRAP; | |
459 | break; | |
460 | case PTS_EXIT: | |
461 | /* | |
462 | * Note: we stop before the exit actually occurs. Extract | |
463 | * the exit code from the uarea. If we're stopped in the | |
464 | * exit() system call, the exit code will be in | |
465 | * u.u_ap[0]. An exit due to an uncaught signal will have | |
466 | * something else in here, see the comment in the default: | |
467 | * case, below. Finally,let the process exit. | |
468 | */ | |
469 | if (death_by_signal) | |
470 | { | |
471 | status->kind = TARGET_WAITKIND_SIGNALED; | |
472 | status->value.sig = target_signal_from_host (death_by_signal); | |
473 | death_by_signal = 0; | |
474 | break; | |
475 | } | |
476 | xvaloff = (unsigned long)&u.u_ap[0] - (unsigned long)&u; | |
477 | errno = 0; | |
478 | rv = ptrace(PT_RUSER, pid, (char *)xvaloff, 0); | |
479 | status->kind = TARGET_WAITKIND_EXITED; | |
480 | status->value.integer = rv; | |
481 | /* | |
482 | * addr & data to mptrace() don't matter here, since | |
483 | * the process is already dead. | |
484 | */ | |
485 | rv = mptrace(XPT_UNDEBUG, pid, 0, 0); | |
486 | if (-1 == rv) { | |
487 | printf("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid, | |
488 | errno); | |
489 | } | |
490 | break; | |
491 | case PTS_WATCHPT_HIT: | |
492 | fatal("PTS_WATCHPT_HIT\n"); | |
493 | break; | |
494 | default: | |
495 | /* stopped by signal */ | |
496 | status->kind = TARGET_WAITKIND_STOPPED; | |
497 | status->value.sig = target_signal_from_host (pt.ps_reason); | |
498 | death_by_signal = 0; | |
499 | ||
500 | if (0 == (SIGNALS_DFL_SAFE & sigmask(pt.ps_reason))) { | |
501 | break; | |
502 | } | |
503 | /* else default action of signal is to die */ | |
504 | #ifdef SVR4_SHARED_LIBS | |
505 | rv = ptrace(PT_GET_PRSTATUS, pid, (char *)&pstatus, 0); | |
506 | if (-1 == rv) | |
507 | error("child_wait: signal %d PT_GET_PRSTATUS: %s\n", | |
508 | pt.ps_reason, safe_strerror(errno)); | |
509 | if (pstatus.pr_cursig != pt.ps_reason) { | |
510 | printf("pstatus signal %d, pt signal %d\n", | |
511 | pstatus.pr_cursig, pt.ps_reason); | |
512 | } | |
513 | sa_hand = (int)pstatus.pr_action.sa_handler; | |
514 | #else | |
515 | saoff = (unsigned long)&u.u_sa[0] - (unsigned long)&u; | |
516 | saoff += sizeof(struct sigaction) * (pt.ps_reason - 1); | |
517 | errno = 0; | |
518 | sa_hand = ptrace(PT_RUSER, pid, (char *)saoff, 0); | |
519 | if (errno) | |
520 | error("child_wait: signal %d: RUSER: %s\n", | |
521 | pt.ps_reason, safe_strerror(errno)); | |
522 | #endif | |
523 | if ((int)SIG_DFL == sa_hand) { | |
524 | /* we will be dying */ | |
525 | death_by_signal = pt.ps_reason; | |
526 | } | |
527 | break; | |
528 | } | |
529 | ||
530 | } while (pid != inferior_pid); /* Some other child died or stopped */ | |
531 | ||
532 | return pid; | |
533 | } | |
59144a81 JK |
534 | #else /* !ATTACH_DETACH */ |
535 | /* | |
536 | * Simple child_wait() based on inftarg.c child_wait() for use until | |
537 | * the MPDEBUGGER child_wait() works properly. This will go away when | |
538 | * that is fixed. | |
539 | */ | |
540 | child_wait (pid, ourstatus) | |
541 | int pid; | |
542 | struct target_waitstatus *ourstatus; | |
543 | { | |
544 | int save_errno; | |
545 | int status; | |
546 | ||
547 | do { | |
548 | pid = wait (&status); | |
549 | save_errno = errno; | |
550 | ||
551 | if (pid == -1) | |
552 | { | |
553 | if (save_errno == EINTR) | |
554 | continue; | |
555 | fprintf (stderr, "Child process unexpectedly missing: %s.\n", | |
556 | safe_strerror (save_errno)); | |
557 | ourstatus->kind = TARGET_WAITKIND_SIGNALLED; | |
558 | ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN; | |
559 | return -1; | |
560 | } | |
561 | } while (pid != inferior_pid); /* Some other child died or stopped */ | |
562 | store_waitstatus (ourstatus, status); | |
563 | return pid; | |
564 | } | |
565 | #endif /* ATTACH_DETACH */ | |
82a2edfb JK |
566 | |
567 | ||
568 | \f | |
569 | /* This function simply calls ptrace with the given arguments. | |
570 | It exists so that all calls to ptrace are isolated in this | |
571 | machine-dependent file. */ | |
572 | int | |
573 | call_ptrace (request, pid, addr, data) | |
574 | int request, pid; | |
575 | PTRACE_ARG3_TYPE addr; | |
576 | int data; | |
577 | { | |
578 | return ptrace (request, pid, addr, data); | |
579 | } | |
580 | ||
581 | int | |
582 | call_mptrace(request, pid, addr, data) | |
583 | int request, pid; | |
584 | PTRACE_ARG3_TYPE addr; | |
585 | int data; | |
586 | { | |
587 | return mptrace(request, pid, addr, data); | |
588 | } | |
589 | ||
590 | #if defined (DEBUG_PTRACE) | |
591 | /* For the rest of the file, use an extra level of indirection */ | |
592 | /* This lets us breakpoint usefully on call_ptrace. */ | |
593 | #define ptrace call_ptrace | |
594 | #define mptrace call_mptrace | |
595 | #endif | |
596 | ||
597 | void | |
598 | kill_inferior () | |
599 | { | |
600 | if (inferior_pid == 0) | |
601 | return; | |
59144a81 JK |
602 | |
603 | /* For MPDEBUGGER, don't use PT_KILL, since the child will stop | |
604 | again with a PTS_EXIT. Just hit him with SIGKILL (so he stops) | |
605 | and detach. */ | |
606 | ||
82a2edfb | 607 | kill (inferior_pid, SIGKILL); |
59144a81 | 608 | #ifdef ATTACH_DETACH |
82a2edfb | 609 | detach(SIGKILL); |
59144a81 JK |
610 | #else /* ATTACH_DETACH */ |
611 | ptrace(PT_KILL, inferior_pid, 0, 0); | |
612 | wait((int *)NULL); | |
613 | #endif /* ATTACH_DETACH */ | |
82a2edfb JK |
614 | target_mourn_inferior (); |
615 | } | |
616 | ||
617 | /* Resume execution of the inferior process. | |
618 | If STEP is nonzero, single-step it. | |
619 | If SIGNAL is nonzero, give it that signal. */ | |
620 | ||
621 | void | |
622 | child_resume (pid, step, signal) | |
623 | int pid; | |
624 | int step; | |
db2302cb | 625 | enum target_signal signal; |
82a2edfb JK |
626 | { |
627 | errno = 0; | |
628 | ||
629 | if (pid == -1) | |
630 | pid = inferior_pid; | |
631 | ||
632 | /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where | |
633 | it was. (If GDB wanted it to start some other way, we have already | |
634 | written a new PC value to the child.) | |
635 | ||
636 | If this system does not support PT_SSTEP, a higher level function will | |
637 | have called single_step() to transmute the step request into a | |
638 | continue request (by setting breakpoints on all possible successor | |
639 | instructions), so we don't have to worry about that here. */ | |
640 | ||
641 | if (step) | |
642 | ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal); | |
643 | else | |
644 | ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal); | |
645 | ||
646 | if (errno) | |
647 | perror_with_name ("ptrace"); | |
648 | } | |
649 | \f | |
650 | #ifdef ATTACH_DETACH | |
651 | /* Start debugging the process whose number is PID. */ | |
652 | int | |
653 | attach (pid) | |
654 | int pid; | |
655 | { | |
656 | sigset_t set; | |
657 | int rv; | |
658 | ||
659 | rv = mptrace(XPT_DEBUG, pid, 0, 0); | |
660 | if (-1 == rv) { | |
661 | error("mptrace(XPT_DEBUG): %s", safe_strerror(errno)); | |
662 | } | |
663 | rv = mptrace(XPT_SIGNAL, pid, 0, SIGSTOP); | |
664 | if (-1 == rv) { | |
665 | error("mptrace(XPT_SIGNAL): %s", safe_strerror(errno)); | |
666 | } | |
667 | attach_flag = 1; | |
668 | return pid; | |
669 | } | |
670 | ||
671 | void | |
672 | detach (signo) | |
673 | int signo; | |
674 | { | |
675 | int rv; | |
676 | ||
677 | rv = mptrace(XPT_UNDEBUG, inferior_pid, 1, signo); | |
678 | if (-1 == rv) { | |
679 | error("mptrace(XPT_UNDEBUG): %s", safe_strerror(errno)); | |
680 | } | |
681 | attach_flag = 0; | |
682 | } | |
683 | ||
684 | #endif /* ATTACH_DETACH */ | |
685 | \f | |
686 | /* Default the type of the ptrace transfer to int. */ | |
687 | #ifndef PTRACE_XFER_TYPE | |
688 | #define PTRACE_XFER_TYPE int | |
689 | #endif | |
690 | ||
691 | \f | |
692 | /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory | |
693 | in the NEW_SUN_PTRACE case. | |
694 | It ought to be straightforward. But it appears that writing did | |
695 | not write the data that I specified. I cannot understand where | |
696 | it got the data that it actually did write. */ | |
697 | ||
698 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR | |
699 | to debugger memory starting at MYADDR. Copy to inferior if | |
700 | WRITE is nonzero. | |
701 | ||
702 | Returns the length copied, which is either the LEN argument or zero. | |
703 | This xfer function does not do partial moves, since child_ops | |
704 | doesn't allow memory operations to cross below us in the target stack | |
705 | anyway. */ | |
706 | ||
707 | int | |
708 | child_xfer_memory (memaddr, myaddr, len, write, target) | |
709 | CORE_ADDR memaddr; | |
710 | char *myaddr; | |
711 | int len; | |
712 | int write; | |
713 | struct target_ops *target; /* ignored */ | |
714 | { | |
715 | register int i; | |
716 | /* Round starting address down to longword boundary. */ | |
717 | register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE); | |
718 | /* Round ending address up; get number of longwords that makes. */ | |
719 | register int count | |
720 | = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) | |
721 | / sizeof (PTRACE_XFER_TYPE); | |
722 | /* Allocate buffer of that many longwords. */ | |
723 | register PTRACE_XFER_TYPE *buffer | |
724 | = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE)); | |
725 | ||
726 | if (write) | |
727 | { | |
728 | /* Fill start and end extra bytes of buffer with existing memory data. */ | |
729 | ||
730 | if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) { | |
731 | /* Need part of initial word -- fetch it. */ | |
732 | buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, | |
733 | 0); | |
734 | } | |
735 | ||
736 | if (count > 1) /* FIXME, avoid if even boundary */ | |
737 | { | |
738 | buffer[count - 1] | |
739 | = ptrace (PT_RTEXT, inferior_pid, | |
740 | ((PTRACE_ARG3_TYPE) | |
741 | (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), | |
742 | 0); | |
743 | } | |
744 | ||
745 | /* Copy data to be written over corresponding part of buffer */ | |
746 | ||
747 | memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), | |
748 | myaddr, | |
749 | len); | |
750 | ||
751 | /* Write the entire buffer. */ | |
752 | ||
753 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) | |
754 | { | |
755 | errno = 0; | |
db2302cb | 756 | ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr, |
82a2edfb JK |
757 | buffer[i]); |
758 | if (errno) | |
759 | { | |
760 | /* Using the appropriate one (I or D) is necessary for | |
761 | Gould NP1, at least. */ | |
762 | errno = 0; | |
763 | ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, | |
764 | buffer[i]); | |
765 | } | |
766 | if (errno) | |
767 | return 0; | |
768 | } | |
769 | } | |
770 | else | |
771 | { | |
772 | /* Read all the longwords */ | |
773 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) | |
774 | { | |
775 | errno = 0; | |
776 | buffer[i] = ptrace (PT_RTEXT, inferior_pid, | |
777 | (PTRACE_ARG3_TYPE) addr, 0); | |
778 | if (errno) | |
779 | return 0; | |
780 | QUIT; | |
781 | } | |
782 | ||
783 | /* Copy appropriate bytes out of the buffer. */ | |
784 | memcpy (myaddr, | |
785 | (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), | |
786 | len); | |
787 | } | |
788 | return len; | |
789 | } | |
790 | ||
791 | ||
792 | void | |
793 | _initialize_symm_nat () | |
794 | { | |
59144a81 | 795 | #ifdef ATTACH_DETACH |
82a2edfb JK |
796 | /* |
797 | * the MPDEBUGGER is necessary for process tree debugging and attach | |
798 | * to work, but it alters the behavior of debugged processes, so other | |
799 | * things (at least child_wait()) will have to change to accomodate | |
800 | * that. | |
801 | * | |
802 | * Note that attach is not implemented in dynix 3, and not in ptx | |
803 | * until version 2.1 of the OS. | |
804 | */ | |
805 | int rv; | |
806 | sigset_t set; | |
807 | struct sigaction sact; | |
808 | ||
809 | rv = mptrace(XPT_MPDEBUGGER, 0, 0, 0); | |
810 | if (-1 == rv) { | |
811 | fatal("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s", | |
812 | safe_strerror(errno)); | |
813 | } | |
814 | ||
815 | /* | |
816 | * Under MPDEBUGGER, we get SIGCLHD when a traced process does | |
817 | * anything of interest. | |
818 | */ | |
819 | ||
820 | /* | |
821 | * Block SIGCHLD. We leave it blocked all the time, and then | |
822 | * call sigsuspend() in child_wait() to wait for the child | |
823 | * to do something. None of these ought to fail, but check anyway. | |
824 | */ | |
825 | sigemptyset(&set); | |
826 | rv = sigaddset(&set, SIGCHLD); | |
827 | if (-1 == rv) { | |
828 | fatal("_initialize_symm_nat(): sigaddset(SIGCHLD): %s", | |
829 | safe_strerror(errno)); | |
830 | } | |
831 | rv = sigprocmask(SIG_BLOCK, &set, (sigset_t *)NULL); | |
832 | if (-1 == rv) { | |
833 | fatal("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s", | |
834 | safe_strerror(errno)); | |
835 | } | |
836 | ||
837 | sact.sa_handler = sigchld_handler; | |
838 | sigemptyset(&sact.sa_mask); | |
839 | sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */ | |
840 | rv = sigaction(SIGCHLD, &sact, (struct sigaction *)NULL); | |
841 | if (-1 == rv) { | |
842 | fatal("_initialize_symm_nat(): sigaction(SIGCHLD): %s", | |
843 | safe_strerror(errno)); | |
844 | } | |
59144a81 | 845 | #endif |
82a2edfb | 846 | } |