]>
Commit | Line | Data |
---|---|---|
bd5635a1 RP |
1 | /* Find a variable's value in memory, for GDB, the GNU debugger. |
2 | Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
36b9d39c | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
36b9d39c JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
36b9d39c | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
36b9d39c JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 RP |
19 | |
20 | #include <stdio.h> | |
21 | #include "defs.h" | |
22 | #include "param.h" | |
23 | #include "symtab.h" | |
24 | #include "frame.h" | |
25 | #include "value.h" | |
26 | #include "gdbcore.h" | |
27 | #include "inferior.h" | |
28 | #include "target.h" | |
29 | ||
30 | #if !defined (GET_SAVED_REGISTER) | |
31 | ||
32 | /* Return the address in which frame FRAME's value of register REGNUM | |
33 | has been saved in memory. Or return zero if it has not been saved. | |
34 | If REGNUM specifies the SP, the value we return is actually | |
35 | the SP value, not an address where it was saved. */ | |
36 | ||
37 | CORE_ADDR | |
38 | find_saved_register (frame, regnum) | |
39 | FRAME frame; | |
40 | int regnum; | |
41 | { | |
42 | struct frame_info *fi; | |
43 | struct frame_saved_regs saved_regs; | |
44 | ||
45 | register FRAME frame1 = 0; | |
46 | register CORE_ADDR addr = 0; | |
47 | ||
48 | if (frame == 0) /* No regs saved if want current frame */ | |
49 | return 0; | |
50 | ||
51 | #ifdef HAVE_REGISTER_WINDOWS | |
52 | /* We assume that a register in a register window will only be saved | |
53 | in one place (since the name changes and/or disappears as you go | |
54 | towards inner frames), so we only call get_frame_saved_regs on | |
55 | the current frame. This is directly in contradiction to the | |
56 | usage below, which assumes that registers used in a frame must be | |
57 | saved in a lower (more interior) frame. This change is a result | |
58 | of working on a register window machine; get_frame_saved_regs | |
59 | always returns the registers saved within a frame, within the | |
60 | context (register namespace) of that frame. */ | |
61 | ||
62 | /* However, note that we don't want this to return anything if | |
63 | nothing is saved (if there's a frame inside of this one). Also, | |
64 | callers to this routine asking for the stack pointer want the | |
65 | stack pointer saved for *this* frame; this is returned from the | |
66 | next frame. */ | |
67 | ||
68 | ||
69 | if (REGISTER_IN_WINDOW_P(regnum)) | |
70 | { | |
71 | frame1 = get_next_frame (frame); | |
72 | if (!frame1) return 0; /* Registers of this frame are | |
73 | active. */ | |
74 | ||
75 | /* Get the SP from the next frame in; it will be this | |
76 | current frame. */ | |
77 | if (regnum != SP_REGNUM) | |
78 | frame1 = frame; | |
79 | ||
80 | fi = get_frame_info (frame1); | |
81 | get_frame_saved_regs (fi, &saved_regs); | |
82 | return saved_regs.regs[regnum]; /* ... which might be zero */ | |
83 | } | |
84 | #endif /* HAVE_REGISTER_WINDOWS */ | |
85 | ||
86 | /* Note that this next routine assumes that registers used in | |
87 | frame x will be saved only in the frame that x calls and | |
88 | frames interior to it. This is not true on the sparc, but the | |
89 | above macro takes care of it, so we should be all right. */ | |
90 | while (1) | |
91 | { | |
92 | QUIT; | |
93 | frame1 = get_prev_frame (frame1); | |
94 | if (frame1 == 0 || frame1 == frame) | |
95 | break; | |
96 | fi = get_frame_info (frame1); | |
97 | get_frame_saved_regs (fi, &saved_regs); | |
98 | if (saved_regs.regs[regnum]) | |
99 | addr = saved_regs.regs[regnum]; | |
100 | } | |
101 | ||
102 | return addr; | |
103 | } | |
104 | ||
105 | /* Find register number REGNUM relative to FRAME and put its | |
106 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
107 | was optimized out (and thus can't be fetched). Set *LVAL to | |
108 | lval_memory, lval_register, or not_lval, depending on whether the | |
109 | value was fetched from memory, from a register, or in a strange | |
110 | and non-modifiable way (e.g. a frame pointer which was calculated | |
111 | rather than fetched). Set *ADDRP to the address, either in memory | |
112 | on as a REGISTER_BYTE offset into the registers array. | |
113 | ||
114 | Note that this implementation never sets *LVAL to not_lval. But | |
115 | it can be replaced by defining GET_SAVED_REGISTER and supplying | |
116 | your own. | |
117 | ||
118 | The argument RAW_BUFFER must point to aligned memory. */ | |
119 | void | |
120 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
121 | char *raw_buffer; | |
122 | int *optimized; | |
123 | CORE_ADDR *addrp; | |
124 | FRAME frame; | |
125 | int regnum; | |
126 | enum lval_type *lval; | |
127 | { | |
128 | CORE_ADDR addr; | |
129 | /* Normal systems don't optimize out things with register numbers. */ | |
130 | if (optimized != NULL) | |
131 | *optimized = 0; | |
132 | addr = find_saved_register (frame, regnum); | |
133 | if (addr != NULL) | |
134 | { | |
135 | if (lval != NULL) | |
136 | *lval = lval_memory; | |
137 | if (regnum == SP_REGNUM) | |
138 | { | |
139 | if (raw_buffer != NULL) | |
140 | *(CORE_ADDR *)raw_buffer = addr; | |
141 | if (addrp != NULL) | |
142 | *addrp = 0; | |
143 | return; | |
144 | } | |
145 | if (raw_buffer != NULL) | |
146 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
147 | } | |
148 | else | |
149 | { | |
150 | if (lval != NULL) | |
151 | *lval = lval_register; | |
152 | addr = REGISTER_BYTE (regnum); | |
153 | if (raw_buffer != NULL) | |
154 | read_register_gen (regnum, raw_buffer); | |
155 | } | |
156 | if (addrp != NULL) | |
157 | *addrp = addr; | |
158 | } | |
159 | #endif /* GET_SAVED_REGISTER. */ | |
160 | ||
161 | /* Copy the bytes of register REGNUM, relative to the current stack frame, | |
162 | into our memory at MYADDR, in target byte order. | |
163 | The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). | |
164 | ||
165 | Returns 1 if could not be read, 0 if could. */ | |
166 | ||
167 | int | |
168 | read_relative_register_raw_bytes (regnum, myaddr) | |
169 | int regnum; | |
170 | char *myaddr; | |
171 | { | |
172 | int optim; | |
173 | if (regnum == FP_REGNUM && selected_frame) | |
174 | { | |
175 | bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR)); | |
176 | SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */ | |
177 | return 0; | |
178 | } | |
179 | ||
e1ce8aa5 | 180 | get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame, |
bd5635a1 RP |
181 | regnum, (enum lval_type *)NULL); |
182 | return optim; | |
183 | } | |
184 | ||
185 | /* Return a `value' with the contents of register REGNUM | |
186 | in its virtual format, with the type specified by | |
187 | REGISTER_VIRTUAL_TYPE. */ | |
188 | ||
189 | value | |
190 | value_of_register (regnum) | |
191 | int regnum; | |
192 | { | |
193 | CORE_ADDR addr; | |
194 | int optim; | |
195 | register value val; | |
196 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
197 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
198 | enum lval_type lval; | |
199 | ||
200 | get_saved_register (raw_buffer, &optim, &addr, | |
201 | selected_frame, regnum, &lval); | |
202 | ||
203 | target_convert_to_virtual (regnum, raw_buffer, virtual_buffer); | |
204 | val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); | |
205 | bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val), | |
206 | REGISTER_VIRTUAL_SIZE (regnum)); | |
207 | VALUE_LVAL (val) = lval; | |
208 | VALUE_ADDRESS (val) = addr; | |
209 | VALUE_REGNO (val) = regnum; | |
210 | VALUE_OPTIMIZED_OUT (val) = optim; | |
211 | return val; | |
212 | } | |
213 | \f | |
214 | /* Low level examining and depositing of registers. | |
215 | ||
216 | The caller is responsible for making | |
217 | sure that the inferior is stopped before calling the fetching routines, | |
218 | or it will get garbage. (a change from GDB version 3, in which | |
219 | the caller got the value from the last stop). */ | |
220 | ||
221 | /* Contents of the registers in target byte order. | |
222 | We allocate some extra slop since we do a lot of bcopy's around `registers', | |
223 | and failing-soft is better than failing hard. */ | |
224 | char registers[REGISTER_BYTES + /* SLOP */ 256]; | |
225 | ||
226 | /* Nonzero if that register has been fetched. */ | |
227 | char register_valid[NUM_REGS]; | |
228 | ||
229 | /* Indicate that registers may have changed, so invalidate the cache. */ | |
230 | void | |
231 | registers_changed () | |
232 | { | |
233 | int i; | |
234 | for (i = 0; i < NUM_REGS; i++) | |
235 | register_valid[i] = 0; | |
236 | } | |
237 | ||
238 | /* Indicate that all registers have been fetched, so mark them all valid. */ | |
239 | void | |
240 | registers_fetched () | |
241 | { | |
242 | int i; | |
243 | for (i = 0; i < NUM_REGS; i++) | |
244 | register_valid[i] = 1; | |
245 | } | |
246 | ||
247 | /* Copy LEN bytes of consecutive data from registers | |
248 | starting with the REGBYTE'th byte of register data | |
249 | into memory at MYADDR. */ | |
250 | ||
251 | void | |
252 | read_register_bytes (regbyte, myaddr, len) | |
253 | int regbyte; | |
254 | char *myaddr; | |
255 | int len; | |
256 | { | |
257 | /* Fetch all registers. */ | |
258 | int i; | |
259 | for (i = 0; i < NUM_REGS; i++) | |
260 | if (!register_valid[i]) | |
261 | { | |
262 | target_fetch_registers (-1); | |
263 | break; | |
264 | } | |
265 | if (myaddr != NULL) | |
266 | bcopy (®isters[regbyte], myaddr, len); | |
267 | } | |
268 | ||
269 | /* Read register REGNO into memory at MYADDR, which must be large enough | |
f2ebc25f JK |
270 | for REGISTER_RAW_BYTES (REGNO). Target byte-order. |
271 | If the register is known to be the size of a CORE_ADDR or smaller, | |
272 | read_register can be used instead. */ | |
bd5635a1 RP |
273 | void |
274 | read_register_gen (regno, myaddr) | |
275 | int regno; | |
276 | char *myaddr; | |
277 | { | |
278 | if (!register_valid[regno]) | |
279 | target_fetch_registers (regno); | |
280 | bcopy (®isters[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno)); | |
281 | } | |
282 | ||
283 | /* Copy LEN bytes of consecutive data from memory at MYADDR | |
284 | into registers starting with the REGBYTE'th byte of register data. */ | |
285 | ||
286 | void | |
287 | write_register_bytes (regbyte, myaddr, len) | |
288 | int regbyte; | |
289 | char *myaddr; | |
290 | int len; | |
291 | { | |
292 | /* Make sure the entire registers array is valid. */ | |
293 | read_register_bytes (0, (char *)NULL, REGISTER_BYTES); | |
294 | bcopy (myaddr, ®isters[regbyte], len); | |
295 | target_store_registers (-1); | |
296 | } | |
297 | ||
298 | /* Return the contents of register REGNO, regarding it as an integer. */ | |
299 | ||
300 | CORE_ADDR | |
301 | read_register (regno) | |
302 | int regno; | |
303 | { | |
304 | int reg; | |
305 | if (!register_valid[regno]) | |
306 | target_fetch_registers (regno); | |
307 | /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */ | |
308 | reg = *(int *) ®isters[REGISTER_BYTE (regno)]; | |
309 | SWAP_TARGET_AND_HOST (®, sizeof (int)); | |
310 | return reg; | |
311 | } | |
312 | ||
313 | /* Registers we shouldn't try to store. */ | |
314 | #if !defined (CANNOT_STORE_REGISTER) | |
315 | #define CANNOT_STORE_REGISTER(regno) 0 | |
316 | #endif | |
317 | ||
318 | /* Store VALUE in the register number REGNO, regarded as an integer. */ | |
319 | ||
320 | void | |
321 | write_register (regno, val) | |
322 | int regno, val; | |
323 | { | |
324 | /* On the sparc, writing %g0 is a no-op, so we don't even want to change | |
325 | the registers array if something writes to this register. */ | |
326 | if (CANNOT_STORE_REGISTER (regno)) | |
327 | return; | |
328 | ||
329 | SWAP_TARGET_AND_HOST (&val, sizeof (int)); | |
330 | ||
331 | target_prepare_to_store (); | |
332 | ||
333 | register_valid [regno] = 1; | |
334 | /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */ | |
335 | /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */ | |
336 | *(int *) ®isters[REGISTER_BYTE (regno)] = val; | |
337 | ||
338 | target_store_registers (regno); | |
339 | } | |
340 | ||
341 | /* Record that register REGNO contains VAL. | |
342 | This is used when the value is obtained from the inferior or core dump, | |
343 | so there is no need to store the value there. */ | |
344 | ||
345 | void | |
346 | supply_register (regno, val) | |
347 | int regno; | |
348 | char *val; | |
349 | { | |
350 | register_valid[regno] = 1; | |
351 | bcopy (val, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno)); | |
352 | } | |
353 | \f | |
354 | /* Given a struct symbol for a variable, | |
355 | and a stack frame id, read the value of the variable | |
356 | and return a (pointer to a) struct value containing the value. | |
777bef06 JK |
357 | If the variable cannot be found, return a zero pointer. |
358 | If FRAME is NULL, use the selected_frame. */ | |
bd5635a1 RP |
359 | |
360 | value | |
361 | read_var_value (var, frame) | |
362 | register struct symbol *var; | |
363 | FRAME frame; | |
364 | { | |
365 | register value v; | |
366 | struct frame_info *fi; | |
367 | struct type *type = SYMBOL_TYPE (var); | |
368 | CORE_ADDR addr; | |
bd5635a1 RP |
369 | register int len; |
370 | ||
371 | v = allocate_value (type); | |
372 | VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ | |
373 | len = TYPE_LENGTH (type); | |
374 | ||
375 | if (frame == 0) frame = selected_frame; | |
376 | ||
377 | switch (SYMBOL_CLASS (var)) | |
378 | { | |
379 | case LOC_CONST: | |
e1ce8aa5 | 380 | bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len); |
bd5635a1 RP |
381 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); |
382 | VALUE_LVAL (v) = not_lval; | |
383 | return v; | |
384 | ||
385 | case LOC_LABEL: | |
386 | addr = SYMBOL_VALUE_ADDRESS (var); | |
387 | bcopy (&addr, VALUE_CONTENTS_RAW (v), len); | |
388 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len); | |
389 | VALUE_LVAL (v) = not_lval; | |
390 | return v; | |
391 | ||
392 | case LOC_CONST_BYTES: | |
36b9d39c JG |
393 | { |
394 | char *bytes_addr; | |
395 | bytes_addr = SYMBOL_VALUE_BYTES (var); | |
396 | bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len); | |
397 | VALUE_LVAL (v) = not_lval; | |
398 | return v; | |
399 | } | |
bd5635a1 RP |
400 | |
401 | case LOC_STATIC: | |
402 | case LOC_EXTERNAL: | |
403 | addr = SYMBOL_VALUE_ADDRESS (var); | |
404 | break; | |
405 | ||
406 | /* Nonzero if a struct which is located in a register or a LOC_ARG | |
407 | really contains | |
408 | the address of the struct, not the struct itself. GCC_P is nonzero | |
409 | if the function was compiled with GCC. */ | |
410 | #if !defined (REG_STRUCT_HAS_ADDR) | |
411 | #define REG_STRUCT_HAS_ADDR(gcc_p) 0 | |
412 | #endif | |
413 | ||
414 | case LOC_ARG: | |
415 | fi = get_frame_info (frame); | |
777bef06 JK |
416 | if (fi == NULL) |
417 | return 0; | |
bd5635a1 RP |
418 | addr = FRAME_ARGS_ADDRESS (fi); |
419 | if (!addr) { | |
420 | return 0; | |
421 | } | |
422 | addr += SYMBOL_VALUE (var); | |
423 | break; | |
424 | ||
425 | case LOC_REF_ARG: | |
426 | fi = get_frame_info (frame); | |
777bef06 JK |
427 | if (fi == NULL) |
428 | return 0; | |
bd5635a1 RP |
429 | addr = FRAME_ARGS_ADDRESS (fi); |
430 | if (!addr) { | |
431 | return 0; | |
432 | } | |
433 | addr += SYMBOL_VALUE (var); | |
e1ce8aa5 | 434 | read_memory (addr, &addr, sizeof (CORE_ADDR)); |
bd5635a1 RP |
435 | break; |
436 | ||
437 | case LOC_LOCAL: | |
438 | case LOC_LOCAL_ARG: | |
439 | fi = get_frame_info (frame); | |
777bef06 JK |
440 | if (fi == NULL) |
441 | return 0; | |
bd5635a1 RP |
442 | addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi); |
443 | break; | |
444 | ||
445 | case LOC_TYPEDEF: | |
446 | error ("Cannot look up value of a typedef"); | |
447 | break; | |
448 | ||
449 | case LOC_BLOCK: | |
450 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); | |
451 | return v; | |
452 | ||
453 | case LOC_REGISTER: | |
454 | case LOC_REGPARM: | |
455 | { | |
777bef06 | 456 | struct block *b; |
bd5635a1 | 457 | |
777bef06 JK |
458 | if (frame == NULL) |
459 | return 0; | |
460 | b = get_frame_block (frame); | |
461 | ||
bd5635a1 RP |
462 | v = value_from_register (type, SYMBOL_VALUE (var), frame); |
463 | ||
e1ce8aa5 | 464 | if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b)) |
bd5635a1 RP |
465 | && TYPE_CODE (type) == TYPE_CODE_STRUCT) |
466 | addr = *(CORE_ADDR *)VALUE_CONTENTS (v); | |
467 | else | |
468 | return v; | |
469 | } | |
470 | break; | |
471 | ||
472 | default: | |
473 | error ("Cannot look up value of a botched symbol."); | |
474 | break; | |
475 | } | |
476 | ||
477 | VALUE_ADDRESS (v) = addr; | |
478 | VALUE_LAZY (v) = 1; | |
479 | return v; | |
480 | } | |
481 | ||
482 | /* Return a value of type TYPE, stored in register REGNUM, in frame | |
483 | FRAME. */ | |
484 | ||
485 | value | |
486 | value_from_register (type, regnum, frame) | |
487 | struct type *type; | |
488 | int regnum; | |
489 | FRAME frame; | |
490 | { | |
491 | char raw_buffer [MAX_REGISTER_RAW_SIZE]; | |
492 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
493 | CORE_ADDR addr; | |
494 | int optim; | |
495 | value v = allocate_value (type); | |
496 | int len = TYPE_LENGTH (type); | |
497 | char *value_bytes = 0; | |
498 | int value_bytes_copied = 0; | |
499 | int num_storage_locs; | |
500 | enum lval_type lval; | |
501 | ||
502 | VALUE_REGNO (v) = regnum; | |
503 | ||
504 | num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? | |
505 | ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : | |
506 | 1); | |
507 | ||
508 | if (num_storage_locs > 1) | |
509 | { | |
510 | /* Value spread across multiple storage locations. */ | |
511 | ||
512 | int local_regnum; | |
513 | int mem_stor = 0, reg_stor = 0; | |
514 | int mem_tracking = 1; | |
515 | CORE_ADDR last_addr = 0; | |
516 | CORE_ADDR first_addr; | |
517 | ||
518 | value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); | |
519 | ||
520 | /* Copy all of the data out, whereever it may be. */ | |
521 | ||
522 | for (local_regnum = regnum; | |
523 | value_bytes_copied < len; | |
524 | (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), | |
525 | ++local_regnum)) | |
526 | { | |
527 | get_saved_register (value_bytes + value_bytes_copied, | |
528 | &optim, | |
529 | &addr, | |
530 | frame, | |
531 | local_regnum, | |
532 | &lval); | |
533 | if (lval == lval_register) | |
534 | reg_stor++; | |
535 | else | |
536 | { | |
537 | mem_stor++; | |
538 | ||
539 | if (regnum == local_regnum) | |
540 | first_addr = addr; | |
541 | ||
542 | mem_tracking = | |
543 | (mem_tracking | |
544 | && (regnum == local_regnum | |
545 | || addr == last_addr)); | |
546 | } | |
547 | last_addr = addr; | |
548 | } | |
549 | ||
550 | if ((reg_stor && mem_stor) | |
551 | || (mem_stor && !mem_tracking)) | |
552 | /* Mixed storage; all of the hassle we just went through was | |
553 | for some good purpose. */ | |
554 | { | |
555 | VALUE_LVAL (v) = lval_reg_frame_relative; | |
556 | VALUE_FRAME (v) = FRAME_FP (frame); | |
557 | VALUE_FRAME_REGNUM (v) = regnum; | |
558 | } | |
559 | else if (mem_stor) | |
560 | { | |
561 | VALUE_LVAL (v) = lval_memory; | |
562 | VALUE_ADDRESS (v) = first_addr; | |
563 | } | |
564 | else if (reg_stor) | |
565 | { | |
566 | VALUE_LVAL (v) = lval_register; | |
567 | VALUE_ADDRESS (v) = first_addr; | |
568 | } | |
569 | else | |
570 | fatal ("value_from_register: Value not stored anywhere!"); | |
571 | ||
572 | VALUE_OPTIMIZED_OUT (v) = optim; | |
573 | ||
574 | /* Any structure stored in more than one register will always be | |
575 | an integral number of registers. Otherwise, you'd need to do | |
576 | some fiddling with the last register copied here for little | |
577 | endian machines. */ | |
578 | ||
579 | /* Copy into the contents section of the value. */ | |
580 | bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len); | |
581 | ||
582 | return v; | |
583 | } | |
584 | ||
585 | /* Data is completely contained within a single register. Locate the | |
586 | register's contents in a real register or in core; | |
587 | read the data in raw format. */ | |
588 | ||
589 | get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); | |
590 | VALUE_OPTIMIZED_OUT (v) = optim; | |
591 | VALUE_LVAL (v) = lval; | |
592 | VALUE_ADDRESS (v) = addr; | |
593 | ||
594 | /* Convert the raw contents to virtual contents. | |
595 | (Just copy them if the formats are the same.) */ | |
596 | ||
597 | target_convert_to_virtual (regnum, raw_buffer, virtual_buffer); | |
598 | ||
599 | if (REGISTER_CONVERTIBLE (regnum)) | |
600 | { | |
601 | /* When the raw and virtual formats differ, the virtual format | |
602 | corresponds to a specific data type. If we want that type, | |
603 | copy the data into the value. | |
604 | Otherwise, do a type-conversion. */ | |
605 | ||
606 | if (type != REGISTER_VIRTUAL_TYPE (regnum)) | |
607 | { | |
608 | /* eg a variable of type `float' in a 68881 register | |
609 | with raw type `extended' and virtual type `double'. | |
610 | Fetch it as a `double' and then convert to `float'. */ | |
611 | v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); | |
612 | bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len); | |
613 | v = value_cast (type, v); | |
614 | } | |
615 | else | |
616 | bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len); | |
617 | } | |
618 | else | |
619 | { | |
620 | /* Raw and virtual formats are the same for this register. */ | |
621 | ||
622 | #if TARGET_BYTE_ORDER == BIG_ENDIAN | |
623 | if (len < REGISTER_RAW_SIZE (regnum)) | |
624 | { | |
625 | /* Big-endian, and we want less than full size. */ | |
626 | VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; | |
627 | } | |
628 | #endif | |
629 | ||
630 | bcopy (virtual_buffer + VALUE_OFFSET (v), | |
631 | VALUE_CONTENTS_RAW (v), len); | |
632 | } | |
633 | ||
634 | return v; | |
635 | } | |
636 | \f | |
36b9d39c | 637 | /* Given a struct symbol for a variable or function, |
bd5635a1 | 638 | and a stack frame id, |
36b9d39c JG |
639 | return a (pointer to a) struct value containing the properly typed |
640 | address. */ | |
bd5635a1 RP |
641 | |
642 | value | |
643 | locate_var_value (var, frame) | |
644 | register struct symbol *var; | |
645 | FRAME frame; | |
646 | { | |
647 | CORE_ADDR addr = 0; | |
648 | struct type *type = SYMBOL_TYPE (var); | |
649 | struct type *result_type; | |
650 | value lazy_value; | |
651 | ||
652 | /* Evaluate it first; if the result is a memory address, we're fine. | |
653 | Lazy evaluation pays off here. */ | |
654 | ||
655 | lazy_value = read_var_value (var, frame); | |
656 | if (lazy_value == 0) | |
657 | error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var)); | |
658 | ||
36b9d39c JG |
659 | if (VALUE_LAZY (lazy_value) |
660 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
bd5635a1 RP |
661 | { |
662 | addr = VALUE_ADDRESS (lazy_value); | |
663 | ||
664 | /* C++: The "address" of a reference should yield the address | |
665 | * of the object pointed to. So force an extra de-reference. */ | |
666 | ||
667 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
668 | { | |
669 | char *buf = alloca (TYPE_LENGTH (type)); | |
670 | read_memory (addr, buf, TYPE_LENGTH (type)); | |
e1ce8aa5 | 671 | addr = unpack_pointer (type, buf); |
bd5635a1 RP |
672 | type = TYPE_TARGET_TYPE (type); |
673 | } | |
674 | ||
675 | /* Address of an array is of the type of address of it's elements. */ | |
36b9d39c | 676 | /* FIXME, this is probably wrong now for ANSI C. */ |
bd5635a1 RP |
677 | result_type = |
678 | lookup_pointer_type (TYPE_CODE (type) == TYPE_CODE_ARRAY ? | |
679 | TYPE_TARGET_TYPE (type) : type); | |
680 | ||
681 | return value_cast (result_type, | |
682 | value_from_long (builtin_type_long, (LONGEST) addr)); | |
683 | } | |
684 | ||
685 | /* Not a memory address; check what the problem was. */ | |
686 | switch (VALUE_LVAL (lazy_value)) | |
687 | { | |
688 | case lval_register: | |
689 | case lval_reg_frame_relative: | |
690 | error ("Address requested for identifier \"%s\" which is in a register.", | |
691 | SYMBOL_NAME (var)); | |
692 | break; | |
693 | ||
694 | default: | |
695 | error ("Can't take address of \"%s\" which isn't an lvalue.", | |
696 | SYMBOL_NAME (var)); | |
697 | break; | |
698 | } | |
699 | return 0; /* For lint -- never reached */ | |
700 | } |