]>
Commit | Line | Data |
---|---|---|
41abdfbd JG |
1 | /* Target-dependent code for GDB, the GNU debugger. |
2 | Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | #include <stdio.h> | |
21 | ||
22 | #include "defs.h" | |
41abdfbd JG |
23 | #include "frame.h" |
24 | #include "inferior.h" | |
25 | #include "symtab.h" | |
26 | #include "target.h" | |
27 | ||
28 | #include <sys/param.h> | |
29 | #include <sys/dir.h> | |
30 | #include <sys/user.h> | |
31 | #include <signal.h> | |
32 | #include <sys/ioctl.h> | |
33 | #include <fcntl.h> | |
34 | ||
35 | #include <sys/ptrace.h> | |
36 | #include <sys/reg.h> | |
37 | ||
38 | #include <a.out.h> | |
39 | #include <sys/file.h> | |
40 | #include <sys/stat.h> | |
41 | #include <sys/core.h> | |
42 | ||
43 | extern int errno; | |
44 | extern int attach_flag; | |
45 | ||
46 | /* Nonzero if we just simulated a single step break. */ | |
47 | int one_stepped; | |
48 | ||
49 | #if 0 | |
50 | ||
51 | /* This is Damon's implementation of single step simulation. It suffers the | |
52 | following program: | |
53 | ||
54 | 1 main () { | |
55 | 2 char buf[10]; | |
56 | 3 puts ("test"); | |
57 | 4 strcmp (buf, "test"); puts ("test"); | |
58 | 5 exit (0); | |
59 | 6 } | |
60 | ||
61 | You cannot `next' on line 4 in the above program. gdb puts a breakpoint | |
62 | to the return address of `strcmp', and when execution arrives that point, | |
63 | it is still in the line range and gdb attemps to resume it with single | |
64 | steps. At that point the breakpoint at step_resume_break_address (return | |
65 | address of strcmp) and single step's breakpoint mixes up and we end up | |
66 | with a breakpoint which its shadow and itself are identical. | |
67 | ||
68 | Fix that problem and use this version. FIXMEmgo. | |
69 | */ | |
70 | ||
71 | ||
72 | static struct sstep_breaks { | |
73 | int address; | |
74 | int data; | |
75 | } tbreak[2]; | |
76 | ||
77 | ||
78 | /* | |
79 | * branch_dest - calculate all places the current instruction may go | |
80 | */ | |
81 | static | |
82 | branch_dest(tb) | |
83 | register struct sstep_breaks *tb; | |
84 | { | |
85 | register ulong opcode, iar; | |
86 | long instr; | |
87 | int immediate, absolute;; | |
88 | ||
89 | iar = read_pc(); /* current IAR */ | |
90 | target_read_memory(iar, &instr, sizeof (instr)); /* current inst */ | |
91 | ||
92 | opcode = instr >> 26; | |
93 | absolute = instr & 2; | |
94 | ||
95 | tb[1].address = -1; | |
96 | ||
97 | switch (opcode) { | |
98 | case 0x10: /* branch conditional */ | |
99 | immediate = ((instr & ~3) << 16) >> 16; | |
100 | ||
101 | /* | |
102 | * two possible locations for next instruction | |
103 | */ | |
104 | tb[0].address = iar + 4; | |
105 | tb[1].address = immediate + (absolute ? 0 : iar); | |
106 | ||
107 | break; | |
108 | ||
109 | case 0x12: /* branch unconditional */ | |
110 | immediate = ((instr & ~3) << 6) >> 6; | |
111 | ||
112 | /* | |
113 | * only one possible location for next instr | |
114 | */ | |
115 | tb[0].address = immediate + (absolute ? 0 : iar); | |
116 | ||
117 | break; | |
118 | ||
119 | case 0x13: /* branch conditional register */ | |
120 | /* | |
121 | * WE NEED TO CHECK THE CR HERE, TO SEE IF THIS IS | |
122 | * REALLY UNCONDITIONAL. | |
123 | */ | |
124 | tb++->address = iar + 4; | |
125 | ||
126 | switch ((instr >> 1) & 0x3ff) { | |
127 | case 0x10: /* branch conditional register */ | |
128 | tb->address = read_register(LR_REGNUM) & ~3; | |
129 | sigtramp_chk(tb); /* return from sig handler? */ | |
130 | break; | |
131 | ||
132 | case 0x210: /* branch cond to CTR */ | |
133 | tb->address = read_register(CTR_REGNUM) & ~3; | |
134 | sigtramp_chk(tb); /* return from sig handler? */ | |
135 | break; | |
136 | ||
137 | default: | |
138 | /* | |
139 | * not a branch. | |
140 | */ | |
141 | tb->address = iar + 4; | |
142 | break; | |
143 | } | |
144 | break; | |
145 | ||
146 | default: | |
147 | /* | |
148 | * not a branch, flow proceeds normally | |
149 | */ | |
150 | tb->address = iar + 4; | |
151 | break; | |
152 | } | |
153 | } | |
154 | ||
155 | /* | |
156 | * sigtramp_chk - heuristic check to see if we think we are returning | |
157 | * from a signal handler. | |
158 | * | |
159 | * Input: | |
160 | * tb - ^ to a single step branch location | |
161 | * | |
162 | * Note: | |
163 | * When we are at the "br" instruction returning to a signal handler, | |
164 | * we return in user mode to an address in the kernel. If the | |
165 | * segment of the branch target is 0, we may very well be in a | |
166 | * signal handler. From scrounging through this code, we note that | |
167 | * register 29 has the signal context pointer, from which we can | |
168 | * determine where we will end up next. | |
169 | */ | |
170 | sigtramp_chk(tb) | |
171 | register struct sstep_breaks *tb; { | |
172 | struct sigcontext sc; | |
173 | ||
174 | if (tb->address & 0xf0000000) | |
175 | return; /* can't have been sigtramp */ | |
176 | ||
177 | if (target_read_memory(read_register(GPR29), &sc, sizeof (sc))) | |
178 | return; /* read fails, heuristic fails */ | |
179 | ||
180 | if ((sc.sc_jmpbuf.jmp_context.iar & 0xf0000000) == 0x10000000) { | |
181 | /* | |
182 | * looks like it might be ok..... | |
183 | */ | |
184 | tb->address = sc.sc_jmpbuf.jmp_context.iar; | |
185 | } | |
186 | } | |
187 | ||
188 | ||
189 | /* | |
190 | * single_step - no trace mode harware support, or software support. | |
191 | * sigh. | |
192 | */ | |
193 | single_step(signal) { | |
194 | register i; | |
195 | ||
196 | if (!one_stepped) { | |
197 | /* | |
198 | * need to set breakpoints for single step. | |
199 | * figure out all places the current instruction could go. | |
200 | */ | |
201 | branch_dest(&tbreak[0]); | |
202 | ||
203 | /* | |
204 | * always at least one place to go to | |
205 | */ | |
206 | target_insert_breakpoint(tbreak[0].address, &tbreak[0].data); | |
207 | ||
208 | /* | |
209 | * if there is another possible location, set a breakpoint there | |
210 | * as well. | |
211 | */ | |
212 | if (tbreak[1].address != -1) | |
213 | target_insert_breakpoint(tbreak[1].address, &tbreak[1].data); | |
214 | ||
215 | one_stepped = 1; | |
216 | ptrace(PT_CONTINUE, inferior_pid, 1, signal, 0); | |
217 | } else { | |
218 | /* | |
219 | * need to clear the breakpoints. | |
220 | */ | |
221 | for (i = 0; i < 2; ++i) | |
222 | if (tbreak[i].address != -1) | |
223 | target_remove_breakpoint(tbreak[i].address, &tbreak[i].data); | |
224 | ||
225 | one_stepped = 0; | |
226 | } | |
227 | ||
228 | return 1; | |
229 | } | |
230 | ||
231 | #else /* !DAMON'S VERSION */ | |
232 | ||
233 | /* Breakpoint shadows for the single step instructions will be kept here. */ | |
234 | ||
235 | static struct sstep_breaks { | |
236 | int address; | |
237 | int data; | |
238 | } stepBreaks[2]; | |
239 | ||
240 | ||
241 | /* | |
242 | * Calculate the destination of a branch/jump. Return -1 if not a branch. | |
243 | */ | |
244 | static int | |
245 | branch_dest (opcode, instr, pc, safety) | |
246 | int opcode, instr, pc, safety; | |
247 | { | |
248 | register long offset; | |
249 | unsigned dest; | |
250 | int immediate; | |
251 | int absolute; | |
252 | int ext_op; | |
253 | ||
254 | absolute = (int) ((instr >> 1) & 1); | |
255 | ||
256 | switch (opcode) { | |
257 | case 18 : | |
258 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditionl */ | |
259 | ||
260 | case 16 : | |
261 | if (opcode != 18) /* br conditional */ | |
262 | immediate = ((instr & ~3) << 16) >> 16; | |
263 | if (absolute) | |
264 | dest = immediate; | |
265 | else | |
266 | dest = pc + immediate; | |
267 | break; | |
268 | ||
269 | case 19 : | |
270 | ext_op = (instr>>1) & 0x3ff; | |
271 | ||
272 | if (ext_op == 16) /* br conditional register */ | |
273 | dest = read_register (LR_REGNUM) & ~3; | |
274 | ||
275 | else if (ext_op == 528) /* br cond to count reg */ | |
276 | dest = read_register (CTR_REGNUM) & ~3; | |
277 | ||
278 | else return -1; | |
279 | break; | |
280 | ||
281 | default: return -1; | |
282 | } | |
283 | return (dest < 0x10000000) ? safety : dest; | |
284 | } | |
285 | ||
286 | ||
287 | ||
288 | /* AIX does not support PT_STEP. Simulate it. */ | |
289 | ||
290 | int | |
291 | single_step (signal) | |
292 | int signal; | |
293 | { | |
294 | #define INSNLEN(OPCODE) 4 | |
295 | ||
296 | static char breakp[] = BREAKPOINT; | |
297 | int ii, insn, ret, loc; | |
298 | int breaks[2], opcode; | |
299 | ||
300 | if (!one_stepped) { | |
301 | extern CORE_ADDR text_start; | |
302 | loc = read_pc (); | |
303 | ||
304 | ret = read_memory (loc, &insn, sizeof (int)); | |
305 | if (ret) | |
306 | printf ("Error in single_step()!!\n"); | |
307 | ||
308 | breaks[0] = loc + INSNLEN(insn); | |
309 | opcode = insn >> 26; | |
310 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
311 | ||
312 | stepBreaks[1].address = -1; | |
313 | ||
314 | for (ii=0; ii < 2; ++ii) { | |
315 | ||
316 | /* ignore invalid breakpoint. */ | |
317 | if ( breaks[ii] == -1) | |
318 | continue; | |
319 | ||
320 | read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int)); | |
321 | ||
322 | ret = write_memory (breaks[ii], breakp, sizeof(int)); | |
323 | stepBreaks[ii].address = breaks[ii]; | |
324 | } | |
325 | ||
326 | one_stepped = 1; | |
327 | ptrace (PT_CONTINUE, inferior_pid, 1, signal); | |
328 | } | |
329 | else { | |
330 | ||
331 | /* remove step breakpoints. */ | |
332 | for (ii=0; ii < 2; ++ii) | |
333 | if (stepBreaks[ii].address != -1) | |
334 | write_memory | |
335 | (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int)); | |
336 | ||
337 | one_stepped = 0; | |
338 | } | |
339 | return 1; | |
340 | } | |
341 | #endif /* !DAMON's version of single step. */ | |
342 | ||
343 | ||
344 | ||
345 | /* return pc value after skipping a function prologue. */ | |
346 | ||
347 | skip_prologue (pc) | |
348 | int pc; | |
349 | { | |
350 | unsigned int tmp; | |
351 | unsigned int op; | |
352 | ||
353 | if (target_read_memory (pc, (char *)&op, sizeof (op))) | |
354 | return pc; /* Can't access it -- assume no prologue. */ | |
355 | SWAP_TARGET_AND_HOST (&op, sizeof (op)); | |
356 | ||
357 | /* Assume that subsequent fetches can fail with low probability. */ | |
358 | ||
359 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
360 | pc += 4; | |
361 | op = read_memory_integer (pc, 4); | |
362 | } | |
363 | else /* else, this is a frameless invocation */ | |
364 | return pc; | |
365 | ||
366 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
367 | pc += 4; | |
368 | op = read_memory_integer (pc, 4); | |
369 | } | |
370 | ||
371 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
372 | pc += 4; | |
373 | op = read_memory_integer (pc, 4); | |
374 | } | |
375 | ||
376 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ | |
377 | pc += 4; /* store floating register double */ | |
378 | op = read_memory_integer (pc, 4); | |
379 | } | |
380 | ||
381 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ | |
382 | pc += 4; | |
383 | op = read_memory_integer (pc, 4); | |
384 | } | |
385 | ||
386 | while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */ | |
387 | (tmp == 0x9421) || /* stu r1, NUM(r1) */ | |
388 | (op == 0x93e1fffc)) /* st r31,-4(r1) */ | |
389 | { | |
390 | pc += 4; | |
391 | op = read_memory_integer (pc, 4); | |
392 | } | |
393 | ||
394 | while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */ | |
395 | pc += 4; /* l r30, ... */ | |
396 | op = read_memory_integer (pc, 4); | |
397 | } | |
398 | ||
399 | while ((op & 0xfc1f0000) == 0x90010000) { /* st r?, NUM(r1) */ | |
400 | pc += 4; | |
401 | op = read_memory_integer (pc, 4); | |
402 | } | |
403 | ||
404 | if (op == 0x603f0000) { /* oril r31, r1, 0x0 */ | |
405 | pc += 4; /* this happens if r31 is used as */ | |
406 | op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */ | |
407 | ||
408 | if ((op >> 16) == 0x907f) { /* st r3, NUM(r31) */ | |
409 | pc += 4; | |
410 | op = read_memory_integer (pc, 4); | |
411 | } | |
412 | } | |
413 | return pc; | |
414 | } | |
415 | ||
416 | /* text start and end addresses in virtual memory. */ | |
417 | ||
418 | CORE_ADDR text_start; | |
419 | CORE_ADDR text_end; | |
420 | ||
421 | ||
422 | /************************************************************************* | |
423 | Support for creating pushind a dummy frame into the stack, and popping | |
424 | frames, etc. | |
425 | *************************************************************************/ | |
426 | ||
427 | #define DUMMY_FRAME_ADDR_SIZE 10 | |
428 | ||
429 | /* Make sure you initialize these in somewhere, in case gdb gives up what it | |
430 | was debugging and starts debugging something else. FIXMEmgo */ | |
431 | ||
432 | static int dummy_frame_count = 0; | |
433 | static int dummy_frame_size = 0; | |
434 | static CORE_ADDR *dummy_frame_addr = 0; | |
435 | ||
436 | extern int stop_stack_dummy; | |
437 | ||
438 | /* push a dummy frame into stack, save all register. Currently we are saving | |
439 | only gpr's and fpr's, which is not good enough! FIXMEmgo */ | |
440 | ||
441 | push_dummy_frame () | |
442 | { | |
443 | int sp, pc; /* stack pointer and link register */ | |
444 | int ii; | |
445 | ||
446 | if (dummy_frame_count >= dummy_frame_size) { | |
447 | dummy_frame_size += DUMMY_FRAME_ADDR_SIZE; | |
448 | if (dummy_frame_addr) | |
449 | dummy_frame_addr = (CORE_ADDR*) xrealloc | |
450 | (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size)); | |
451 | else | |
452 | dummy_frame_addr = (CORE_ADDR*) | |
453 | xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size)); | |
454 | } | |
455 | ||
456 | sp = read_register(SP_REGNUM); | |
457 | pc = read_register(PC_REGNUM); | |
458 | ||
459 | dummy_frame_addr [dummy_frame_count++] = sp; | |
460 | ||
461 | /* Be careful! If the stack pointer is not decremented first, then kernel | |
462 | thinks he is free to use the sapce underneath it. And kernel actually | |
463 | uses that area for IPC purposes when executing ptrace(2) calls. So | |
464 | before writing register values into the new frame, decrement and update | |
465 | %sp first in order to secure your frame. */ | |
466 | ||
467 | write_register (SP_REGNUM, sp-408); | |
468 | ||
469 | #if 1 | |
470 | /* gdb relies on the state of current_frame. We'd better update it, | |
471 | otherwise things like do_registers_info() wouldn't work properly! */ | |
472 | ||
473 | flush_cached_frames (); | |
474 | set_current_frame (create_new_frame (sp-408, pc)); | |
475 | #endif /* 0 */ | |
476 | ||
477 | /* save program counter in link register's space. */ | |
478 | write_memory (sp+8, &pc, 4); | |
479 | ||
480 | /* save full floating point registers here. They will be from F14..F31 | |
481 | for know. I am not sure if we need to save everything here! */ | |
482 | ||
483 | /* fpr's, f0..f31 */ | |
484 | for (ii = 0; ii < 32; ++ii) | |
485 | write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8); | |
486 | ||
487 | /* gpr's r0..r31 */ | |
488 | for (ii=1; ii <=32; ++ii) | |
489 | write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
490 | ||
491 | /* so far, 32*2 + 32 words = 384 bytes have been written. We need 6 words | |
492 | (24 bytes) for the rest of the registers. It brings the total to 408 | |
493 | bytes. | |
494 | save sp or so call back chain right here. */ | |
495 | write_memory (sp-408, &sp, 4); | |
496 | sp -= 408; | |
497 | ||
498 | /* And finally, this is the back chain. */ | |
499 | write_memory (sp+8, &pc, 4); | |
500 | } | |
501 | ||
502 | ||
503 | /* Pop a dummy frame. | |
504 | ||
505 | In rs6000 when we push a dummy frame, we save all of the registers. This | |
506 | is usually done before user calls a function explicitly. | |
507 | ||
508 | After a dummy frame is pushed, some instructions are copied into stack, and | |
509 | stack pointer is decremented even more. Since we don't have a frame pointer to | |
510 | get back to the parent frame of the dummy, we start having trouble poping it. | |
511 | Therefore, we keep a dummy frame stack, keeping addresses of dummy frames as | |
512 | such. When poping happens and when we detect that was a dummy frame, we pop | |
513 | it back to its parent by using dummy frame stack (`dummy_frame_addr' array). | |
514 | */ | |
515 | ||
516 | pop_dummy_frame () | |
517 | { | |
518 | CORE_ADDR sp, pc; | |
519 | int ii; | |
520 | sp = dummy_frame_addr [--dummy_frame_count]; | |
521 | ||
522 | /* restore all fpr's. */ | |
523 | for (ii = 1; ii <= 32; ++ii) | |
524 | read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8); | |
525 | ||
526 | /* restore all gpr's */ | |
527 | for (ii=1; ii <= 32; ++ii) { | |
528 | read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
529 | } | |
530 | ||
531 | read_memory (sp-400, ®isters [REGISTER_BYTE(PC_REGNUM)], 4); | |
532 | ||
533 | /* when a dummy frame was being pushed, we had to decrement %sp first, in | |
534 | order to secure astack space. Thus, saved %sp (or %r1) value, is not the | |
535 | one we should restore. Change it with the one we need. */ | |
536 | ||
537 | *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp; | |
538 | ||
539 | /* Now we can restore all registers. */ | |
540 | ||
541 | store_inferior_registers (-1); | |
542 | pc = read_pc (); | |
543 | flush_cached_frames (); | |
544 | set_current_frame (create_new_frame (sp, pc)); | |
545 | } | |
546 | ||
547 | ||
548 | /* pop the innermost frame, go back to the caller. */ | |
549 | ||
550 | pop_frame () | |
551 | { | |
552 | int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */ | |
553 | FRAME fr = get_current_frame (); | |
554 | int offset = 0; | |
555 | int frameless = 0; /* TRUE if function is frameless */ | |
556 | int addr, ii; | |
557 | int saved_gpr, saved_fpr; /* # of saved gpr's and fpr's */ | |
558 | ||
559 | pc = read_pc (); | |
560 | sp = FRAME_FP (fr); | |
561 | ||
562 | if (stop_stack_dummy && dummy_frame_count) { | |
563 | pop_dummy_frame (); | |
564 | return; | |
565 | } | |
566 | ||
567 | /* figure out previous %pc value. If the function is frameless, it is | |
568 | still in the link register, otherwise walk the frames and retrieve the | |
569 | saved %pc value in the previous frame. */ | |
570 | ||
571 | addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET; | |
572 | function_frame_info (addr, &frameless, &offset, &saved_gpr, &saved_fpr); | |
573 | ||
574 | read_memory (sp, &prev_sp, 4); | |
575 | if (frameless) | |
576 | lr = read_register (LR_REGNUM); | |
577 | else | |
578 | read_memory (prev_sp+8, &lr, 4); | |
579 | ||
580 | /* reset %pc value. */ | |
581 | write_register (PC_REGNUM, lr); | |
582 | ||
583 | /* reset register values if any was saved earlier. */ | |
584 | addr = prev_sp - offset; | |
585 | ||
586 | if (saved_gpr != -1) | |
587 | for (ii=saved_gpr; ii <= 31; ++ii) { | |
588 | read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4); | |
589 | addr += sizeof (int); | |
590 | } | |
591 | ||
592 | if (saved_fpr != -1) | |
593 | for (ii=saved_fpr; ii <= 31; ++ii) { | |
594 | read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8); | |
595 | addr += 8; | |
596 | } | |
597 | ||
598 | write_register (SP_REGNUM, prev_sp); | |
599 | store_inferior_registers (-1); | |
600 | flush_cached_frames (); | |
601 | set_current_frame (create_new_frame (prev_sp, lr)); | |
602 | } | |
603 | ||
604 | ||
605 | /* fixup the call sequence of a dummy function, with the real function address. | |
606 | its argumets will be passed by gdb. */ | |
607 | ||
608 | fix_call_dummy(dummyname, pc, fun, nargs, type) | |
609 | char *dummyname; | |
610 | int pc; | |
611 | int fun; | |
612 | int nargs; /* not used */ | |
613 | int type; /* not used */ | |
614 | ||
615 | { | |
616 | #define TOC_ADDR_OFFSET 20 | |
617 | #define TARGET_ADDR_OFFSET 28 | |
618 | ||
619 | int ii; | |
620 | unsigned long target_addr; | |
621 | unsigned long tocvalue; | |
622 | ||
623 | target_addr = fun; | |
624 | tocvalue = find_toc_address (target_addr); | |
625 | ||
626 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET); | |
627 | ii = (ii & 0xffff0000) | (tocvalue >> 16); | |
628 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii; | |
629 | ||
630 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4); | |
631 | ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff); | |
632 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii; | |
633 | ||
634 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET); | |
635 | ii = (ii & 0xffff0000) | (target_addr >> 16); | |
636 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii; | |
637 | ||
638 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4); | |
639 | ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff); | |
640 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii; | |
641 | } | |
642 | ||
643 | ||
644 | ||
645 | /* return information about a function frame. | |
646 | - frameless is TRUE, if function does not save %pc value in its frame. | |
647 | - offset is the number of bytes used in the frame to save registers. | |
648 | - saved_gpr is the number of the first saved gpr. | |
649 | - saved_fpr is the number of the first saved fpr. | |
650 | */ | |
651 | function_frame_info (pc, frameless, offset, saved_gpr, saved_fpr) | |
652 | int pc; | |
653 | int *frameless, *offset, *saved_gpr, *saved_fpr; | |
654 | { | |
655 | unsigned int tmp; | |
656 | register unsigned int op; | |
657 | ||
658 | *offset = 0; | |
659 | *saved_gpr = *saved_fpr = -1; | |
660 | ||
661 | if (!inferior_pid) | |
662 | return; | |
663 | ||
664 | op = read_memory_integer (pc, 4); | |
665 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
666 | pc += 4; | |
667 | op = read_memory_integer (pc, 4); | |
668 | *frameless = 0; | |
669 | } | |
670 | else /* else, this is a frameless invocation */ | |
671 | *frameless = 1; | |
672 | ||
673 | ||
674 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
675 | pc += 4; | |
676 | op = read_memory_integer (pc, 4); | |
677 | } | |
678 | ||
679 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
680 | pc += 4; | |
681 | op = read_memory_integer (pc, 4); | |
682 | } | |
683 | ||
684 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ | |
685 | pc += 4; /* store floating register double */ | |
686 | op = read_memory_integer (pc, 4); | |
687 | } | |
688 | ||
689 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ | |
690 | int tmp2; | |
691 | *saved_gpr = (op >> 21) & 0x1f; | |
692 | tmp2 = op & 0xffff; | |
693 | if (tmp2 > 0x7fff) | |
694 | tmp2 = 0xffff0000 | tmp2; | |
695 | ||
696 | if (tmp2 < 0) { | |
697 | tmp2 = tmp2 * -1; | |
698 | *saved_fpr = (tmp2 - ((32 - *saved_gpr) * 4)) / 8; | |
699 | if ( *saved_fpr > 0) | |
700 | *saved_fpr = 32 - *saved_fpr; | |
701 | else | |
702 | *saved_fpr = -1; | |
703 | } | |
704 | *offset = tmp2; | |
705 | } | |
706 | } | |
707 | ||
708 | ||
709 | /* Pass the arguments in either registers, or in the stack. In RS6000, the first | |
710 | eight words of the argument list (that might be less than eight parameters if | |
711 | some parameters occupy more than one word) are passed in r3..r11 registers. | |
712 | float and double parameters are passed in fpr's, in addition to that. Rest of | |
713 | the parameters if any are passed in user stack. There might be cases in which | |
714 | half of the parameter is copied into registers, the other half is pushed into | |
715 | stack. | |
716 | ||
717 | If the function is returning a structure, then the return address is passed | |
718 | in r3, then the first 7 words of the parametes can be passed in registers, | |
719 | starting from r4. */ | |
720 | ||
721 | CORE_ADDR | |
722 | push_arguments (nargs, args, sp, struct_return, struct_addr) | |
723 | int nargs; | |
724 | value *args; | |
725 | CORE_ADDR sp; | |
726 | int struct_return; | |
727 | CORE_ADDR struct_addr; | |
728 | { | |
729 | int ii, len; | |
730 | int argno; /* current argument number */ | |
731 | int argbytes; /* current argument byte */ | |
732 | char tmp_buffer [50]; | |
733 | value arg; | |
734 | int f_argno = 0; /* current floating point argno */ | |
735 | ||
736 | CORE_ADDR saved_sp, pc; | |
737 | ||
738 | if ( dummy_frame_count <= 0) | |
739 | printf ("FATAL ERROR -push_arguments()! frame not found!!\n"); | |
740 | ||
741 | /* The first eight words of ther arguments are passed in registers. Copy | |
742 | them appropriately. | |
743 | ||
744 | If the function is returning a `struct', then the first word (which | |
745 | will be passed in r3) is used for struct return address. In that | |
746 | case we should advance one word and start from r4 register to copy | |
747 | parameters. */ | |
748 | ||
749 | ii = struct_return ? 1 : 0; | |
750 | ||
751 | for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) { | |
752 | ||
753 | arg = value_arg_coerce (args[argno]); | |
754 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
755 | ||
756 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) { | |
757 | ||
758 | /* floating point arguments are passed in fpr's, as well as gpr's. | |
759 | There are 13 fpr's reserved for passing parameters. At this point | |
760 | there is no way we would run out of them. */ | |
761 | ||
762 | if (len > 8) | |
763 | printf ( | |
764 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
765 | ||
766 | bcopy (VALUE_CONTENTS (arg), | |
767 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
768 | ++f_argno; | |
769 | } | |
770 | ||
771 | if (len > 4) { | |
772 | ||
773 | /* Argument takes more than one register. */ | |
774 | while (argbytes < len) { | |
775 | ||
776 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
777 | bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes, | |
778 | ®isters[REGISTER_BYTE(ii+3)], | |
779 | (len - argbytes) > 4 ? 4 : len - argbytes); | |
780 | ++ii, argbytes += 4; | |
781 | ||
782 | if (ii >= 8) | |
783 | goto ran_out_of_registers_for_arguments; | |
784 | } | |
785 | argbytes = 0; | |
786 | --ii; | |
787 | } | |
788 | else { /* Argument can fit in one register. No problem. */ | |
789 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
790 | bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len); | |
791 | } | |
792 | ++argno; | |
793 | } | |
794 | ||
795 | ran_out_of_registers_for_arguments: | |
796 | ||
797 | /* location for 8 parameters are always reserved. */ | |
798 | sp -= 4 * 8; | |
799 | ||
800 | /* another six words for back chain, TOC register, link register, etc. */ | |
801 | sp -= 24; | |
802 | ||
803 | /* if there are more arguments, allocate space for them in | |
804 | the stack, then push them starting from the ninth one. */ | |
805 | ||
806 | if ((argno < nargs) || argbytes) { | |
807 | int space = 0, jj; | |
808 | value val; | |
809 | ||
810 | if (argbytes) { | |
811 | space += ((len - argbytes + 3) & -4); | |
812 | jj = argno + 1; | |
813 | } | |
814 | else | |
815 | jj = argno; | |
816 | ||
817 | for (; jj < nargs; ++jj) { | |
818 | val = value_arg_coerce (args[jj]); | |
819 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; | |
820 | } | |
821 | ||
822 | /* add location required for the rest of the parameters */ | |
823 | space = (space + 7) & -8; | |
824 | sp -= space; | |
825 | ||
826 | /* This is another instance we need to be concerned about securing our | |
827 | stack space. If we write anything underneath %sp (r1), we might conflict | |
828 | with the kernel who thinks he is free to use this area. So, update %sp | |
829 | first before doing anything else. */ | |
830 | ||
831 | write_register (SP_REGNUM, sp); | |
832 | ||
833 | #if 0 | |
834 | pc = read_pc (); | |
835 | flush_cached_frames (); | |
836 | set_current_frame (create_new_frame (sp, pc)); | |
837 | #endif | |
838 | ||
839 | /* if the last argument copied into the registers didn't fit there | |
840 | completely, push the rest of it into stack. */ | |
841 | ||
842 | if (argbytes) { | |
843 | write_memory ( | |
844 | sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes); | |
845 | ++argno; | |
846 | ii += ((len - argbytes + 3) & -4) / 4; | |
847 | } | |
848 | ||
849 | /* push the rest of the arguments into stack. */ | |
850 | for (; argno < nargs; ++argno) { | |
851 | ||
852 | arg = value_arg_coerce (args[argno]); | |
853 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
854 | ||
855 | ||
856 | /* float types should be passed in fpr's, as well as in the stack. */ | |
857 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) { | |
858 | ||
859 | if (len > 8) | |
860 | printf ( | |
861 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
862 | ||
863 | bcopy (VALUE_CONTENTS (arg), | |
864 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
865 | ++f_argno; | |
866 | } | |
867 | ||
868 | write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len); | |
869 | ii += ((len + 3) & -4) / 4; | |
870 | } | |
871 | } | |
872 | else { | |
873 | ||
874 | /* Secure stack areas first, before doing anything else. */ | |
875 | write_register (SP_REGNUM, sp); | |
876 | ||
877 | #if 0 | |
878 | pc = read_pc (); | |
879 | flush_cached_frames (); | |
880 | set_current_frame (create_new_frame (sp, pc)); | |
881 | #endif | |
882 | } | |
883 | ||
884 | saved_sp = dummy_frame_addr [dummy_frame_count - 1]; | |
885 | read_memory (saved_sp, tmp_buffer, 24); | |
886 | write_memory (sp, tmp_buffer, 24); | |
887 | ||
888 | write_memory (sp, &saved_sp, 4); /* set back chain properly */ | |
889 | ||
890 | store_inferior_registers (-1); | |
891 | return sp; | |
892 | } | |
893 | ||
894 | /* a given return value in `regbuf' with a type `valtype', extract and copy its | |
895 | value into `valbuf' */ | |
896 | ||
897 | extract_return_value (valtype, regbuf, valbuf) | |
898 | struct type *valtype; | |
899 | char regbuf[REGISTER_BYTES]; | |
900 | char *valbuf; | |
901 | { | |
902 | ||
903 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) { | |
904 | ||
905 | double dd; float ff; | |
906 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
907 | We need to truncate the return value into float size (4 byte) if | |
908 | necessary. */ | |
909 | ||
910 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ | |
911 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf, | |
912 | TYPE_LENGTH (valtype)); | |
913 | else { /* float */ | |
914 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8); | |
915 | ff = (float)dd; | |
916 | bcopy (&ff, valbuf, sizeof(float)); | |
917 | } | |
918 | } | |
919 | else | |
920 | /* return value is copied starting from r3. */ | |
921 | bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype)); | |
922 | } | |
923 | ||
924 | ||
925 | /* keep keep structure return address in this variable. */ | |
926 | ||
927 | CORE_ADDR rs6000_struct_return_address; | |
928 | ||
929 | ||
930 | /* Throw away this debugging code. FIXMEmgo. */ | |
931 | print_frame(fram) | |
932 | int fram; | |
933 | { | |
934 | int ii, val; | |
935 | for (ii=0; ii<40; ++ii) { | |
936 | if ((ii % 4) == 0) | |
937 | printf ("\n"); | |
938 | val = read_memory_integer (fram + ii * 4, 4); | |
939 | printf ("0x%08x\t", val); | |
940 | } | |
941 | printf ("\n"); | |
942 | } | |
943 | ||
944 | ||
945 | ||
946 | /* Indirect function calls use a piece of trampoline code do co context switching, | |
947 | i.e. to set the new TOC table. Skip such code if exists. */ | |
948 | ||
949 | skip_trampoline_code (pc) | |
950 | int pc; | |
951 | { | |
952 | register unsigned int ii, op; | |
953 | ||
954 | static unsigned trampoline_code[] = { | |
955 | 0x800b0000, /* l r0,0x0(r11) */ | |
956 | 0x90410014, /* st r2,0x14(r1) */ | |
957 | 0x7c0903a6, /* mtctr r0 */ | |
958 | 0x804b0004, /* l r2,0x4(r11) */ | |
959 | 0x816b0008, /* l r11,0x8(r11) */ | |
960 | 0x4e800420, /* bctr */ | |
961 | 0x4e800020, /* br */ | |
962 | 0 | |
963 | }; | |
964 | ||
965 | for (ii=0; trampoline_code[ii]; ++ii) { | |
966 | op = read_memory_integer (pc + (ii*4), 4); | |
967 | if (op != trampoline_code [ii]) | |
968 | return NULL; | |
969 | } | |
970 | ii = read_register (11); /* r11 holds destination addr */ | |
971 | pc = read_memory_integer (ii, 4); /* (r11) value */ | |
972 | return pc; | |
973 | } | |
974 |