]>
Commit | Line | Data |
---|---|---|
35f5886e FF |
1 | /* DWARF debugging format support for GDB. |
2 | Copyright (C) 1991 Free Software Foundation, Inc. | |
3 | Written by Fred Fish at Cygnus Support, portions based on dbxread.c, | |
4 | mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | ||
22 | /* | |
23 | ||
24 | FIXME: Figure out how to get the frame pointer register number in the | |
25 | execution environment of the target. Remove R_FP kludge | |
26 | ||
27 | FIXME: Add generation of dependencies list to partial symtab code. | |
28 | ||
29 | FIXME: Currently we ignore host/target byte ordering and integer size | |
30 | differences. Should remap data from external form to an internal form | |
31 | before trying to use it. | |
32 | ||
33 | FIXME: Resolve minor differences between what information we put in the | |
34 | partial symbol table and what dbxread puts in. For example, we don't yet | |
35 | put enum constants there. And dbxread seems to invent a lot of typedefs | |
36 | we never see. Use the new printpsym command to see the partial symbol table | |
37 | contents. | |
38 | ||
39 | FIXME: Change forward declarations of static functions to allow for compilers | |
40 | without prototypes. | |
41 | ||
42 | FIXME: Figure out a better way to tell gdb (all the debug reading routines) | |
43 | the names of the gccX_compiled flags. | |
44 | ||
45 | FIXME: Figure out a better way to tell gdb about the name of the function | |
46 | contain the user's entry point (I.E. main()) | |
47 | ||
48 | FIXME: The current DWARF specification has a very strong bias towards | |
49 | machines with 32-bit integers, as it assumes that many attributes of the | |
50 | program (such as an address) will fit in such an integer. There are many | |
51 | references in the spec to things that are 2, 4, or 8 bytes long. Given that | |
52 | we will probably run into problems on machines where some of these assumptions | |
53 | are invalid (64-bit ints for example), we don't bother at this time to try to | |
54 | make this code more flexible and just use shorts, ints, and longs (and their | |
55 | sizes) where it seems appropriate. I.E. we use a short int to hold DWARF | |
56 | tags, and assume that the tag size in the file is the same as sizeof(short). | |
57 | ||
58 | FIXME: Figure out how to get the name of the symbol indicating that a module | |
59 | has been compiled with gcc (gcc_compiledXX) in a more portable way than | |
60 | hardcoding it into the object file readers. | |
61 | ||
62 | FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for | |
63 | other things to work on, if you get bored. :-) | |
64 | ||
65 | */ | |
35f5886e | 66 | #include <stdio.h> |
58050209 DHW |
67 | #ifdef __STDC__ |
68 | #include <stdarg.h> | |
69 | #else | |
313fdead | 70 | #include <varargs.h> |
58050209 | 71 | #endif |
35f5886e FF |
72 | #include <fcntl.h> |
73 | ||
74 | #include "defs.h" | |
75 | #include "param.h" | |
76 | #include "bfd.h" | |
77 | #include "symtab.h" | |
78 | #include "symfile.h" | |
79 | #include "dwarf.h" | |
80 | #include "ansidecl.h" | |
81 | ||
82 | #ifdef MAINTENANCE /* Define to 1 to compile in some maintenance stuff */ | |
83 | #define SQUAWK(stuff) dwarfwarn stuff | |
84 | #else | |
85 | #define SQUAWK(stuff) | |
86 | #endif | |
87 | ||
88 | #ifndef R_FP /* FIXME */ | |
89 | #define R_FP 14 /* Kludge to get frame pointer register number */ | |
90 | #endif | |
91 | ||
92 | typedef unsigned int DIEREF; /* Reference to a DIE */ | |
93 | ||
94 | #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled%" /* FIXME */ | |
95 | #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled%" /* FIXME */ | |
96 | ||
97 | #define STREQ(a,b) (strcmp(a,b)==0) | |
98 | ||
35f5886e FF |
99 | extern CORE_ADDR startup_file_start; /* From blockframe.c */ |
100 | extern CORE_ADDR startup_file_end; /* From blockframe.c */ | |
101 | extern CORE_ADDR entry_scope_lowpc; /* From blockframe.c */ | |
102 | extern CORE_ADDR entry_scope_highpc; /* From blockframc.c */ | |
103 | extern CORE_ADDR main_scope_lowpc; /* From blockframe.c */ | |
104 | extern CORE_ADDR main_scope_highpc; /* From blockframc.c */ | |
105 | extern int info_verbose; /* From main.c; nonzero => verbose */ | |
106 | ||
107 | ||
108 | /* The DWARF debugging information consists of two major pieces, | |
109 | one is a block of DWARF Information Entries (DIE's) and the other | |
110 | is a line number table. The "struct dieinfo" structure contains | |
111 | the information for a single DIE, the one currently being processed. | |
112 | ||
113 | In order to make it easier to randomly access the attribute fields | |
114 | of the current DIE, which are specifically unordered within the DIE | |
115 | each DIE is scanned and an instance of the "struct dieinfo" | |
116 | structure is initialized. | |
117 | ||
118 | Initialization is done in two levels. The first, done by basicdieinfo(), | |
119 | just initializes those fields that are vital to deciding whether or not | |
120 | to use this DIE, how to skip past it, etc. The second, done by the | |
121 | function completedieinfo(), fills in the rest of the information. | |
122 | ||
123 | Attributes which have block forms are not interpreted at the time | |
124 | the DIE is scanned, instead we just save pointers to the start | |
125 | of their value fields. | |
126 | ||
127 | Some fields have a flag <name>_p that is set when the value of the | |
128 | field is valid (I.E. we found a matching attribute in the DIE). Since | |
129 | we may want to test for the presence of some attributes in the DIE, | |
130 | such as AT_is_external, without restricting the values of the field, | |
131 | we need someway to note that we found such an attribute. | |
132 | ||
133 | */ | |
134 | ||
135 | typedef char BLOCK; | |
136 | ||
137 | struct dieinfo { | |
138 | char * die; /* Pointer to the raw DIE data */ | |
139 | long dielength; /* Length of the raw DIE data */ | |
140 | DIEREF dieref; /* Offset of this DIE */ | |
141 | short dietag; /* Tag for this DIE */ | |
142 | long at_padding; | |
143 | long at_sibling; | |
144 | BLOCK * at_location; | |
145 | char * at_name; | |
146 | unsigned short at_fund_type; | |
147 | BLOCK * at_mod_fund_type; | |
148 | long at_user_def_type; | |
149 | BLOCK * at_mod_u_d_type; | |
150 | short at_ordering; | |
151 | BLOCK * at_subscr_data; | |
152 | long at_byte_size; | |
153 | short at_bit_offset; | |
154 | long at_bit_size; | |
155 | BLOCK * at_deriv_list; | |
156 | BLOCK * at_element_list; | |
157 | long at_stmt_list; | |
158 | long at_low_pc; | |
159 | long at_high_pc; | |
160 | long at_language; | |
161 | long at_member; | |
162 | long at_discr; | |
163 | BLOCK * at_discr_value; | |
164 | short at_visibility; | |
165 | long at_import; | |
166 | BLOCK * at_string_length; | |
167 | char * at_comp_dir; | |
168 | char * at_producer; | |
169 | long at_loclist; | |
170 | long at_frame_base; | |
171 | short at_incomplete; | |
172 | long at_start_scope; | |
173 | long at_stride_size; | |
174 | long at_src_info; | |
175 | short at_prototyped; | |
176 | BLOCK * at_const_data; | |
177 | short at_is_external; | |
178 | unsigned int at_is_external_p:1; | |
179 | unsigned int at_stmt_list_p:1; | |
180 | }; | |
181 | ||
182 | static int diecount; /* Approximate count of dies for compilation unit */ | |
183 | static struct dieinfo *curdie; /* For warnings and such */ | |
184 | ||
185 | static char *dbbase; /* Base pointer to dwarf info */ | |
186 | static int dbroff; /* Relative offset from start of .debug section */ | |
187 | static char *lnbase; /* Base pointer to line section */ | |
188 | static int isreg; /* Kludge to identify register variables */ | |
189 | ||
190 | static CORE_ADDR baseaddr; /* Add to each symbol value */ | |
191 | ||
192 | /* Each partial symbol table entry contains a pointer to private data for the | |
193 | read_symtab() function to use when expanding a partial symbol table entry | |
194 | to a full symbol table entry. For DWARF debugging info, this data is | |
195 | contained in the following structure and macros are provided for easy | |
196 | access to the members given a pointer to a partial symbol table entry. | |
197 | ||
198 | dbfoff Always the absolute file offset to the start of the ".debug" | |
199 | section for the file containing the DIE's being accessed. | |
200 | ||
201 | dbroff Relative offset from the start of the ".debug" access to the | |
202 | first DIE to be accessed. When building the partial symbol | |
203 | table, this value will be zero since we are accessing the | |
204 | entire ".debug" section. When expanding a partial symbol | |
205 | table entry, this value will be the offset to the first | |
206 | DIE for the compilation unit containing the symbol that | |
207 | triggers the expansion. | |
208 | ||
209 | dblength The size of the chunk of DIE's being examined, in bytes. | |
210 | ||
211 | lnfoff The absolute file offset to the line table fragment. Ignored | |
212 | when building partial symbol tables, but used when expanding | |
213 | them, and contains the absolute file offset to the fragment | |
214 | of the ".line" section containing the line numbers for the | |
215 | current compilation unit. | |
216 | */ | |
217 | ||
218 | struct dwfinfo { | |
219 | int dbfoff; /* Absolute file offset to start of .debug section */ | |
220 | int dbroff; /* Relative offset from start of .debug section */ | |
221 | int dblength; /* Size of the chunk of DIE's being examined */ | |
222 | int lnfoff; /* Absolute file offset to line table fragment */ | |
223 | }; | |
224 | ||
225 | #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) | |
226 | #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) | |
227 | #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) | |
228 | #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) | |
229 | ||
230 | /* Record the symbols defined for each context in a linked list. We don't | |
231 | create a struct block for the context until we know how long to make it. | |
232 | Global symbols for each file are maintained in the global_symbols list. */ | |
233 | ||
234 | struct pending_symbol { | |
235 | struct pending_symbol *next; /* Next pending symbol */ | |
236 | struct symbol *symbol; /* The actual symbol */ | |
237 | }; | |
238 | ||
239 | static struct pending_symbol *global_symbols; /* global funcs and vars */ | |
240 | static struct block *global_symbol_block; | |
241 | ||
242 | /* Line number entries are read into a dynamically expandable vector before | |
243 | being added to the symbol table section. Once we know how many there are | |
244 | we can add them. */ | |
245 | ||
246 | static struct linetable *line_vector; /* Vector of line numbers. */ | |
247 | static int line_vector_index; /* Index of next entry. */ | |
248 | static int line_vector_length; /* Current allocation limit */ | |
249 | ||
250 | /* Scope information is kept in a scope tree, one node per scope. Each time | |
251 | a new scope is started, a child node is created under the current node | |
252 | and set to the current scope. Each time a scope is closed, the current | |
253 | scope moves back up the tree to the parent of the current scope. | |
254 | ||
255 | Each scope contains a pointer to the list of symbols defined in the scope, | |
256 | a pointer to the block vector for the scope, a pointer to the symbol | |
257 | that names the scope (if any), and the range of PC values that mark | |
258 | the start and end of the scope. */ | |
259 | ||
260 | struct scopenode { | |
261 | struct scopenode *parent; | |
262 | struct scopenode *child; | |
263 | struct scopenode *sibling; | |
264 | struct pending_symbol *symbols; | |
265 | struct block *block; | |
266 | struct symbol *namesym; | |
267 | CORE_ADDR lowpc; | |
268 | CORE_ADDR highpc; | |
269 | }; | |
270 | ||
271 | static struct scopenode *scopetree; | |
272 | static struct scopenode *scope; | |
273 | ||
274 | /* DIES which have user defined types or modified user defined types refer to | |
275 | other DIES for the type information. Thus we need to associate the offset | |
276 | of a DIE for a user defined type with a pointer to the type information. | |
277 | ||
278 | Originally this was done using a simple but expensive algorithm, with an | |
279 | array of unsorted structures, each containing an offset/type-pointer pair. | |
280 | This array was scanned linearly each time a lookup was done. The result | |
281 | was that gdb was spending over half it's startup time munging through this | |
282 | array of pointers looking for a structure that had the right offset member. | |
283 | ||
284 | The second attempt used the same array of structures, but the array was | |
285 | sorted using qsort each time a new offset/type was recorded, and a binary | |
286 | search was used to find the type pointer for a given DIE offset. This was | |
287 | even slower, due to the overhead of sorting the array each time a new | |
288 | offset/type pair was entered. | |
289 | ||
290 | The third attempt uses a fixed size array of type pointers, indexed by a | |
291 | value derived from the DIE offset. Since the minimum DIE size is 4 bytes, | |
292 | we can divide any DIE offset by 4 to obtain a unique index into this fixed | |
293 | size array. Since each element is a 4 byte pointer, it takes exactly as | |
294 | much memory to hold this array as to hold the DWARF info for a given | |
295 | compilation unit. But it gets freed as soon as we are done with it. */ | |
296 | ||
297 | static struct type **utypes; /* Pointer to array of user type pointers */ | |
298 | static int numutypes; /* Max number of user type pointers */ | |
299 | ||
300 | /* Forward declarations of static functions so we don't have to worry | |
301 | about ordering within this file. The EXFUN macro may be slightly | |
302 | misleading. Should probably be called DCLFUN instead, or something | |
303 | more intuitive, since it can be used for both static and external | |
304 | definitions. */ | |
305 | ||
58050209 DHW |
306 | static void |
307 | EXFUN (dwarfwarn, (char *fmt DOTS)); | |
35f5886e FF |
308 | |
309 | static void | |
310 | EXFUN (scan_partial_symbols, (char *thisdie AND char *enddie)); | |
311 | ||
312 | static void | |
313 | EXFUN (scan_compilation_units, | |
314 | (char *filename AND CORE_ADDR addr AND char *thisdie AND char *enddie | |
a048c8f5 JG |
315 | AND unsigned int dbfoff AND unsigned int lnoffset |
316 | AND struct objfile *objfile)); | |
35f5886e FF |
317 | |
318 | static struct partial_symtab * | |
a048c8f5 | 319 | EXFUN(start_psymtab, (struct objfile *objfile AND CORE_ADDR addr |
35f5886e FF |
320 | AND char *filename AND CORE_ADDR textlow |
321 | AND CORE_ADDR texthigh AND int dbfoff | |
322 | AND int curoff AND int culength AND int lnfoff | |
323 | AND struct partial_symbol *global_syms | |
324 | AND struct partial_symbol *static_syms)); | |
325 | static void | |
326 | EXFUN(add_partial_symbol, (struct dieinfo *dip)); | |
327 | ||
328 | static void | |
329 | EXFUN(add_psymbol_to_list, | |
330 | (struct psymbol_allocation_list *listp AND char *name | |
331 | AND enum namespace space AND enum address_class class | |
332 | AND CORE_ADDR value)); | |
333 | ||
334 | static void | |
335 | EXFUN(init_psymbol_list, (int total_symbols)); | |
336 | ||
337 | static void | |
338 | EXFUN(basicdieinfo, (struct dieinfo *dip AND char *diep)); | |
339 | ||
340 | static void | |
341 | EXFUN(completedieinfo, (struct dieinfo *dip)); | |
342 | ||
343 | static void | |
344 | EXFUN(dwarf_psymtab_to_symtab, (struct partial_symtab *pst)); | |
345 | ||
346 | static void | |
a048c8f5 | 347 | EXFUN(psymtab_to_symtab_1, (struct partial_symtab *pst)); |
35f5886e FF |
348 | |
349 | static struct symtab * | |
a048c8f5 | 350 | EXFUN(read_ofile_symtab, (struct partial_symtab *pst)); |
35f5886e FF |
351 | |
352 | static void | |
a048c8f5 JG |
353 | EXFUN(process_dies, |
354 | (char *thisdie AND char *enddie AND struct objfile *objfile)); | |
35f5886e FF |
355 | |
356 | static void | |
357 | EXFUN(read_structure_scope, | |
358 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
359 | ||
360 | static struct type * | |
361 | EXFUN(decode_array_element_type, (char *scan AND char *end)); | |
362 | ||
363 | static struct type * | |
364 | EXFUN(decode_subscr_data, (char *scan AND char *end)); | |
365 | ||
366 | static void | |
367 | EXFUN(read_array_type, (struct dieinfo *dip)); | |
368 | ||
369 | static void | |
370 | EXFUN(read_subroutine_type, | |
371 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
372 | ||
373 | static void | |
374 | EXFUN(read_enumeration, | |
375 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
376 | ||
377 | static struct type * | |
378 | EXFUN(struct_type, | |
379 | (struct dieinfo *dip AND char *thisdie AND char *enddie)); | |
380 | ||
381 | static struct type * | |
382 | EXFUN(enum_type, (struct dieinfo *dip)); | |
383 | ||
35f5886e FF |
384 | static void |
385 | EXFUN(start_symtab, (void)); | |
386 | ||
387 | static void | |
a048c8f5 JG |
388 | EXFUN(end_symtab, |
389 | (char *filename AND long language AND struct objfile *objfile)); | |
35f5886e FF |
390 | |
391 | static int | |
392 | EXFUN(scopecount, (struct scopenode *node)); | |
393 | ||
394 | static void | |
395 | EXFUN(openscope, | |
396 | (struct symbol *namesym AND CORE_ADDR lowpc AND CORE_ADDR highpc)); | |
397 | ||
398 | static void | |
399 | EXFUN(freescope, (struct scopenode *node)); | |
400 | ||
401 | static struct block * | |
402 | EXFUN(buildblock, (struct pending_symbol *syms)); | |
403 | ||
404 | static void | |
405 | EXFUN(closescope, (void)); | |
406 | ||
407 | static void | |
408 | EXFUN(record_line, (int line AND CORE_ADDR pc)); | |
409 | ||
410 | static void | |
411 | EXFUN(decode_line_numbers, (char *linetable)); | |
412 | ||
413 | static struct type * | |
414 | EXFUN(decode_die_type, (struct dieinfo *dip)); | |
415 | ||
416 | static struct type * | |
417 | EXFUN(decode_mod_fund_type, (char *typedata)); | |
418 | ||
419 | static struct type * | |
420 | EXFUN(decode_mod_u_d_type, (char *typedata)); | |
421 | ||
422 | static struct type * | |
423 | EXFUN(decode_modified_type, | |
424 | (unsigned char *modifiers AND unsigned short modcount AND int mtype)); | |
425 | ||
426 | static struct type * | |
427 | EXFUN(decode_fund_type, (unsigned short fundtype)); | |
428 | ||
429 | static char * | |
430 | EXFUN(create_name, (char *name AND struct obstack *obstackp)); | |
431 | ||
432 | static void | |
433 | EXFUN(add_symbol_to_list, | |
434 | (struct symbol *symbol AND struct pending_symbol **listhead)); | |
435 | ||
436 | static struct block ** | |
437 | EXFUN(gatherblocks, (struct block **dest AND struct scopenode *node)); | |
438 | ||
439 | static struct blockvector * | |
440 | EXFUN(make_blockvector, (void)); | |
441 | ||
442 | static struct type * | |
443 | EXFUN(lookup_utype, (DIEREF dieref)); | |
444 | ||
445 | static struct type * | |
446 | EXFUN(alloc_utype, (DIEREF dieref AND struct type *usetype)); | |
447 | ||
448 | static struct symbol * | |
449 | EXFUN(new_symbol, (struct dieinfo *dip)); | |
450 | ||
451 | static int | |
452 | EXFUN(locval, (char *loc)); | |
453 | ||
454 | static void | |
a7446af6 FF |
455 | EXFUN(record_misc_function, (char *name AND CORE_ADDR address AND |
456 | enum misc_function_type)); | |
35f5886e FF |
457 | |
458 | static int | |
459 | EXFUN(compare_psymbols, | |
460 | (struct partial_symbol *s1 AND struct partial_symbol *s2)); | |
461 | ||
462 | ||
463 | /* | |
464 | ||
465 | GLOBAL FUNCTION | |
466 | ||
467 | dwarf_build_psymtabs -- build partial symtabs from DWARF debug info | |
468 | ||
469 | SYNOPSIS | |
470 | ||
471 | void dwarf_build_psymtabs (int desc, char *filename, CORE_ADDR addr, | |
472 | int mainline, unsigned int dbfoff, unsigned int dbsize, | |
a048c8f5 JG |
473 | unsigned int lnoffset, unsigned int lnsize, |
474 | struct objfile *objfile) | |
35f5886e FF |
475 | |
476 | DESCRIPTION | |
477 | ||
478 | This function is called upon to build partial symtabs from files | |
479 | containing DIE's (Dwarf Information Entries) and DWARF line numbers. | |
480 | ||
481 | It is passed a file descriptor for an open file containing the DIES | |
482 | and line number information, the corresponding filename for that | |
483 | file, a base address for relocating the symbols, a flag indicating | |
484 | whether or not this debugging information is from a "main symbol | |
485 | table" rather than a shared library or dynamically linked file, | |
486 | and file offset/size pairs for the DIE information and line number | |
487 | information. | |
488 | ||
489 | RETURNS | |
490 | ||
491 | No return value. | |
492 | ||
493 | */ | |
494 | ||
495 | void | |
496 | DEFUN(dwarf_build_psymtabs, | |
a048c8f5 JG |
497 | (desc, filename, addr, mainline, dbfoff, dbsize, lnoffset, lnsize, |
498 | objfile), | |
35f5886e FF |
499 | int desc AND |
500 | char *filename AND | |
501 | CORE_ADDR addr AND | |
502 | int mainline AND | |
503 | unsigned int dbfoff AND | |
504 | unsigned int dbsize AND | |
505 | unsigned int lnoffset AND | |
a048c8f5 JG |
506 | unsigned int lnsize AND |
507 | struct objfile *objfile) | |
35f5886e FF |
508 | { |
509 | struct cleanup *back_to; | |
510 | ||
511 | dbbase = xmalloc (dbsize); | |
512 | dbroff = 0; | |
513 | if ((lseek (desc, dbfoff, 0) != dbfoff) || | |
514 | (read (desc, dbbase, dbsize) != dbsize)) | |
515 | { | |
516 | free (dbbase); | |
517 | error ("can't read DWARF data from '%s'", filename); | |
518 | } | |
519 | back_to = make_cleanup (free, dbbase); | |
520 | ||
521 | /* If we are reinitializing, or if we have never loaded syms yet, init. | |
522 | Since we have no idea how many DIES we are looking at, we just guess | |
523 | some arbitrary value. */ | |
524 | ||
525 | if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0) | |
526 | { | |
527 | init_psymbol_list (1024); | |
528 | } | |
529 | ||
35f5886e FF |
530 | /* Follow the compilation unit sibling chain, building a partial symbol |
531 | table entry for each one. Save enough information about each compilation | |
532 | unit to locate the full DWARF information later. */ | |
533 | ||
534 | scan_compilation_units (filename, addr, dbbase, dbbase + dbsize, | |
a048c8f5 | 535 | dbfoff, lnoffset, objfile); |
35f5886e | 536 | |
35f5886e FF |
537 | do_cleanups (back_to); |
538 | } | |
539 | ||
540 | ||
541 | /* | |
542 | ||
543 | LOCAL FUNCTION | |
544 | ||
545 | record_misc_function -- add entry to miscellaneous function vector | |
546 | ||
547 | SYNOPSIS | |
548 | ||
a7446af6 FF |
549 | static void record_misc_function (char *name, CORE_ADDR address, |
550 | enum misc_function_type mf_type) | |
35f5886e FF |
551 | |
552 | DESCRIPTION | |
553 | ||
554 | Given a pointer to the name of a symbol that should be added to the | |
555 | miscellaneous function vector, and the address associated with that | |
556 | symbol, records this information for later use in building the | |
557 | miscellaneous function vector. | |
558 | ||
35f5886e FF |
559 | */ |
560 | ||
561 | static void | |
a7446af6 FF |
562 | DEFUN(record_misc_function, (name, address, mf_type), |
563 | char *name AND CORE_ADDR address AND enum misc_function_type mf_type) | |
35f5886e FF |
564 | { |
565 | prim_record_misc_function (obsavestring (name, strlen (name)), address, | |
a7446af6 | 566 | mf_type); |
35f5886e FF |
567 | } |
568 | ||
569 | /* | |
570 | ||
571 | LOCAL FUNCTION | |
572 | ||
573 | dwarfwarn -- issue a DWARF related warning | |
574 | ||
575 | DESCRIPTION | |
576 | ||
577 | Issue warnings about DWARF related things that aren't serious enough | |
578 | to warrant aborting with an error, but should not be ignored either. | |
579 | This includes things like detectable corruption in DIE's, missing | |
580 | DIE's, unimplemented features, etc. | |
581 | ||
582 | In general, running across tags or attributes that we don't recognize | |
583 | is not considered to be a problem and we should not issue warnings | |
584 | about such. | |
585 | ||
586 | NOTES | |
587 | ||
588 | We mostly follow the example of the error() routine, but without | |
589 | returning to command level. It is arguable about whether warnings | |
590 | should be issued at all, and if so, where they should go (stdout or | |
591 | stderr). | |
592 | ||
593 | We assume that curdie is valid and contains at least the basic | |
594 | information for the DIE where the problem was noticed. | |
595 | */ | |
596 | ||
58050209 DHW |
597 | #ifdef __STDC__ |
598 | static void | |
599 | DEFUN(dwarfwarn, (fmt), char *fmt DOTS) | |
600 | { | |
601 | va_list ap; | |
602 | ||
603 | va_start (ap, fmt); | |
604 | warning_setup (); | |
605 | fprintf (stderr, "DWARF warning (ref 0x%x): ", curdie -> dieref); | |
606 | if (curdie -> at_name) | |
607 | { | |
608 | fprintf (stderr, "'%s': ", curdie -> at_name); | |
609 | } | |
610 | vfprintf (stderr, fmt, ap); | |
611 | fprintf (stderr, "\n"); | |
612 | fflush (stderr); | |
613 | va_end (ap); | |
614 | } | |
615 | #else | |
616 | ||
35f5886e | 617 | static void |
313fdead JG |
618 | dwarfwarn (va_alist) |
619 | va_dcl | |
35f5886e FF |
620 | { |
621 | va_list ap; | |
313fdead | 622 | char *fmt; |
35f5886e | 623 | |
313fdead JG |
624 | va_start (ap); |
625 | fmt = va_arg (ap, char *); | |
35f5886e FF |
626 | warning_setup (); |
627 | fprintf (stderr, "DWARF warning (ref 0x%x): ", curdie -> dieref); | |
628 | if (curdie -> at_name) | |
629 | { | |
630 | fprintf (stderr, "'%s': ", curdie -> at_name); | |
631 | } | |
632 | vfprintf (stderr, fmt, ap); | |
633 | fprintf (stderr, "\n"); | |
634 | fflush (stderr); | |
635 | va_end (ap); | |
636 | } | |
58050209 | 637 | #endif |
35f5886e FF |
638 | /* |
639 | ||
640 | LOCAL FUNCTION | |
641 | ||
642 | compare_psymbols -- compare two partial symbols by name | |
643 | ||
644 | DESCRIPTION | |
645 | ||
646 | Given pointer to two partial symbol table entries, compare | |
647 | them by name and return -N, 0, or +N (ala strcmp). Typically | |
648 | used by sorting routines like qsort(). | |
649 | ||
650 | NOTES | |
651 | ||
652 | This is a copy from dbxread.c. It should be moved to a generic | |
653 | gdb file and made available for all psymtab builders (FIXME). | |
654 | ||
655 | Does direct compare of first two characters before punting | |
656 | and passing to strcmp for longer compares. Note that the | |
657 | original version had a bug whereby two null strings or two | |
658 | identically named one character strings would return the | |
659 | comparison of memory following the null byte. | |
660 | ||
661 | */ | |
662 | ||
663 | static int | |
664 | DEFUN(compare_psymbols, (s1, s2), | |
665 | struct partial_symbol *s1 AND | |
666 | struct partial_symbol *s2) | |
667 | { | |
668 | register char *st1 = SYMBOL_NAME (s1); | |
669 | register char *st2 = SYMBOL_NAME (s2); | |
670 | ||
671 | if ((st1[0] - st2[0]) || !st1[0]) | |
672 | { | |
673 | return (st1[0] - st2[0]); | |
674 | } | |
675 | else if ((st1[1] - st2[1]) || !st1[1]) | |
676 | { | |
677 | return (st1[1] - st2[1]); | |
678 | } | |
679 | else | |
680 | { | |
681 | return (strcmp (st1 + 2, st2 + 2)); | |
682 | } | |
683 | } | |
684 | ||
685 | /* | |
686 | ||
687 | LOCAL FUNCTION | |
688 | ||
689 | read_lexical_block_scope -- process all dies in a lexical block | |
690 | ||
691 | SYNOPSIS | |
692 | ||
693 | static void read_lexical_block_scope (struct dieinfo *dip, | |
694 | char *thisdie, char *enddie) | |
695 | ||
696 | DESCRIPTION | |
697 | ||
698 | Process all the DIES contained within a lexical block scope. | |
699 | Start a new scope, process the dies, and then close the scope. | |
700 | ||
701 | */ | |
702 | ||
703 | static void | |
a048c8f5 | 704 | DEFUN(read_lexical_block_scope, (dip, thisdie, enddie, objfile), |
35f5886e FF |
705 | struct dieinfo *dip AND |
706 | char *thisdie AND | |
a048c8f5 JG |
707 | char *enddie AND |
708 | struct objfile *objfile) | |
35f5886e FF |
709 | { |
710 | openscope (NULL, dip -> at_low_pc, dip -> at_high_pc); | |
a048c8f5 | 711 | process_dies (thisdie + dip -> dielength, enddie, objfile); |
35f5886e FF |
712 | closescope (); |
713 | } | |
714 | ||
715 | /* | |
716 | ||
717 | LOCAL FUNCTION | |
718 | ||
719 | lookup_utype -- look up a user defined type from die reference | |
720 | ||
721 | SYNOPSIS | |
722 | ||
723 | static type *lookup_utype (DIEREF dieref) | |
724 | ||
725 | DESCRIPTION | |
726 | ||
727 | Given a DIE reference, lookup the user defined type associated with | |
728 | that DIE, if it has been registered already. If not registered, then | |
729 | return NULL. Alloc_utype() can be called to register an empty | |
730 | type for this reference, which will be filled in later when the | |
731 | actual referenced DIE is processed. | |
732 | */ | |
733 | ||
734 | static struct type * | |
735 | DEFUN(lookup_utype, (dieref), DIEREF dieref) | |
736 | { | |
737 | struct type *type = NULL; | |
738 | int utypeidx; | |
739 | ||
740 | utypeidx = (dieref - dbroff) / 4; | |
741 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
742 | { | |
743 | dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref); | |
744 | } | |
745 | else | |
746 | { | |
747 | type = *(utypes + utypeidx); | |
748 | } | |
749 | return (type); | |
750 | } | |
751 | ||
752 | ||
753 | /* | |
754 | ||
755 | LOCAL FUNCTION | |
756 | ||
757 | alloc_utype -- add a user defined type for die reference | |
758 | ||
759 | SYNOPSIS | |
760 | ||
761 | static type *alloc_utype (DIEREF dieref, struct type *utypep) | |
762 | ||
763 | DESCRIPTION | |
764 | ||
765 | Given a die reference DIEREF, and a possible pointer to a user | |
766 | defined type UTYPEP, register that this reference has a user | |
767 | defined type and either use the specified type in UTYPEP or | |
768 | make a new empty type that will be filled in later. | |
769 | ||
770 | We should only be called after calling lookup_utype() to verify that | |
771 | there is not currently a type registered for DIEREF. | |
772 | */ | |
773 | ||
774 | static struct type * | |
775 | DEFUN(alloc_utype, (dieref, utypep), | |
776 | DIEREF dieref AND | |
777 | struct type *utypep) | |
778 | { | |
779 | struct type **typep; | |
780 | int utypeidx; | |
781 | ||
782 | utypeidx = (dieref - dbroff) / 4; | |
783 | typep = utypes + utypeidx; | |
784 | if ((utypeidx < 0) || (utypeidx >= numutypes)) | |
785 | { | |
786 | utypep = builtin_type_int; | |
787 | dwarfwarn ("reference to DIE (0x%x) outside compilation unit", dieref); | |
788 | } | |
789 | else if (*typep != NULL) | |
790 | { | |
791 | utypep = *typep; | |
792 | SQUAWK (("internal error: dup user type allocation")); | |
793 | } | |
794 | else | |
795 | { | |
796 | if (utypep == NULL) | |
797 | { | |
798 | utypep = (struct type *) | |
799 | obstack_alloc (symbol_obstack, sizeof (struct type)); | |
800 | (void) memset (utypep, 0, sizeof (struct type)); | |
801 | } | |
802 | *typep = utypep; | |
803 | } | |
804 | return (utypep); | |
805 | } | |
806 | ||
807 | /* | |
808 | ||
809 | LOCAL FUNCTION | |
810 | ||
811 | decode_die_type -- return a type for a specified die | |
812 | ||
813 | SYNOPSIS | |
814 | ||
815 | static struct type *decode_die_type (struct dieinfo *dip) | |
816 | ||
817 | DESCRIPTION | |
818 | ||
819 | Given a pointer to a die information structure DIP, decode the | |
820 | type of the die and return a pointer to the decoded type. All | |
821 | dies without specific types default to type int. | |
822 | */ | |
823 | ||
824 | static struct type * | |
825 | DEFUN(decode_die_type, (dip), struct dieinfo *dip) | |
826 | { | |
827 | struct type *type = NULL; | |
828 | ||
829 | if (dip -> at_fund_type != 0) | |
830 | { | |
831 | type = decode_fund_type (dip -> at_fund_type); | |
832 | } | |
833 | else if (dip -> at_mod_fund_type != NULL) | |
834 | { | |
835 | type = decode_mod_fund_type (dip -> at_mod_fund_type); | |
836 | } | |
837 | else if (dip -> at_user_def_type) | |
838 | { | |
839 | if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) | |
840 | { | |
841 | type = alloc_utype (dip -> at_user_def_type, NULL); | |
842 | } | |
843 | } | |
844 | else if (dip -> at_mod_u_d_type) | |
845 | { | |
846 | type = decode_mod_u_d_type (dip -> at_mod_u_d_type); | |
847 | } | |
848 | else | |
849 | { | |
850 | type = builtin_type_int; | |
851 | } | |
852 | return (type); | |
853 | } | |
854 | ||
855 | /* | |
856 | ||
857 | LOCAL FUNCTION | |
858 | ||
859 | struct_type -- compute and return the type for a struct or union | |
860 | ||
861 | SYNOPSIS | |
862 | ||
863 | static struct type *struct_type (struct dieinfo *dip, char *thisdie, | |
864 | char *enddie) | |
865 | ||
866 | DESCRIPTION | |
867 | ||
868 | Given pointer to a die information structure for a die which | |
869 | defines a union or structure, and pointers to the raw die data | |
870 | that define the range of dies which define the members, compute | |
871 | and return the user defined type for the structure or union. | |
872 | */ | |
873 | ||
874 | static struct type * | |
875 | DEFUN(struct_type, (dip, thisdie, enddie), | |
876 | struct dieinfo *dip AND | |
877 | char *thisdie AND | |
878 | char *enddie) | |
879 | { | |
880 | struct type *type; | |
881 | struct nextfield { | |
882 | struct nextfield *next; | |
883 | struct field field; | |
884 | }; | |
885 | struct nextfield *list = NULL; | |
886 | struct nextfield *new; | |
887 | int nfields = 0; | |
888 | int n; | |
889 | char *tpart1; | |
890 | char *tpart2; | |
891 | char *tpart3; | |
892 | struct dieinfo mbr; | |
893 | ||
894 | if ((type = lookup_utype (dip -> dieref)) == NULL) | |
895 | { | |
896 | type = alloc_utype (dip -> dieref, NULL); | |
897 | } | |
898 | switch (dip -> dietag) | |
899 | { | |
900 | case TAG_structure_type: | |
901 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
902 | tpart1 = "struct "; | |
903 | break; | |
904 | case TAG_union_type: | |
905 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
906 | tpart1 = "union "; | |
907 | break; | |
908 | default: | |
909 | tpart1 = ""; | |
910 | SQUAWK (("missing structure or union tag")); | |
911 | TYPE_CODE (type) = TYPE_CODE_UNDEF; | |
912 | break; | |
913 | } | |
914 | if (dip -> at_name == NULL) | |
915 | { | |
916 | tpart2 = "{...}"; | |
917 | } | |
918 | else | |
919 | { | |
920 | tpart2 = dip -> at_name; | |
921 | } | |
922 | if (dip -> at_byte_size == 0) | |
923 | { | |
924 | tpart3 = " <opaque>"; | |
925 | } else { | |
926 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
927 | tpart3 = ""; | |
928 | } | |
58ae87f6 | 929 | TYPE_NAME (type) = concat (tpart1, tpart2, tpart3, NULL); |
35f5886e FF |
930 | thisdie += dip -> dielength; |
931 | while (thisdie < enddie) | |
932 | { | |
933 | basicdieinfo (&mbr, thisdie); | |
934 | completedieinfo (&mbr); | |
935 | if (mbr.dielength <= sizeof (long)) | |
936 | { | |
937 | break; | |
938 | } | |
939 | switch (mbr.dietag) | |
940 | { | |
941 | case TAG_member: | |
942 | /* Get space to record the next field's data. */ | |
943 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
944 | new -> next = list; | |
945 | list = new; | |
946 | /* Save the data. */ | |
947 | list -> field.name = savestring (mbr.at_name, strlen (mbr.at_name)); | |
948 | list -> field.type = decode_die_type (&mbr); | |
949 | list -> field.bitpos = 8 * locval (mbr.at_location); | |
950 | list -> field.bitsize = 0; | |
951 | nfields++; | |
952 | break; | |
953 | default: | |
954 | SQUAWK (("bad member of '%s'", TYPE_NAME (type))); | |
955 | break; | |
956 | } | |
957 | thisdie += mbr.dielength; | |
958 | } | |
959 | /* Now create the vector of fields, and record how big it is. */ | |
960 | TYPE_NFIELDS (type) = nfields; | |
961 | TYPE_FIELDS (type) = (struct field *) | |
962 | obstack_alloc (symbol_obstack, sizeof (struct field) * nfields); | |
963 | /* Copy the saved-up fields into the field vector. */ | |
964 | for (n = nfields; list; list = list -> next) | |
965 | { | |
966 | TYPE_FIELD (type, --n) = list -> field; | |
967 | } | |
968 | return (type); | |
969 | } | |
970 | ||
971 | /* | |
972 | ||
973 | LOCAL FUNCTION | |
974 | ||
975 | read_structure_scope -- process all dies within struct or union | |
976 | ||
977 | SYNOPSIS | |
978 | ||
979 | static void read_structure_scope (struct dieinfo *dip, | |
980 | char *thisdie, char *enddie) | |
981 | ||
982 | DESCRIPTION | |
983 | ||
984 | Called when we find the DIE that starts a structure or union | |
985 | scope (definition) to process all dies that define the members | |
986 | of the structure or union. DIP is a pointer to the die info | |
987 | struct for the DIE that names the structure or union. | |
988 | ||
989 | NOTES | |
990 | ||
991 | Note that we need to call struct_type regardless of whether or not | |
992 | we have a symbol, since we might have a structure or union without | |
993 | a tag name (thus no symbol for the tagname). | |
994 | */ | |
995 | ||
996 | static void | |
997 | DEFUN(read_structure_scope, (dip, thisdie, enddie), | |
998 | struct dieinfo *dip AND | |
999 | char *thisdie AND | |
1000 | char *enddie) | |
1001 | { | |
1002 | struct type *type; | |
1003 | struct symbol *sym; | |
1004 | ||
1005 | type = struct_type (dip, thisdie, enddie); | |
1006 | if ((sym = new_symbol (dip)) != NULL) | |
1007 | { | |
1008 | SYMBOL_TYPE (sym) = type; | |
1009 | } | |
1010 | } | |
1011 | ||
1012 | /* | |
1013 | ||
1014 | LOCAL FUNCTION | |
1015 | ||
1016 | decode_array_element_type -- decode type of the array elements | |
1017 | ||
1018 | SYNOPSIS | |
1019 | ||
1020 | static struct type *decode_array_element_type (char *scan, char *end) | |
1021 | ||
1022 | DESCRIPTION | |
1023 | ||
1024 | As the last step in decoding the array subscript information for an | |
1025 | array DIE, we need to decode the type of the array elements. We are | |
1026 | passed a pointer to this last part of the subscript information and | |
1027 | must return the appropriate type. If the type attribute is not | |
1028 | recognized, just warn about the problem and return type int. | |
1029 | */ | |
1030 | ||
1031 | static struct type * | |
1032 | DEFUN(decode_array_element_type, (scan, end), char *scan AND char *end) | |
1033 | { | |
1034 | struct type *typep; | |
1035 | short attribute; | |
1036 | DIEREF dieref; | |
1037 | unsigned short fundtype; | |
1038 | ||
1039 | (void) memcpy (&attribute, scan, sizeof (short)); | |
1040 | scan += sizeof (short); | |
1041 | switch (attribute) | |
1042 | { | |
1043 | case AT_fund_type: | |
1044 | (void) memcpy (&fundtype, scan, sizeof (short)); | |
1045 | typep = decode_fund_type (fundtype); | |
1046 | break; | |
1047 | case AT_mod_fund_type: | |
1048 | typep = decode_mod_fund_type (scan); | |
1049 | break; | |
1050 | case AT_user_def_type: | |
1051 | (void) memcpy (&dieref, scan, sizeof (DIEREF)); | |
1052 | if ((typep = lookup_utype (dieref)) == NULL) | |
1053 | { | |
1054 | typep = alloc_utype (dieref, NULL); | |
1055 | } | |
1056 | break; | |
1057 | case AT_mod_u_d_type: | |
1058 | typep = decode_mod_u_d_type (scan); | |
1059 | break; | |
1060 | default: | |
1061 | SQUAWK (("bad array element type attribute 0x%x", attribute)); | |
1062 | typep = builtin_type_int; | |
1063 | break; | |
1064 | } | |
1065 | return (typep); | |
1066 | } | |
1067 | ||
1068 | /* | |
1069 | ||
1070 | LOCAL FUNCTION | |
1071 | ||
1072 | decode_subscr_data -- decode array subscript and element type data | |
1073 | ||
1074 | SYNOPSIS | |
1075 | ||
1076 | static struct type *decode_subscr_data (char *scan, char *end) | |
1077 | ||
1078 | DESCRIPTION | |
1079 | ||
1080 | The array subscripts and the data type of the elements of an | |
1081 | array are described by a list of data items, stored as a block | |
1082 | of contiguous bytes. There is a data item describing each array | |
1083 | dimension, and a final data item describing the element type. | |
1084 | The data items are ordered the same as their appearance in the | |
1085 | source (I.E. leftmost dimension first, next to leftmost second, | |
1086 | etc). | |
1087 | ||
1088 | We are passed a pointer to the start of the block of bytes | |
1089 | containing the data items, and a pointer to the first byte past | |
1090 | the data. This function decodes the data and returns a type. | |
1091 | ||
1092 | BUGS | |
1093 | FIXME: This code only implements the forms currently used | |
1094 | by the AT&T and GNU C compilers. | |
1095 | ||
1096 | The end pointer is supplied for error checking, maybe we should | |
1097 | use it for that... | |
1098 | */ | |
1099 | ||
1100 | static struct type * | |
1101 | DEFUN(decode_subscr_data, (scan, end), char *scan AND char *end) | |
1102 | { | |
1103 | struct type *typep = NULL; | |
1104 | struct type *nexttype; | |
1105 | int format; | |
1106 | short fundtype; | |
1107 | long lowbound; | |
1108 | long highbound; | |
1109 | ||
1110 | format = *scan++; | |
1111 | switch (format) | |
1112 | { | |
1113 | case FMT_ET: | |
1114 | typep = decode_array_element_type (scan, end); | |
1115 | break; | |
1116 | case FMT_FT_C_C: | |
1117 | (void) memcpy (&fundtype, scan, sizeof (short)); | |
1118 | scan += sizeof (short); | |
1119 | if (fundtype != FT_integer && fundtype != FT_signed_integer | |
1120 | && fundtype != FT_unsigned_integer) | |
1121 | { | |
1122 | SQUAWK (("array subscripts must be integral types, not type 0x%x", | |
1123 | fundtype)); | |
1124 | } | |
1125 | else | |
1126 | { | |
1127 | (void) memcpy (&lowbound, scan, sizeof (long)); | |
1128 | scan += sizeof (long); | |
1129 | (void) memcpy (&highbound, scan, sizeof (long)); | |
1130 | scan += sizeof (long); | |
1131 | nexttype = decode_subscr_data (scan, end); | |
1132 | if (nexttype != NULL) | |
1133 | { | |
1134 | typep = (struct type *) | |
1135 | obstack_alloc (symbol_obstack, sizeof (struct type)); | |
1136 | (void) memset (typep, 0, sizeof (struct type)); | |
1137 | TYPE_CODE (typep) = TYPE_CODE_ARRAY; | |
1138 | TYPE_LENGTH (typep) = TYPE_LENGTH (nexttype); | |
1139 | TYPE_LENGTH (typep) *= lowbound + highbound + 1; | |
1140 | TYPE_TARGET_TYPE (typep) = nexttype; | |
1141 | } | |
1142 | } | |
1143 | break; | |
1144 | case FMT_FT_C_X: | |
1145 | case FMT_FT_X_C: | |
1146 | case FMT_FT_X_X: | |
1147 | case FMT_UT_C_C: | |
1148 | case FMT_UT_C_X: | |
1149 | case FMT_UT_X_C: | |
1150 | case FMT_UT_X_X: | |
1151 | SQUAWK (("array subscript format 0x%x not handled yet", format)); | |
1152 | break; | |
1153 | default: | |
1154 | SQUAWK (("unknown array subscript format %x", format)); | |
1155 | break; | |
1156 | } | |
1157 | return (typep); | |
1158 | } | |
1159 | ||
1160 | /* | |
1161 | ||
1162 | LOCAL FUNCTION | |
1163 | ||
1164 | read_array_type -- read TAG_array_type DIE | |
1165 | ||
1166 | SYNOPSIS | |
1167 | ||
1168 | static void read_array_type (struct dieinfo *dip) | |
1169 | ||
1170 | DESCRIPTION | |
1171 | ||
1172 | Extract all information from a TAG_array_type DIE and add to | |
1173 | the user defined type vector. | |
1174 | */ | |
1175 | ||
1176 | static void | |
1177 | DEFUN(read_array_type, (dip), struct dieinfo *dip) | |
1178 | { | |
1179 | struct type *type; | |
1180 | char *sub; | |
1181 | char *subend; | |
1182 | short temp; | |
1183 | ||
1184 | if (dip -> at_ordering != ORD_row_major) | |
1185 | { | |
1186 | /* FIXME: Can gdb even handle column major arrays? */ | |
1187 | SQUAWK (("array not row major; not handled correctly")); | |
1188 | } | |
1189 | if ((sub = dip -> at_subscr_data) != NULL) | |
1190 | { | |
1191 | (void) memcpy (&temp, sub, sizeof (short)); | |
1192 | subend = sub + sizeof (short) + temp; | |
1193 | sub += sizeof (short); | |
1194 | type = decode_subscr_data (sub, subend); | |
1195 | if (type == NULL) | |
1196 | { | |
1197 | type = alloc_utype (dip -> dieref, NULL); | |
1198 | TYPE_CODE (type) = TYPE_CODE_ARRAY; | |
1199 | TYPE_TARGET_TYPE (type) = builtin_type_int; | |
1200 | TYPE_LENGTH (type) = 1 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)); | |
1201 | } | |
1202 | else | |
1203 | { | |
1204 | type = alloc_utype (dip -> dieref, type); | |
1205 | } | |
1206 | } | |
1207 | } | |
1208 | ||
1209 | /* | |
1210 | ||
1211 | LOCAL FUNCTION | |
1212 | ||
1213 | read_subroutine_type -- process TAG_subroutine_type dies | |
1214 | ||
1215 | SYNOPSIS | |
1216 | ||
1217 | static void read_subroutine_type (struct dieinfo *dip, char thisdie, | |
1218 | char *enddie) | |
1219 | ||
1220 | DESCRIPTION | |
1221 | ||
1222 | Handle DIES due to C code like: | |
1223 | ||
1224 | struct foo { | |
1225 | int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) | |
1226 | int b; | |
1227 | }; | |
1228 | ||
1229 | NOTES | |
1230 | ||
1231 | The parameter DIES are currently ignored. See if gdb has a way to | |
1232 | include this info in it's type system, and decode them if so. Is | |
1233 | this what the type structure's "arg_types" field is for? (FIXME) | |
1234 | */ | |
1235 | ||
1236 | static void | |
1237 | DEFUN(read_subroutine_type, (dip, thisdie, enddie), | |
1238 | struct dieinfo *dip AND | |
1239 | char *thisdie AND | |
1240 | char *enddie) | |
1241 | { | |
1242 | struct type *type; | |
1243 | ||
1244 | type = decode_die_type (dip); | |
1245 | type = lookup_function_type (type); | |
1246 | type = alloc_utype (dip -> dieref, type); | |
1247 | } | |
1248 | ||
1249 | /* | |
1250 | ||
1251 | LOCAL FUNCTION | |
1252 | ||
1253 | read_enumeration -- process dies which define an enumeration | |
1254 | ||
1255 | SYNOPSIS | |
1256 | ||
1257 | static void read_enumeration (struct dieinfo *dip, char *thisdie, | |
1258 | char *enddie) | |
1259 | ||
1260 | DESCRIPTION | |
1261 | ||
1262 | Given a pointer to a die which begins an enumeration, process all | |
1263 | the dies that define the members of the enumeration. | |
1264 | ||
1265 | NOTES | |
1266 | ||
1267 | Note that we need to call enum_type regardless of whether or not we | |
1268 | have a symbol, since we might have an enum without a tag name (thus | |
1269 | no symbol for the tagname). | |
1270 | */ | |
1271 | ||
1272 | static void | |
1273 | DEFUN(read_enumeration, (dip, thisdie, enddie), | |
1274 | struct dieinfo *dip AND | |
1275 | char *thisdie AND | |
1276 | char *enddie) | |
1277 | { | |
1278 | struct type *type; | |
1279 | struct symbol *sym; | |
1280 | ||
1281 | type = enum_type (dip); | |
1282 | if ((sym = new_symbol (dip)) != NULL) | |
1283 | { | |
1284 | SYMBOL_TYPE (sym) = type; | |
1285 | } | |
1286 | } | |
1287 | ||
1288 | /* | |
1289 | ||
1290 | LOCAL FUNCTION | |
1291 | ||
1292 | enum_type -- decode and return a type for an enumeration | |
1293 | ||
1294 | SYNOPSIS | |
1295 | ||
1296 | static type *enum_type (struct dieinfo *dip) | |
1297 | ||
1298 | DESCRIPTION | |
1299 | ||
1300 | Given a pointer to a die information structure for the die which | |
1301 | starts an enumeration, process all the dies that define the members | |
1302 | of the enumeration and return a type pointer for the enumeration. | |
1303 | */ | |
1304 | ||
1305 | static struct type * | |
1306 | DEFUN(enum_type, (dip), struct dieinfo *dip) | |
1307 | { | |
1308 | struct type *type; | |
1309 | struct nextfield { | |
1310 | struct nextfield *next; | |
1311 | struct field field; | |
1312 | }; | |
1313 | struct nextfield *list = NULL; | |
1314 | struct nextfield *new; | |
1315 | int nfields = 0; | |
1316 | int n; | |
1317 | char *tpart1; | |
1318 | char *tpart2; | |
1319 | char *tpart3; | |
1320 | char *scan; | |
1321 | char *listend; | |
1322 | long temp; | |
1323 | ||
1324 | if ((type = lookup_utype (dip -> dieref)) == NULL) | |
1325 | { | |
1326 | type = alloc_utype (dip -> dieref, NULL); | |
1327 | } | |
1328 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
1329 | tpart1 = "enum "; | |
1330 | if (dip -> at_name == NULL) | |
1331 | { | |
1332 | tpart2 = "{...}"; | |
1333 | } else { | |
1334 | tpart2 = dip -> at_name; | |
1335 | } | |
1336 | if (dip -> at_byte_size == 0) | |
1337 | { | |
1338 | tpart3 = " <opaque>"; | |
1339 | } | |
1340 | else | |
1341 | { | |
1342 | TYPE_LENGTH (type) = dip -> at_byte_size; | |
1343 | tpart3 = ""; | |
1344 | } | |
58ae87f6 | 1345 | TYPE_NAME (type) = concat (tpart1, tpart2, tpart3, NULL); |
35f5886e FF |
1346 | if ((scan = dip -> at_element_list) != NULL) |
1347 | { | |
1348 | (void) memcpy (&temp, scan, sizeof (temp)); | |
1349 | listend = scan + temp + sizeof (temp); | |
1350 | scan += sizeof (temp); | |
1351 | while (scan < listend) | |
1352 | { | |
1353 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1354 | new -> next = list; | |
1355 | list = new; | |
1356 | list -> field.type = NULL; | |
1357 | list -> field.bitsize = 0; | |
1358 | (void) memcpy (&list -> field.bitpos, scan, sizeof (long)); | |
1359 | scan += sizeof (long); | |
1360 | list -> field.name = savestring (scan, strlen (scan)); | |
1361 | scan += strlen (scan) + 1; | |
1362 | nfields++; | |
1363 | } | |
1364 | } | |
1365 | /* Now create the vector of fields, and record how big it is. */ | |
1366 | TYPE_NFIELDS (type) = nfields; | |
1367 | TYPE_FIELDS (type) = (struct field *) | |
1368 | obstack_alloc (symbol_obstack, sizeof (struct field) * nfields); | |
1369 | /* Copy the saved-up fields into the field vector. */ | |
1370 | for (n = nfields; list; list = list -> next) | |
1371 | { | |
1372 | TYPE_FIELD (type, --n) = list -> field; | |
1373 | } | |
1374 | return (type); | |
1375 | } | |
1376 | ||
1377 | /* | |
1378 | ||
1379 | LOCAL FUNCTION | |
1380 | ||
1381 | read_func_scope -- process all dies within a function scope | |
1382 | ||
35f5886e FF |
1383 | DESCRIPTION |
1384 | ||
1385 | Process all dies within a given function scope. We are passed | |
1386 | a die information structure pointer DIP for the die which | |
1387 | starts the function scope, and pointers into the raw die data | |
1388 | that define the dies within the function scope. | |
1389 | ||
1390 | For now, we ignore lexical block scopes within the function. | |
1391 | The problem is that AT&T cc does not define a DWARF lexical | |
1392 | block scope for the function itself, while gcc defines a | |
1393 | lexical block scope for the function. We need to think about | |
1394 | how to handle this difference, or if it is even a problem. | |
1395 | (FIXME) | |
1396 | */ | |
1397 | ||
1398 | static void | |
a048c8f5 | 1399 | DEFUN(read_func_scope, (dip, thisdie, enddie, objfile), |
35f5886e FF |
1400 | struct dieinfo *dip AND |
1401 | char *thisdie AND | |
a048c8f5 JG |
1402 | char *enddie AND |
1403 | struct objfile *objfile) | |
35f5886e FF |
1404 | { |
1405 | struct symbol *sym; | |
1406 | ||
1407 | if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc) | |
1408 | { | |
1409 | entry_scope_lowpc = dip -> at_low_pc; | |
1410 | entry_scope_highpc = dip -> at_high_pc; | |
1411 | } | |
1412 | if (strcmp (dip -> at_name, "main") == 0) /* FIXME: hardwired name */ | |
1413 | { | |
1414 | main_scope_lowpc = dip -> at_low_pc; | |
1415 | main_scope_highpc = dip -> at_high_pc; | |
1416 | } | |
1417 | sym = new_symbol (dip); | |
1418 | openscope (sym, dip -> at_low_pc, dip -> at_high_pc); | |
a048c8f5 | 1419 | process_dies (thisdie + dip -> dielength, enddie, objfile); |
35f5886e FF |
1420 | closescope (); |
1421 | } | |
1422 | ||
1423 | /* | |
1424 | ||
1425 | LOCAL FUNCTION | |
1426 | ||
1427 | read_file_scope -- process all dies within a file scope | |
1428 | ||
35f5886e FF |
1429 | DESCRIPTION |
1430 | ||
1431 | Process all dies within a given file scope. We are passed a | |
1432 | pointer to the die information structure for the die which | |
1433 | starts the file scope, and pointers into the raw die data which | |
1434 | mark the range of dies within the file scope. | |
1435 | ||
1436 | When the partial symbol table is built, the file offset for the line | |
1437 | number table for each compilation unit is saved in the partial symbol | |
1438 | table entry for that compilation unit. As the symbols for each | |
1439 | compilation unit are read, the line number table is read into memory | |
1440 | and the variable lnbase is set to point to it. Thus all we have to | |
1441 | do is use lnbase to access the line number table for the current | |
1442 | compilation unit. | |
1443 | */ | |
1444 | ||
1445 | static void | |
a048c8f5 | 1446 | DEFUN(read_file_scope, (dip, thisdie, enddie, objfile), |
35f5886e FF |
1447 | struct dieinfo *dip AND |
1448 | char *thisdie AND | |
a048c8f5 JG |
1449 | char *enddie AND |
1450 | struct objfile *objfile) | |
35f5886e FF |
1451 | { |
1452 | struct cleanup *back_to; | |
1453 | ||
1454 | if (entry_point >= dip -> at_low_pc && entry_point < dip -> at_high_pc) | |
1455 | { | |
1456 | startup_file_start = dip -> at_low_pc; | |
1457 | startup_file_end = dip -> at_high_pc; | |
1458 | } | |
1459 | numutypes = (enddie - thisdie) / 4; | |
1460 | utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); | |
1461 | back_to = make_cleanup (free, utypes); | |
1462 | (void) memset (utypes, 0, numutypes * sizeof (struct type *)); | |
1463 | start_symtab (); | |
1464 | openscope (NULL, dip -> at_low_pc, dip -> at_high_pc); | |
1465 | decode_line_numbers (lnbase); | |
a048c8f5 | 1466 | process_dies (thisdie + dip -> dielength, enddie, objfile); |
35f5886e | 1467 | closescope (); |
a048c8f5 | 1468 | end_symtab (dip -> at_name, dip -> at_language, objfile); |
35f5886e FF |
1469 | do_cleanups (back_to); |
1470 | utypes = NULL; | |
1471 | numutypes = 0; | |
1472 | } | |
1473 | ||
1474 | /* | |
1475 | ||
1476 | LOCAL FUNCTION | |
1477 | ||
1478 | start_symtab -- do initialization for starting new symbol table | |
1479 | ||
1480 | SYNOPSIS | |
1481 | ||
1482 | static void start_symtab (void) | |
1483 | ||
1484 | DESCRIPTION | |
1485 | ||
1486 | Called whenever we are starting to process dies for a new | |
1487 | compilation unit, to perform initializations. Right now | |
1488 | the only thing we really have to do is initialize storage | |
1489 | space for the line number vector. | |
1490 | ||
1491 | */ | |
1492 | ||
1493 | static void | |
1494 | DEFUN_VOID (start_symtab) | |
1495 | { | |
1496 | int nbytes; | |
1497 | ||
1498 | line_vector_index = 0; | |
1499 | line_vector_length = 1000; | |
1500 | nbytes = sizeof (struct linetable); | |
1501 | nbytes += line_vector_length * sizeof (struct linetable_entry); | |
1502 | line_vector = (struct linetable *) xmalloc (nbytes); | |
1503 | } | |
1504 | ||
1505 | /* | |
1506 | ||
1507 | LOCAL FUNCTION | |
1508 | ||
1509 | process_dies -- process a range of DWARF Information Entries | |
1510 | ||
1511 | SYNOPSIS | |
1512 | ||
1513 | static void process_dies (char *thisdie, char *enddie) | |
1514 | ||
1515 | DESCRIPTION | |
1516 | ||
1517 | Process all DIE's in a specified range. May be (and almost | |
1518 | certainly will be) called recursively. | |
1519 | */ | |
1520 | ||
1521 | static void | |
a048c8f5 JG |
1522 | DEFUN(process_dies, (thisdie, enddie, objfile), |
1523 | char *thisdie AND char *enddie AND struct objfile *objfile) | |
35f5886e FF |
1524 | { |
1525 | char *nextdie; | |
1526 | struct dieinfo di; | |
1527 | ||
1528 | while (thisdie < enddie) | |
1529 | { | |
1530 | basicdieinfo (&di, thisdie); | |
1531 | if (di.dielength < sizeof (long)) | |
1532 | { | |
1533 | break; | |
1534 | } | |
1535 | else if (di.dietag == TAG_padding) | |
1536 | { | |
1537 | nextdie = thisdie + di.dielength; | |
1538 | } | |
1539 | else | |
1540 | { | |
1541 | completedieinfo (&di); | |
1542 | if (di.at_sibling != 0) | |
1543 | { | |
1544 | nextdie = dbbase + di.at_sibling - dbroff; | |
1545 | } | |
1546 | else | |
1547 | { | |
1548 | nextdie = thisdie + di.dielength; | |
1549 | } | |
1550 | switch (di.dietag) | |
1551 | { | |
1552 | case TAG_compile_unit: | |
a048c8f5 | 1553 | read_file_scope (&di, thisdie, nextdie, objfile); |
35f5886e FF |
1554 | break; |
1555 | case TAG_global_subroutine: | |
1556 | case TAG_subroutine: | |
1557 | if (!di.at_is_external_p) | |
1558 | { | |
a048c8f5 | 1559 | read_func_scope (&di, thisdie, nextdie, objfile); |
35f5886e FF |
1560 | } |
1561 | break; | |
1562 | case TAG_lexical_block: | |
a048c8f5 | 1563 | read_lexical_block_scope (&di, thisdie, nextdie, objfile); |
35f5886e FF |
1564 | break; |
1565 | case TAG_structure_type: | |
1566 | case TAG_union_type: | |
1567 | read_structure_scope (&di, thisdie, nextdie); | |
1568 | break; | |
1569 | case TAG_enumeration_type: | |
1570 | read_enumeration (&di, thisdie, nextdie); | |
1571 | break; | |
1572 | case TAG_subroutine_type: | |
1573 | read_subroutine_type (&di, thisdie, nextdie); | |
1574 | break; | |
1575 | case TAG_array_type: | |
1576 | read_array_type (&di); | |
1577 | break; | |
1578 | default: | |
1579 | (void) new_symbol (&di); | |
1580 | break; | |
1581 | } | |
1582 | } | |
1583 | thisdie = nextdie; | |
1584 | } | |
1585 | } | |
1586 | ||
1587 | /* | |
1588 | ||
1589 | LOCAL FUNCTION | |
1590 | ||
1591 | end_symtab -- finish processing for a compilation unit | |
1592 | ||
1593 | SYNOPSIS | |
1594 | ||
1595 | static void end_symtab (char *filename, long language) | |
1596 | ||
1597 | DESCRIPTION | |
1598 | ||
1599 | Complete the symbol table entry for the current compilation | |
1600 | unit. Make the struct symtab and put it on the list of all | |
1601 | such symtabs. | |
1602 | ||
1603 | */ | |
1604 | ||
1605 | static void | |
a048c8f5 JG |
1606 | DEFUN(end_symtab, (filename, language, objfile), |
1607 | char *filename AND long language AND struct objfile *objfile) | |
35f5886e FF |
1608 | { |
1609 | struct symtab *symtab; | |
1610 | struct blockvector *blockvector; | |
1611 | int nbytes; | |
1612 | ||
1613 | /* Ignore a file that has no functions with real debugging info. */ | |
1614 | if (global_symbols == NULL && scopetree -> block == NULL) | |
1615 | { | |
1616 | free (line_vector); | |
1617 | line_vector = NULL; | |
1618 | line_vector_length = -1; | |
1619 | freescope (scopetree); | |
1620 | scope = scopetree = NULL; | |
1621 | } | |
1622 | ||
1623 | /* Create the blockvector that points to all the file's blocks. */ | |
1624 | ||
1625 | blockvector = make_blockvector (); | |
1626 | ||
1627 | /* Now create the symtab object for this source file. */ | |
1628 | ||
a048c8f5 JG |
1629 | symtab = allocate_symtab (savestring (filename, strlen (filename)), |
1630 | objfile); | |
35f5886e FF |
1631 | |
1632 | symtab -> free_ptr = 0; | |
1633 | ||
1634 | /* Fill in its components. */ | |
1635 | symtab -> blockvector = blockvector; | |
1636 | symtab -> free_code = free_linetable; | |
35f5886e FF |
1637 | |
1638 | /* Save the line number information. */ | |
1639 | ||
1640 | line_vector -> nitems = line_vector_index; | |
1641 | nbytes = sizeof (struct linetable); | |
1642 | if (line_vector_index > 1) | |
1643 | { | |
1644 | nbytes += (line_vector_index - 1) * sizeof (struct linetable_entry); | |
1645 | } | |
1646 | symtab -> linetable = (struct linetable *) xrealloc (line_vector, nbytes); | |
35f5886e FF |
1647 | |
1648 | /* FIXME: The following may need to be expanded for other languages */ | |
545af6ce | 1649 | switch (language) |
35f5886e | 1650 | { |
545af6ce PB |
1651 | case LANG_C89: |
1652 | case LANG_C: | |
1653 | symtab -> language = language_c; | |
1654 | break; | |
1655 | case LANG_C_PLUS_PLUS: | |
1656 | symtab -> language = language_cplus; | |
1657 | break; | |
1658 | default: | |
1659 | ; | |
35f5886e | 1660 | } |
545af6ce | 1661 | |
35f5886e FF |
1662 | /* Link the new symtab into the list of such. */ |
1663 | symtab -> next = symtab_list; | |
1664 | symtab_list = symtab; | |
1665 | ||
1666 | /* Recursively free the scope tree */ | |
1667 | freescope (scopetree); | |
1668 | scope = scopetree = NULL; | |
1669 | ||
1670 | /* Reinitialize for beginning of new file. */ | |
1671 | line_vector = 0; | |
1672 | line_vector_length = -1; | |
1673 | } | |
1674 | ||
1675 | /* | |
1676 | ||
1677 | LOCAL FUNCTION | |
1678 | ||
1679 | scopecount -- count the number of enclosed scopes | |
1680 | ||
1681 | SYNOPSIS | |
1682 | ||
1683 | static int scopecount (struct scopenode *node) | |
1684 | ||
1685 | DESCRIPTION | |
1686 | ||
1687 | Given pointer to a node, compute the size of the subtree which is | |
1688 | rooted in this node, which also happens to be the number of scopes | |
1689 | to the subtree. | |
1690 | */ | |
1691 | ||
1692 | static int | |
1693 | DEFUN(scopecount, (node), struct scopenode *node) | |
1694 | { | |
1695 | int count = 0; | |
1696 | ||
1697 | if (node != NULL) | |
1698 | { | |
1699 | count += scopecount (node -> child); | |
1700 | count += scopecount (node -> sibling); | |
1701 | count++; | |
1702 | } | |
1703 | return (count); | |
1704 | } | |
1705 | ||
1706 | /* | |
1707 | ||
1708 | LOCAL FUNCTION | |
1709 | ||
1710 | openscope -- start a new lexical block scope | |
1711 | ||
1712 | SYNOPSIS | |
1713 | ||
1714 | static void openscope (struct symbol *namesym, CORE_ADDR lowpc, | |
1715 | CORE_ADDR highpc) | |
1716 | ||
1717 | DESCRIPTION | |
1718 | ||
1719 | Start a new scope by allocating a new scopenode, adding it as the | |
1720 | next child of the current scope (if any) or as the root of the | |
1721 | scope tree, and then making the new node the current scope node. | |
1722 | */ | |
1723 | ||
1724 | static void | |
1725 | DEFUN(openscope, (namesym, lowpc, highpc), | |
1726 | struct symbol *namesym AND | |
1727 | CORE_ADDR lowpc AND | |
1728 | CORE_ADDR highpc) | |
1729 | { | |
1730 | struct scopenode *new; | |
1731 | struct scopenode *child; | |
1732 | ||
1733 | new = (struct scopenode *) xmalloc (sizeof (*new)); | |
1734 | (void) memset (new, 0, sizeof (*new)); | |
1735 | new -> namesym = namesym; | |
1736 | new -> lowpc = lowpc; | |
1737 | new -> highpc = highpc; | |
1738 | if (scope == NULL) | |
1739 | { | |
1740 | scopetree = new; | |
1741 | } | |
1742 | else if ((child = scope -> child) == NULL) | |
1743 | { | |
1744 | scope -> child = new; | |
1745 | new -> parent = scope; | |
1746 | } | |
1747 | else | |
1748 | { | |
1749 | while (child -> sibling != NULL) | |
1750 | { | |
1751 | child = child -> sibling; | |
1752 | } | |
1753 | child -> sibling = new; | |
1754 | new -> parent = scope; | |
1755 | } | |
1756 | scope = new; | |
1757 | } | |
1758 | ||
1759 | /* | |
1760 | ||
1761 | LOCAL FUNCTION | |
1762 | ||
1763 | freescope -- free a scope tree rooted at the given node | |
1764 | ||
1765 | SYNOPSIS | |
1766 | ||
1767 | static void freescope (struct scopenode *node) | |
1768 | ||
1769 | DESCRIPTION | |
1770 | ||
1771 | Given a pointer to a node in the scope tree, free the subtree | |
1772 | rooted at that node. First free all the children and sibling | |
1773 | nodes, and then the node itself. Used primarily for cleaning | |
1774 | up after ourselves and returning memory to the system. | |
1775 | */ | |
1776 | ||
1777 | static void | |
1778 | DEFUN(freescope, (node), struct scopenode *node) | |
1779 | { | |
1780 | if (node != NULL) | |
1781 | { | |
1782 | freescope (node -> child); | |
1783 | freescope (node -> sibling); | |
1784 | free (node); | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | /* | |
1789 | ||
1790 | LOCAL FUNCTION | |
1791 | ||
1792 | buildblock -- build a new block from pending symbols list | |
1793 | ||
1794 | SYNOPSIS | |
1795 | ||
1796 | static struct block *buildblock (struct pending_symbol *syms) | |
1797 | ||
1798 | DESCRIPTION | |
1799 | ||
1800 | Given a pointer to a list of symbols, build a new block and free | |
1801 | the symbol list structure. Also check each symbol to see if it | |
1802 | is the special symbol that flags that this block was compiled by | |
1803 | gcc, and if so, mark the block appropriately. | |
1804 | */ | |
1805 | ||
1806 | static struct block * | |
1807 | DEFUN(buildblock, (syms), struct pending_symbol *syms) | |
1808 | { | |
1809 | struct pending_symbol *next, *next1; | |
1810 | int i; | |
1811 | struct block *newblock; | |
1812 | int nbytes; | |
1813 | ||
1814 | for (next = syms, i = 0 ; next ; next = next -> next, i++) {;} | |
1815 | ||
1816 | /* Allocate a new block */ | |
1817 | ||
1818 | nbytes = sizeof (struct block); | |
1819 | if (i > 1) | |
1820 | { | |
1821 | nbytes += (i - 1) * sizeof (struct symbol *); | |
1822 | } | |
1823 | newblock = (struct block *) obstack_alloc (symbol_obstack, nbytes); | |
1824 | (void) memset (newblock, 0, nbytes); | |
1825 | ||
1826 | /* Copy the symbols into the block. */ | |
1827 | ||
1828 | BLOCK_NSYMS (newblock) = i; | |
1829 | for (next = syms ; next ; next = next -> next) | |
1830 | { | |
1831 | BLOCK_SYM (newblock, --i) = next -> symbol; | |
1832 | if (STREQ (GCC_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol)) || | |
1833 | STREQ (GCC2_COMPILED_FLAG_SYMBOL, SYMBOL_NAME (next -> symbol))) | |
1834 | { | |
1835 | BLOCK_GCC_COMPILED (newblock) = 1; | |
1836 | } | |
1837 | } | |
1838 | ||
1839 | /* Now free the links of the list, and empty the list. */ | |
1840 | ||
1841 | for (next = syms ; next ; next = next1) | |
1842 | { | |
1843 | next1 = next -> next; | |
1844 | free (next); | |
1845 | } | |
1846 | ||
1847 | return (newblock); | |
1848 | } | |
1849 | ||
1850 | /* | |
1851 | ||
1852 | LOCAL FUNCTION | |
1853 | ||
1854 | closescope -- close a lexical block scope | |
1855 | ||
1856 | SYNOPSIS | |
1857 | ||
1858 | static void closescope (void) | |
1859 | ||
1860 | DESCRIPTION | |
1861 | ||
1862 | Close the current lexical block scope. Closing the current scope | |
1863 | is as simple as moving the current scope pointer up to the parent | |
1864 | of the current scope pointer. But we also take this opportunity | |
1865 | to build the block for the current scope first, since we now have | |
1866 | all of it's symbols. | |
1867 | */ | |
1868 | ||
1869 | static void | |
1870 | DEFUN_VOID(closescope) | |
1871 | { | |
1872 | struct scopenode *child; | |
1873 | ||
1874 | if (scope == NULL) | |
1875 | { | |
1876 | error ("DWARF parse error, too many close scopes"); | |
1877 | } | |
1878 | else | |
1879 | { | |
1880 | if (scope -> parent == NULL) | |
1881 | { | |
1882 | global_symbol_block = buildblock (global_symbols); | |
1883 | global_symbols = NULL; | |
1884 | BLOCK_START (global_symbol_block) = scope -> lowpc + baseaddr; | |
1885 | BLOCK_END (global_symbol_block) = scope -> highpc + baseaddr; | |
1886 | } | |
1887 | scope -> block = buildblock (scope -> symbols); | |
1888 | scope -> symbols = NULL; | |
1889 | BLOCK_START (scope -> block) = scope -> lowpc + baseaddr; | |
1890 | BLOCK_END (scope -> block) = scope -> highpc + baseaddr; | |
1891 | ||
1892 | /* Put the local block in as the value of the symbol that names it. */ | |
1893 | ||
1894 | if (scope -> namesym) | |
1895 | { | |
1896 | SYMBOL_BLOCK_VALUE (scope -> namesym) = scope -> block; | |
1897 | BLOCK_FUNCTION (scope -> block) = scope -> namesym; | |
1898 | } | |
1899 | ||
1900 | /* Install this scope's local block as the superblock of all child | |
1901 | scope blocks. */ | |
1902 | ||
1903 | for (child = scope -> child ; child ; child = child -> sibling) | |
1904 | { | |
1905 | BLOCK_SUPERBLOCK (child -> block) = scope -> block; | |
1906 | } | |
1907 | ||
1908 | scope = scope -> parent; | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | /* | |
1913 | ||
1914 | LOCAL FUNCTION | |
1915 | ||
1916 | record_line -- record a line number entry in the line vector | |
1917 | ||
1918 | SYNOPSIS | |
1919 | ||
1920 | static void record_line (int line, CORE_ADDR pc) | |
1921 | ||
1922 | DESCRIPTION | |
1923 | ||
1924 | Given a line number and the corresponding pc value, record | |
1925 | this pair in the line number vector, expanding the vector as | |
1926 | necessary. | |
1927 | */ | |
1928 | ||
1929 | static void | |
1930 | DEFUN(record_line, (line, pc), int line AND CORE_ADDR pc) | |
1931 | { | |
1932 | struct linetable_entry *e; | |
1933 | int nbytes; | |
1934 | ||
1935 | /* Make sure line vector is big enough. */ | |
1936 | ||
1937 | if (line_vector_index + 2 >= line_vector_length) | |
1938 | { | |
1939 | line_vector_length *= 2; | |
1940 | nbytes = sizeof (struct linetable); | |
1941 | nbytes += (line_vector_length * sizeof (struct linetable_entry)); | |
1942 | line_vector = (struct linetable *) xrealloc (line_vector, nbytes); | |
1943 | } | |
1944 | e = line_vector -> item + line_vector_index++; | |
1945 | e -> line = line; | |
1946 | e -> pc = pc; | |
1947 | } | |
1948 | ||
1949 | /* | |
1950 | ||
1951 | LOCAL FUNCTION | |
1952 | ||
1953 | decode_line_numbers -- decode a line number table fragment | |
1954 | ||
1955 | SYNOPSIS | |
1956 | ||
1957 | static void decode_line_numbers (char *tblscan, char *tblend, | |
1958 | long length, long base, long line, long pc) | |
1959 | ||
1960 | DESCRIPTION | |
1961 | ||
1962 | Translate the DWARF line number information to gdb form. | |
1963 | ||
1964 | The ".line" section contains one or more line number tables, one for | |
1965 | each ".line" section from the objects that were linked. | |
1966 | ||
1967 | The AT_stmt_list attribute for each TAG_source_file entry in the | |
1968 | ".debug" section contains the offset into the ".line" section for the | |
1969 | start of the table for that file. | |
1970 | ||
1971 | The table itself has the following structure: | |
1972 | ||
1973 | <table length><base address><source statement entry> | |
1974 | 4 bytes 4 bytes 10 bytes | |
1975 | ||
1976 | The table length is the total size of the table, including the 4 bytes | |
1977 | for the length information. | |
1978 | ||
1979 | The base address is the address of the first instruction generated | |
1980 | for the source file. | |
1981 | ||
1982 | Each source statement entry has the following structure: | |
1983 | ||
1984 | <line number><statement position><address delta> | |
1985 | 4 bytes 2 bytes 4 bytes | |
1986 | ||
1987 | The line number is relative to the start of the file, starting with | |
1988 | line 1. | |
1989 | ||
1990 | The statement position either -1 (0xFFFF) or the number of characters | |
1991 | from the beginning of the line to the beginning of the statement. | |
1992 | ||
1993 | The address delta is the difference between the base address and | |
1994 | the address of the first instruction for the statement. | |
1995 | ||
1996 | Note that we must copy the bytes from the packed table to our local | |
1997 | variables before attempting to use them, to avoid alignment problems | |
1998 | on some machines, particularly RISC processors. | |
1999 | ||
2000 | BUGS | |
2001 | ||
2002 | Does gdb expect the line numbers to be sorted? They are now by | |
2003 | chance/luck, but are not required to be. (FIXME) | |
2004 | ||
2005 | The line with number 0 is unused, gdb apparently can discover the | |
2006 | span of the last line some other way. How? (FIXME) | |
2007 | */ | |
2008 | ||
2009 | static void | |
2010 | DEFUN(decode_line_numbers, (linetable), char *linetable) | |
2011 | { | |
2012 | char *tblscan; | |
2013 | char *tblend; | |
2014 | long length; | |
2015 | long base; | |
2016 | long line; | |
2017 | long pc; | |
2018 | ||
2019 | if (linetable != NULL) | |
2020 | { | |
2021 | tblscan = tblend = linetable; | |
2022 | (void) memcpy (&length, tblscan, sizeof (long)); | |
2023 | tblscan += sizeof (long); | |
2024 | tblend += length; | |
2025 | (void) memcpy (&base, tblscan, sizeof (long)); | |
2026 | base += baseaddr; | |
2027 | tblscan += sizeof (long); | |
2028 | while (tblscan < tblend) | |
2029 | { | |
2030 | (void) memcpy (&line, tblscan, sizeof (long)); | |
2031 | tblscan += sizeof (long) + sizeof (short); | |
2032 | (void) memcpy (&pc, tblscan, sizeof (long)); | |
2033 | tblscan += sizeof (long); | |
2034 | pc += base; | |
2035 | if (line > 0) | |
2036 | { | |
2037 | record_line (line, pc); | |
2038 | } | |
2039 | } | |
2040 | } | |
2041 | } | |
2042 | ||
2043 | /* | |
2044 | ||
2045 | LOCAL FUNCTION | |
2046 | ||
2047 | add_symbol_to_list -- add a symbol to head of current symbol list | |
2048 | ||
2049 | SYNOPSIS | |
2050 | ||
2051 | static void add_symbol_to_list (struct symbol *symbol, struct | |
2052 | pending_symbol **listhead) | |
2053 | ||
2054 | DESCRIPTION | |
2055 | ||
2056 | Given a pointer to a symbol and a pointer to a pointer to a | |
2057 | list of symbols, add this symbol as the current head of the | |
2058 | list. Typically used for example to add a symbol to the | |
2059 | symbol list for the current scope. | |
2060 | ||
2061 | */ | |
2062 | ||
2063 | static void | |
2064 | DEFUN(add_symbol_to_list, (symbol, listhead), | |
2065 | struct symbol *symbol AND struct pending_symbol **listhead) | |
2066 | { | |
2067 | struct pending_symbol *link; | |
2068 | ||
2069 | if (symbol != NULL) | |
2070 | { | |
2071 | link = (struct pending_symbol *) xmalloc (sizeof (*link)); | |
2072 | link -> next = *listhead; | |
2073 | link -> symbol = symbol; | |
2074 | *listhead = link; | |
2075 | } | |
2076 | } | |
2077 | ||
2078 | /* | |
2079 | ||
2080 | LOCAL FUNCTION | |
2081 | ||
2082 | gatherblocks -- walk a scope tree and build block vectors | |
2083 | ||
2084 | SYNOPSIS | |
2085 | ||
2086 | static struct block **gatherblocks (struct block **dest, | |
2087 | struct scopenode *node) | |
2088 | ||
2089 | DESCRIPTION | |
2090 | ||
2091 | Recursively walk a scope tree rooted in the given node, adding blocks | |
2092 | to the array pointed to by DEST, in preorder. I.E., first we add the | |
2093 | block for the current scope, then all the blocks for child scopes, | |
2094 | and finally all the blocks for sibling scopes. | |
2095 | */ | |
2096 | ||
2097 | static struct block ** | |
2098 | DEFUN(gatherblocks, (dest, node), | |
2099 | struct block **dest AND struct scopenode *node) | |
2100 | { | |
2101 | if (node != NULL) | |
2102 | { | |
2103 | *dest++ = node -> block; | |
2104 | dest = gatherblocks (dest, node -> child); | |
2105 | dest = gatherblocks (dest, node -> sibling); | |
2106 | } | |
2107 | return (dest); | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | ||
2112 | LOCAL FUNCTION | |
2113 | ||
2114 | make_blockvector -- make a block vector from current scope tree | |
2115 | ||
2116 | SYNOPSIS | |
2117 | ||
2118 | static struct blockvector *make_blockvector (void) | |
2119 | ||
2120 | DESCRIPTION | |
2121 | ||
2122 | Make a blockvector from all the blocks in the current scope tree. | |
2123 | The first block is always the global symbol block, followed by the | |
2124 | block for the root of the scope tree which is the local symbol block, | |
2125 | followed by all the remaining blocks in the scope tree, which are all | |
2126 | local scope blocks. | |
2127 | ||
2128 | NOTES | |
2129 | ||
2130 | Note that since the root node of the scope tree is created at the time | |
2131 | each file scope is entered, there are always at least two blocks, | |
2132 | neither of which may have any symbols, but always contribute a block | |
2133 | to the block vector. So the test for number of blocks greater than 1 | |
2134 | below is unnecessary given bug free code. | |
2135 | ||
2136 | The resulting block structure varies slightly from that produced | |
2137 | by dbxread.c, in that block 0 and block 1 are sibling blocks while | |
2138 | with dbxread.c, block 1 is a child of block 0. This does not | |
2139 | seem to cause any problems, but probably should be fixed. (FIXME) | |
2140 | */ | |
2141 | ||
2142 | static struct blockvector * | |
2143 | DEFUN_VOID(make_blockvector) | |
2144 | { | |
2145 | struct blockvector *blockvector = NULL; | |
2146 | int i; | |
2147 | int nbytes; | |
2148 | ||
2149 | /* Recursively walk down the tree, counting the number of blocks. | |
2150 | Then add one to account for the global's symbol block */ | |
2151 | ||
2152 | i = scopecount (scopetree) + 1; | |
2153 | nbytes = sizeof (struct blockvector); | |
2154 | if (i > 1) | |
2155 | { | |
2156 | nbytes += (i - 1) * sizeof (struct block *); | |
2157 | } | |
2158 | blockvector = (struct blockvector *) | |
2159 | obstack_alloc (symbol_obstack, nbytes); | |
2160 | ||
2161 | /* Copy the blocks into the blockvector. */ | |
2162 | ||
2163 | BLOCKVECTOR_NBLOCKS (blockvector) = i; | |
2164 | BLOCKVECTOR_BLOCK (blockvector, 0) = global_symbol_block; | |
2165 | gatherblocks (&BLOCKVECTOR_BLOCK (blockvector, 1), scopetree); | |
2166 | ||
2167 | return (blockvector); | |
2168 | } | |
2169 | ||
2170 | /* | |
2171 | ||
2172 | LOCAL FUNCTION | |
2173 | ||
2174 | locval -- compute the value of a location attribute | |
2175 | ||
2176 | SYNOPSIS | |
2177 | ||
2178 | static int locval (char *loc) | |
2179 | ||
2180 | DESCRIPTION | |
2181 | ||
2182 | Given pointer to a string of bytes that define a location, compute | |
2183 | the location and return the value. | |
2184 | ||
2185 | When computing values involving the current value of the frame pointer, | |
2186 | the value zero is used, which results in a value relative to the frame | |
2187 | pointer, rather than the absolute value. This is what GDB wants | |
2188 | anyway. | |
2189 | ||
2190 | When the result is a register number, the global isreg flag is set, | |
2191 | otherwise it is cleared. This is a kludge until we figure out a better | |
2192 | way to handle the problem. Gdb's design does not mesh well with the | |
2193 | DWARF notion of a location computing interpreter, which is a shame | |
2194 | because the flexibility goes unused. | |
2195 | ||
2196 | NOTES | |
2197 | ||
2198 | Note that stack[0] is unused except as a default error return. | |
2199 | Note that stack overflow is not yet handled. | |
2200 | */ | |
2201 | ||
2202 | static int | |
2203 | DEFUN(locval, (loc), char *loc) | |
2204 | { | |
2205 | unsigned short nbytes; | |
2206 | auto int stack[64]; | |
2207 | int stacki; | |
2208 | char *end; | |
2209 | long regno; | |
2210 | ||
2211 | (void) memcpy (&nbytes, loc, sizeof (short)); | |
2212 | end = loc + sizeof (short) + nbytes; | |
2213 | stacki = 0; | |
2214 | stack[stacki] = 0; | |
2215 | isreg = 0; | |
2216 | for (loc += sizeof (short); loc < end; loc += sizeof (long)) | |
2217 | { | |
2218 | switch (*loc++) { | |
2219 | case 0: | |
2220 | /* error */ | |
2221 | loc = end; | |
2222 | break; | |
2223 | case OP_REG: | |
2224 | /* push register (number) */ | |
2225 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2226 | isreg = 1; | |
2227 | break; | |
2228 | case OP_BASEREG: | |
2229 | /* push value of register (number) */ | |
2230 | /* Actually, we compute the value as if register has 0 */ | |
2231 | (void) memcpy (®no, loc, sizeof (long)); | |
2232 | if (regno == R_FP) | |
2233 | { | |
2234 | stack[++stacki] = 0; | |
2235 | } | |
2236 | else | |
2237 | { | |
2238 | stack[++stacki] = 0; | |
2239 | SQUAWK (("BASEREG %d not handled!", regno)); | |
2240 | } | |
2241 | break; | |
2242 | case OP_ADDR: | |
2243 | /* push address (relocated address) */ | |
2244 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2245 | break; | |
2246 | case OP_CONST: | |
2247 | /* push constant (number) */ | |
2248 | (void) memcpy (&stack[++stacki], loc, sizeof (long)); | |
2249 | break; | |
2250 | case OP_DEREF2: | |
2251 | /* pop, deref and push 2 bytes (as a long) */ | |
2252 | SQUAWK (("OP_DEREF2 address %#x not handled", stack[stacki])); | |
2253 | break; | |
2254 | case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ | |
2255 | SQUAWK (("OP_DEREF4 address %#x not handled", stack[stacki])); | |
2256 | break; | |
2257 | case OP_ADD: /* pop top 2 items, add, push result */ | |
2258 | stack[stacki - 1] += stack[stacki]; | |
2259 | stacki--; | |
2260 | break; | |
2261 | } | |
2262 | } | |
2263 | return (stack[stacki]); | |
2264 | } | |
2265 | ||
2266 | /* | |
2267 | ||
2268 | LOCAL FUNCTION | |
2269 | ||
2270 | read_ofile_symtab -- build a full symtab entry from chunk of DIE's | |
2271 | ||
2272 | SYNOPSIS | |
2273 | ||
a048c8f5 | 2274 | static struct symtab *read_ofile_symtab (struct partial_symtab *pst) |
35f5886e FF |
2275 | |
2276 | DESCRIPTION | |
2277 | ||
a048c8f5 | 2278 | OFFSET is a relocation offset which gets added to each symbol (FIXME). |
35f5886e FF |
2279 | */ |
2280 | ||
2281 | static struct symtab * | |
a048c8f5 JG |
2282 | DEFUN(read_ofile_symtab, (pst), |
2283 | struct partial_symtab *pst) | |
35f5886e FF |
2284 | { |
2285 | struct cleanup *back_to; | |
2286 | long lnsize; | |
2287 | int foffset; | |
a048c8f5 | 2288 | bfd *abfd = pst->objfile->obfd; |
35f5886e FF |
2289 | |
2290 | /* Allocate a buffer for the entire chunk of DIE's for this compilation | |
2291 | unit, seek to the location in the file, and read in all the DIE's. */ | |
2292 | ||
2293 | diecount = 0; | |
2294 | dbbase = xmalloc (DBLENGTH(pst)); | |
2295 | dbroff = DBROFF(pst); | |
2296 | foffset = DBFOFF(pst) + dbroff; | |
a048c8f5 JG |
2297 | if (bfd_seek (abfd, foffset, 0) || |
2298 | (bfd_read (dbbase, DBLENGTH(pst), 1, abfd) != DBLENGTH(pst))) | |
35f5886e FF |
2299 | { |
2300 | free (dbbase); | |
2301 | error ("can't read DWARF data"); | |
2302 | } | |
2303 | back_to = make_cleanup (free, dbbase); | |
2304 | ||
2305 | /* If there is a line number table associated with this compilation unit | |
2306 | then read the first long word from the line number table fragment, which | |
2307 | contains the size of the fragment in bytes (including the long word | |
2308 | itself). Allocate a buffer for the fragment and read it in for future | |
2309 | processing. */ | |
2310 | ||
2311 | lnbase = NULL; | |
2312 | if (LNFOFF (pst)) | |
2313 | { | |
a048c8f5 JG |
2314 | if (bfd_seek (abfd, LNFOFF (pst), 0) || |
2315 | (bfd_read (&lnsize, sizeof(long), 1, abfd) != sizeof(long))) | |
35f5886e FF |
2316 | { |
2317 | error ("can't read DWARF line number table size"); | |
2318 | } | |
2319 | lnbase = xmalloc (lnsize); | |
a048c8f5 JG |
2320 | if (bfd_seek (abfd, LNFOFF (pst), 0) || |
2321 | (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) | |
35f5886e FF |
2322 | { |
2323 | free (lnbase); | |
2324 | error ("can't read DWARF line numbers"); | |
2325 | } | |
2326 | make_cleanup (free, lnbase); | |
2327 | } | |
2328 | ||
a048c8f5 | 2329 | process_dies (dbbase, dbbase + DBLENGTH(pst), pst->objfile); |
35f5886e FF |
2330 | do_cleanups (back_to); |
2331 | return (symtab_list); | |
2332 | } | |
2333 | ||
2334 | /* | |
2335 | ||
2336 | LOCAL FUNCTION | |
2337 | ||
2338 | psymtab_to_symtab_1 -- do grunt work for building a full symtab entry | |
2339 | ||
2340 | SYNOPSIS | |
2341 | ||
a048c8f5 | 2342 | static void psymtab_to_symtab_1 (struct partial_symtab *pst) |
35f5886e FF |
2343 | |
2344 | DESCRIPTION | |
2345 | ||
2346 | Called once for each partial symbol table entry that needs to be | |
2347 | expanded into a full symbol table entry. | |
2348 | ||
2349 | */ | |
2350 | ||
2351 | static void | |
2352 | DEFUN(psymtab_to_symtab_1, | |
a048c8f5 JG |
2353 | (pst), |
2354 | struct partial_symtab *pst) | |
35f5886e FF |
2355 | { |
2356 | int i; | |
2357 | ||
2358 | if (!pst) | |
2359 | { | |
2360 | return; | |
2361 | } | |
2362 | if (pst->readin) | |
2363 | { | |
2364 | fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
2365 | pst -> filename); | |
2366 | return; | |
2367 | } | |
2368 | ||
2369 | /* Read in all partial symtabs on which this one is dependent */ | |
2370 | for (i = 0; i < pst -> number_of_dependencies; i++) | |
2371 | if (!pst -> dependencies[i] -> readin) | |
2372 | { | |
2373 | /* Inform about additional files that need to be read in. */ | |
2374 | if (info_verbose) | |
2375 | { | |
2376 | fputs_filtered (" ", stdout); | |
2377 | wrap_here (""); | |
2378 | fputs_filtered ("and ", stdout); | |
2379 | wrap_here (""); | |
2380 | printf_filtered ("%s...", pst -> dependencies[i] -> filename); | |
2381 | wrap_here (""); /* Flush output */ | |
2382 | fflush (stdout); | |
2383 | } | |
a048c8f5 | 2384 | psymtab_to_symtab_1 (pst -> dependencies[i]); |
35f5886e FF |
2385 | } |
2386 | ||
2387 | if (DBLENGTH(pst)) /* Otherwise it's a dummy */ | |
2388 | { | |
2389 | /* Init stuff necessary for reading in symbols */ | |
a048c8f5 | 2390 | pst -> symtab = read_ofile_symtab (pst); |
35f5886e FF |
2391 | if (info_verbose) |
2392 | { | |
2393 | printf_filtered ("%d DIE's, sorting...", diecount); | |
2394 | fflush (stdout); | |
2395 | } | |
2396 | sort_symtab_syms (pst -> symtab); | |
2397 | } | |
2398 | pst -> readin = 1; | |
2399 | } | |
2400 | ||
2401 | /* | |
2402 | ||
2403 | LOCAL FUNCTION | |
2404 | ||
2405 | dwarf_psymtab_to_symtab -- build a full symtab entry from partial one | |
2406 | ||
2407 | SYNOPSIS | |
2408 | ||
2409 | static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) | |
2410 | ||
2411 | DESCRIPTION | |
2412 | ||
2413 | This is the DWARF support entry point for building a full symbol | |
2414 | table entry from a partial symbol table entry. We are passed a | |
2415 | pointer to the partial symbol table entry that needs to be expanded. | |
2416 | ||
2417 | */ | |
2418 | ||
2419 | static void | |
2420 | DEFUN(dwarf_psymtab_to_symtab, (pst), struct partial_symtab *pst) | |
2421 | { | |
2422 | int desc; | |
35f5886e FF |
2423 | bfd *sym_bfd; |
2424 | ||
2425 | if (!pst) | |
2426 | { | |
2427 | return; | |
2428 | } | |
2429 | if (pst -> readin) | |
2430 | { | |
2431 | fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n", | |
2432 | pst -> filename); | |
2433 | return; | |
2434 | } | |
2435 | ||
2436 | if (DBLENGTH(pst) || pst -> number_of_dependencies) | |
2437 | { | |
2438 | /* Print the message now, before starting serious work, to avoid | |
2439 | disconcerting pauses. */ | |
2440 | if (info_verbose) | |
2441 | { | |
2442 | printf_filtered ("Reading in symbols for %s...", pst -> filename); | |
2443 | fflush (stdout); | |
2444 | } | |
2445 | ||
a048c8f5 | 2446 | psymtab_to_symtab_1 (pst); |
35f5886e FF |
2447 | |
2448 | #if 0 /* FIXME: Check to see what dbxread is doing here and see if | |
2449 | we need to do an equivalent or is this something peculiar to | |
2450 | stabs/a.out format. */ | |
2451 | /* Match with global symbols. This only needs to be done once, | |
2452 | after all of the symtabs and dependencies have been read in. */ | |
2453 | scan_file_globals (); | |
2454 | #endif | |
2455 | ||
35f5886e FF |
2456 | /* Finish up the debug error message. */ |
2457 | if (info_verbose) | |
2458 | { | |
2459 | printf_filtered ("done.\n"); | |
2460 | } | |
2461 | } | |
2462 | } | |
2463 | ||
2464 | /* | |
2465 | ||
2466 | LOCAL FUNCTION | |
2467 | ||
2468 | init_psymbol_list -- initialize storage for partial symbols | |
2469 | ||
2470 | SYNOPSIS | |
2471 | ||
2472 | static void init_psymbol_list (int total_symbols) | |
2473 | ||
2474 | DESCRIPTION | |
2475 | ||
2476 | Initializes storage for all of the partial symbols that will be | |
2477 | created by dwarf_build_psymtabs and subsidiaries. | |
2478 | */ | |
2479 | ||
2480 | static void | |
2481 | DEFUN(init_psymbol_list, (total_symbols), int total_symbols) | |
2482 | { | |
2483 | /* Free any previously allocated psymbol lists. */ | |
2484 | ||
2485 | if (global_psymbols.list) | |
2486 | { | |
2487 | free (global_psymbols.list); | |
2488 | } | |
2489 | if (static_psymbols.list) | |
2490 | { | |
2491 | free (static_psymbols.list); | |
2492 | } | |
2493 | ||
2494 | /* Current best guess is that there are approximately a twentieth | |
2495 | of the total symbols (in a debugging file) are global or static | |
2496 | oriented symbols */ | |
2497 | ||
2498 | global_psymbols.size = total_symbols / 10; | |
2499 | static_psymbols.size = total_symbols / 10; | |
2500 | global_psymbols.next = global_psymbols.list = (struct partial_symbol *) | |
2501 | xmalloc (global_psymbols.size * sizeof (struct partial_symbol)); | |
2502 | static_psymbols.next = static_psymbols.list = (struct partial_symbol *) | |
2503 | xmalloc (static_psymbols.size * sizeof (struct partial_symbol)); | |
2504 | } | |
2505 | ||
2506 | /* | |
2507 | ||
2508 | LOCAL FUNCTION | |
2509 | ||
2510 | start_psymtab -- allocate and partially fill a partial symtab entry | |
2511 | ||
2512 | DESCRIPTION | |
2513 | ||
2514 | Allocate and partially fill a partial symtab. It will be completely | |
2515 | filled at the end of the symbol list. | |
2516 | ||
2517 | SYMFILE_NAME is the name of the symbol-file we are reading from, and | |
2518 | ADDR is the address relative to which its symbols are (incremental) | |
2519 | or 0 (normal). FILENAME is the name of the compilation unit that | |
2520 | these symbols were defined in, and they appear starting a address | |
2521 | TEXTLOW. DBROFF is the absolute file offset in SYMFILE_NAME where | |
2522 | the full symbols can be read for compilation unit FILENAME. | |
2523 | GLOBAL_SYMS and STATIC_SYMS are pointers to the current end of the | |
2524 | psymtab vector. | |
2525 | ||
2526 | */ | |
2527 | ||
2528 | static struct partial_symtab * | |
2529 | DEFUN(start_psymtab, | |
a048c8f5 | 2530 | (objfile, addr, filename, textlow, texthigh, dbfoff, curoff, |
35f5886e | 2531 | culength, lnfoff, global_syms, static_syms), |
a048c8f5 | 2532 | struct objfile *objfile AND |
35f5886e FF |
2533 | CORE_ADDR addr AND |
2534 | char *filename AND | |
2535 | CORE_ADDR textlow AND | |
2536 | CORE_ADDR texthigh AND | |
2537 | int dbfoff AND | |
2538 | int curoff AND | |
2539 | int culength AND | |
2540 | int lnfoff AND | |
2541 | struct partial_symbol *global_syms AND | |
2542 | struct partial_symbol *static_syms) | |
2543 | { | |
2544 | struct partial_symtab *result; | |
2545 | ||
2546 | result = (struct partial_symtab *) | |
2547 | obstack_alloc (psymbol_obstack, sizeof (struct partial_symtab)); | |
2548 | (void) memset (result, 0, sizeof (struct partial_symtab)); | |
2549 | result -> addr = addr; | |
a048c8f5 | 2550 | result -> objfile = objfile; |
35f5886e FF |
2551 | result -> filename = create_name (filename, psymbol_obstack); |
2552 | result -> textlow = textlow; | |
2553 | result -> texthigh = texthigh; | |
2554 | result -> read_symtab_private = (char *) obstack_alloc (psymbol_obstack, | |
2555 | sizeof (struct dwfinfo)); | |
2556 | DBFOFF (result) = dbfoff; | |
2557 | DBROFF (result) = curoff; | |
2558 | DBLENGTH (result) = culength; | |
2559 | LNFOFF (result) = lnfoff; | |
2560 | result -> readin = 0; | |
2561 | result -> symtab = NULL; | |
2562 | result -> read_symtab = dwarf_psymtab_to_symtab; | |
2563 | result -> globals_offset = global_syms - global_psymbols.list; | |
2564 | result -> statics_offset = static_syms - static_psymbols.list; | |
2565 | ||
2566 | result->n_global_syms = 0; | |
2567 | result->n_static_syms = 0; | |
2568 | ||
2569 | return result; | |
2570 | } | |
2571 | ||
2572 | /* | |
2573 | ||
2574 | LOCAL FUNCTION | |
2575 | ||
2576 | add_psymbol_to_list -- add a partial symbol to given list | |
2577 | ||
2578 | DESCRIPTION | |
2579 | ||
2580 | Add a partial symbol to one of the partial symbol vectors (pointed to | |
2581 | by listp). The vector is grown as necessary. | |
2582 | ||
2583 | */ | |
2584 | ||
2585 | static void | |
2586 | DEFUN(add_psymbol_to_list, | |
2587 | (listp, name, space, class, value), | |
2588 | struct psymbol_allocation_list *listp AND | |
2589 | char *name AND | |
2590 | enum namespace space AND | |
2591 | enum address_class class AND | |
2592 | CORE_ADDR value) | |
2593 | { | |
2594 | struct partial_symbol *psym; | |
2595 | int newsize; | |
2596 | ||
2597 | if (listp -> next >= listp -> list + listp -> size) | |
2598 | { | |
2599 | newsize = listp -> size * 2; | |
2600 | listp -> list = (struct partial_symbol *) | |
2601 | xrealloc (listp -> list, (newsize * sizeof (struct partial_symbol))); | |
2602 | /* Next assumes we only went one over. Should be good if program works | |
2603 | correctly */ | |
2604 | listp -> next = listp -> list + listp -> size; | |
2605 | listp -> size = newsize; | |
2606 | } | |
2607 | psym = listp -> next++; | |
2608 | SYMBOL_NAME (psym) = create_name (name, psymbol_obstack); | |
2609 | SYMBOL_NAMESPACE (psym) = space; | |
2610 | SYMBOL_CLASS (psym) = class; | |
2611 | SYMBOL_VALUE (psym) = value; | |
2612 | } | |
2613 | ||
2614 | /* | |
2615 | ||
2616 | LOCAL FUNCTION | |
2617 | ||
2618 | add_partial_symbol -- add symbol to partial symbol table | |
2619 | ||
2620 | DESCRIPTION | |
2621 | ||
2622 | Given a DIE, if it is one of the types that we want to | |
2623 | add to a partial symbol table, finish filling in the die info | |
2624 | and then add a partial symbol table entry for it. | |
2625 | ||
2626 | */ | |
2627 | ||
2628 | static void | |
2629 | DEFUN(add_partial_symbol, (dip), struct dieinfo *dip) | |
2630 | { | |
2631 | switch (dip -> dietag) | |
2632 | { | |
2633 | case TAG_global_subroutine: | |
a7446af6 | 2634 | record_misc_function (dip -> at_name, dip -> at_low_pc, mf_text); |
35f5886e FF |
2635 | add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE, |
2636 | LOC_BLOCK, dip -> at_low_pc); | |
2637 | break; | |
2638 | case TAG_global_variable: | |
a7446af6 FF |
2639 | record_misc_function (dip -> at_name, locval (dip -> at_location), |
2640 | mf_data); | |
35f5886e FF |
2641 | add_psymbol_to_list (&global_psymbols, dip -> at_name, VAR_NAMESPACE, |
2642 | LOC_STATIC, 0); | |
2643 | break; | |
2644 | case TAG_subroutine: | |
2645 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2646 | LOC_BLOCK, dip -> at_low_pc); | |
2647 | break; | |
2648 | case TAG_local_variable: | |
2649 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2650 | LOC_STATIC, 0); | |
2651 | break; | |
2652 | case TAG_typedef: | |
2653 | add_psymbol_to_list (&static_psymbols, dip -> at_name, VAR_NAMESPACE, | |
2654 | LOC_TYPEDEF, 0); | |
2655 | break; | |
2656 | case TAG_structure_type: | |
2657 | case TAG_union_type: | |
2658 | case TAG_enumeration_type: | |
2659 | add_psymbol_to_list (&static_psymbols, dip -> at_name, STRUCT_NAMESPACE, | |
2660 | LOC_TYPEDEF, 0); | |
2661 | break; | |
2662 | } | |
2663 | } | |
2664 | ||
2665 | /* | |
2666 | ||
2667 | LOCAL FUNCTION | |
2668 | ||
2669 | scan_partial_symbols -- scan DIE's within a single compilation unit | |
2670 | ||
2671 | DESCRIPTION | |
2672 | ||
2673 | Process the DIE's within a single compilation unit, looking for | |
2674 | interesting DIE's that contribute to the partial symbol table entry | |
2675 | for this compilation unit. Since we cannot follow any sibling | |
2676 | chains without reading the complete DIE info for every DIE, | |
2677 | it is probably faster to just sequentially check each one to | |
2678 | see if it is one of the types we are interested in, and if | |
2679 | so, then extracting all the attributes info and generating a | |
2680 | partial symbol table entry. | |
2681 | ||
2682 | */ | |
2683 | ||
2684 | static void | |
2685 | DEFUN(scan_partial_symbols, (thisdie, enddie), char *thisdie AND char *enddie) | |
2686 | { | |
2687 | char *nextdie; | |
2688 | struct dieinfo di; | |
2689 | ||
2690 | while (thisdie < enddie) | |
2691 | { | |
2692 | basicdieinfo (&di, thisdie); | |
2693 | if (di.dielength < sizeof (long)) | |
2694 | { | |
2695 | break; | |
2696 | } | |
2697 | else | |
2698 | { | |
2699 | nextdie = thisdie + di.dielength; | |
2700 | switch (di.dietag) | |
2701 | { | |
2702 | case TAG_global_subroutine: | |
2703 | case TAG_global_variable: | |
2704 | case TAG_subroutine: | |
2705 | case TAG_local_variable: | |
2706 | case TAG_typedef: | |
2707 | case TAG_structure_type: | |
2708 | case TAG_union_type: | |
2709 | case TAG_enumeration_type: | |
2710 | completedieinfo (&di); | |
2711 | /* Don't attempt to add anonymous structures, unions, or | |
2712 | enumerations since they have no name. Also check that | |
2713 | this is the place where the actual definition occurs, | |
2714 | rather than just a reference to an external. */ | |
2715 | if (di.at_name != NULL && !di.at_is_external_p) | |
2716 | { | |
2717 | add_partial_symbol (&di); | |
2718 | } | |
2719 | break; | |
2720 | } | |
2721 | } | |
2722 | thisdie = nextdie; | |
2723 | } | |
2724 | } | |
2725 | ||
2726 | /* | |
2727 | ||
2728 | LOCAL FUNCTION | |
2729 | ||
2730 | scan_compilation_units -- build a psymtab entry for each compilation | |
2731 | ||
2732 | DESCRIPTION | |
2733 | ||
2734 | This is the top level dwarf parsing routine for building partial | |
2735 | symbol tables. | |
2736 | ||
2737 | It scans from the beginning of the DWARF table looking for the first | |
2738 | TAG_compile_unit DIE, and then follows the sibling chain to locate | |
2739 | each additional TAG_compile_unit DIE. | |
2740 | ||
2741 | For each TAG_compile_unit DIE it creates a partial symtab structure, | |
2742 | calls a subordinate routine to collect all the compilation unit's | |
2743 | global DIE's, file scope DIEs, typedef DIEs, etc, and then links the | |
2744 | new partial symtab structure into the partial symbol table. It also | |
2745 | records the appropriate information in the partial symbol table entry | |
2746 | to allow the chunk of DIE's and line number table for this compilation | |
2747 | unit to be located and re-read later, to generate a complete symbol | |
2748 | table entry for the compilation unit. | |
2749 | ||
2750 | Thus it effectively partitions up a chunk of DIE's for multiple | |
2751 | compilation units into smaller DIE chunks and line number tables, | |
2752 | and associates them with a partial symbol table entry. | |
2753 | ||
2754 | NOTES | |
2755 | ||
2756 | If any compilation unit has no line number table associated with | |
2757 | it for some reason (a missing at_stmt_list attribute, rather than | |
2758 | just one with a value of zero, which is valid) then we ensure that | |
2759 | the recorded file offset is zero so that the routine which later | |
2760 | reads line number table fragments knows that there is no fragment | |
2761 | to read. | |
2762 | ||
2763 | RETURNS | |
2764 | ||
2765 | Returns no value. | |
2766 | ||
2767 | */ | |
2768 | ||
2769 | static void | |
2770 | DEFUN(scan_compilation_units, | |
a048c8f5 | 2771 | (filename, addr, thisdie, enddie, dbfoff, lnoffset, objfile), |
35f5886e FF |
2772 | char *filename AND |
2773 | CORE_ADDR addr AND | |
2774 | char *thisdie AND | |
2775 | char *enddie AND | |
2776 | unsigned int dbfoff AND | |
a048c8f5 JG |
2777 | unsigned int lnoffset AND |
2778 | struct objfile *objfile) | |
35f5886e FF |
2779 | { |
2780 | char *nextdie; | |
2781 | struct dieinfo di; | |
2782 | struct partial_symtab *pst; | |
2783 | int culength; | |
2784 | int curoff; | |
2785 | int curlnoffset; | |
2786 | ||
2787 | while (thisdie < enddie) | |
2788 | { | |
2789 | basicdieinfo (&di, thisdie); | |
2790 | if (di.dielength < sizeof (long)) | |
2791 | { | |
2792 | break; | |
2793 | } | |
2794 | else if (di.dietag != TAG_compile_unit) | |
2795 | { | |
2796 | nextdie = thisdie + di.dielength; | |
2797 | } | |
2798 | else | |
2799 | { | |
2800 | completedieinfo (&di); | |
2801 | if (di.at_sibling != 0) | |
2802 | { | |
2803 | nextdie = dbbase + di.at_sibling - dbroff; | |
2804 | } | |
2805 | else | |
2806 | { | |
2807 | nextdie = thisdie + di.dielength; | |
2808 | } | |
2809 | curoff = thisdie - dbbase; | |
2810 | culength = nextdie - thisdie; | |
2811 | curlnoffset = di.at_stmt_list_p ? lnoffset + di.at_stmt_list : 0; | |
a048c8f5 | 2812 | pst = start_psymtab (objfile, addr, di.at_name, |
35f5886e FF |
2813 | di.at_low_pc, di.at_high_pc, |
2814 | dbfoff, curoff, culength, curlnoffset, | |
2815 | global_psymbols.next, | |
2816 | static_psymbols.next); | |
2817 | scan_partial_symbols (thisdie + di.dielength, nextdie); | |
2818 | pst -> n_global_syms = global_psymbols.next - | |
2819 | (global_psymbols.list + pst -> globals_offset); | |
2820 | pst -> n_static_syms = static_psymbols.next - | |
2821 | (static_psymbols.list + pst -> statics_offset); | |
2822 | /* Sort the global list; don't sort the static list */ | |
2823 | qsort (global_psymbols.list + pst -> globals_offset, | |
2824 | pst -> n_global_syms, sizeof (struct partial_symbol), | |
2825 | compare_psymbols); | |
2826 | /* If there is already a psymtab or symtab for a file of this name, | |
2827 | remove it. (If there is a symtab, more drastic things also | |
2828 | happen.) This happens in VxWorks. */ | |
2829 | free_named_symtabs (pst -> filename); | |
2830 | /* Place the partial symtab on the partial symtab list */ | |
2831 | pst -> next = partial_symtab_list; | |
2832 | partial_symtab_list = pst; | |
2833 | } | |
2834 | thisdie = nextdie; | |
2835 | } | |
2836 | } | |
2837 | ||
2838 | /* | |
2839 | ||
2840 | LOCAL FUNCTION | |
2841 | ||
2842 | new_symbol -- make a symbol table entry for a new symbol | |
2843 | ||
2844 | SYNOPSIS | |
2845 | ||
2846 | static struct symbol *new_symbol (struct dieinfo *dip) | |
2847 | ||
2848 | DESCRIPTION | |
2849 | ||
2850 | Given a pointer to a DWARF information entry, figure out if we need | |
2851 | to make a symbol table entry for it, and if so, create a new entry | |
2852 | and return a pointer to it. | |
2853 | */ | |
2854 | ||
2855 | static struct symbol * | |
2856 | DEFUN(new_symbol, (dip), struct dieinfo *dip) | |
2857 | { | |
2858 | struct symbol *sym = NULL; | |
2859 | ||
2860 | if (dip -> at_name != NULL) | |
2861 | { | |
2862 | sym = (struct symbol *) obstack_alloc (symbol_obstack, | |
2863 | sizeof (struct symbol)); | |
2864 | (void) memset (sym, 0, sizeof (struct symbol)); | |
2865 | SYMBOL_NAME (sym) = create_name (dip -> at_name, symbol_obstack); | |
2866 | /* default assumptions */ | |
2867 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2868 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2869 | SYMBOL_TYPE (sym) = decode_die_type (dip); | |
2870 | switch (dip -> dietag) | |
2871 | { | |
2872 | case TAG_label: | |
2873 | SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr; | |
2874 | SYMBOL_CLASS (sym) = LOC_LABEL; | |
2875 | break; | |
2876 | case TAG_global_subroutine: | |
2877 | case TAG_subroutine: | |
2878 | SYMBOL_VALUE (sym) = dip -> at_low_pc + baseaddr; | |
2879 | SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); | |
2880 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
2881 | if (dip -> dietag == TAG_global_subroutine) | |
2882 | { | |
2883 | add_symbol_to_list (sym, &global_symbols); | |
2884 | } | |
2885 | else | |
2886 | { | |
2887 | add_symbol_to_list (sym, &scope -> symbols); | |
2888 | } | |
2889 | break; | |
2890 | case TAG_global_variable: | |
2891 | case TAG_local_variable: | |
2892 | if (dip -> at_location != NULL) | |
2893 | { | |
2894 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2895 | } | |
2896 | if (dip -> dietag == TAG_global_variable) | |
2897 | { | |
2898 | add_symbol_to_list (sym, &global_symbols); | |
2899 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2900 | SYMBOL_VALUE (sym) += baseaddr; | |
2901 | } | |
2902 | else | |
2903 | { | |
2904 | add_symbol_to_list (sym, &scope -> symbols); | |
2905 | if (scope -> parent != NULL) | |
2906 | { | |
2907 | if (isreg) | |
2908 | { | |
2909 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
2910 | } | |
2911 | else | |
2912 | { | |
2913 | SYMBOL_CLASS (sym) = LOC_LOCAL; | |
2914 | } | |
2915 | } | |
2916 | else | |
2917 | { | |
2918 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
2919 | SYMBOL_VALUE (sym) += baseaddr; | |
2920 | } | |
2921 | } | |
2922 | break; | |
2923 | case TAG_formal_parameter: | |
2924 | if (dip -> at_location != NULL) | |
2925 | { | |
2926 | SYMBOL_VALUE (sym) = locval (dip -> at_location); | |
2927 | } | |
2928 | add_symbol_to_list (sym, &scope -> symbols); | |
2929 | if (isreg) | |
2930 | { | |
2931 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
2932 | } | |
2933 | else | |
2934 | { | |
2935 | SYMBOL_CLASS (sym) = LOC_ARG; | |
2936 | } | |
2937 | break; | |
2938 | case TAG_unspecified_parameters: | |
2939 | /* From varargs functions; gdb doesn't seem to have any interest in | |
2940 | this information, so just ignore it for now. (FIXME?) */ | |
2941 | break; | |
2942 | case TAG_structure_type: | |
2943 | case TAG_union_type: | |
2944 | case TAG_enumeration_type: | |
2945 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2946 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
2947 | add_symbol_to_list (sym, &scope -> symbols); | |
2948 | break; | |
2949 | case TAG_typedef: | |
2950 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
2951 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2952 | add_symbol_to_list (sym, &scope -> symbols); | |
2953 | break; | |
2954 | default: | |
2955 | /* Not a tag we recognize. Hopefully we aren't processing trash | |
2956 | data, but since we must specifically ignore things we don't | |
2957 | recognize, there is nothing else we should do at this point. */ | |
2958 | break; | |
2959 | } | |
2960 | } | |
2961 | return (sym); | |
2962 | } | |
2963 | ||
2964 | /* | |
2965 | ||
2966 | LOCAL FUNCTION | |
2967 | ||
2968 | decode_mod_fund_type -- decode a modified fundamental type | |
2969 | ||
2970 | SYNOPSIS | |
2971 | ||
2972 | static struct type *decode_mod_fund_type (char *typedata) | |
2973 | ||
2974 | DESCRIPTION | |
2975 | ||
2976 | Decode a block of data containing a modified fundamental | |
2977 | type specification. TYPEDATA is a pointer to the block, | |
2978 | which consists of a two byte length, containing the size | |
2979 | of the rest of the block. At the end of the block is a | |
2980 | two byte value that gives the fundamental type. Everything | |
2981 | in between are type modifiers. | |
2982 | ||
2983 | We simply compute the number of modifiers and call the general | |
2984 | function decode_modified_type to do the actual work. | |
2985 | */ | |
2986 | ||
2987 | static struct type * | |
2988 | DEFUN(decode_mod_fund_type, (typedata), char *typedata) | |
2989 | { | |
2990 | struct type *typep = NULL; | |
2991 | unsigned short modcount; | |
2992 | unsigned char *modifiers; | |
2993 | ||
2994 | /* Get the total size of the block, exclusive of the size itself */ | |
2995 | (void) memcpy (&modcount, typedata, sizeof (short)); | |
2996 | /* Deduct the size of the fundamental type bytes at the end of the block. */ | |
2997 | modcount -= sizeof (short); | |
2998 | /* Skip over the two size bytes at the beginning of the block. */ | |
c8c0a2bd | 2999 | modifiers = (unsigned char *) typedata + sizeof (short); |
35f5886e FF |
3000 | /* Now do the actual decoding */ |
3001 | typep = decode_modified_type (modifiers, modcount, AT_mod_fund_type); | |
3002 | return (typep); | |
3003 | } | |
3004 | ||
3005 | /* | |
3006 | ||
3007 | LOCAL FUNCTION | |
3008 | ||
3009 | decode_mod_u_d_type -- decode a modified user defined type | |
3010 | ||
3011 | SYNOPSIS | |
3012 | ||
3013 | static struct type *decode_mod_u_d_type (char *typedata) | |
3014 | ||
3015 | DESCRIPTION | |
3016 | ||
3017 | Decode a block of data containing a modified user defined | |
3018 | type specification. TYPEDATA is a pointer to the block, | |
3019 | which consists of a two byte length, containing the size | |
3020 | of the rest of the block. At the end of the block is a | |
3021 | four byte value that gives a reference to a user defined type. | |
3022 | Everything in between are type modifiers. | |
3023 | ||
3024 | We simply compute the number of modifiers and call the general | |
3025 | function decode_modified_type to do the actual work. | |
3026 | */ | |
3027 | ||
3028 | static struct type * | |
3029 | DEFUN(decode_mod_u_d_type, (typedata), char *typedata) | |
3030 | { | |
3031 | struct type *typep = NULL; | |
3032 | unsigned short modcount; | |
3033 | unsigned char *modifiers; | |
3034 | ||
3035 | /* Get the total size of the block, exclusive of the size itself */ | |
3036 | (void) memcpy (&modcount, typedata, sizeof (short)); | |
3037 | /* Deduct the size of the reference type bytes at the end of the block. */ | |
3038 | modcount -= sizeof (long); | |
3039 | /* Skip over the two size bytes at the beginning of the block. */ | |
c8c0a2bd | 3040 | modifiers = (unsigned char *) typedata + sizeof (short); |
35f5886e FF |
3041 | /* Now do the actual decoding */ |
3042 | typep = decode_modified_type (modifiers, modcount, AT_mod_u_d_type); | |
3043 | return (typep); | |
3044 | } | |
3045 | ||
3046 | /* | |
3047 | ||
3048 | LOCAL FUNCTION | |
3049 | ||
3050 | decode_modified_type -- decode modified user or fundamental type | |
3051 | ||
3052 | SYNOPSIS | |
3053 | ||
3054 | static struct type *decode_modified_type (unsigned char *modifiers, | |
3055 | unsigned short modcount, int mtype) | |
3056 | ||
3057 | DESCRIPTION | |
3058 | ||
3059 | Decode a modified type, either a modified fundamental type or | |
3060 | a modified user defined type. MODIFIERS is a pointer to the | |
3061 | block of bytes that define MODCOUNT modifiers. Immediately | |
3062 | following the last modifier is a short containing the fundamental | |
3063 | type or a long containing the reference to the user defined | |
3064 | type. Which one is determined by MTYPE, which is either | |
3065 | AT_mod_fund_type or AT_mod_u_d_type to indicate what modified | |
3066 | type we are generating. | |
3067 | ||
3068 | We call ourself recursively to generate each modified type,` | |
3069 | until MODCOUNT reaches zero, at which point we have consumed | |
3070 | all the modifiers and generate either the fundamental type or | |
3071 | user defined type. When the recursion unwinds, each modifier | |
3072 | is applied in turn to generate the full modified type. | |
3073 | ||
3074 | NOTES | |
3075 | ||
3076 | If we find a modifier that we don't recognize, and it is not one | |
3077 | of those reserved for application specific use, then we issue a | |
3078 | warning and simply ignore the modifier. | |
3079 | ||
3080 | BUGS | |
3081 | ||
3082 | We currently ignore MOD_const and MOD_volatile. (FIXME) | |
3083 | ||
3084 | */ | |
3085 | ||
3086 | static struct type * | |
3087 | DEFUN(decode_modified_type, | |
3088 | (modifiers, modcount, mtype), | |
3089 | unsigned char *modifiers AND unsigned short modcount AND int mtype) | |
3090 | { | |
3091 | struct type *typep = NULL; | |
3092 | unsigned short fundtype; | |
3093 | DIEREF dieref; | |
3094 | unsigned char modifier; | |
3095 | ||
3096 | if (modcount == 0) | |
3097 | { | |
3098 | switch (mtype) | |
3099 | { | |
3100 | case AT_mod_fund_type: | |
3101 | (void) memcpy (&fundtype, modifiers, sizeof (short)); | |
3102 | typep = decode_fund_type (fundtype); | |
3103 | break; | |
3104 | case AT_mod_u_d_type: | |
3105 | (void) memcpy (&dieref, modifiers, sizeof (DIEREF)); | |
3106 | if ((typep = lookup_utype (dieref)) == NULL) | |
3107 | { | |
3108 | typep = alloc_utype (dieref, NULL); | |
3109 | } | |
3110 | break; | |
3111 | default: | |
3112 | SQUAWK (("botched modified type decoding (mtype 0x%x)", mtype)); | |
3113 | typep = builtin_type_int; | |
3114 | break; | |
3115 | } | |
3116 | } | |
3117 | else | |
3118 | { | |
3119 | modifier = *modifiers++; | |
3120 | typep = decode_modified_type (modifiers, --modcount, mtype); | |
3121 | switch (modifier) | |
3122 | { | |
3123 | case MOD_pointer_to: | |
3124 | typep = lookup_pointer_type (typep); | |
3125 | break; | |
3126 | case MOD_reference_to: | |
3127 | typep = lookup_reference_type (typep); | |
3128 | break; | |
3129 | case MOD_const: | |
3130 | SQUAWK (("type modifier 'const' ignored")); /* FIXME */ | |
3131 | break; | |
3132 | case MOD_volatile: | |
3133 | SQUAWK (("type modifier 'volatile' ignored")); /* FIXME */ | |
3134 | break; | |
3135 | default: | |
3136 | if (!(MOD_lo_user <= modifier && modifier <= MOD_hi_user)) | |
3137 | { | |
3138 | SQUAWK (("unknown type modifier %u", modifier)); | |
3139 | } | |
3140 | break; | |
3141 | } | |
3142 | } | |
3143 | return (typep); | |
3144 | } | |
3145 | ||
3146 | /* | |
3147 | ||
3148 | LOCAL FUNCTION | |
3149 | ||
3150 | decode_fund_type -- translate basic DWARF type to gdb base type | |
3151 | ||
3152 | DESCRIPTION | |
3153 | ||
3154 | Given an integer that is one of the fundamental DWARF types, | |
3155 | translate it to one of the basic internal gdb types and return | |
3156 | a pointer to the appropriate gdb type (a "struct type *"). | |
3157 | ||
3158 | NOTES | |
3159 | ||
3160 | If we encounter a fundamental type that we are unprepared to | |
3161 | deal with, and it is not in the range of those types defined | |
3162 | as application specific types, then we issue a warning and | |
3163 | treat the type as builtin_type_int. | |
3164 | */ | |
3165 | ||
3166 | static struct type * | |
3167 | DEFUN(decode_fund_type, (fundtype), unsigned short fundtype) | |
3168 | { | |
3169 | struct type *typep = NULL; | |
3170 | ||
3171 | switch (fundtype) | |
3172 | { | |
3173 | ||
3174 | case FT_void: | |
3175 | typep = builtin_type_void; | |
3176 | break; | |
3177 | ||
3178 | case FT_pointer: /* (void *) */ | |
3179 | typep = lookup_pointer_type (builtin_type_void); | |
3180 | break; | |
3181 | ||
3182 | case FT_char: | |
3183 | case FT_signed_char: | |
3184 | typep = builtin_type_char; | |
3185 | break; | |
3186 | ||
3187 | case FT_short: | |
3188 | case FT_signed_short: | |
3189 | typep = builtin_type_short; | |
3190 | break; | |
3191 | ||
3192 | case FT_integer: | |
3193 | case FT_signed_integer: | |
3194 | case FT_boolean: /* Was FT_set in AT&T version */ | |
3195 | typep = builtin_type_int; | |
3196 | break; | |
3197 | ||
3198 | case FT_long: | |
3199 | case FT_signed_long: | |
3200 | typep = builtin_type_long; | |
3201 | break; | |
3202 | ||
3203 | case FT_float: | |
3204 | typep = builtin_type_float; | |
3205 | break; | |
3206 | ||
3207 | case FT_dbl_prec_float: | |
3208 | typep = builtin_type_double; | |
3209 | break; | |
3210 | ||
3211 | case FT_unsigned_char: | |
3212 | typep = builtin_type_unsigned_char; | |
3213 | break; | |
3214 | ||
3215 | case FT_unsigned_short: | |
3216 | typep = builtin_type_unsigned_short; | |
3217 | break; | |
3218 | ||
3219 | case FT_unsigned_integer: | |
3220 | typep = builtin_type_unsigned_int; | |
3221 | break; | |
3222 | ||
3223 | case FT_unsigned_long: | |
3224 | typep = builtin_type_unsigned_long; | |
3225 | break; | |
3226 | ||
3227 | case FT_ext_prec_float: | |
3228 | typep = builtin_type_long_double; | |
3229 | break; | |
3230 | ||
3231 | case FT_complex: | |
3232 | typep = builtin_type_complex; | |
3233 | break; | |
3234 | ||
3235 | case FT_dbl_prec_complex: | |
3236 | typep = builtin_type_double_complex; | |
3237 | break; | |
3238 | ||
3239 | case FT_long_long: | |
3240 | case FT_signed_long_long: | |
3241 | typep = builtin_type_long_long; | |
3242 | break; | |
3243 | ||
3244 | case FT_unsigned_long_long: | |
3245 | typep = builtin_type_unsigned_long_long; | |
3246 | break; | |
3247 | ||
3248 | } | |
3249 | ||
3250 | if ((typep == NULL) && !(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) | |
3251 | { | |
3252 | SQUAWK (("unexpected fundamental type 0x%x", fundtype)); | |
3253 | typep = builtin_type_void; | |
3254 | } | |
3255 | ||
3256 | return (typep); | |
3257 | } | |
3258 | ||
3259 | /* | |
3260 | ||
3261 | LOCAL FUNCTION | |
3262 | ||
3263 | create_name -- allocate a fresh copy of a string on an obstack | |
3264 | ||
3265 | DESCRIPTION | |
3266 | ||
3267 | Given a pointer to a string and a pointer to an obstack, allocates | |
3268 | a fresh copy of the string on the specified obstack. | |
3269 | ||
3270 | */ | |
3271 | ||
3272 | static char * | |
3273 | DEFUN(create_name, (name, obstackp), char *name AND struct obstack *obstackp) | |
3274 | { | |
3275 | int length; | |
3276 | char *newname; | |
3277 | ||
3278 | length = strlen (name) + 1; | |
3279 | newname = (char *) obstack_alloc (obstackp, length); | |
3280 | (void) strcpy (newname, name); | |
3281 | return (newname); | |
3282 | } | |
3283 | ||
3284 | /* | |
3285 | ||
3286 | LOCAL FUNCTION | |
3287 | ||
3288 | basicdieinfo -- extract the minimal die info from raw die data | |
3289 | ||
3290 | SYNOPSIS | |
3291 | ||
3292 | void basicdieinfo (char *diep, struct dieinfo *dip) | |
3293 | ||
3294 | DESCRIPTION | |
3295 | ||
3296 | Given a pointer to raw DIE data, and a pointer to an instance of a | |
3297 | die info structure, this function extracts the basic information | |
3298 | from the DIE data required to continue processing this DIE, along | |
3299 | with some bookkeeping information about the DIE. | |
3300 | ||
3301 | The information we absolutely must have includes the DIE tag, | |
3302 | and the DIE length. If we need the sibling reference, then we | |
3303 | will have to call completedieinfo() to process all the remaining | |
3304 | DIE information. | |
3305 | ||
3306 | Note that since there is no guarantee that the data is properly | |
3307 | aligned in memory for the type of access required (indirection | |
3308 | through anything other than a char pointer), we use memcpy to | |
3309 | shuffle data items larger than a char. Possibly inefficient, but | |
3310 | quite portable. | |
3311 | ||
3312 | We also take care of some other basic things at this point, such | |
3313 | as ensuring that the instance of the die info structure starts | |
3314 | out completely zero'd and that curdie is initialized for use | |
3315 | in error reporting if we have a problem with the current die. | |
3316 | ||
3317 | NOTES | |
3318 | ||
3319 | All DIE's must have at least a valid length, thus the minimum | |
3320 | DIE size is sizeof (long). In order to have a valid tag, the | |
3321 | DIE size must be at least sizeof (short) larger, otherwise they | |
3322 | are forced to be TAG_padding DIES. | |
3323 | ||
3324 | Padding DIES must be at least sizeof(long) in length, implying that | |
3325 | if a padding DIE is used for alignment and the amount needed is less | |
3326 | than sizeof(long) then the padding DIE has to be big enough to align | |
3327 | to the next alignment boundry. | |
3328 | */ | |
3329 | ||
3330 | static void | |
3331 | DEFUN(basicdieinfo, (dip, diep), struct dieinfo *dip AND char *diep) | |
3332 | { | |
3333 | curdie = dip; | |
3334 | (void) memset (dip, 0, sizeof (struct dieinfo)); | |
3335 | dip -> die = diep; | |
3336 | dip -> dieref = dbroff + (diep - dbbase); | |
3337 | (void) memcpy (&dip -> dielength, diep, sizeof (long)); | |
3338 | if (dip -> dielength < sizeof (long)) | |
3339 | { | |
3340 | dwarfwarn ("malformed DIE, bad length (%d bytes)", dip -> dielength); | |
3341 | } | |
3342 | else if (dip -> dielength < (sizeof (long) + sizeof (short))) | |
3343 | { | |
3344 | dip -> dietag = TAG_padding; | |
3345 | } | |
3346 | else | |
3347 | { | |
3348 | (void) memcpy (&dip -> dietag, diep + sizeof (long), sizeof (short)); | |
3349 | } | |
3350 | } | |
3351 | ||
3352 | /* | |
3353 | ||
3354 | LOCAL FUNCTION | |
3355 | ||
3356 | completedieinfo -- finish reading the information for a given DIE | |
3357 | ||
3358 | SYNOPSIS | |
3359 | ||
3360 | void completedieinfo (struct dieinfo *dip) | |
3361 | ||
3362 | DESCRIPTION | |
3363 | ||
3364 | Given a pointer to an already partially initialized die info structure, | |
3365 | scan the raw DIE data and finish filling in the die info structure | |
3366 | from the various attributes found. | |
3367 | ||
3368 | Note that since there is no guarantee that the data is properly | |
3369 | aligned in memory for the type of access required (indirection | |
3370 | through anything other than a char pointer), we use memcpy to | |
3371 | shuffle data items larger than a char. Possibly inefficient, but | |
3372 | quite portable. | |
3373 | ||
3374 | NOTES | |
3375 | ||
3376 | Each time we are called, we increment the diecount variable, which | |
3377 | keeps an approximate count of the number of dies processed for | |
3378 | each compilation unit. This information is presented to the user | |
3379 | if the info_verbose flag is set. | |
3380 | ||
3381 | */ | |
3382 | ||
3383 | static void | |
3384 | DEFUN(completedieinfo, (dip), struct dieinfo *dip) | |
3385 | { | |
3386 | char *diep; /* Current pointer into raw DIE data */ | |
3387 | char *end; /* Terminate DIE scan here */ | |
3388 | unsigned short attr; /* Current attribute being scanned */ | |
3389 | unsigned short form; /* Form of the attribute */ | |
3390 | short block2sz; /* Size of a block2 attribute field */ | |
3391 | long block4sz; /* Size of a block4 attribute field */ | |
3392 | ||
3393 | diecount++; | |
3394 | diep = dip -> die; | |
3395 | end = diep + dip -> dielength; | |
3396 | diep += sizeof (long) + sizeof (short); | |
3397 | while (diep < end) | |
3398 | { | |
3399 | (void) memcpy (&attr, diep, sizeof (short)); | |
3400 | diep += sizeof (short); | |
3401 | switch (attr) | |
3402 | { | |
3403 | case AT_fund_type: | |
3404 | (void) memcpy (&dip -> at_fund_type, diep, sizeof (short)); | |
3405 | break; | |
3406 | case AT_ordering: | |
3407 | (void) memcpy (&dip -> at_ordering, diep, sizeof (short)); | |
3408 | break; | |
3409 | case AT_bit_offset: | |
3410 | (void) memcpy (&dip -> at_bit_offset, diep, sizeof (short)); | |
3411 | break; | |
3412 | case AT_visibility: | |
3413 | (void) memcpy (&dip -> at_visibility, diep, sizeof (short)); | |
3414 | break; | |
3415 | case AT_sibling: | |
3416 | (void) memcpy (&dip -> at_sibling, diep, sizeof (long)); | |
3417 | break; | |
3418 | case AT_stmt_list: | |
3419 | (void) memcpy (&dip -> at_stmt_list, diep, sizeof (long)); | |
3420 | dip -> at_stmt_list_p = 1; | |
3421 | break; | |
3422 | case AT_low_pc: | |
3423 | (void) memcpy (&dip -> at_low_pc, diep, sizeof (long)); | |
3424 | break; | |
3425 | case AT_high_pc: | |
3426 | (void) memcpy (&dip -> at_high_pc, diep, sizeof (long)); | |
3427 | break; | |
3428 | case AT_language: | |
3429 | (void) memcpy (&dip -> at_language, diep, sizeof (long)); | |
3430 | break; | |
3431 | case AT_user_def_type: | |
3432 | (void) memcpy (&dip -> at_user_def_type, diep, sizeof (long)); | |
3433 | break; | |
3434 | case AT_byte_size: | |
3435 | (void) memcpy (&dip -> at_byte_size, diep, sizeof (long)); | |
3436 | break; | |
3437 | case AT_bit_size: | |
3438 | (void) memcpy (&dip -> at_bit_size, diep, sizeof (long)); | |
3439 | break; | |
3440 | case AT_member: | |
3441 | (void) memcpy (&dip -> at_member, diep, sizeof (long)); | |
3442 | break; | |
3443 | case AT_discr: | |
3444 | (void) memcpy (&dip -> at_discr, diep, sizeof (long)); | |
3445 | break; | |
3446 | case AT_import: | |
3447 | (void) memcpy (&dip -> at_import, diep, sizeof (long)); | |
3448 | break; | |
3449 | case AT_location: | |
3450 | dip -> at_location = diep; | |
3451 | break; | |
3452 | case AT_mod_fund_type: | |
3453 | dip -> at_mod_fund_type = diep; | |
3454 | break; | |
3455 | case AT_subscr_data: | |
3456 | dip -> at_subscr_data = diep; | |
3457 | break; | |
3458 | case AT_mod_u_d_type: | |
3459 | dip -> at_mod_u_d_type = diep; | |
3460 | break; | |
3461 | case AT_deriv_list: | |
3462 | dip -> at_deriv_list = diep; | |
3463 | break; | |
3464 | case AT_element_list: | |
3465 | dip -> at_element_list = diep; | |
3466 | break; | |
3467 | case AT_discr_value: | |
3468 | dip -> at_discr_value = diep; | |
3469 | break; | |
3470 | case AT_string_length: | |
3471 | dip -> at_string_length = diep; | |
3472 | break; | |
3473 | case AT_name: | |
3474 | dip -> at_name = diep; | |
3475 | break; | |
3476 | case AT_comp_dir: | |
3477 | dip -> at_comp_dir = diep; | |
3478 | break; | |
3479 | case AT_producer: | |
3480 | dip -> at_producer = diep; | |
3481 | break; | |
3482 | case AT_loclist: | |
3483 | (void) memcpy (&dip -> at_loclist, diep, sizeof (long)); | |
3484 | break; | |
3485 | case AT_frame_base: | |
3486 | (void) memcpy (&dip -> at_frame_base, diep, sizeof (long)); | |
3487 | break; | |
3488 | case AT_incomplete: | |
3489 | (void) memcpy (&dip -> at_incomplete, diep, sizeof (short)); | |
3490 | break; | |
3491 | case AT_start_scope: | |
3492 | (void) memcpy (&dip -> at_start_scope, diep, sizeof (long)); | |
3493 | break; | |
3494 | case AT_stride_size: | |
3495 | (void) memcpy (&dip -> at_stride_size, diep, sizeof (long)); | |
3496 | break; | |
3497 | case AT_src_info: | |
3498 | (void) memcpy (&dip -> at_src_info, diep, sizeof (long)); | |
3499 | break; | |
3500 | case AT_prototyped: | |
3501 | (void) memcpy (&dip -> at_prototyped, diep, sizeof (short)); | |
3502 | break; | |
3503 | case AT_const_data: | |
3504 | dip -> at_const_data = diep; | |
3505 | break; | |
3506 | case AT_is_external: | |
3507 | (void) memcpy (&dip -> at_is_external, diep, sizeof (short)); | |
3508 | dip -> at_is_external_p = 1; | |
3509 | break; | |
3510 | default: | |
3511 | /* Found an attribute that we are unprepared to handle. However | |
3512 | it is specifically one of the design goals of DWARF that | |
3513 | consumers should ignore unknown attributes. As long as the | |
3514 | form is one that we recognize (so we know how to skip it), | |
3515 | we can just ignore the unknown attribute. */ | |
3516 | break; | |
3517 | } | |
3518 | form = attr & 0xF; | |
3519 | switch (form) | |
3520 | { | |
3521 | case FORM_DATA2: | |
3522 | diep += sizeof (short); | |
3523 | break; | |
3524 | case FORM_DATA4: | |
3525 | diep += sizeof (long); | |
3526 | break; | |
3527 | case FORM_DATA8: | |
3528 | diep += 8 * sizeof (char); /* sizeof (long long) ? */ | |
3529 | break; | |
3530 | case FORM_ADDR: | |
3531 | case FORM_REF: | |
3532 | diep += sizeof (long); | |
3533 | break; | |
3534 | case FORM_BLOCK2: | |
3535 | (void) memcpy (&block2sz, diep, sizeof (short)); | |
3536 | block2sz += sizeof (short); | |
3537 | diep += block2sz; | |
3538 | break; | |
3539 | case FORM_BLOCK4: | |
3540 | (void) memcpy (&block4sz, diep, sizeof (long)); | |
3541 | block4sz += sizeof (long); | |
3542 | diep += block4sz; | |
3543 | break; | |
3544 | case FORM_STRING: | |
3545 | diep += strlen (diep) + 1; | |
3546 | break; | |
3547 | default: | |
3548 | SQUAWK (("unknown attribute form (0x%x), skipped rest", form)); | |
3549 | diep = end; | |
3550 | break; | |
3551 | } | |
3552 | } | |
3553 | } |