]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Target dependent code for the Motorola 68000 series. |
f4992534 | 2 | Copyright (C) 1990, 1992 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
b6666a5d | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
b6666a5d FF |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
b6666a5d | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
b6666a5d FF |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 RP |
19 | |
20 | #include "defs.h" | |
21 | #include "ieee-float.h" | |
b6666a5d FF |
22 | #include "frame.h" |
23 | #include "symtab.h" | |
bd5635a1 | 24 | |
b6666a5d | 25 | const struct ext_format ext_format_68881 = { |
bd5635a1 | 26 | /* tot sbyte smask expbyte manbyte */ |
b6666a5d | 27 | 12, 0, 0x80, 0,1, 4,8 /* mc68881 */ |
bd5635a1 | 28 | }; |
b6666a5d FF |
29 | |
30 | \f | |
31 | /* Things needed for making the inferior call functions. | |
32 | It seems like every m68k based machine has almost identical definitions | |
33 | in the individual machine's configuration files. Most other cpu types | |
34 | (mips, i386, etc) have routines in their *-tdep.c files to handle this | |
35 | for most configurations. The m68k family should be able to do this as | |
36 | well. These macros can still be overridden when necessary. */ | |
37 | ||
38 | /* Push an empty stack frame, to record the current PC, etc. */ | |
39 | ||
40 | void | |
41 | m68k_push_dummy_frame () | |
42 | { | |
43 | register CORE_ADDR sp = read_register (SP_REGNUM); | |
44 | register int regnum; | |
45 | char raw_buffer[12]; | |
46 | ||
47 | sp = push_word (sp, read_register (PC_REGNUM)); | |
48 | sp = push_word (sp, read_register (FP_REGNUM)); | |
49 | write_register (FP_REGNUM, sp); | |
50 | #if defined (HAVE_68881) | |
51 | for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) | |
52 | { | |
53 | read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
54 | sp = push_bytes (sp, raw_buffer, 12); | |
55 | } | |
56 | #endif | |
57 | for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) | |
58 | { | |
59 | sp = push_word (sp, read_register (regnum)); | |
60 | } | |
61 | sp = push_word (sp, read_register (PS_REGNUM)); | |
62 | write_register (SP_REGNUM, sp); | |
63 | } | |
64 | ||
65 | /* Discard from the stack the innermost frame, | |
66 | restoring all saved registers. */ | |
67 | ||
68 | void | |
69 | m68k_pop_frame () | |
70 | { | |
71 | register FRAME frame = get_current_frame (); | |
72 | register CORE_ADDR fp; | |
73 | register int regnum; | |
74 | struct frame_saved_regs fsr; | |
75 | struct frame_info *fi; | |
76 | char raw_buffer[12]; | |
77 | ||
78 | fi = get_frame_info (frame); | |
79 | fp = fi -> frame; | |
80 | get_frame_saved_regs (fi, &fsr); | |
81 | #if defined (HAVE_68881) | |
82 | for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--) | |
83 | { | |
84 | if (fsr.regs[regnum]) | |
85 | { | |
86 | read_memory (fsr.regs[regnum], raw_buffer, 12); | |
87 | write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
88 | } | |
89 | } | |
90 | #endif | |
91 | for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--) | |
92 | { | |
93 | if (fsr.regs[regnum]) | |
94 | { | |
95 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
96 | } | |
97 | } | |
98 | if (fsr.regs[PS_REGNUM]) | |
99 | { | |
100 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
101 | } | |
102 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
103 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); | |
104 | write_register (SP_REGNUM, fp + 8); | |
105 | flush_cached_frames (); | |
106 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
107 | read_pc ())); | |
108 | } | |
109 | ||
110 | \f | |
111 | /* Given an ip value corresponding to the start of a function, | |
112 | return the ip of the first instruction after the function | |
113 | prologue. This is the generic m68k support. Machines which | |
114 | require something different can override the SKIP_PROLOGUE | |
115 | macro to point elsewhere. | |
116 | ||
117 | Some instructions which typically may appear in a function | |
118 | prologue include: | |
119 | ||
120 | A link instruction, word form: | |
121 | ||
122 | link.w %a6,&0 4e56 XXXX | |
123 | ||
124 | A link instruction, long form: | |
125 | ||
126 | link.l %fp,&F%1 480e XXXX XXXX | |
127 | ||
128 | A movm instruction to preserve integer regs: | |
129 | ||
130 | movm.l &M%1,(4,%sp) 48ef XXXX XXXX | |
131 | ||
132 | A fmovm instruction to preserve float regs: | |
133 | ||
134 | fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX | |
135 | ||
136 | Some profiling setup code (FIXME, not recognized yet): | |
137 | ||
138 | lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX | |
139 | bsr _mcount 61ff XXXX XXXX | |
140 | ||
141 | */ | |
142 | ||
143 | #define P_LINK_L 0x480e | |
144 | #define P_LINK_W 0x4e56 | |
145 | #define P_MOV_L 0x207c | |
146 | #define P_JSR 0x4eb9 | |
147 | #define P_BSR 0x61ff | |
148 | #define P_LEA_L 0x43fb | |
149 | #define P_MOVM_L 0x48ef | |
150 | #define P_FMOVM 0xf237 | |
f4992534 | 151 | #define P_TRAP 0x4e40 |
b6666a5d FF |
152 | |
153 | CORE_ADDR | |
154 | m68k_skip_prologue (ip) | |
155 | CORE_ADDR ip; | |
156 | { | |
157 | register CORE_ADDR limit; | |
158 | struct symtab_and_line sal; | |
159 | register int op; | |
160 | ||
161 | /* Find out if there is a known limit for the extent of the prologue. | |
162 | If so, ensure we don't go past it. If not, assume "infinity". */ | |
163 | ||
164 | sal = find_pc_line (ip, 0); | |
165 | limit = (sal.end) ? sal.end : (CORE_ADDR) ~0; | |
166 | ||
167 | while (ip < limit) | |
168 | { | |
169 | op = read_memory_integer (ip, 2); | |
170 | op &= 0xFFFF; | |
171 | ||
172 | if (op == P_LINK_W) | |
173 | { | |
174 | ip += 4; /* Skip link.w */ | |
175 | } | |
176 | else if (op == P_LINK_L) | |
177 | { | |
178 | ip += 6; /* Skip link.l */ | |
179 | } | |
180 | else if (op == P_MOVM_L) | |
181 | { | |
182 | ip += 6; /* Skip movm.l */ | |
183 | } | |
184 | else if (op == P_FMOVM) | |
185 | { | |
186 | ip += 10; /* Skip fmovm */ | |
187 | } | |
188 | else | |
189 | { | |
190 | break; /* Found unknown code, bail out. */ | |
191 | } | |
192 | } | |
193 | return (ip); | |
194 | } | |
195 | ||
196 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ | |
197 | ||
198 | #include <sys/procfs.h> | |
199 | ||
200 | /* The /proc interface divides the target machine's register set up into | |
201 | two different sets, the general register set (gregset) and the floating | |
202 | point register set (fpregset). For each set, there is an ioctl to get | |
203 | the current register set and another ioctl to set the current values. | |
204 | ||
205 | The actual structure passed through the ioctl interface is, of course, | |
206 | naturally machine dependent, and is different for each set of registers. | |
207 | For the m68k for example, the general register set is typically defined | |
208 | by: | |
209 | ||
210 | typedef int gregset_t[18]; | |
211 | ||
212 | #define R_D0 0 | |
213 | ... | |
214 | #define R_PS 17 | |
215 | ||
216 | and the floating point set by: | |
217 | ||
218 | typedef struct fpregset { | |
219 | int f_pcr; | |
220 | int f_psr; | |
221 | int f_fpiaddr; | |
222 | int f_fpregs[8][3]; (8 regs, 96 bits each) | |
223 | } fpregset_t; | |
224 | ||
225 | These routines provide the packing and unpacking of gregset_t and | |
226 | fpregset_t formatted data. | |
227 | ||
228 | */ | |
229 | ||
230 | ||
231 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
232 | unpack the register contents and supply them as gdb's idea of the current | |
233 | register values. */ | |
234 | ||
235 | void | |
236 | supply_gregset (gregsetp) | |
237 | gregset_t *gregsetp; | |
238 | { | |
f4992534 | 239 | register int regi; |
b6666a5d FF |
240 | register greg_t *regp = (greg_t *) gregsetp; |
241 | ||
f4992534 | 242 | for (regi = 0 ; regi < R_PC ; regi++) |
b6666a5d | 243 | { |
f4992534 | 244 | supply_register (regi, (char *) (regp + regi)); |
b6666a5d FF |
245 | } |
246 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
247 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
248 | } | |
249 | ||
250 | void | |
251 | fill_gregset (gregsetp, regno) | |
252 | gregset_t *gregsetp; | |
253 | int regno; | |
254 | { | |
f4992534 | 255 | register int regi; |
b6666a5d FF |
256 | register greg_t *regp = (greg_t *) gregsetp; |
257 | extern char registers[]; | |
258 | ||
259 | for (regi = 0 ; regi < R_PC ; regi++) | |
260 | { | |
261 | if ((regno == -1) || (regno == regi)) | |
262 | { | |
f4992534 | 263 | *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; |
b6666a5d FF |
264 | } |
265 | } | |
266 | if ((regno == -1) || (regno == PS_REGNUM)) | |
267 | { | |
268 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
269 | } | |
270 | if ((regno == -1) || (regno == PC_REGNUM)) | |
271 | { | |
272 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
273 | } | |
274 | } | |
275 | ||
276 | #if defined (FP0_REGNUM) | |
277 | ||
278 | /* Given a pointer to a floating point register set in /proc format | |
279 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
280 | idea of the current floating point register values. */ | |
281 | ||
282 | void | |
283 | supply_fpregset (fpregsetp) | |
284 | fpregset_t *fpregsetp; | |
285 | { | |
f4992534 SG |
286 | register int regi; |
287 | char *from; | |
b6666a5d | 288 | |
f4992534 | 289 | for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++) |
b6666a5d | 290 | { |
f4992534 SG |
291 | from = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]); |
292 | supply_register (regi, from); | |
b6666a5d FF |
293 | } |
294 | supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr)); | |
295 | supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr)); | |
296 | supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr)); | |
297 | } | |
298 | ||
299 | /* Given a pointer to a floating point register set in /proc format | |
300 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
301 | of the current floating point register set. If REGNO is -1, update | |
302 | them all. */ | |
303 | ||
304 | void | |
305 | fill_fpregset (fpregsetp, regno) | |
306 | fpregset_t *fpregsetp; | |
307 | int regno; | |
308 | { | |
309 | int regi; | |
310 | char *to; | |
311 | char *from; | |
312 | extern char registers[]; | |
313 | ||
314 | for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++) | |
315 | { | |
316 | if ((regno == -1) || (regno == regi)) | |
317 | { | |
318 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
f4992534 SG |
319 | to = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]); |
320 | bcopy (from, to, REGISTER_RAW_SIZE (regi)); | |
b6666a5d FF |
321 | } |
322 | } | |
323 | if ((regno == -1) || (regno == FPC_REGNUM)) | |
324 | { | |
325 | fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)]; | |
326 | } | |
327 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
328 | { | |
329 | fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
330 | } | |
331 | if ((regno == -1) || (regno == FPI_REGNUM)) | |
332 | { | |
333 | fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)]; | |
334 | } | |
335 | } | |
336 | ||
337 | #endif /* defined (FP0_REGNUM) */ | |
338 | ||
339 | #endif /* USE_PROC_FS */ | |
f4992534 SG |
340 | |
341 | #ifdef GET_LONGJMP_TARGET | |
342 | /* Figure out where the longjmp will land. Slurp the args out of the stack. | |
343 | We expect the first arg to be a pointer to the jmp_buf structure from which | |
344 | we extract the pc (JB_PC) that we will land at. The pc is copied into PC. | |
345 | This routine returns true on success. */ | |
346 | ||
347 | int | |
348 | get_longjmp_target(pc) | |
349 | CORE_ADDR *pc; | |
350 | { | |
351 | CORE_ADDR sp, jb_addr; | |
352 | ||
353 | sp = read_register(SP_REGNUM); | |
354 | ||
355 | if (target_read_memory(sp + SP_ARG0, /* Offset of first arg on stack */ | |
356 | &jb_addr, | |
357 | sizeof(CORE_ADDR))) | |
358 | return 0; | |
359 | ||
360 | ||
361 | SWAP_TARGET_AND_HOST(&jb_addr, sizeof(CORE_ADDR)); | |
362 | ||
363 | if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, pc, | |
364 | sizeof(CORE_ADDR))) | |
365 | return 0; | |
366 | ||
367 | SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR)); | |
368 | ||
369 | return 1; | |
370 | } | |
371 | #endif /* GET_LONGJMP_TARGET */ | |
372 | ||
373 | /* Immediately after a function call, return the saved pc before the frame | |
374 | is setup. We check for the common case of being inside of a system call, | |
375 | and if so, we know that Sun pushes the call # on the stack prior to doing | |
376 | the trap. */ | |
377 | ||
378 | CORE_ADDR | |
379 | m68k_saved_pc_after_call(frame) | |
380 | struct frame_info *frame; | |
381 | { | |
382 | #ifdef sun | |
383 | int op; | |
384 | ||
385 | op = read_memory_integer (frame->pc, 2); | |
386 | op &= 0xFFFF; | |
387 | ||
388 | if (op == P_TRAP) | |
389 | return read_memory_integer (read_register (SP_REGNUM) + 4, 4); | |
390 | else | |
391 | #endif /* sun */ | |
392 | return read_memory_integer (read_register (SP_REGNUM), 4); | |
393 | } |