]>
Commit | Line | Data |
---|---|---|
ea3c0839 JG |
1 | /* Target-machine dependent code for Motorola 88000 series, for GDB. |
2 | Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc. | |
8aa13b87 JK |
3 | |
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
8aa13b87 | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
8aa13b87 | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
8aa13b87 JK |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
8aa13b87 JK |
19 | |
20 | #include <stdio.h> | |
21 | #include "defs.h" | |
22 | #include "param.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "value.h" | |
26 | ||
27 | #ifdef USG | |
28 | #include <sys/types.h> | |
29 | #endif | |
30 | ||
31 | #include <sys/param.h> | |
32 | #include <sys/dir.h> | |
33 | #include <signal.h> | |
34 | #include "gdbcore.h" | |
35 | #include <sys/user.h> | |
36 | #ifndef USER /* added to support BCS ptrace_user */ | |
37 | ||
38 | #define USER ptrace_user | |
39 | #endif | |
40 | #include <sys/ioctl.h> | |
41 | #include <fcntl.h> | |
42 | ||
8aa13b87 JK |
43 | #include <sys/file.h> |
44 | #include <sys/stat.h> | |
45 | ||
46 | #include "symtab.h" | |
47 | #include "setjmp.h" | |
48 | #include "value.h" | |
49 | ||
ea3c0839 | 50 | void frame_find_saved_regs (); |
8aa13b87 | 51 | |
ea3c0839 JG |
52 | |
53 | /* Given a GDB frame, determine the address of the calling function's frame. | |
54 | This will be used to create a new GDB frame struct, and then | |
55 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
56 | ||
57 | For us, the frame address is its stack pointer value, so we look up | |
58 | the function prologue to determine the caller's sp value, and return it. */ | |
59 | ||
60 | FRAME_ADDR | |
61 | frame_chain (thisframe) | |
62 | FRAME thisframe; | |
8aa13b87 | 63 | { |
8aa13b87 | 64 | |
ea3c0839 JG |
65 | frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0); |
66 | /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not | |
67 | the ADDRESS, of SP_REGNUM. It also depends on the cache of | |
68 | frame_find_saved_regs results. */ | |
69 | if (thisframe->fsr->regs[SP_REGNUM]) | |
70 | return thisframe->fsr->regs[SP_REGNUM]; | |
71 | else | |
72 | return thisframe->frame; /* Leaf fn -- next frame up has same SP. */ | |
73 | } | |
8aa13b87 | 74 | |
ea3c0839 JG |
75 | int |
76 | frameless_function_invocation (frame) | |
77 | FRAME frame; | |
8aa13b87 | 78 | { |
ea3c0839 JG |
79 | |
80 | frame_find_saved_regs (frame, (struct frame_saved_regs *) 0); | |
81 | /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not | |
82 | the ADDRESS, of SP_REGNUM. It also depends on the cache of | |
83 | frame_find_saved_regs results. */ | |
84 | if (frame->fsr->regs[SP_REGNUM]) | |
85 | return 0; /* Frameful -- return addr saved somewhere */ | |
8aa13b87 | 86 | else |
ea3c0839 | 87 | return 1; /* Frameless -- no saved return address */ |
8aa13b87 JK |
88 | } |
89 | ||
ea3c0839 JG |
90 | int |
91 | frame_chain_valid (chain, thisframe) | |
92 | CORE_ADDR chain; | |
93 | struct frame_info *thisframe; | |
8aa13b87 | 94 | { |
ea3c0839 JG |
95 | return (chain != 0 |
96 | && outside_startup_file (FRAME_SAVED_PC (thisframe))); | |
8aa13b87 JK |
97 | } |
98 | ||
ea3c0839 JG |
99 | CORE_ADDR |
100 | frame_chain_combine (chain, thisframe) | |
101 | CORE_ADDR chain; | |
102 | { | |
103 | return chain; | |
104 | } | |
8aa13b87 | 105 | |
ea3c0839 JG |
106 | void |
107 | init_extra_frame_info (fromleaf, fi) | |
108 | int fromleaf; | |
109 | struct frame_info *fi; | |
110 | { | |
111 | fi->fsr = 0; /* Not yet allocated */ | |
112 | fi->args_pointer = 0; /* Unknown */ | |
113 | fi->locals_pointer = 0; /* Unknown */ | |
114 | } | |
8aa13b87 JK |
115 | |
116 | void | |
ea3c0839 JG |
117 | init_frame_pc (fromleaf, prev) |
118 | int fromleaf; | |
119 | struct frame_info *prev; | |
8aa13b87 | 120 | { |
ea3c0839 JG |
121 | /* FIXME, for now it's the default from blockframe.c. If it stays that |
122 | way, remove it entirely from here. */ | |
123 | prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : | |
124 | prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); | |
125 | ||
126 | } | |
127 | \f | |
128 | /* Examine an m88k function prologue, recording the addresses at which | |
129 | registers are saved explicitly by the prologue code, and returning | |
130 | the address of the first instruction after the prologue (but not | |
131 | after the instruction at address LIMIT, as explained below). | |
132 | ||
133 | LIMIT places an upper bound on addresses of the instructions to be | |
134 | examined. If the prologue code scan reaches LIMIT, the scan is | |
135 | aborted and LIMIT is returned. This is used, when examining the | |
136 | prologue for the current frame, to keep examine_prologue () from | |
137 | claiming that a given register has been saved when in fact the | |
138 | instruction that saves it has not yet been executed. LIMIT is used | |
139 | at other times to stop the scan when we hit code after the true | |
140 | function prologue (e.g. for the first source line) which might | |
141 | otherwise be mistaken for function prologue. | |
142 | ||
143 | The format of the function prologue matched by this routine is | |
144 | derived from examination of the source to gcc 1.95, particularly | |
145 | the routine output_prologue () in config/out-m88k.c. | |
146 | ||
147 | subu r31,r31,n # stack pointer update | |
148 | ||
149 | (st rn,r31,offset)? # save incoming regs | |
150 | (st.d rn,r31,offset)? | |
151 | ||
152 | (addu r30,r31,n)? # frame pointer update | |
153 | ||
154 | (pic sequence)? # PIC code prologue | |
430923f3 JG |
155 | |
156 | (or rn,rm,0)? # Move parameters to other regs | |
ea3c0839 JG |
157 | */ |
158 | ||
159 | /* Macros for extracting fields from instructions. */ | |
160 | ||
161 | #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos)) | |
162 | #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width)) | |
163 | ||
164 | /* Prologue code that handles position-independent-code setup. */ | |
165 | ||
166 | struct pic_prologue_code { | |
167 | unsigned long insn, mask; | |
168 | }; | |
169 | ||
170 | static struct pic_prologue_code pic_prologue_code [] = { | |
171 | /* FIXME -- until this is translated to hex, we won't match it... */ | |
172 | 0xffffffff, 0, | |
173 | /* or r10,r1,0 (if not saved) */ | |
174 | /* bsr.n LabN */ | |
175 | /* or.u r25,r0,const */ | |
176 | /*LabN: or r25,r25,const2 */ | |
177 | /* addu r25,r25,1 */ | |
178 | /* or r1,r10,0 (if not saved) */ | |
179 | }; | |
180 | ||
181 | /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or | |
182 | is not the address of a valid instruction, the address of the next | |
183 | instruction beyond ADDR otherwise. *PWORD1 receives the first word | |
184 | of the instruction. PWORD2 is ignored -- a remnant of the original | |
185 | i960 version. */ | |
186 | ||
187 | #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \ | |
188 | (((addr) < (lim)) ? next_insn (addr, pword1) : 0) | |
189 | ||
190 | /* Read the m88k instruction at 'memaddr' and return the address of | |
191 | the next instruction after that, or 0 if 'memaddr' is not the | |
192 | address of a valid instruction. The instruction | |
193 | is stored at 'pword1'. */ | |
8aa13b87 | 194 | |
ea3c0839 JG |
195 | CORE_ADDR |
196 | next_insn (memaddr, pword1) | |
197 | unsigned long *pword1; | |
198 | CORE_ADDR memaddr; | |
8aa13b87 | 199 | { |
ea3c0839 JG |
200 | unsigned long buf[1]; |
201 | ||
202 | read_memory (memaddr, buf, sizeof (buf)); | |
203 | *pword1 = buf[0]; | |
204 | SWAP_TARGET_AND_HOST (pword1, sizeof (long)); | |
205 | ||
206 | return memaddr + 4; | |
8aa13b87 JK |
207 | } |
208 | ||
ea3c0839 | 209 | /* Read a register from frames called by us (or from the hardware regs). */ |
8aa13b87 | 210 | |
ea3c0839 JG |
211 | int |
212 | read_next_frame_reg(fi, regno) | |
213 | FRAME fi; | |
214 | int regno; | |
8aa13b87 | 215 | { |
ea3c0839 JG |
216 | for (; fi; fi = fi->next) { |
217 | if (regno == SP_REGNUM) return fi->frame; | |
218 | else if (fi->fsr->regs[regno]) | |
219 | return read_memory_integer(fi->fsr->regs[regno], 4); | |
220 | } | |
221 | return read_register(regno); | |
8aa13b87 | 222 | } |
8aa13b87 | 223 | |
ea3c0839 JG |
224 | /* Examine the prologue of a function. `ip' points to the first instruction. |
225 | `limit' is the limit of the prologue (e.g. the addr of the first | |
226 | linenumber, or perhaps the program counter if we're stepping through). | |
227 | `frame_sp' is the stack pointer value in use in this frame. | |
228 | `fsr' is a pointer to a frame_saved_regs structure into which we put | |
229 | info about the registers saved by this frame. | |
230 | `fi' is a struct frame_info pointer; we fill in various fields in it | |
231 | to reflect the offsets of the arg pointer and the locals pointer. */ | |
232 | ||
233 | static CORE_ADDR | |
234 | examine_prologue (ip, limit, frame_sp, fsr, fi) | |
235 | register CORE_ADDR ip; | |
236 | register CORE_ADDR limit; | |
237 | FRAME_ADDR frame_sp; | |
238 | struct frame_saved_regs *fsr; | |
239 | struct frame_info *fi; | |
240 | { | |
241 | register CORE_ADDR next_ip; | |
242 | register int src; | |
243 | register struct pic_prologue_code *pcode; | |
244 | unsigned int insn1, insn2; | |
245 | int size, offset; | |
246 | char must_adjust[32]; /* If set, must adjust offsets in fsr */ | |
247 | int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */ | |
248 | int fp_offset = -1; /* -1 means not set */ | |
249 | CORE_ADDR frame_fp; | |
250 | ||
251 | bzero (must_adjust, sizeof (must_adjust)); | |
252 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
253 | ||
653d6c56 JG |
254 | /* Accept move of incoming registers to other registers, using |
255 | "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0". | |
256 | We don't have to worry about walking into the first lines of code, | |
257 | since the first line number will stop us (assuming we have symbols). | |
258 | What we have actually seen is "or r10,r0,r12". */ | |
259 | ||
260 | #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */ | |
261 | #define OR_MOVE_MASK 0xF800FFFF | |
262 | #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */ | |
263 | #define OR_REG_MOVE1_MASK 0xFC1FFFE0 | |
264 | #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */ | |
265 | #define OR_REG_MOVE2_MASK 0xFC00FFFF | |
266 | while (next_ip && | |
267 | ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN || | |
268 | (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN || | |
269 | (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN | |
270 | ) | |
271 | ) | |
272 | { | |
273 | /* We don't care what moves to where. The result of the moves | |
274 | has already been reflected in what the compiler tells us is the | |
275 | location of these parameters. */ | |
276 | ip = next_ip; | |
277 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
278 | } | |
279 | ||
ea3c0839 JG |
280 | /* Accept an optional "subu sp,sp,n" to set up the stack pointer. */ |
281 | ||
282 | #define SUBU_SP_INSN 0x67ff0000 | |
283 | #define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */ | |
284 | #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF)) | |
285 | if (next_ip && | |
286 | ((insn1 & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */ | |
287 | { | |
288 | sp_offset = -SUBU_OFFSET (insn1); | |
289 | ip = next_ip; | |
290 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
291 | } | |
292 | ||
293 | /* The function must start with a stack-pointer adjustment, or | |
294 | we don't know WHAT'S going on... */ | |
295 | if (sp_offset == -1) | |
296 | return ip; | |
297 | ||
298 | /* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n". | |
299 | This may cause us to mistake the copying of a register | |
300 | parameter to the frame for the saving of a callee-saved | |
301 | register, but that can't be helped, since with the | |
302 | "-fcall-saved" flag, any register can be made callee-saved. | |
303 | This probably doesn't matter, since the ``saved'' caller's values of | |
304 | non-callee-saved registers are not relevant anyway. */ | |
305 | ||
306 | #define STD_STACK_INSN 0x201f0000 | |
307 | #define STD_STACK_MASK 0xfc1f0000 | |
308 | #define ST_STACK_INSN 0x241f0000 | |
309 | #define ST_STACK_MASK 0xfc1f0000 | |
310 | #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF)) | |
311 | #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5) | |
312 | ||
313 | while (next_ip) | |
314 | { | |
315 | if ((insn1 & ST_STACK_MASK) == ST_STACK_INSN) | |
316 | size = 1; | |
317 | else if ((insn1 & STD_STACK_MASK) == STD_STACK_INSN) | |
318 | size = 2; | |
319 | else | |
320 | break; | |
321 | ||
322 | src = ST_SRC (insn1); | |
323 | offset = ST_OFFSET (insn1); | |
324 | while (size--) | |
325 | { | |
326 | must_adjust[src] = 1; | |
327 | fsr->regs[src++] = offset; /* Will be adjusted later */ | |
328 | offset += 4; | |
329 | } | |
330 | ip = next_ip; | |
331 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
332 | } | |
333 | ||
334 | /* Accept an optional "addu r30,r31,n" to set up the frame pointer. */ | |
335 | ||
336 | #define ADDU_FP_INSN 0x63df0000 | |
337 | #define ADDU_FP_MASK 0xffff0000 | |
338 | #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF)) | |
339 | if (next_ip && | |
340 | ((insn1 & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */ | |
341 | { | |
342 | fp_offset = ADDU_OFFSET (insn1); | |
343 | ip = next_ip; | |
344 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
345 | } | |
346 | ||
347 | /* Accept the PIC prologue code if present. */ | |
348 | ||
349 | pcode = pic_prologue_code; | |
350 | size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code); | |
351 | /* If return addr is saved, we don't use first or last insn of PICstuff. */ | |
352 | if (fsr->regs[SRP_REGNUM]) { | |
353 | pcode++; | |
354 | size-=2; | |
355 | } | |
356 | ||
357 | while (size-- && next_ip && (pcode->insn == (pcode->mask & insn1))) | |
358 | { | |
359 | pcode++; | |
360 | ip = next_ip; | |
361 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
362 | } | |
363 | ||
430923f3 JG |
364 | /* Accept moves of parameter registers to other registers, using |
365 | "or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0". | |
366 | We don't have to worry about walking into the first lines of code, | |
367 | since the first line number will stop us (assuming we have symbols). | |
368 | What gcc actually seems to produce is "or rd,r0,rs". */ | |
369 | ||
370 | #define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */ | |
371 | #define OR_MOVE_MASK 0xF800FFFF | |
372 | #define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */ | |
373 | #define OR_REG_MOVE1_MASK 0xFC1FFFE0 | |
374 | #define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */ | |
375 | #define OR_REG_MOVE2_MASK 0xFC00FFFF | |
376 | while (next_ip && | |
377 | ((insn1 & OR_MOVE_MASK) == OR_MOVE_INSN || | |
378 | (insn1 & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN || | |
379 | (insn1 & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN | |
380 | ) | |
381 | ) | |
382 | { | |
383 | /* We don't care what moves to where. The result of the moves | |
384 | has already been reflected in what the compiler tells us is the | |
385 | location of these parameters. */ | |
386 | ip = next_ip; | |
387 | next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); | |
388 | } | |
389 | ||
ea3c0839 JG |
390 | /* We're done with the prologue. If we don't care about the stack |
391 | frame itself, just return. (Note that fsr->regs has been trashed, | |
392 | but the one caller who calls with fi==0 passes a dummy there.) */ | |
393 | ||
394 | if (fi == 0) | |
395 | return ip; | |
396 | ||
397 | /* OK, now we have: | |
398 | sp_offset original negative displacement of SP | |
399 | fp_offset positive displacement between new SP and new FP, or -1 | |
400 | fsr->regs[0..31] offset from original SP where reg is stored | |
401 | must_adjust[0..31] set if corresp. offset was set | |
402 | ||
403 | The current SP (frame_sp) might not be the original new SP as set | |
404 | by the function prologue, if alloca has been called. This can | |
405 | only occur if fp_offset is set, though (the compiler allocates an | |
406 | FP when it sees alloca). In that case, we have the FP, | |
407 | and can calculate the original new SP from the FP. | |
408 | ||
409 | Then, we figure out where the arguments and locals are, and | |
410 | relocate the offsets in fsr->regs to absolute addresses. */ | |
411 | ||
412 | if (fp_offset != -1) { | |
413 | /* We have a frame pointer, so get it, and base our calc's on it. */ | |
414 | frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, FP_REGNUM); | |
415 | frame_sp = frame_fp - fp_offset; | |
416 | } else { | |
417 | /* We have no frame pointer, therefore frame_sp is still the same value | |
418 | as set by prologue. But where is the frame itself? */ | |
419 | if (must_adjust[SRP_REGNUM]) { | |
420 | /* Function header saved SRP (r1), the return address. Frame starts | |
421 | 4 bytes down from where it was saved. */ | |
422 | frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4; | |
423 | fi->locals_pointer = frame_fp; | |
424 | } else { | |
425 | /* Function header didn't save SRP (r1), so we are in a leaf fn or | |
426 | are otherwise confused. */ | |
427 | frame_fp = -1; | |
428 | } | |
429 | } | |
430 | ||
431 | /* The locals are relative to the FP (whether it exists as an allocated | |
432 | register, or just as an assumed offset from the SP) */ | |
433 | fi->locals_pointer = frame_fp; | |
434 | ||
435 | /* The arguments are just above the SP as it was before we adjusted it | |
436 | on entry. */ | |
437 | fi->args_pointer = frame_sp - sp_offset; | |
438 | ||
439 | /* Now that we know the SP value used by the prologue, we know where | |
440 | it saved all the registers. */ | |
441 | for (src = 0; src < 32; src++) | |
442 | if (must_adjust[src]) | |
443 | fsr->regs[src] += frame_sp; | |
444 | ||
445 | /* The saved value of the SP is always known. */ | |
446 | /* (we hope...) */ | |
447 | if (fsr->regs[SP_REGNUM] != 0 | |
448 | && fsr->regs[SP_REGNUM] != frame_sp - sp_offset) | |
449 | fprintf(stderr, "Bad saved SP value %x != %x, offset %x!\n", | |
450 | fsr->regs[SP_REGNUM], | |
451 | frame_sp - sp_offset, sp_offset); | |
452 | ||
453 | fsr->regs[SP_REGNUM] = frame_sp - sp_offset; | |
8aa13b87 | 454 | |
ea3c0839 JG |
455 | return (ip); |
456 | } | |
8aa13b87 | 457 | |
ea3c0839 JG |
458 | /* Given an ip value corresponding to the start of a function, |
459 | return the ip of the first instruction after the function | |
460 | prologue. */ | |
8aa13b87 JK |
461 | |
462 | CORE_ADDR | |
ea3c0839 JG |
463 | skip_prologue (ip) |
464 | CORE_ADDR (ip); | |
8aa13b87 | 465 | { |
ea3c0839 JG |
466 | struct frame_saved_regs saved_regs_dummy; |
467 | struct symtab_and_line sal; | |
468 | CORE_ADDR limit; | |
8aa13b87 | 469 | |
ea3c0839 JG |
470 | sal = find_pc_line (ip, 0); |
471 | limit = (sal.end) ? sal.end : 0xffffffff; | |
472 | ||
473 | return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy, | |
474 | (struct frame_info *)0 )); | |
475 | } | |
476 | ||
477 | /* Put here the code to store, into a struct frame_saved_regs, | |
478 | the addresses of the saved registers of frame described by FRAME_INFO. | |
479 | This includes special registers such as pc and fp saved in special | |
480 | ways in the stack frame. sp is even more special: | |
481 | the address we return for it IS the sp for the next frame. | |
482 | ||
483 | We cache the result of doing this in the frame_cache_obstack, since | |
484 | it is fairly expensive. */ | |
485 | ||
486 | void | |
487 | frame_find_saved_regs (fi, fsr) | |
488 | struct frame_info *fi; | |
489 | struct frame_saved_regs *fsr; | |
490 | { | |
491 | register CORE_ADDR next_addr; | |
492 | register CORE_ADDR *saved_regs; | |
493 | register int regnum; | |
494 | register struct frame_saved_regs *cache_fsr; | |
495 | extern struct obstack frame_cache_obstack; | |
496 | CORE_ADDR ip; | |
497 | struct symtab_and_line sal; | |
498 | CORE_ADDR limit; | |
499 | ||
500 | if (!fi->fsr) | |
8aa13b87 | 501 | { |
ea3c0839 JG |
502 | cache_fsr = (struct frame_saved_regs *) |
503 | obstack_alloc (&frame_cache_obstack, | |
504 | sizeof (struct frame_saved_regs)); | |
505 | bzero (cache_fsr, sizeof (struct frame_saved_regs)); | |
506 | fi->fsr = cache_fsr; | |
507 | ||
508 | /* Find the start and end of the function prologue. If the PC | |
509 | is in the function prologue, we only consider the part that | |
510 | has executed already. */ | |
511 | ||
512 | ip = get_pc_function_start (fi->pc); | |
513 | sal = find_pc_line (ip, 0); | |
514 | limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc; | |
515 | ||
516 | /* This will fill in fields in *fi as well as in cache_fsr. */ | |
517 | examine_prologue (ip, limit, fi->frame, cache_fsr, fi); | |
8aa13b87 JK |
518 | } |
519 | ||
ea3c0839 JG |
520 | if (fsr) |
521 | *fsr = *fi->fsr; | |
522 | } | |
523 | ||
524 | /* Return the address of the locals block for the frame | |
525 | described by FI. Returns 0 if the address is unknown. | |
526 | NOTE! Frame locals are referred to by negative offsets from the | |
527 | argument pointer, so this is the same as frame_args_address(). */ | |
528 | ||
529 | CORE_ADDR | |
530 | frame_locals_address (fi) | |
531 | struct frame_info *fi; | |
532 | { | |
533 | register FRAME frame; | |
534 | struct frame_saved_regs fsr; | |
535 | CORE_ADDR ap; | |
536 | ||
537 | if (fi->args_pointer) /* Cached value is likely there. */ | |
538 | return fi->args_pointer; | |
539 | ||
540 | /* Nope, generate it. */ | |
541 | ||
542 | get_frame_saved_regs (fi, &fsr); | |
543 | ||
544 | return fi->args_pointer; | |
545 | } | |
546 | ||
547 | /* Return the address of the argument block for the frame | |
548 | described by FI. Returns 0 if the address is unknown. */ | |
549 | ||
550 | CORE_ADDR | |
551 | frame_args_address (fi) | |
552 | struct frame_info *fi; | |
553 | { | |
554 | register FRAME frame; | |
555 | struct frame_saved_regs fsr; | |
556 | CORE_ADDR ap; | |
557 | ||
558 | if (fi->args_pointer) /* Cached value is likely there. */ | |
559 | return fi->args_pointer; | |
560 | ||
561 | /* Nope, generate it. */ | |
562 | ||
563 | get_frame_saved_regs (fi, &fsr); | |
564 | ||
565 | return fi->args_pointer; | |
566 | } | |
567 | ||
568 | /* Return the saved PC from this frame. | |
569 | ||
570 | If the frame has a memory copy of SRP_REGNUM, use that. If not, | |
571 | just use the register SRP_REGNUM itself. */ | |
572 | ||
573 | CORE_ADDR | |
574 | frame_saved_pc (frame) | |
575 | FRAME frame; | |
576 | { | |
577 | return read_next_frame_reg(frame, SRP_REGNUM); | |
8aa13b87 JK |
578 | } |
579 | ||
ea3c0839 | 580 | |
8aa13b87 JK |
581 | #if TARGET_BYTE_ORDER != HOST_BYTE_ORDER |
582 | you lose | |
583 | #else /* Host and target byte order the same. */ | |
584 | #define SINGLE_EXP_BITS 8 | |
585 | #define DOUBLE_EXP_BITS 11 | |
586 | int | |
587 | IEEE_isNAN(fp, len) | |
588 | int *fp, len; | |
589 | /* fp points to a single precision OR double precision | |
590 | * floating point value; len is the number of bytes, either 4 or 8. | |
591 | * Returns 1 iff fp points to a valid IEEE floating point number. | |
592 | * Returns 0 if fp points to a denormalized number or a NaN | |
593 | */ | |
594 | { | |
595 | int exponent; | |
596 | if (len == 4) | |
597 | { | |
598 | exponent = *fp; | |
599 | exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1); | |
600 | return ((exponent == -1) || (! exponent && *fp)); | |
601 | } | |
602 | else if (len == 8) | |
603 | { | |
604 | exponent = *(fp+1); | |
605 | exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1); | |
606 | return ((exponent == -1) || (! exponent && *fp * *(fp+1))); | |
607 | } | |
608 | else return 1; | |
609 | } | |
610 | #endif /* Host and target byte order the same. */ | |
611 | ||
ef98d5ac JG |
612 | static int |
613 | pushed_size (prev_words, v) | |
614 | int prev_words; | |
615 | struct value *v; | |
616 | { | |
617 | switch (TYPE_CODE (VALUE_TYPE (v))) | |
618 | { | |
619 | case TYPE_CODE_VOID: /* Void type (values zero length) */ | |
620 | ||
621 | return 0; /* That was easy! */ | |
622 | ||
623 | case TYPE_CODE_PTR: /* Pointer type */ | |
624 | case TYPE_CODE_ENUM: /* Enumeration type */ | |
625 | case TYPE_CODE_INT: /* Integer type */ | |
626 | case TYPE_CODE_REF: /* C++ Reference types */ | |
627 | case TYPE_CODE_ARRAY: /* Array type, lower bound zero */ | |
628 | ||
629 | return 1; | |
630 | ||
631 | case TYPE_CODE_FLT: /* Floating type */ | |
632 | ||
633 | if (TYPE_LENGTH (VALUE_TYPE (v)) == 4) | |
634 | return 1; | |
635 | else | |
636 | /* Assume that it must be a double. */ | |
637 | if (prev_words & 1) /* at an odd-word boundary */ | |
638 | return 3; /* round to 8-byte boundary */ | |
639 | else | |
640 | return 2; | |
641 | ||
642 | case TYPE_CODE_STRUCT: /* C struct or Pascal record */ | |
643 | case TYPE_CODE_UNION: /* C union or Pascal variant part */ | |
644 | ||
645 | return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4); | |
646 | ||
647 | case TYPE_CODE_FUNC: /* Function type */ | |
648 | case TYPE_CODE_SET: /* Pascal sets */ | |
649 | case TYPE_CODE_RANGE: /* Range (integers within bounds) */ | |
650 | case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */ | |
651 | case TYPE_CODE_MEMBER: /* Member type */ | |
652 | case TYPE_CODE_METHOD: /* Method type */ | |
653 | /* Don't know how to pass these yet. */ | |
654 | ||
655 | case TYPE_CODE_UNDEF: /* Not used; catches errors */ | |
656 | default: | |
657 | abort (); | |
658 | } | |
659 | } | |
660 | ||
661 | static void | |
662 | store_parm_word (address, val) | |
663 | CORE_ADDR address; | |
664 | int val; | |
665 | { | |
666 | write_memory (address, &val, 4); | |
667 | } | |
668 | ||
669 | static int | |
670 | store_parm (prev_words, left_parm_addr, v) | |
671 | unsigned int prev_words; | |
672 | CORE_ADDR left_parm_addr; | |
673 | struct value *v; | |
674 | { | |
675 | CORE_ADDR start = left_parm_addr + (prev_words * 4); | |
676 | int *val_addr = (int *)VALUE_CONTENTS(v); | |
677 | ||
678 | switch (TYPE_CODE (VALUE_TYPE (v))) | |
679 | { | |
680 | case TYPE_CODE_VOID: /* Void type (values zero length) */ | |
681 | ||
682 | return 0; | |
683 | ||
684 | case TYPE_CODE_PTR: /* Pointer type */ | |
685 | case TYPE_CODE_ENUM: /* Enumeration type */ | |
686 | case TYPE_CODE_INT: /* Integer type */ | |
687 | case TYPE_CODE_ARRAY: /* Array type, lower bound zero */ | |
688 | case TYPE_CODE_REF: /* C++ Reference types */ | |
689 | ||
690 | store_parm_word (start, *val_addr); | |
691 | return 1; | |
692 | ||
693 | case TYPE_CODE_FLT: /* Floating type */ | |
694 | ||
695 | if (TYPE_LENGTH (VALUE_TYPE (v)) == 4) | |
696 | { | |
697 | store_parm_word (start, *val_addr); | |
698 | return 1; | |
699 | } | |
700 | else | |
701 | { | |
702 | store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]); | |
703 | store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]); | |
704 | return 2 + (prev_words & 1); | |
705 | } | |
706 | ||
707 | case TYPE_CODE_STRUCT: /* C struct or Pascal record */ | |
708 | case TYPE_CODE_UNION: /* C union or Pascal variant part */ | |
709 | ||
710 | { | |
711 | unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4); | |
712 | unsigned int word; | |
713 | ||
714 | for (word = 0; word < words; word++) | |
715 | store_parm_word (start + (word * 4), val_addr[word]); | |
716 | return words; | |
717 | } | |
718 | ||
719 | default: | |
720 | abort (); | |
721 | } | |
722 | } | |
8aa13b87 | 723 | |
8aa13b87 JK |
724 | /* This routine sets up all of the parameter values needed to make a pseudo |
725 | call. The name "push_parameters" is a misnomer on some archs, | |
726 | because (on the m88k) most parameters generally end up being passed in | |
727 | registers rather than on the stack. In this routine however, we do | |
728 | end up storing *all* parameter values onto the stack (even if we will | |
729 | realize later that some of these stores were unnecessary). */ | |
730 | ||
ea3c0839 JG |
731 | #define FIRST_PARM_REGNUM 2 |
732 | ||
8aa13b87 JK |
733 | void |
734 | push_parameters (return_type, struct_conv, nargs, args) | |
735 | struct type *return_type; | |
736 | int struct_conv; | |
737 | int nargs; | |
738 | value *args; | |
ea3c0839 | 739 | { |
8aa13b87 JK |
740 | int parm_num; |
741 | unsigned int p_words = 0; | |
742 | CORE_ADDR left_parm_addr; | |
743 | ||
744 | /* Start out by creating a space for the return value (if need be). We | |
745 | only need to do this if the return value is a struct or union. If we | |
746 | do make a space for a struct or union return value, then we must also | |
747 | arrange for the base address of that space to go into r12, which is the | |
748 | standard place to pass the address of the return value area to the | |
749 | callee. Note that only structs and unions are returned in this fashion. | |
750 | Ints, enums, pointers, and floats are returned into r2. Doubles are | |
751 | returned into the register pair {r2,r3}. Note also that the space | |
752 | reserved for a struct or union return value only has to be word aligned | |
753 | (not double-word) but it is double-word aligned here anyway (just in | |
754 | case that becomes important someday). */ | |
755 | ||
756 | switch (TYPE_CODE (return_type)) | |
757 | { | |
758 | case TYPE_CODE_STRUCT: | |
759 | case TYPE_CODE_UNION: | |
760 | { | |
761 | int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8; | |
762 | CORE_ADDR rv_addr; | |
763 | ||
764 | rv_addr = read_register (SP_REGNUM) - return_bytes; | |
765 | ||
766 | write_register (SP_REGNUM, rv_addr); /* push space onto the stack */ | |
767 | write_register (SRA_REGNUM, rv_addr);/* set return value register */ | |
768 | } | |
769 | } | |
770 | ||
771 | /* Here we make a pre-pass on the whole parameter list to figure out exactly | |
772 | how many words worth of stuff we are going to pass. */ | |
773 | ||
774 | for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++) | |
775 | p_words += pushed_size (p_words, value_arg_coerce (args[parm_num])); | |
776 | ||
777 | /* Now, check to see if we have to round up the number of parameter words | |
778 | to get up to the next 8-bytes boundary. This may be necessary because | |
779 | of the software convention to always keep the stack aligned on an 8-byte | |
780 | boundary. */ | |
781 | ||
782 | if (p_words & 1) | |
783 | p_words++; /* round to 8-byte boundary */ | |
784 | ||
785 | /* Now figure out the absolute address of the leftmost parameter, and update | |
786 | the stack pointer to point at that address. */ | |
787 | ||
788 | left_parm_addr = read_register (SP_REGNUM) - (p_words * 4); | |
789 | write_register (SP_REGNUM, left_parm_addr); | |
790 | ||
791 | /* Now we can go through all of the parameters (in left-to-right order) | |
792 | and write them to their parameter stack slots. Note that we are not | |
793 | really "pushing" the parameter values. The stack space for these values | |
794 | was already allocated above. Now we are just filling it up. */ | |
795 | ||
796 | for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++) | |
797 | p_words += | |
798 | store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num])); | |
799 | ||
800 | /* Now that we are all done storing the parameter values into the stack, we | |
801 | must go back and load up the parameter registers with the values from the | |
802 | corresponding stack slots. Note that in the two cases of (a) gaps in the | |
803 | parameter word sequence causes by (otherwise) misaligned doubles, and (b) | |
804 | slots correcponding to structs or unions, the work we do here in loading | |
805 | some parameter registers may be unnecessary, but who cares? */ | |
806 | ||
807 | for (p_words = 0; p_words < 8; p_words++) | |
808 | { | |
809 | write_register (FIRST_PARM_REGNUM + p_words, | |
810 | read_memory_integer (left_parm_addr + (p_words * 4), 4)); | |
811 | } | |
812 | } | |
813 | ||
814 | void | |
815 | pop_frame () | |
816 | { | |
817 | error ("Feature not implemented for the m88k yet."); | |
818 | return; | |
819 | } | |
820 | ||
ea3c0839 JG |
821 | void |
822 | collect_returned_value (rval, value_type, struct_return, nargs, args) | |
823 | value *rval; | |
824 | struct type *value_type; | |
825 | int struct_return; | |
826 | int nargs; | |
827 | value *args; | |
828 | { | |
829 | char retbuf[REGISTER_BYTES]; | |
830 | ||
831 | bcopy (registers, retbuf, REGISTER_BYTES); | |
832 | *rval = value_being_returned (value_type, retbuf, struct_return); | |
833 | return; | |
834 | } | |
8aa13b87 JK |
835 | |
836 | #if 0 | |
837 | /* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */ | |
838 | /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack | |
839 | is not a good place for it). Return the address at which the instruction | |
840 | got stuffed, or zero if we were unable to stuff it anywhere. */ | |
841 | ||
ea3c0839 JG |
842 | CORE_ADDR |
843 | push_breakpoint () | |
844 | { | |
845 | static char breakpoint_insn[] = BREAKPOINT; | |
846 | extern CORE_ADDR text_end; /* of inferior */ | |
847 | static char readback_buffer[] = BREAKPOINT; | |
848 | int i; | |
8aa13b87 | 849 | |
ea3c0839 JG |
850 | /* With a little bit of luck, we can just stash the breakpoint instruction |
851 | in the word just beyond the end of normal text space. For systems on | |
852 | which the hardware will not allow us to execute out of the stack segment, | |
853 | we have to hope that we *are* at least allowed to effectively extend the | |
854 | text segment by one word. If the actual end of user's the text segment | |
855 | happens to fall right at a page boundary this trick may fail. Note that | |
856 | we check for this by reading after writing, and comparing in order to | |
857 | be sure that the write worked. */ | |
8aa13b87 | 858 | |
ea3c0839 | 859 | write_memory (text_end, &breakpoint_insn, 4); |
8aa13b87 | 860 | |
ea3c0839 JG |
861 | /* Fill the readback buffer with some garbage which is certain to be |
862 | unequal to the breakpoint insn. That way we can tell if the | |
863 | following read doesn't actually succeed. */ | |
8aa13b87 | 864 | |
ea3c0839 JG |
865 | for (i = 0; i < sizeof (readback_buffer); i++) |
866 | readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */ | |
867 | ||
868 | /* Now check that the breakpoint insn was successfully installed. */ | |
8aa13b87 | 869 | |
ea3c0839 JG |
870 | read_memory (text_end, readback_buffer, sizeof (readback_buffer)); |
871 | for (i = 0; i < sizeof (readback_buffer); i++) | |
872 | if (readback_buffer[i] != breakpoint_insn[i]) | |
873 | return 0; /* Failed to install! */ | |
874 | ||
875 | return text_end; | |
8aa13b87 | 876 | } |
ea3c0839 | 877 | #endif |