]>
Commit | Line | Data |
---|---|---|
c0302457 JG |
1 | /* Build symbol tables in GDB's internal format. |
2 | Copyright (C) 1986-1991 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | /* This module provides subroutines used for creating and adding to | |
21 | the symbol table. These routines are called from various symbol- | |
22 | file-reading routines. | |
23 | ||
24 | They originated in dbxread.c of gdb-4.2, and were split out to | |
25 | make xcoffread.c more maintainable by sharing code. */ | |
26 | ||
27 | #include "defs.h" | |
28 | #include "param.h" | |
29 | #include "obstack.h" | |
30 | #include "symtab.h" | |
31 | #include "breakpoint.h" | |
32 | #include "gdbcore.h" /* for bfd stuff for symfile.h */ | |
33 | #include "symfile.h" /* Needed for "struct complaint" */ | |
34 | #include "stab.gnu.h" /* We always use GNU stabs, not native */ | |
35 | #include <stdio.h> | |
36 | #include <string.h> | |
37 | #include <ctype.h> | |
38 | ||
39 | /* Ask buildsym.h to define the vars it normally declares `extern'. */ | |
40 | #define EXTERN /**/ | |
41 | #include "buildsym.h" /* Our own declarations */ | |
42 | #undef EXTERN | |
43 | ||
44 | extern void qsort (); | |
45 | extern double atof (); | |
46 | ||
47 | /* Things we export from outside, and probably shouldn't. FIXME. */ | |
48 | extern void new_object_header_files (); | |
c0302457 JG |
49 | extern char *next_symbol_text (); |
50 | extern int hashname (); | |
4137c5fc | 51 | extern void patch_block_stabs (); /* AIX xcoffread.c */ |
a048c8f5 | 52 | extern struct type *builtin_type (); /* AIX xcoffread.c */ |
c0302457 | 53 | \f |
abefb1f1 | 54 | |
c0302457 JG |
55 | static void cleanup_undefined_types (); |
56 | static void fix_common_block (); | |
57 | ||
58 | static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' }; | |
59 | static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' }; | |
60 | ||
61 | /* Define this as 1 if a pcc declaration of a char or short argument | |
62 | gives the correct address. Otherwise assume pcc gives the | |
63 | address of the corresponding int, which is not the same on a | |
64 | big-endian machine. */ | |
65 | ||
66 | #ifndef BELIEVE_PCC_PROMOTION | |
67 | #define BELIEVE_PCC_PROMOTION 0 | |
68 | #endif | |
69 | ||
70 | /* Make a list of forward references which haven't been defined. */ | |
71 | static struct type **undef_types; | |
72 | static int undef_types_allocated, undef_types_length; | |
73 | ||
4137c5fc JG |
74 | /* Initial sizes of data structures. These are realloc'd larger if needed, |
75 | and realloc'd down to the size actually used, when completed. */ | |
76 | ||
77 | #define INITIAL_CONTEXT_STACK_SIZE 10 | |
78 | #define INITIAL_TYPE_VECTOR_LENGTH 160 | |
79 | #define INITIAL_LINE_VECTOR_LENGTH 1000 | |
c0302457 JG |
80 | \f |
81 | /* Complaints about the symbols we have encountered. */ | |
82 | ||
83 | struct complaint innerblock_complaint = | |
84 | {"inner block not inside outer block in %s", 0, 0}; | |
85 | ||
86 | struct complaint blockvector_complaint = | |
87 | {"block at %x out of order", 0, 0}; | |
88 | ||
89 | #if 0 | |
90 | struct complaint dbx_class_complaint = | |
91 | {"encountered DBX-style class variable debugging information.\n\ | |
92 | You seem to have compiled your program with \ | |
93 | \"g++ -g0\" instead of \"g++ -g\".\n\ | |
94 | Therefore GDB will not know about your class variables", 0, 0}; | |
95 | #endif | |
96 | ||
97 | struct complaint const_vol_complaint = | |
98 | {"const/volatile indicator missing (ok if using g++ v1.x), got '%c'", 0, 0}; | |
99 | ||
100 | struct complaint error_type_complaint = | |
101 | {"debug info mismatch between compiler and debugger", 0, 0}; | |
102 | ||
103 | struct complaint invalid_member_complaint = | |
104 | {"invalid (minimal) member type data format at symtab pos %d.", 0, 0}; | |
105 | ||
106 | struct complaint range_type_base_complaint = | |
107 | {"base type %d of range type is not defined", 0, 0}; | |
108 | \f | |
109 | /* Look up a dbx type-number pair. Return the address of the slot | |
110 | where the type for that number-pair is stored. | |
111 | The number-pair is in TYPENUMS. | |
112 | ||
113 | This can be used for finding the type associated with that pair | |
114 | or for associating a new type with the pair. */ | |
115 | ||
116 | struct type ** | |
117 | dbx_lookup_type (typenums) | |
118 | int typenums[2]; | |
119 | { | |
120 | register int filenum = typenums[0], index = typenums[1]; | |
a048c8f5 | 121 | unsigned old_len; |
c0302457 JG |
122 | |
123 | if (filenum < 0 || filenum >= n_this_object_header_files) | |
124 | error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.", | |
125 | filenum, index, symnum); | |
126 | ||
127 | if (filenum == 0) | |
128 | { | |
129 | /* Type is defined outside of header files. | |
130 | Find it in this object file's type vector. */ | |
a048c8f5 | 131 | if (index >= type_vector_length) |
c0302457 | 132 | { |
a048c8f5 JG |
133 | old_len = type_vector_length; |
134 | if (old_len == 0) { | |
135 | type_vector_length = INITIAL_TYPE_VECTOR_LENGTH; | |
136 | type_vector = (struct type **) | |
137 | malloc (type_vector_length * sizeof (struct type *)); | |
138 | } | |
139 | while (index >= type_vector_length) | |
140 | type_vector_length *= 2; | |
c0302457 JG |
141 | type_vector = (struct type **) |
142 | xrealloc (type_vector, | |
143 | (type_vector_length * sizeof (struct type *))); | |
a048c8f5 JG |
144 | bzero (&type_vector[old_len], |
145 | (type_vector_length - old_len) * sizeof (struct type *)); | |
c0302457 JG |
146 | } |
147 | return &type_vector[index]; | |
148 | } | |
149 | else | |
150 | { | |
151 | register int real_filenum = this_object_header_files[filenum]; | |
152 | register struct header_file *f; | |
153 | int f_orig_length; | |
154 | ||
155 | if (real_filenum >= n_header_files) | |
156 | abort (); | |
157 | ||
158 | f = &header_files[real_filenum]; | |
159 | ||
160 | f_orig_length = f->length; | |
161 | if (index >= f_orig_length) | |
162 | { | |
163 | while (index >= f->length) | |
164 | f->length *= 2; | |
165 | f->vector = (struct type **) | |
166 | xrealloc (f->vector, f->length * sizeof (struct type *)); | |
167 | bzero (&f->vector[f_orig_length], | |
168 | (f->length - f_orig_length) * sizeof (struct type *)); | |
169 | } | |
170 | return &f->vector[index]; | |
171 | } | |
172 | } | |
173 | ||
174 | /* Create a type object. Occaisionally used when you need a type | |
175 | which isn't going to be given a type number. */ | |
176 | ||
177 | struct type * | |
178 | dbx_create_type () | |
179 | { | |
180 | register struct type *type = | |
181 | (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type)); | |
182 | ||
183 | bzero (type, sizeof (struct type)); | |
184 | TYPE_VPTR_FIELDNO (type) = -1; | |
185 | TYPE_VPTR_BASETYPE (type) = 0; | |
186 | return type; | |
187 | } | |
188 | ||
189 | /* Make sure there is a type allocated for type numbers TYPENUMS | |
190 | and return the type object. | |
191 | This can create an empty (zeroed) type object. | |
192 | TYPENUMS may be (-1, -1) to return a new type object that is not | |
193 | put into the type vector, and so may not be referred to by number. */ | |
194 | ||
195 | struct type * | |
196 | dbx_alloc_type (typenums) | |
197 | int typenums[2]; | |
198 | { | |
199 | register struct type **type_addr; | |
200 | register struct type *type; | |
201 | ||
a048c8f5 | 202 | if (typenums[0] != -1) |
c0302457 JG |
203 | { |
204 | type_addr = dbx_lookup_type (typenums); | |
205 | type = *type_addr; | |
206 | } | |
207 | else | |
208 | { | |
209 | type_addr = 0; | |
210 | type = 0; | |
211 | } | |
212 | ||
213 | /* If we are referring to a type not known at all yet, | |
214 | allocate an empty type for it. | |
215 | We will fill it in later if we find out how. */ | |
216 | if (type == 0) | |
217 | { | |
218 | type = dbx_create_type (); | |
219 | if (type_addr) | |
220 | *type_addr = type; | |
221 | } | |
222 | ||
223 | return type; | |
224 | } | |
225 | \f | |
226 | /* maintain the lists of symbols and blocks */ | |
227 | ||
228 | /* Add a symbol to one of the lists of symbols. */ | |
229 | void | |
230 | add_symbol_to_list (symbol, listhead) | |
231 | struct symbol *symbol; | |
232 | struct pending **listhead; | |
233 | { | |
234 | /* We keep PENDINGSIZE symbols in each link of the list. | |
235 | If we don't have a link with room in it, add a new link. */ | |
236 | if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE) | |
237 | { | |
238 | register struct pending *link; | |
239 | if (free_pendings) | |
240 | { | |
241 | link = free_pendings; | |
242 | free_pendings = link->next; | |
243 | } | |
244 | else | |
245 | link = (struct pending *) xmalloc (sizeof (struct pending)); | |
246 | ||
247 | link->next = *listhead; | |
248 | *listhead = link; | |
249 | link->nsyms = 0; | |
250 | } | |
251 | ||
252 | (*listhead)->symbol[(*listhead)->nsyms++] = symbol; | |
253 | } | |
254 | ||
a048c8f5 JG |
255 | /* Find a symbol on a pending list. */ |
256 | struct symbol * | |
257 | find_symbol_in_list (list, name, length) | |
258 | struct pending *list; | |
259 | char *name; | |
260 | int length; | |
261 | { | |
262 | int j; | |
263 | ||
264 | while (list) { | |
265 | for (j = list->nsyms; --j >= 0; ) { | |
266 | char *pp = SYMBOL_NAME (list->symbol[j]); | |
267 | if (*pp == *name && strncmp (pp, name, length) == 0 && pp[length] == '\0') | |
268 | return list->symbol[j]; | |
269 | } | |
270 | list = list->next; | |
271 | } | |
272 | return NULL; | |
273 | } | |
274 | ||
c0302457 JG |
275 | /* At end of reading syms, or in case of quit, |
276 | really free as many `struct pending's as we can easily find. */ | |
277 | ||
278 | /* ARGSUSED */ | |
279 | void | |
280 | really_free_pendings (foo) | |
281 | int foo; | |
282 | { | |
283 | struct pending *next, *next1; | |
284 | #if 0 | |
285 | struct pending_block *bnext, *bnext1; | |
286 | #endif | |
287 | ||
288 | for (next = free_pendings; next; next = next1) | |
289 | { | |
290 | next1 = next->next; | |
291 | free (next); | |
292 | } | |
293 | free_pendings = 0; | |
294 | ||
295 | #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */ | |
296 | for (bnext = pending_blocks; bnext; bnext = bnext1) | |
297 | { | |
298 | bnext1 = bnext->next; | |
299 | free (bnext); | |
300 | } | |
301 | #endif | |
302 | pending_blocks = 0; | |
303 | ||
304 | for (next = file_symbols; next; next = next1) | |
305 | { | |
306 | next1 = next->next; | |
307 | free (next); | |
308 | } | |
309 | file_symbols = 0; | |
310 | ||
311 | for (next = global_symbols; next; next = next1) | |
312 | { | |
313 | next1 = next->next; | |
314 | free (next); | |
315 | } | |
316 | global_symbols = 0; | |
317 | } | |
318 | ||
319 | /* Take one of the lists of symbols and make a block from it. | |
320 | Keep the order the symbols have in the list (reversed from the input file). | |
321 | Put the block on the list of pending blocks. */ | |
322 | ||
323 | void | |
324 | finish_block (symbol, listhead, old_blocks, start, end) | |
325 | struct symbol *symbol; | |
326 | struct pending **listhead; | |
327 | struct pending_block *old_blocks; | |
328 | CORE_ADDR start, end; | |
329 | { | |
330 | register struct pending *next, *next1; | |
331 | register struct block *block; | |
332 | register struct pending_block *pblock; | |
333 | struct pending_block *opblock; | |
334 | register int i; | |
335 | ||
336 | /* Count the length of the list of symbols. */ | |
337 | ||
a048c8f5 JG |
338 | for (next = *listhead, i = 0; |
339 | next; | |
340 | i += next->nsyms, next = next->next) | |
c0302457 JG |
341 | /*EMPTY*/; |
342 | ||
343 | block = (struct block *) obstack_alloc (symbol_obstack, | |
a048c8f5 | 344 | (sizeof (struct block) + ((i - 1) * sizeof (struct symbol *)))); |
c0302457 JG |
345 | |
346 | /* Copy the symbols into the block. */ | |
347 | ||
348 | BLOCK_NSYMS (block) = i; | |
349 | for (next = *listhead; next; next = next->next) | |
350 | { | |
351 | register int j; | |
352 | for (j = next->nsyms - 1; j >= 0; j--) | |
353 | BLOCK_SYM (block, --i) = next->symbol[j]; | |
354 | } | |
355 | ||
356 | BLOCK_START (block) = start; | |
357 | BLOCK_END (block) = end; | |
358 | BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */ | |
359 | BLOCK_GCC_COMPILED (block) = processing_gcc_compilation; | |
360 | ||
361 | /* Put the block in as the value of the symbol that names it. */ | |
362 | ||
363 | if (symbol) | |
364 | { | |
365 | SYMBOL_BLOCK_VALUE (symbol) = block; | |
366 | BLOCK_FUNCTION (block) = symbol; | |
367 | } | |
368 | else | |
369 | BLOCK_FUNCTION (block) = 0; | |
370 | ||
371 | /* Now "free" the links of the list, and empty the list. */ | |
372 | ||
373 | for (next = *listhead; next; next = next1) | |
374 | { | |
375 | next1 = next->next; | |
376 | next->next = free_pendings; | |
377 | free_pendings = next; | |
378 | } | |
379 | *listhead = 0; | |
380 | ||
381 | /* Install this block as the superblock | |
382 | of all blocks made since the start of this scope | |
383 | that don't have superblocks yet. */ | |
384 | ||
385 | opblock = 0; | |
386 | for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next) | |
387 | { | |
388 | if (BLOCK_SUPERBLOCK (pblock->block) == 0) { | |
389 | #if 1 | |
390 | /* Check to be sure the blocks are nested as we receive them. | |
391 | If the compiler/assembler/linker work, this just burns a small | |
392 | amount of time. */ | |
393 | if (BLOCK_START (pblock->block) < BLOCK_START (block) | |
394 | || BLOCK_END (pblock->block) > BLOCK_END (block)) { | |
395 | complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol): | |
396 | "(don't know)"); | |
397 | BLOCK_START (pblock->block) = BLOCK_START (block); | |
398 | BLOCK_END (pblock->block) = BLOCK_END (block); | |
399 | } | |
400 | #endif | |
401 | BLOCK_SUPERBLOCK (pblock->block) = block; | |
402 | } | |
403 | opblock = pblock; | |
404 | } | |
405 | ||
406 | /* Record this block on the list of all blocks in the file. | |
407 | Put it after opblock, or at the beginning if opblock is 0. | |
408 | This puts the block in the list after all its subblocks. */ | |
409 | ||
410 | /* Allocate in the symbol_obstack to save time. | |
411 | It wastes a little space. */ | |
412 | pblock = (struct pending_block *) | |
413 | obstack_alloc (symbol_obstack, | |
414 | sizeof (struct pending_block)); | |
415 | pblock->block = block; | |
416 | if (opblock) | |
417 | { | |
418 | pblock->next = opblock->next; | |
419 | opblock->next = pblock; | |
420 | } | |
421 | else | |
422 | { | |
423 | pblock->next = pending_blocks; | |
424 | pending_blocks = pblock; | |
425 | } | |
426 | } | |
427 | ||
428 | struct blockvector * | |
429 | make_blockvector () | |
430 | { | |
431 | register struct pending_block *next; | |
432 | register struct blockvector *blockvector; | |
433 | register int i; | |
434 | ||
435 | /* Count the length of the list of blocks. */ | |
436 | ||
437 | for (next = pending_blocks, i = 0; next; next = next->next, i++); | |
438 | ||
439 | blockvector = (struct blockvector *) | |
440 | obstack_alloc (symbol_obstack, | |
441 | (sizeof (struct blockvector) | |
442 | + (i - 1) * sizeof (struct block *))); | |
443 | ||
444 | /* Copy the blocks into the blockvector. | |
445 | This is done in reverse order, which happens to put | |
446 | the blocks into the proper order (ascending starting address). | |
447 | finish_block has hair to insert each block into the list | |
448 | after its subblocks in order to make sure this is true. */ | |
449 | ||
450 | BLOCKVECTOR_NBLOCKS (blockvector) = i; | |
451 | for (next = pending_blocks; next; next = next->next) { | |
452 | BLOCKVECTOR_BLOCK (blockvector, --i) = next->block; | |
453 | } | |
454 | ||
455 | #if 0 /* Now we make the links in the obstack, so don't free them. */ | |
456 | /* Now free the links of the list, and empty the list. */ | |
457 | ||
458 | for (next = pending_blocks; next; next = next1) | |
459 | { | |
460 | next1 = next->next; | |
461 | free (next); | |
462 | } | |
463 | #endif | |
464 | pending_blocks = 0; | |
465 | ||
466 | #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */ | |
467 | /* Some compilers output blocks in the wrong order, but we depend | |
468 | on their being in the right order so we can binary search. | |
469 | Check the order and moan about it. FIXME. */ | |
470 | if (BLOCKVECTOR_NBLOCKS (blockvector) > 1) | |
471 | for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) { | |
472 | if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1)) | |
473 | > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) { | |
474 | complain (&blockvector_complaint, | |
475 | BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))); | |
476 | } | |
477 | } | |
478 | #endif | |
479 | ||
480 | return blockvector; | |
481 | } | |
482 | \f | |
4137c5fc JG |
483 | /* Start recording information about source code that came from an included |
484 | (or otherwise merged-in) source file with a different name. */ | |
c0302457 JG |
485 | |
486 | void | |
4137c5fc JG |
487 | start_subfile (name, dirname) |
488 | char *name; | |
489 | char *dirname; | |
490 | { | |
491 | register struct subfile *subfile; | |
492 | ||
493 | /* See if this subfile is already known as a subfile of the | |
494 | current main source file. */ | |
495 | ||
496 | for (subfile = subfiles; subfile; subfile = subfile->next) | |
497 | { | |
498 | if (!strcmp (subfile->name, name)) | |
499 | { | |
500 | current_subfile = subfile; | |
501 | return; | |
502 | } | |
503 | } | |
504 | ||
505 | /* This subfile is not known. Add an entry for it. | |
506 | Make an entry for this subfile in the list of all subfiles | |
507 | of the current main source file. */ | |
508 | ||
509 | subfile = (struct subfile *) xmalloc (sizeof (struct subfile)); | |
510 | subfile->next = subfiles; | |
511 | subfiles = subfile; | |
512 | current_subfile = subfile; | |
513 | ||
514 | /* Save its name and compilation directory name */ | |
515 | subfile->name = obsavestring (name, strlen (name)); | |
516 | if (dirname == NULL) | |
517 | subfile->dirname = NULL; | |
518 | else | |
519 | subfile->dirname = obsavestring (dirname, strlen (dirname)); | |
520 | ||
521 | /* Initialize line-number recording for this subfile. */ | |
522 | subfile->line_vector = 0; | |
523 | } | |
524 | \f | |
a048c8f5 JG |
525 | /* Handle the N_BINCL and N_EINCL symbol types |
526 | that act like N_SOL for switching source files | |
527 | (different subfiles, as we call them) within one object file, | |
528 | but using a stack rather than in an arbitrary order. */ | |
529 | ||
530 | void | |
531 | push_subfile () | |
532 | { | |
533 | register struct subfile_stack *tem | |
534 | = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack)); | |
535 | ||
536 | tem->next = subfile_stack; | |
537 | subfile_stack = tem; | |
538 | if (current_subfile == 0 || current_subfile->name == 0) | |
539 | abort (); | |
540 | tem->name = current_subfile->name; | |
541 | tem->prev_index = header_file_prev_index; | |
542 | } | |
543 | ||
544 | char * | |
545 | pop_subfile () | |
546 | { | |
547 | register char *name; | |
548 | register struct subfile_stack *link = subfile_stack; | |
549 | ||
550 | if (link == 0) | |
551 | abort (); | |
552 | ||
553 | name = link->name; | |
554 | subfile_stack = link->next; | |
555 | header_file_prev_index = link->prev_index; | |
556 | free (link); | |
557 | ||
558 | return name; | |
559 | } | |
560 | \f | |
4137c5fc JG |
561 | /* Manage the vector of line numbers for each subfile. */ |
562 | ||
563 | void | |
564 | record_line (subfile, line, pc) | |
565 | register struct subfile *subfile; | |
c0302457 JG |
566 | int line; |
567 | CORE_ADDR pc; | |
568 | { | |
569 | struct linetable_entry *e; | |
570 | /* Ignore the dummy line number in libg.o */ | |
571 | ||
572 | if (line == 0xffff) | |
573 | return; | |
574 | ||
4137c5fc JG |
575 | /* Make sure line vector exists and is big enough. */ |
576 | if (!subfile->line_vector) { | |
577 | subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH; | |
578 | subfile->line_vector = (struct linetable *) | |
579 | xmalloc (sizeof (struct linetable) | |
580 | + subfile->line_vector_length * sizeof (struct linetable_entry)); | |
581 | subfile->line_vector->nitems = 0; | |
582 | } | |
c0302457 | 583 | |
4137c5fc | 584 | if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length) |
c0302457 | 585 | { |
4137c5fc JG |
586 | subfile->line_vector_length *= 2; |
587 | subfile->line_vector = (struct linetable *) | |
588 | xrealloc (subfile->line_vector, (sizeof (struct linetable) | |
589 | + subfile->line_vector_length * sizeof (struct linetable_entry))); | |
c0302457 JG |
590 | } |
591 | ||
4137c5fc | 592 | e = subfile->line_vector->item + subfile->line_vector->nitems++; |
c0302457 JG |
593 | e->line = line; e->pc = pc; |
594 | } | |
4137c5fc JG |
595 | |
596 | ||
597 | /* Needed in order to sort line tables from IBM xcoff files. Sigh! */ | |
598 | ||
599 | /* static */ | |
600 | int | |
601 | compare_line_numbers (ln1, ln2) | |
602 | struct linetable_entry *ln1, *ln2; | |
603 | { | |
604 | return ln1->line - ln2->line; | |
605 | } | |
c0302457 JG |
606 | \f |
607 | /* Start a new symtab for a new source file. | |
608 | This is called when a dbx symbol of type N_SO is seen; | |
609 | it indicates the start of data for one original source file. */ | |
610 | ||
611 | void | |
612 | start_symtab (name, dirname, start_addr) | |
613 | char *name; | |
614 | char *dirname; | |
615 | CORE_ADDR start_addr; | |
616 | { | |
617 | ||
618 | last_source_file = name; | |
619 | last_source_start_addr = start_addr; | |
620 | file_symbols = 0; | |
621 | global_symbols = 0; | |
4137c5fc JG |
622 | global_stabs = 0; /* AIX COFF */ |
623 | file_stabs = 0; /* AIX COFF */ | |
c0302457 JG |
624 | within_function = 0; |
625 | ||
a048c8f5 JG |
626 | /* Context stack is initially empty. Allocate first one with room for |
627 | 10 levels; reuse it forever afterward. */ | |
628 | if (context_stack == 0) { | |
629 | context_stack_size = INITIAL_CONTEXT_STACK_SIZE; | |
630 | context_stack = (struct context_stack *) | |
631 | xmalloc (context_stack_size * sizeof (struct context_stack)); | |
632 | } | |
c0302457 JG |
633 | context_stack_depth = 0; |
634 | ||
635 | new_object_header_files (); | |
636 | ||
a048c8f5 JG |
637 | type_vector_length = 0; |
638 | type_vector = (struct type **) 0; | |
c0302457 JG |
639 | |
640 | /* Initialize the list of sub source files with one entry | |
641 | for this file (the top-level source file). */ | |
642 | ||
643 | subfiles = 0; | |
644 | current_subfile = 0; | |
645 | start_subfile (name, dirname); | |
646 | } | |
647 | ||
648 | /* Finish the symbol definitions for one main source file, | |
649 | close off all the lexical contexts for that file | |
650 | (creating struct block's for them), then make the struct symtab | |
651 | for that file and put it in the list of all such. | |
652 | ||
653 | END_ADDR is the address of the end of the file's text. */ | |
654 | ||
655 | struct symtab * | |
a048c8f5 | 656 | end_symtab (end_addr, sort_pending, sort_linevec, objfile) |
c0302457 | 657 | CORE_ADDR end_addr; |
4137c5fc JG |
658 | int sort_pending; |
659 | int sort_linevec; | |
a048c8f5 | 660 | struct objfile *objfile; |
c0302457 JG |
661 | { |
662 | register struct symtab *symtab; | |
663 | register struct blockvector *blockvector; | |
664 | register struct subfile *subfile; | |
c0302457 JG |
665 | struct subfile *nextsub; |
666 | ||
667 | /* Finish the lexical context of the last function in the file; | |
668 | pop the context stack. */ | |
669 | ||
670 | if (context_stack_depth > 0) | |
671 | { | |
672 | register struct context_stack *cstk; | |
673 | context_stack_depth--; | |
674 | cstk = &context_stack[context_stack_depth]; | |
675 | /* Make a block for the local symbols within. */ | |
676 | finish_block (cstk->name, &local_symbols, cstk->old_blocks, | |
677 | cstk->start_addr, end_addr); | |
a048c8f5 JG |
678 | |
679 | /* Debug: if context stack still has something in it, we are in | |
680 | trouble. */ | |
681 | if (context_stack_depth > 0) | |
682 | abort (); | |
c0302457 JG |
683 | } |
684 | ||
4137c5fc JG |
685 | /* It is unfortunate that in aixcoff, pending blocks might not be ordered |
686 | in this stage. Especially, blocks for static functions will show up at | |
687 | the end. We need to sort them, so tools like `find_pc_function' and | |
688 | `find_pc_block' can work reliably. */ | |
a048c8f5 | 689 | if (sort_pending && pending_blocks) { |
4137c5fc JG |
690 | /* FIXME! Remove this horrid bubble sort and use qsort!!! */ |
691 | int swapped; | |
692 | do { | |
693 | struct pending_block *pb, *pbnext; | |
694 | ||
695 | pb = pending_blocks, pbnext = pb->next; | |
696 | swapped = 0; | |
697 | ||
698 | while ( pbnext ) { | |
699 | ||
700 | /* swap blocks if unordered! */ | |
701 | ||
702 | if (BLOCK_START(pb->block) < BLOCK_START(pbnext->block)) { | |
703 | struct block *tmp = pb->block; | |
704 | pb->block = pbnext->block; | |
705 | pbnext->block = tmp; | |
706 | swapped = 1; | |
707 | } | |
708 | pb = pbnext; | |
709 | pbnext = pbnext->next; | |
710 | } | |
711 | } while (swapped); | |
712 | } | |
713 | ||
c0302457 JG |
714 | /* Cleanup any undefined types that have been left hanging around |
715 | (this needs to be done before the finish_blocks so that | |
716 | file_symbols is still good). */ | |
717 | cleanup_undefined_types (); | |
718 | ||
74f6fb08 JG |
719 | /* Hooks for xcoffread.c */ |
720 | if (file_stabs) { | |
721 | patch_block_stabs (file_symbols, file_stabs); | |
722 | free (file_stabs); | |
723 | file_stabs = 0; | |
724 | } | |
725 | ||
726 | if (global_stabs) { | |
727 | patch_block_stabs (global_symbols, global_stabs); | |
728 | free (global_stabs); | |
729 | global_stabs = 0; | |
730 | } | |
731 | ||
a048c8f5 JG |
732 | if (pending_blocks == 0 |
733 | && file_symbols == 0 | |
734 | && global_symbols == 0) { | |
735 | /* Ignore symtabs that have no functions with real debugging info */ | |
736 | blockvector = NULL; | |
737 | } else { | |
738 | /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */ | |
739 | finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr); | |
740 | finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr); | |
741 | blockvector = make_blockvector (); | |
742 | } | |
c0302457 | 743 | |
c0302457 JG |
744 | /* Now create the symtab objects proper, one for each subfile. */ |
745 | /* (The main file is the last one on the chain.) */ | |
746 | ||
747 | for (subfile = subfiles; subfile; subfile = nextsub) | |
748 | { | |
a048c8f5 JG |
749 | /* If we have blocks of symbols, make a symtab. |
750 | Otherwise, just ignore this file and any line number info in it. */ | |
751 | symtab = 0; | |
752 | if (blockvector) { | |
753 | if (subfile->line_vector) { | |
754 | /* First, shrink the linetable to make more memory. */ | |
755 | subfile->line_vector = (struct linetable *) | |
756 | xrealloc (subfile->line_vector, (sizeof (struct linetable) | |
757 | + subfile->line_vector->nitems * sizeof (struct linetable_entry))); | |
758 | ||
759 | if (sort_linevec) | |
760 | qsort (subfile->line_vector->item, subfile->line_vector->nitems, | |
761 | sizeof (struct linetable_entry), compare_line_numbers); | |
762 | } | |
4137c5fc | 763 | |
a048c8f5 JG |
764 | /* Now, allocate a symbol table. */ |
765 | symtab = allocate_symtab (subfile->name, objfile); | |
766 | ||
767 | /* Fill in its components. */ | |
768 | symtab->blockvector = blockvector; | |
769 | symtab->linetable = subfile->line_vector; | |
770 | symtab->dirname = subfile->dirname; | |
771 | symtab->free_code = free_linetable; | |
772 | symtab->free_ptr = 0; | |
773 | ||
774 | /* Link the new symtab into the list of such. */ | |
775 | symtab->next = symtab_list; | |
776 | symtab_list = symtab; | |
777 | } else { | |
778 | /* No blocks for this file. Delete any line number info we have | |
779 | for it. */ | |
780 | if (subfile->line_vector) | |
781 | free (subfile->line_vector); | |
4137c5fc JG |
782 | } |
783 | ||
c0302457 JG |
784 | nextsub = subfile->next; |
785 | free (subfile); | |
786 | } | |
787 | ||
a048c8f5 JG |
788 | if (type_vector) |
789 | free ((char *) type_vector); | |
c0302457 | 790 | type_vector = 0; |
a048c8f5 | 791 | type_vector_length = 0; |
4137c5fc | 792 | |
c0302457 | 793 | last_source_file = 0; |
4137c5fc | 794 | current_subfile = 0; |
c0302457 JG |
795 | |
796 | return symtab; | |
797 | } | |
a048c8f5 JG |
798 | |
799 | ||
800 | /* Push a context block. Args are an identifying nesting level (checkable | |
801 | when you pop it), and the starting PC address of this context. */ | |
802 | ||
803 | struct context_stack * | |
804 | push_context (desc, valu) | |
805 | int desc; | |
806 | CORE_ADDR valu; | |
807 | { | |
808 | register struct context_stack *new; | |
809 | ||
810 | if (context_stack_depth == context_stack_size) | |
811 | { | |
812 | context_stack_size *= 2; | |
813 | context_stack = (struct context_stack *) | |
814 | xrealloc (context_stack, | |
815 | (context_stack_size | |
816 | * sizeof (struct context_stack))); | |
817 | } | |
818 | ||
819 | new = &context_stack[context_stack_depth++]; | |
820 | new->depth = desc; | |
821 | new->locals = local_symbols; | |
822 | new->old_blocks = pending_blocks; | |
823 | new->start_addr = valu; | |
824 | new->name = 0; | |
825 | ||
826 | local_symbols = 0; | |
827 | ||
828 | return new; | |
829 | } | |
c0302457 JG |
830 | \f |
831 | /* Initialize anything that needs initializing when starting to read | |
832 | a fresh piece of a symbol file, e.g. reading in the stuff corresponding | |
833 | to a psymtab. */ | |
834 | ||
835 | void | |
836 | buildsym_init () | |
837 | { | |
838 | free_pendings = 0; | |
839 | file_symbols = 0; | |
840 | global_symbols = 0; | |
841 | pending_blocks = 0; | |
842 | } | |
843 | ||
844 | /* Initialize anything that needs initializing when a completely new | |
845 | symbol file is specified (not just adding some symbols from another | |
846 | file, e.g. a shared library). */ | |
847 | ||
848 | void | |
849 | buildsym_new_init () | |
850 | { | |
851 | /* Empty the hash table of global syms looking for values. */ | |
852 | bzero (global_sym_chain, sizeof global_sym_chain); | |
853 | ||
854 | buildsym_init (); | |
855 | } | |
856 | ||
857 | /* Scan through all of the global symbols defined in the object file, | |
858 | assigning values to the debugging symbols that need to be assigned | |
859 | to. Get these symbols from the misc function list. */ | |
860 | ||
861 | void | |
862 | scan_file_globals () | |
863 | { | |
864 | int hash; | |
865 | int mf; | |
866 | ||
867 | for (mf = 0; mf < misc_function_count; mf++) | |
868 | { | |
869 | char *namestring = misc_function_vector[mf].name; | |
870 | struct symbol *sym, *prev; | |
871 | ||
872 | QUIT; | |
873 | ||
874 | prev = (struct symbol *) 0; | |
875 | ||
876 | /* Get the hash index and check all the symbols | |
877 | under that hash index. */ | |
878 | ||
879 | hash = hashname (namestring); | |
880 | ||
881 | for (sym = global_sym_chain[hash]; sym;) | |
882 | { | |
883 | if (*namestring == SYMBOL_NAME (sym)[0] | |
884 | && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1)) | |
885 | { | |
886 | /* Splice this symbol out of the hash chain and | |
887 | assign the value we have to it. */ | |
888 | if (prev) | |
889 | SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym); | |
890 | else | |
891 | global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym); | |
892 | ||
893 | /* Check to see whether we need to fix up a common block. */ | |
894 | /* Note: this code might be executed several times for | |
895 | the same symbol if there are multiple references. */ | |
896 | if (SYMBOL_CLASS (sym) == LOC_BLOCK) | |
897 | fix_common_block (sym, misc_function_vector[mf].address); | |
898 | else | |
899 | SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address; | |
900 | ||
901 | if (prev) | |
902 | sym = SYMBOL_VALUE_CHAIN (prev); | |
903 | else | |
904 | sym = global_sym_chain[hash]; | |
905 | } | |
906 | else | |
907 | { | |
908 | prev = sym; | |
909 | sym = SYMBOL_VALUE_CHAIN (sym); | |
910 | } | |
911 | } | |
912 | } | |
913 | } | |
914 | ||
915 | \f | |
916 | /* Read a number by which a type is referred to in dbx data, | |
917 | or perhaps read a pair (FILENUM, TYPENUM) in parentheses. | |
918 | Just a single number N is equivalent to (0,N). | |
919 | Return the two numbers by storing them in the vector TYPENUMS. | |
920 | TYPENUMS will then be used as an argument to dbx_lookup_type. */ | |
921 | ||
922 | void | |
923 | read_type_number (pp, typenums) | |
924 | register char **pp; | |
925 | register int *typenums; | |
926 | { | |
927 | if (**pp == '(') | |
928 | { | |
929 | (*pp)++; | |
930 | typenums[0] = read_number (pp, ','); | |
931 | typenums[1] = read_number (pp, ')'); | |
932 | } | |
933 | else | |
934 | { | |
935 | typenums[0] = 0; | |
936 | typenums[1] = read_number (pp, 0); | |
937 | } | |
938 | } | |
939 | \f | |
940 | /* To handle GNU C++ typename abbreviation, we need to be able to | |
941 | fill in a type's name as soon as space for that type is allocated. | |
942 | `type_synonym_name' is the name of the type being allocated. | |
943 | It is cleared as soon as it is used (lest all allocated types | |
944 | get this name). */ | |
945 | static char *type_synonym_name; | |
946 | ||
947 | /* ARGSUSED */ | |
abefb1f1 | 948 | struct symbol * |
c0302457 JG |
949 | define_symbol (valu, string, desc, type) |
950 | unsigned int valu; | |
951 | char *string; | |
952 | int desc; | |
953 | int type; | |
954 | { | |
955 | register struct symbol *sym; | |
956 | char *p = (char *) strchr (string, ':'); | |
957 | int deftype; | |
958 | int synonym = 0; | |
959 | register int i; | |
960 | ||
961 | /* Ignore syms with empty names. */ | |
962 | if (string[0] == 0) | |
963 | return 0; | |
964 | ||
965 | /* Ignore old-style symbols from cc -go */ | |
966 | if (p == 0) | |
967 | return 0; | |
968 | ||
969 | sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol)); | |
970 | ||
971 | if (processing_gcc_compilation) { | |
972 | /* GCC 2.x puts the line number in desc. SunOS apparently puts in the | |
973 | number of bytes occupied by a type or object, which we ignore. */ | |
974 | SYMBOL_LINE(sym) = desc; | |
975 | } else { | |
976 | SYMBOL_LINE(sym) = 0; /* unknown */ | |
977 | } | |
978 | ||
979 | if (string[0] == CPLUS_MARKER) | |
980 | { | |
981 | /* Special GNU C++ names. */ | |
982 | switch (string[1]) | |
983 | { | |
984 | case 't': | |
985 | SYMBOL_NAME (sym) = "this"; | |
986 | break; | |
987 | case 'v': /* $vtbl_ptr_type */ | |
988 | /* Was: SYMBOL_NAME (sym) = "vptr"; */ | |
989 | goto normal; | |
990 | case 'e': | |
991 | SYMBOL_NAME (sym) = "eh_throw"; | |
992 | break; | |
993 | ||
994 | case '_': | |
995 | /* This was an anonymous type that was never fixed up. */ | |
996 | goto normal; | |
997 | ||
998 | default: | |
999 | abort (); | |
1000 | } | |
1001 | } | |
1002 | else | |
1003 | { | |
1004 | normal: | |
1005 | SYMBOL_NAME (sym) | |
1006 | = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1)); | |
1007 | /* Open-coded bcopy--saves function call time. */ | |
1008 | { | |
1009 | register char *p1 = string; | |
1010 | register char *p2 = SYMBOL_NAME (sym); | |
1011 | while (p1 != p) | |
1012 | *p2++ = *p1++; | |
1013 | *p2++ = '\0'; | |
1014 | } | |
1015 | } | |
1016 | p++; | |
1017 | /* Determine the type of name being defined. */ | |
1018 | /* The Acorn RISC machine's compiler can put out locals that don't | |
1019 | start with "234=" or "(3,4)=", so assume anything other than the | |
1020 | deftypes we know how to handle is a local. */ | |
1021 | /* (Peter Watkins @ Computervision) | |
1022 | Handle Sun-style local fortran array types 'ar...' . | |
1023 | ([email protected]) -- this strchr() handles them properly? | |
1024 | ([email protected]) -- 'C' is for catch. */ | |
1025 | if (!strchr ("cfFGpPrStTvVXC", *p)) | |
1026 | deftype = 'l'; | |
1027 | else | |
1028 | deftype = *p++; | |
1029 | ||
1030 | /* c is a special case, not followed by a type-number. | |
1031 | SYMBOL:c=iVALUE for an integer constant symbol. | |
1032 | SYMBOL:c=rVALUE for a floating constant symbol. | |
1033 | SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol. | |
1034 | e.g. "b:c=e6,0" for "const b = blob1" | |
1035 | (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */ | |
1036 | if (deftype == 'c') | |
1037 | { | |
1038 | if (*p++ != '=') | |
1039 | error ("Invalid symbol data at symtab pos %d.", symnum); | |
1040 | switch (*p++) | |
1041 | { | |
1042 | case 'r': | |
1043 | { | |
1044 | double d = atof (p); | |
1045 | char *dbl_valu; | |
1046 | ||
1047 | SYMBOL_TYPE (sym) = builtin_type_double; | |
1048 | dbl_valu = | |
1049 | (char *) obstack_alloc (symbol_obstack, sizeof (double)); | |
1050 | bcopy (&d, dbl_valu, sizeof (double)); | |
1051 | SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double)); | |
1052 | SYMBOL_VALUE_BYTES (sym) = dbl_valu; | |
1053 | SYMBOL_CLASS (sym) = LOC_CONST_BYTES; | |
1054 | } | |
1055 | break; | |
1056 | case 'i': | |
1057 | { | |
1058 | SYMBOL_TYPE (sym) = builtin_type_int; | |
1059 | SYMBOL_VALUE (sym) = atoi (p); | |
1060 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1061 | } | |
1062 | break; | |
1063 | case 'e': | |
1064 | /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol. | |
1065 | e.g. "b:c=e6,0" for "const b = blob1" | |
1066 | (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */ | |
1067 | { | |
1068 | int typenums[2]; | |
1069 | ||
1070 | read_type_number (&p, typenums); | |
1071 | if (*p++ != ',') | |
1072 | error ("Invalid symbol data: no comma in enum const symbol"); | |
1073 | ||
1074 | SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums); | |
1075 | SYMBOL_VALUE (sym) = atoi (p); | |
1076 | SYMBOL_CLASS (sym) = LOC_CONST; | |
1077 | } | |
1078 | break; | |
1079 | default: | |
1080 | error ("Invalid symbol data at symtab pos %d.", symnum); | |
1081 | } | |
1082 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1083 | add_symbol_to_list (sym, &file_symbols); | |
1084 | return sym; | |
1085 | } | |
1086 | ||
1087 | /* Now usually comes a number that says which data type, | |
1088 | and possibly more stuff to define the type | |
1089 | (all of which is handled by read_type) */ | |
1090 | ||
1091 | if (deftype == 'p' && *p == 'F') | |
1092 | /* pF is a two-letter code that means a function parameter in Fortran. | |
1093 | The type-number specifies the type of the return value. | |
1094 | Translate it into a pointer-to-function type. */ | |
1095 | { | |
1096 | p++; | |
1097 | SYMBOL_TYPE (sym) | |
1098 | = lookup_pointer_type (lookup_function_type (read_type (&p))); | |
1099 | } | |
1100 | else | |
1101 | { | |
1102 | struct type *type_read; | |
1103 | synonym = *p == 't'; | |
1104 | ||
1105 | if (synonym) | |
1106 | { | |
1107 | p += 1; | |
1108 | type_synonym_name = obsavestring (SYMBOL_NAME (sym), | |
1109 | strlen (SYMBOL_NAME (sym))); | |
1110 | } | |
1111 | ||
1112 | type_read = read_type (&p); | |
1113 | ||
1114 | if ((deftype == 'F' || deftype == 'f') | |
1115 | && TYPE_CODE (type_read) != TYPE_CODE_FUNC) | |
1116 | { | |
1117 | #if 0 | |
1118 | /* This code doesn't work -- it needs to realloc and can't. */ | |
1119 | struct type *new = (struct type *) | |
1120 | obstack_alloc (symbol_obstack, sizeof (struct type)); | |
1121 | ||
1122 | /* Generate a template for the type of this function. The | |
1123 | types of the arguments will be added as we read the symbol | |
1124 | table. */ | |
1125 | *new = *lookup_function_type (type_read); | |
1126 | SYMBOL_TYPE(sym) = new; | |
1127 | in_function_type = new; | |
1128 | #else | |
1129 | SYMBOL_TYPE (sym) = lookup_function_type (type_read); | |
1130 | #endif | |
1131 | } | |
1132 | else | |
1133 | SYMBOL_TYPE (sym) = type_read; | |
1134 | } | |
1135 | ||
1136 | switch (deftype) | |
1137 | { | |
1138 | case 'C': | |
1139 | /* The name of a caught exception. */ | |
1140 | SYMBOL_CLASS (sym) = LOC_LABEL; | |
1141 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1142 | SYMBOL_VALUE_ADDRESS (sym) = valu; | |
1143 | add_symbol_to_list (sym, &local_symbols); | |
1144 | break; | |
1145 | ||
1146 | case 'f': | |
1147 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
1148 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1149 | add_symbol_to_list (sym, &file_symbols); | |
1150 | break; | |
1151 | ||
1152 | case 'F': | |
1153 | SYMBOL_CLASS (sym) = LOC_BLOCK; | |
1154 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1155 | add_symbol_to_list (sym, &global_symbols); | |
1156 | break; | |
1157 | ||
1158 | case 'G': | |
1159 | /* For a class G (global) symbol, it appears that the | |
1160 | value is not correct. It is necessary to search for the | |
1161 | corresponding linker definition to find the value. | |
1162 | These definitions appear at the end of the namelist. */ | |
1163 | i = hashname (SYMBOL_NAME (sym)); | |
1164 | SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i]; | |
1165 | global_sym_chain[i] = sym; | |
1166 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
1167 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1168 | add_symbol_to_list (sym, &global_symbols); | |
1169 | break; | |
1170 | ||
1171 | /* This case is faked by a conditional above, | |
1172 | when there is no code letter in the dbx data. | |
1173 | Dbx data never actually contains 'l'. */ | |
1174 | case 'l': | |
1175 | SYMBOL_CLASS (sym) = LOC_LOCAL; | |
1176 | SYMBOL_VALUE (sym) = valu; | |
1177 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1178 | add_symbol_to_list (sym, &local_symbols); | |
1179 | break; | |
1180 | ||
1181 | case 'p': | |
1182 | /* Normally this is a parameter, a LOC_ARG. On the i960, it | |
1183 | can also be a LOC_LOCAL_ARG depending on symbol type. */ | |
1184 | #ifndef DBX_PARM_SYMBOL_CLASS | |
1185 | #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG | |
1186 | #endif | |
1187 | SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type); | |
1188 | SYMBOL_VALUE (sym) = valu; | |
1189 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1190 | #if 0 | |
1191 | /* This doesn't work yet. */ | |
1192 | add_param_to_type (&in_function_type, sym); | |
1193 | #endif | |
1194 | add_symbol_to_list (sym, &local_symbols); | |
1195 | ||
1196 | /* If it's gcc-compiled, if it says `short', believe it. */ | |
1197 | if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION) | |
1198 | break; | |
1199 | ||
1200 | #if defined(BELIEVE_PCC_PROMOTION_TYPE) | |
1201 | /* This macro is defined on machines (e.g. sparc) where | |
1202 | we should believe the type of a PCC 'short' argument, | |
1203 | but shouldn't believe the address (the address is | |
1204 | the address of the corresponding int). Note that | |
1205 | this is only different from the BELIEVE_PCC_PROMOTION | |
1206 | case on big-endian machines. | |
1207 | ||
1208 | My guess is that this correction, as opposed to changing | |
1209 | the parameter to an 'int' (as done below, for PCC | |
1210 | on most machines), is the right thing to do | |
1211 | on all machines, but I don't want to risk breaking | |
1212 | something that already works. On most PCC machines, | |
1213 | the sparc problem doesn't come up because the calling | |
1214 | function has to zero the top bytes (not knowing whether | |
1215 | the called function wants an int or a short), so there | |
1216 | is no practical difference between an int and a short | |
1217 | (except perhaps what happens when the GDB user types | |
1218 | "print short_arg = 0x10000;"). | |
1219 | ||
1220 | Hacked for SunOS 4.1 by [email protected]. In 4.1, the compiler | |
1221 | actually produces the correct address (we don't need to fix it | |
1222 | up). I made this code adapt so that it will offset the symbol | |
1223 | if it was pointing at an int-aligned location and not | |
1224 | otherwise. This way you can use the same gdb for 4.0.x and | |
1225 | 4.1 systems. */ | |
1226 | ||
1227 | if (0 == SYMBOL_VALUE (sym) % sizeof (int)) | |
1228 | { | |
1229 | if (SYMBOL_TYPE (sym) == builtin_type_char | |
1230 | || SYMBOL_TYPE (sym) == builtin_type_unsigned_char) | |
1231 | SYMBOL_VALUE (sym) += 3; | |
1232 | else if (SYMBOL_TYPE (sym) == builtin_type_short | |
1233 | || SYMBOL_TYPE (sym) == builtin_type_unsigned_short) | |
1234 | SYMBOL_VALUE (sym) += 2; | |
1235 | } | |
1236 | break; | |
1237 | ||
1238 | #else /* no BELIEVE_PCC_PROMOTION_TYPE. */ | |
1239 | ||
1240 | /* If PCC says a parameter is a short or a char, | |
1241 | it is really an int. */ | |
1242 | if (SYMBOL_TYPE (sym) == builtin_type_char | |
1243 | || SYMBOL_TYPE (sym) == builtin_type_short) | |
1244 | SYMBOL_TYPE (sym) = builtin_type_int; | |
1245 | else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char | |
1246 | || SYMBOL_TYPE (sym) == builtin_type_unsigned_short) | |
1247 | SYMBOL_TYPE (sym) = builtin_type_unsigned_int; | |
1248 | break; | |
1249 | ||
1250 | #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */ | |
1251 | ||
1252 | case 'P': | |
1253 | SYMBOL_CLASS (sym) = LOC_REGPARM; | |
1254 | SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu); | |
1255 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1256 | add_symbol_to_list (sym, &local_symbols); | |
1257 | break; | |
1258 | ||
1259 | case 'r': | |
1260 | SYMBOL_CLASS (sym) = LOC_REGISTER; | |
1261 | SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu); | |
1262 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1263 | add_symbol_to_list (sym, &local_symbols); | |
1264 | break; | |
1265 | ||
1266 | case 'S': | |
1267 | /* Static symbol at top level of file */ | |
1268 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
1269 | SYMBOL_VALUE_ADDRESS (sym) = valu; | |
1270 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1271 | add_symbol_to_list (sym, &file_symbols); | |
1272 | break; | |
1273 | ||
1274 | case 't': | |
1275 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
1276 | SYMBOL_VALUE (sym) = valu; | |
1277 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1278 | if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0 | |
1279 | && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0) | |
1280 | TYPE_NAME (SYMBOL_TYPE (sym)) = | |
1281 | obsavestring (SYMBOL_NAME (sym), | |
1282 | strlen (SYMBOL_NAME (sym))); | |
1283 | /* C++ vagaries: we may have a type which is derived from | |
1284 | a base type which did not have its name defined when the | |
1285 | derived class was output. We fill in the derived class's | |
1286 | base part member's name here in that case. */ | |
1287 | else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT | |
1288 | || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION) | |
1289 | && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym))) | |
1290 | { | |
1291 | int j; | |
1292 | for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--) | |
1293 | if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0) | |
1294 | TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) = | |
1295 | type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j)); | |
1296 | } | |
1297 | ||
1298 | add_symbol_to_list (sym, &file_symbols); | |
1299 | break; | |
1300 | ||
1301 | case 'T': | |
1302 | SYMBOL_CLASS (sym) = LOC_TYPEDEF; | |
1303 | SYMBOL_VALUE (sym) = valu; | |
1304 | SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; | |
1305 | if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0 | |
1306 | && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0) | |
1307 | TYPE_NAME (SYMBOL_TYPE (sym)) | |
1308 | = obconcat ("", | |
1309 | (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM | |
1310 | ? "enum " | |
1311 | : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT | |
1312 | ? "struct " : "union ")), | |
1313 | SYMBOL_NAME (sym)); | |
1314 | add_symbol_to_list (sym, &file_symbols); | |
1315 | ||
1316 | if (synonym) | |
1317 | { | |
1318 | register struct symbol *typedef_sym | |
1319 | = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol)); | |
1320 | SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym); | |
1321 | SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym); | |
1322 | ||
1323 | SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF; | |
1324 | SYMBOL_VALUE (typedef_sym) = valu; | |
1325 | SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE; | |
1326 | add_symbol_to_list (typedef_sym, &file_symbols); | |
1327 | } | |
1328 | break; | |
1329 | ||
1330 | case 'V': | |
1331 | /* Static symbol of local scope */ | |
1332 | SYMBOL_CLASS (sym) = LOC_STATIC; | |
1333 | SYMBOL_VALUE_ADDRESS (sym) = valu; | |
1334 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1335 | add_symbol_to_list (sym, &local_symbols); | |
1336 | break; | |
1337 | ||
1338 | case 'v': | |
1339 | /* Reference parameter */ | |
1340 | SYMBOL_CLASS (sym) = LOC_REF_ARG; | |
1341 | SYMBOL_VALUE (sym) = valu; | |
1342 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1343 | add_symbol_to_list (sym, &local_symbols); | |
1344 | break; | |
1345 | ||
1346 | case 'X': | |
1347 | /* This is used by Sun FORTRAN for "function result value". | |
1348 | Sun claims ("dbx and dbxtool interfaces", 2nd ed) | |
1349 | that Pascal uses it too, but when I tried it Pascal used | |
1350 | "x:3" (local symbol) instead. */ | |
1351 | SYMBOL_CLASS (sym) = LOC_LOCAL; | |
1352 | SYMBOL_VALUE (sym) = valu; | |
1353 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
1354 | add_symbol_to_list (sym, &local_symbols); | |
1355 | break; | |
1356 | ||
1357 | default: | |
1358 | error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum); | |
1359 | } | |
1360 | return sym; | |
1361 | } | |
1362 | \f | |
1363 | /* What about types defined as forward references inside of a small lexical | |
1364 | scope? */ | |
1365 | /* Add a type to the list of undefined types to be checked through | |
1366 | once this file has been read in. */ | |
a048c8f5 | 1367 | void |
c0302457 JG |
1368 | add_undefined_type (type) |
1369 | struct type *type; | |
1370 | { | |
1371 | if (undef_types_length == undef_types_allocated) | |
1372 | { | |
1373 | undef_types_allocated *= 2; | |
1374 | undef_types = (struct type **) | |
1375 | xrealloc (undef_types, | |
1376 | undef_types_allocated * sizeof (struct type *)); | |
1377 | } | |
1378 | undef_types[undef_types_length++] = type; | |
1379 | } | |
1380 | ||
1381 | /* Add here something to go through each undefined type, see if it's | |
1382 | still undefined, and do a full lookup if so. */ | |
1383 | static void | |
1384 | cleanup_undefined_types () | |
1385 | { | |
1386 | struct type **type; | |
1387 | ||
1388 | for (type = undef_types; type < undef_types + undef_types_length; type++) | |
1389 | { | |
1390 | /* Reasonable test to see if it's been defined since. */ | |
1391 | if (TYPE_NFIELDS (*type) == 0) | |
1392 | { | |
1393 | struct pending *ppt; | |
1394 | int i; | |
1395 | /* Name of the type, without "struct" or "union" */ | |
1396 | char *typename = TYPE_NAME (*type); | |
1397 | ||
1398 | if (!strncmp (typename, "struct ", 7)) | |
1399 | typename += 7; | |
1400 | if (!strncmp (typename, "union ", 6)) | |
1401 | typename += 6; | |
1402 | ||
1403 | for (ppt = file_symbols; ppt; ppt = ppt->next) | |
1404 | for (i = 0; i < ppt->nsyms; i++) | |
1405 | { | |
1406 | struct symbol *sym = ppt->symbol[i]; | |
1407 | ||
1408 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF | |
1409 | && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE | |
1410 | && (TYPE_CODE (SYMBOL_TYPE (sym)) == | |
1411 | TYPE_CODE (*type)) | |
1412 | && !strcmp (SYMBOL_NAME (sym), typename)) | |
1413 | bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type)); | |
1414 | } | |
1415 | } | |
1416 | else | |
1417 | /* It has been defined; don't mark it as a stub. */ | |
1418 | TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB; | |
1419 | } | |
1420 | undef_types_length = 0; | |
1421 | } | |
1422 | \f | |
1423 | /* Skip rest of this symbol and return an error type. | |
1424 | ||
1425 | General notes on error recovery: error_type always skips to the | |
1426 | end of the symbol (modulo cretinous dbx symbol name continuation). | |
1427 | Thus code like this: | |
1428 | ||
1429 | if (*(*pp)++ != ';') | |
1430 | return error_type (pp); | |
1431 | ||
1432 | is wrong because if *pp starts out pointing at '\0' (typically as the | |
1433 | result of an earlier error), it will be incremented to point to the | |
1434 | start of the next symbol, which might produce strange results, at least | |
1435 | if you run off the end of the string table. Instead use | |
1436 | ||
1437 | if (**pp != ';') | |
1438 | return error_type (pp); | |
1439 | ++*pp; | |
1440 | ||
1441 | or | |
1442 | ||
1443 | if (**pp != ';') | |
1444 | foo = error_type (pp); | |
1445 | else | |
1446 | ++*pp; | |
1447 | ||
1448 | And in case it isn't obvious, the point of all this hair is so the compiler | |
1449 | can define new types and new syntaxes, and old versions of the | |
1450 | debugger will be able to read the new symbol tables. */ | |
1451 | ||
1452 | struct type * | |
1453 | error_type (pp) | |
1454 | char **pp; | |
1455 | { | |
1456 | complain (&error_type_complaint, 0); | |
1457 | while (1) | |
1458 | { | |
1459 | /* Skip to end of symbol. */ | |
1460 | while (**pp != '\0') | |
1461 | (*pp)++; | |
1462 | ||
1463 | /* Check for and handle cretinous dbx symbol name continuation! */ | |
1464 | if ((*pp)[-1] == '\\') | |
1465 | *pp = next_symbol_text (); | |
1466 | else | |
1467 | break; | |
1468 | } | |
1469 | return builtin_type_error; | |
1470 | } | |
1471 | \f | |
1472 | /* Read a dbx type reference or definition; | |
1473 | return the type that is meant. | |
1474 | This can be just a number, in which case it references | |
1475 | a type already defined and placed in type_vector. | |
1476 | Or the number can be followed by an =, in which case | |
1477 | it means to define a new type according to the text that | |
1478 | follows the =. */ | |
1479 | ||
1480 | struct type * | |
1481 | read_type (pp) | |
1482 | register char **pp; | |
1483 | { | |
1484 | register struct type *type = 0; | |
1485 | struct type *type1; | |
1486 | int typenums[2]; | |
1487 | int xtypenums[2]; | |
1488 | ||
1489 | /* Read type number if present. The type number may be omitted. | |
1490 | for instance in a two-dimensional array declared with type | |
1491 | "ar1;1;10;ar1;1;10;4". */ | |
1492 | if ((**pp >= '0' && **pp <= '9') | |
1493 | || **pp == '(') | |
1494 | { | |
1495 | read_type_number (pp, typenums); | |
1496 | ||
a048c8f5 JG |
1497 | /* Type is not being defined here. Either it already exists, |
1498 | or this is a forward reference to it. dbx_alloc_type handles | |
1499 | both cases. */ | |
c0302457 JG |
1500 | if (**pp != '=') |
1501 | return dbx_alloc_type (typenums); | |
1502 | ||
a048c8f5 JG |
1503 | /* Type is being defined here. */ |
1504 | #if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */ | |
1505 | { | |
1506 | struct type *tt; | |
1507 | ||
1508 | /* if such a type already exists, this is an unnecessary duplication | |
1509 | of the stab string, which is common in (RS/6000) xlc generated | |
1510 | objects. In that case, simply return NULL and let the caller take | |
1511 | care of it. */ | |
1512 | ||
1513 | tt = *dbx_lookup_type (typenums); | |
1514 | if (tt && tt->length && tt->code) | |
1515 | return NULL; | |
1516 | } | |
1517 | #endif | |
1518 | ||
c0302457 JG |
1519 | *pp += 2; |
1520 | } | |
1521 | else | |
1522 | { | |
1523 | /* 'typenums=' not present, type is anonymous. Read and return | |
1524 | the definition, but don't put it in the type vector. */ | |
1525 | typenums[0] = typenums[1] = -1; | |
1526 | *pp += 1; | |
1527 | } | |
a048c8f5 | 1528 | |
c0302457 JG |
1529 | switch ((*pp)[-1]) |
1530 | { | |
1531 | case 'x': | |
1532 | { | |
1533 | enum type_code code; | |
1534 | ||
1535 | /* Used to index through file_symbols. */ | |
1536 | struct pending *ppt; | |
1537 | int i; | |
1538 | ||
1539 | /* Name including "struct", etc. */ | |
1540 | char *type_name; | |
1541 | ||
1542 | /* Name without "struct", etc. */ | |
1543 | char *type_name_only; | |
1544 | ||
1545 | { | |
1546 | char *prefix; | |
1547 | char *from, *to; | |
1548 | ||
1549 | /* Set the type code according to the following letter. */ | |
1550 | switch ((*pp)[0]) | |
1551 | { | |
1552 | case 's': | |
1553 | code = TYPE_CODE_STRUCT; | |
1554 | prefix = "struct "; | |
1555 | break; | |
1556 | case 'u': | |
1557 | code = TYPE_CODE_UNION; | |
1558 | prefix = "union "; | |
1559 | break; | |
1560 | case 'e': | |
1561 | code = TYPE_CODE_ENUM; | |
1562 | prefix = "enum "; | |
1563 | break; | |
1564 | default: | |
1565 | return error_type (pp); | |
1566 | } | |
1567 | ||
1568 | to = type_name = (char *) | |
1569 | obstack_alloc (symbol_obstack, | |
1570 | (strlen (prefix) + | |
1571 | ((char *) strchr (*pp, ':') - (*pp)) + 1)); | |
1572 | ||
1573 | /* Copy the prefix. */ | |
1574 | from = prefix; | |
1575 | while (*to++ = *from++) | |
1576 | ; | |
1577 | to--; | |
1578 | ||
1579 | type_name_only = to; | |
1580 | ||
1581 | /* Copy the name. */ | |
1582 | from = *pp + 1; | |
1583 | while ((*to++ = *from++) != ':') | |
1584 | ; | |
1585 | *--to = '\0'; | |
1586 | ||
1587 | /* Set the pointer ahead of the name which we just read. */ | |
1588 | *pp = from; | |
1589 | ||
1590 | #if 0 | |
1591 | /* The following hack is clearly wrong, because it doesn't | |
1592 | check whether we are in a baseclass. I tried to reproduce | |
1593 | the case that it is trying to fix, but I couldn't get | |
1594 | g++ to put out a cross reference to a basetype. Perhaps | |
1595 | it doesn't do it anymore. */ | |
1596 | /* Note: for C++, the cross reference may be to a base type which | |
1597 | has not yet been seen. In this case, we skip to the comma, | |
1598 | which will mark the end of the base class name. (The ':' | |
1599 | at the end of the base class name will be skipped as well.) | |
1600 | But sometimes (ie. when the cross ref is the last thing on | |
1601 | the line) there will be no ','. */ | |
1602 | from = (char *) strchr (*pp, ','); | |
1603 | if (from) | |
1604 | *pp = from; | |
1605 | #endif /* 0 */ | |
1606 | } | |
1607 | ||
1608 | /* Now check to see whether the type has already been declared. */ | |
1609 | /* This is necessary at least in the case where the | |
1610 | program says something like | |
1611 | struct foo bar[5]; | |
1612 | The compiler puts out a cross-reference; we better find | |
1613 | set the length of the structure correctly so we can | |
1614 | set the length of the array. */ | |
1615 | for (ppt = file_symbols; ppt; ppt = ppt->next) | |
1616 | for (i = 0; i < ppt->nsyms; i++) | |
1617 | { | |
1618 | struct symbol *sym = ppt->symbol[i]; | |
1619 | ||
1620 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF | |
1621 | && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE | |
1622 | && (TYPE_CODE (SYMBOL_TYPE (sym)) == code) | |
1623 | && !strcmp (SYMBOL_NAME (sym), type_name_only)) | |
1624 | { | |
1625 | obstack_free (symbol_obstack, type_name); | |
1626 | type = SYMBOL_TYPE (sym); | |
1627 | return type; | |
1628 | } | |
1629 | } | |
1630 | ||
1631 | /* Didn't find the type to which this refers, so we must | |
1632 | be dealing with a forward reference. Allocate a type | |
1633 | structure for it, and keep track of it so we can | |
1634 | fill in the rest of the fields when we get the full | |
1635 | type. */ | |
1636 | type = dbx_alloc_type (typenums); | |
1637 | TYPE_CODE (type) = code; | |
1638 | TYPE_NAME (type) = type_name; | |
1639 | ||
1640 | TYPE_FLAGS (type) |= TYPE_FLAG_STUB; | |
1641 | ||
1642 | add_undefined_type (type); | |
1643 | return type; | |
1644 | } | |
1645 | ||
74f6fb08 JG |
1646 | case '-': /* RS/6000 built-in type */ |
1647 | (*pp)--; | |
1648 | type = builtin_type (pp); /* (in xcoffread.c) */ | |
1649 | goto after_digits; | |
1650 | ||
c0302457 JG |
1651 | case '0': |
1652 | case '1': | |
1653 | case '2': | |
1654 | case '3': | |
1655 | case '4': | |
1656 | case '5': | |
1657 | case '6': | |
1658 | case '7': | |
1659 | case '8': | |
1660 | case '9': | |
1661 | case '(': | |
1662 | (*pp)--; | |
1663 | read_type_number (pp, xtypenums); | |
1664 | type = *dbx_lookup_type (xtypenums); | |
a048c8f5 JG |
1665 | /* fall through */ |
1666 | ||
1667 | after_digits: | |
c0302457 JG |
1668 | if (type == 0) |
1669 | type = builtin_type_void; | |
1670 | if (typenums[0] != -1) | |
1671 | *dbx_lookup_type (typenums) = type; | |
1672 | break; | |
1673 | ||
1674 | case '*': | |
1675 | type1 = read_type (pp); | |
a048c8f5 JG |
1676 | /* FIXME -- we should be doing smash_to_XXX types here. */ |
1677 | #if 0 | |
1678 | /* postponed type decoration should be allowed. */ | |
1679 | if (typenums[1] > 0 && typenums[1] < type_vector_length && | |
1680 | (type = type_vector[typenums[1]])) { | |
1681 | smash_to_pointer_type (type, type1); | |
1682 | break; | |
1683 | } | |
1684 | #endif | |
c0302457 JG |
1685 | type = lookup_pointer_type (type1); |
1686 | if (typenums[0] != -1) | |
1687 | *dbx_lookup_type (typenums) = type; | |
1688 | break; | |
1689 | ||
1690 | case '@': | |
1691 | { | |
1692 | struct type *domain = read_type (pp); | |
1693 | struct type *memtype; | |
1694 | ||
1695 | if (**pp != ',') | |
1696 | /* Invalid member type data format. */ | |
1697 | return error_type (pp); | |
1698 | ++*pp; | |
1699 | ||
1700 | memtype = read_type (pp); | |
1701 | type = dbx_alloc_type (typenums); | |
1702 | smash_to_member_type (type, domain, memtype); | |
1703 | } | |
1704 | break; | |
1705 | ||
1706 | case '#': | |
1707 | if ((*pp)[0] == '#') | |
1708 | { | |
1709 | /* We'll get the parameter types from the name. */ | |
1710 | struct type *return_type; | |
1711 | ||
1712 | *pp += 1; | |
1713 | return_type = read_type (pp); | |
1714 | if (*(*pp)++ != ';') | |
1715 | complain (&invalid_member_complaint, symnum); | |
1716 | type = allocate_stub_method (return_type); | |
1717 | if (typenums[0] != -1) | |
1718 | *dbx_lookup_type (typenums) = type; | |
1719 | } | |
1720 | else | |
1721 | { | |
1722 | struct type *domain = read_type (pp); | |
1723 | struct type *return_type; | |
1724 | struct type **args; | |
1725 | ||
1726 | if (*(*pp)++ != ',') | |
1727 | error ("invalid member type data format, at symtab pos %d.", | |
1728 | symnum); | |
1729 | ||
1730 | return_type = read_type (pp); | |
1731 | args = read_args (pp, ';'); | |
1732 | type = dbx_alloc_type (typenums); | |
1733 | smash_to_method_type (type, domain, return_type, args); | |
1734 | } | |
1735 | break; | |
1736 | ||
1737 | case '&': | |
1738 | type1 = read_type (pp); | |
1739 | type = lookup_reference_type (type1); | |
1740 | if (typenums[0] != -1) | |
1741 | *dbx_lookup_type (typenums) = type; | |
1742 | break; | |
1743 | ||
1744 | case 'f': | |
1745 | type1 = read_type (pp); | |
1746 | type = lookup_function_type (type1); | |
1747 | if (typenums[0] != -1) | |
1748 | *dbx_lookup_type (typenums) = type; | |
1749 | break; | |
1750 | ||
1751 | case 'r': | |
1752 | type = read_range_type (pp, typenums); | |
1753 | if (typenums[0] != -1) | |
1754 | *dbx_lookup_type (typenums) = type; | |
1755 | break; | |
1756 | ||
1757 | case 'e': | |
1758 | type = dbx_alloc_type (typenums); | |
1759 | type = read_enum_type (pp, type); | |
1760 | *dbx_lookup_type (typenums) = type; | |
1761 | break; | |
1762 | ||
1763 | case 's': | |
1764 | type = dbx_alloc_type (typenums); | |
1765 | TYPE_NAME (type) = type_synonym_name; | |
1766 | type_synonym_name = 0; | |
1767 | type = read_struct_type (pp, type); | |
1768 | break; | |
1769 | ||
1770 | case 'u': | |
1771 | type = dbx_alloc_type (typenums); | |
1772 | TYPE_NAME (type) = type_synonym_name; | |
1773 | type_synonym_name = 0; | |
1774 | type = read_struct_type (pp, type); | |
1775 | TYPE_CODE (type) = TYPE_CODE_UNION; | |
1776 | break; | |
1777 | ||
1778 | case 'a': | |
1779 | if (**pp != 'r') | |
1780 | return error_type (pp); | |
1781 | ++*pp; | |
1782 | ||
1783 | type = dbx_alloc_type (typenums); | |
1784 | type = read_array_type (pp, type); | |
1785 | break; | |
1786 | ||
1787 | default: | |
1788 | --*pp; /* Go back to the symbol in error */ | |
1789 | /* Particularly important if it was \0! */ | |
1790 | return error_type (pp); | |
1791 | } | |
1792 | ||
1793 | if (type == 0) | |
1794 | abort (); | |
1795 | ||
1796 | #if 0 | |
1797 | /* If this is an overriding temporary alteration for a header file's | |
1798 | contents, and this type number is unknown in the global definition, | |
1799 | put this type into the global definition at this type number. */ | |
1800 | if (header_file_prev_index >= 0) | |
1801 | { | |
1802 | register struct type **tp | |
1803 | = explicit_lookup_type (header_file_prev_index, typenums[1]); | |
1804 | if (*tp == 0) | |
1805 | *tp = type; | |
1806 | } | |
1807 | #endif | |
1808 | return type; | |
1809 | } | |
1810 | \f | |
1811 | /* This page contains subroutines of read_type. */ | |
1812 | ||
1813 | /* Read the description of a structure (or union type) | |
1814 | and return an object describing the type. */ | |
1815 | ||
1816 | struct type * | |
1817 | read_struct_type (pp, type) | |
1818 | char **pp; | |
1819 | register struct type *type; | |
1820 | { | |
1821 | /* Total number of methods defined in this class. | |
1822 | If the class defines two `f' methods, and one `g' method, | |
1823 | then this will have the value 3. */ | |
1824 | int total_length = 0; | |
1825 | ||
1826 | struct nextfield | |
1827 | { | |
1828 | struct nextfield *next; | |
1829 | int visibility; /* 0=public, 1=protected, 2=public */ | |
1830 | struct field field; | |
1831 | }; | |
1832 | ||
1833 | struct next_fnfield | |
1834 | { | |
1835 | struct next_fnfield *next; | |
1836 | int visibility; /* 0=public, 1=protected, 2=public */ | |
1837 | struct fn_field fn_field; | |
1838 | }; | |
1839 | ||
1840 | struct next_fnfieldlist | |
1841 | { | |
1842 | struct next_fnfieldlist *next; | |
1843 | struct fn_fieldlist fn_fieldlist; | |
1844 | }; | |
1845 | ||
1846 | register struct nextfield *list = 0; | |
1847 | struct nextfield *new; | |
1848 | register char *p; | |
1849 | int nfields = 0; | |
1850 | register int n; | |
1851 | ||
1852 | register struct next_fnfieldlist *mainlist = 0; | |
1853 | int nfn_fields = 0; | |
1854 | ||
1855 | if (TYPE_MAIN_VARIANT (type) == 0) | |
1856 | { | |
1857 | TYPE_MAIN_VARIANT (type) = type; | |
1858 | } | |
1859 | ||
1860 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
1861 | ||
1862 | /* First comes the total size in bytes. */ | |
1863 | ||
1864 | TYPE_LENGTH (type) = read_number (pp, 0); | |
1865 | ||
1866 | /* C++: Now, if the class is a derived class, then the next character | |
1867 | will be a '!', followed by the number of base classes derived from. | |
1868 | Each element in the list contains visibility information, | |
1869 | the offset of this base class in the derived structure, | |
1870 | and then the base type. */ | |
1871 | if (**pp == '!') | |
1872 | { | |
1873 | int i, n_baseclasses, offset; | |
1874 | struct type *baseclass; | |
1875 | int via_public; | |
1876 | ||
1877 | /* Nonzero if it is a virtual baseclass, i.e., | |
1878 | ||
1879 | struct A{}; | |
1880 | struct B{}; | |
1881 | struct C : public B, public virtual A {}; | |
1882 | ||
1883 | B is a baseclass of C; A is a virtual baseclass for C. This is a C++ | |
1884 | 2.0 language feature. */ | |
1885 | int via_virtual; | |
1886 | ||
1887 | *pp += 1; | |
1888 | ||
1889 | n_baseclasses = read_number (pp, ','); | |
1890 | TYPE_FIELD_VIRTUAL_BITS (type) = | |
1891 | (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses)); | |
1892 | B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses); | |
1893 | ||
1894 | for (i = 0; i < n_baseclasses; i++) | |
1895 | { | |
1896 | if (**pp == '\\') | |
1897 | *pp = next_symbol_text (); | |
1898 | ||
1899 | switch (**pp) | |
1900 | { | |
1901 | case '0': | |
1902 | via_virtual = 0; | |
1903 | break; | |
1904 | case '1': | |
1905 | via_virtual = 1; | |
1906 | break; | |
1907 | default: | |
1908 | /* Bad visibility format. */ | |
1909 | return error_type (pp); | |
1910 | } | |
1911 | ++*pp; | |
1912 | ||
1913 | switch (**pp) | |
1914 | { | |
1915 | case '0': | |
1916 | via_public = 0; | |
1917 | break; | |
1918 | case '2': | |
1919 | via_public = 2; | |
1920 | break; | |
1921 | default: | |
1922 | /* Bad visibility format. */ | |
1923 | return error_type (pp); | |
1924 | } | |
1925 | if (via_virtual) | |
1926 | SET_TYPE_FIELD_VIRTUAL (type, i); | |
1927 | ++*pp; | |
1928 | ||
1929 | /* Offset of the portion of the object corresponding to | |
1930 | this baseclass. Always zero in the absence of | |
1931 | multiple inheritance. */ | |
1932 | offset = read_number (pp, ','); | |
1933 | baseclass = read_type (pp); | |
1934 | *pp += 1; /* skip trailing ';' */ | |
1935 | ||
1936 | /* Make this baseclass visible for structure-printing purposes. */ | |
1937 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1938 | new->next = list; | |
1939 | list = new; | |
1940 | list->visibility = via_public; | |
1941 | list->field.type = baseclass; | |
1942 | list->field.name = type_name_no_tag (baseclass); | |
1943 | list->field.bitpos = offset; | |
1944 | list->field.bitsize = 0; /* this should be an unpacked field! */ | |
1945 | nfields++; | |
1946 | } | |
1947 | TYPE_N_BASECLASSES (type) = n_baseclasses; | |
1948 | } | |
1949 | ||
1950 | /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one. | |
1951 | At the end, we see a semicolon instead of a field. | |
1952 | ||
1953 | In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for | |
1954 | a static field. | |
1955 | ||
1956 | The `?' is a placeholder for one of '/2' (public visibility), | |
1957 | '/1' (protected visibility), '/0' (private visibility), or nothing | |
1958 | (C style symbol table, public visibility). */ | |
1959 | ||
1960 | /* We better set p right now, in case there are no fields at all... */ | |
1961 | p = *pp; | |
1962 | ||
1963 | while (**pp != ';') | |
1964 | { | |
1965 | /* Check for and handle cretinous dbx symbol name continuation! */ | |
1966 | if (**pp == '\\') *pp = next_symbol_text (); | |
1967 | ||
1968 | /* Get space to record the next field's data. */ | |
1969 | new = (struct nextfield *) alloca (sizeof (struct nextfield)); | |
1970 | new->next = list; | |
1971 | list = new; | |
1972 | ||
1973 | /* Get the field name. */ | |
1974 | p = *pp; | |
1975 | if (*p == CPLUS_MARKER) | |
1976 | { | |
1977 | /* Special GNU C++ name. */ | |
1978 | if (*++p == 'v') | |
1979 | { | |
1980 | const char *prefix; | |
1981 | char *name = 0; | |
1982 | struct type *context; | |
1983 | ||
1984 | switch (*++p) | |
1985 | { | |
1986 | case 'f': | |
1987 | prefix = vptr_name; | |
1988 | break; | |
1989 | case 'b': | |
1990 | prefix = vb_name; | |
1991 | break; | |
1992 | default: | |
1993 | error ("invalid abbreviation at symtab pos %d.", symnum); | |
1994 | } | |
1995 | *pp = p + 1; | |
1996 | context = read_type (pp); | |
abefb1f1 PB |
1997 | name = type_name_no_tag (context); |
1998 | if (name == 0) | |
c0302457 | 1999 | { |
abefb1f1 PB |
2000 | error ("type name unknown at symtab pos %d.", symnum); |
2001 | TYPE_NAME (context) = name; | |
c0302457 | 2002 | } |
abefb1f1 | 2003 | list->field.name = obconcat (prefix, name, ""); |
c0302457 JG |
2004 | p = ++(*pp); |
2005 | if (p[-1] != ':') | |
2006 | error ("invalid abbreviation at symtab pos %d.", symnum); | |
2007 | list->field.type = read_type (pp); | |
2008 | (*pp)++; /* Skip the comma. */ | |
2009 | list->field.bitpos = read_number (pp, ';'); | |
2010 | /* This field is unpacked. */ | |
2011 | list->field.bitsize = 0; | |
2012 | } | |
2013 | /* GNU C++ anonymous type. */ | |
2014 | else if (*p == '_') | |
2015 | break; | |
2016 | else | |
2017 | error ("invalid abbreviation at symtab pos %d.", symnum); | |
2018 | ||
2019 | nfields++; | |
2020 | continue; | |
2021 | } | |
2022 | ||
2023 | while (*p != ':') p++; | |
2024 | list->field.name = obsavestring (*pp, p - *pp); | |
2025 | ||
2026 | /* C++: Check to see if we have hit the methods yet. */ | |
2027 | if (p[1] == ':') | |
2028 | break; | |
2029 | ||
2030 | *pp = p + 1; | |
2031 | ||
2032 | /* This means we have a visibility for a field coming. */ | |
2033 | if (**pp == '/') | |
2034 | { | |
2035 | switch (*++*pp) | |
2036 | { | |
2037 | case '0': | |
2038 | list->visibility = 0; /* private */ | |
2039 | *pp += 1; | |
2040 | break; | |
2041 | ||
2042 | case '1': | |
2043 | list->visibility = 1; /* protected */ | |
2044 | *pp += 1; | |
2045 | break; | |
2046 | ||
2047 | case '2': | |
2048 | list->visibility = 2; /* public */ | |
2049 | *pp += 1; | |
2050 | break; | |
2051 | } | |
2052 | } | |
2053 | else /* normal dbx-style format. */ | |
2054 | list->visibility = 2; /* public */ | |
2055 | ||
2056 | list->field.type = read_type (pp); | |
2057 | if (**pp == ':') | |
2058 | { | |
2059 | /* Static class member. */ | |
2060 | list->field.bitpos = (long)-1; | |
2061 | p = ++(*pp); | |
2062 | while (*p != ';') p++; | |
2063 | list->field.bitsize = (long) savestring (*pp, p - *pp); | |
2064 | *pp = p + 1; | |
2065 | nfields++; | |
2066 | continue; | |
2067 | } | |
2068 | else if (**pp != ',') | |
2069 | /* Bad structure-type format. */ | |
2070 | return error_type (pp); | |
2071 | ||
2072 | (*pp)++; /* Skip the comma. */ | |
2073 | list->field.bitpos = read_number (pp, ','); | |
2074 | list->field.bitsize = read_number (pp, ';'); | |
2075 | ||
2076 | #if 0 | |
2077 | /* FIXME-tiemann: Can't the compiler put out something which | |
2078 | lets us distinguish these? (or maybe just not put out anything | |
2079 | for the field). What is the story here? What does the compiler | |
2080 | really do? Also, patch gdb.texinfo for this case; I document | |
2081 | it as a possible problem there. Search for "DBX-style". */ | |
2082 | ||
2083 | /* This is wrong because this is identical to the symbols | |
2084 | produced for GCC 0-size arrays. For example: | |
2085 | typedef union { | |
2086 | int num; | |
2087 | char str[0]; | |
2088 | } foo; | |
2089 | The code which dumped core in such circumstances should be | |
2090 | fixed not to dump core. */ | |
2091 | ||
2092 | /* g++ -g0 can put out bitpos & bitsize zero for a static | |
2093 | field. This does not give us any way of getting its | |
2094 | class, so we can't know its name. But we can just | |
2095 | ignore the field so we don't dump core and other nasty | |
2096 | stuff. */ | |
2097 | if (list->field.bitpos == 0 | |
2098 | && list->field.bitsize == 0) | |
2099 | { | |
2100 | complain (&dbx_class_complaint, 0); | |
2101 | /* Ignore this field. */ | |
2102 | list = list->next; | |
2103 | } | |
2104 | else | |
2105 | #endif /* 0 */ | |
2106 | { | |
2107 | /* Detect an unpacked field and mark it as such. | |
2108 | dbx gives a bit size for all fields. | |
2109 | Note that forward refs cannot be packed, | |
2110 | and treat enums as if they had the width of ints. */ | |
2111 | if (TYPE_CODE (list->field.type) != TYPE_CODE_INT | |
2112 | && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM) | |
2113 | list->field.bitsize = 0; | |
2114 | if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type) | |
2115 | || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM | |
2116 | && (list->field.bitsize | |
2117 | == 8 * TYPE_LENGTH (builtin_type_int)) | |
2118 | ) | |
2119 | ) | |
2120 | && | |
2121 | list->field.bitpos % 8 == 0) | |
2122 | list->field.bitsize = 0; | |
2123 | nfields++; | |
2124 | } | |
2125 | } | |
2126 | ||
2127 | if (p[1] == ':') | |
2128 | /* chill the list of fields: the last entry (at the head) | |
2129 | is a partially constructed entry which we now scrub. */ | |
2130 | list = list->next; | |
2131 | ||
2132 | /* Now create the vector of fields, and record how big it is. | |
2133 | We need this info to record proper virtual function table information | |
2134 | for this class's virtual functions. */ | |
2135 | ||
2136 | TYPE_NFIELDS (type) = nfields; | |
2137 | TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, | |
2138 | sizeof (struct field) * nfields); | |
2139 | ||
2140 | TYPE_FIELD_PRIVATE_BITS (type) = | |
2141 | (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields)); | |
2142 | B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields); | |
2143 | ||
2144 | TYPE_FIELD_PROTECTED_BITS (type) = | |
2145 | (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields)); | |
2146 | B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields); | |
2147 | ||
2148 | /* Copy the saved-up fields into the field vector. */ | |
2149 | ||
2150 | for (n = nfields; list; list = list->next) | |
2151 | { | |
2152 | n -= 1; | |
2153 | TYPE_FIELD (type, n) = list->field; | |
2154 | if (list->visibility == 0) | |
2155 | SET_TYPE_FIELD_PRIVATE (type, n); | |
2156 | else if (list->visibility == 1) | |
2157 | SET_TYPE_FIELD_PROTECTED (type, n); | |
2158 | } | |
2159 | ||
2160 | /* Now come the method fields, as NAME::methods | |
2161 | where each method is of the form TYPENUM,ARGS,...:PHYSNAME; | |
2162 | At the end, we see a semicolon instead of a field. | |
2163 | ||
2164 | For the case of overloaded operators, the format is | |
2165 | OPERATOR::*.methods, where OPERATOR is the string "operator", | |
2166 | `*' holds the place for an operator name (such as `+=') | |
2167 | and `.' marks the end of the operator name. */ | |
2168 | if (p[1] == ':') | |
2169 | { | |
2170 | /* Now, read in the methods. To simplify matters, we | |
2171 | "unread" the name that has been read, so that we can | |
2172 | start from the top. */ | |
2173 | ||
2174 | /* For each list of method lists... */ | |
2175 | do | |
2176 | { | |
2177 | int i; | |
2178 | struct next_fnfield *sublist = 0; | |
2179 | struct type *look_ahead_type = NULL; | |
2180 | int length = 0; | |
2181 | struct next_fnfieldlist *new_mainlist = | |
2182 | (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist)); | |
2183 | char *main_fn_name; | |
2184 | ||
2185 | p = *pp; | |
2186 | ||
2187 | /* read in the name. */ | |
2188 | while (*p != ':') p++; | |
abefb1f1 | 2189 | #if 0 |
c0302457 JG |
2190 | if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER) |
2191 | { | |
2192 | /* This lets the user type "break operator+". | |
2193 | We could just put in "+" as the name, but that wouldn't | |
2194 | work for "*". */ | |
abefb1f1 PB |
2195 | /* I don't understand what this is trying to do. |
2196 | It seems completely bogus. -Per Bothner. */ | |
c0302457 JG |
2197 | static char opname[32] = {'o', 'p', CPLUS_MARKER}; |
2198 | char *o = opname + 3; | |
2199 | ||
2200 | /* Skip past '::'. */ | |
abefb1f1 PB |
2201 | *pp = p + 2; |
2202 | if (**pp == '\\') *pp = next_symbol_text (); | |
2203 | p = *pp; | |
c0302457 JG |
2204 | while (*p != '.') |
2205 | *o++ = *p++; | |
abefb1f1 | 2206 | main_fn_name = savestring (opname, o - opname); |
c0302457 JG |
2207 | /* Skip past '.' */ |
2208 | *pp = p + 1; | |
2209 | } | |
2210 | else | |
abefb1f1 | 2211 | #endif |
c0302457 | 2212 | main_fn_name = savestring (*pp, p - *pp); |
abefb1f1 PB |
2213 | /* Skip past '::'. */ |
2214 | *pp = p + 2; | |
c0302457 JG |
2215 | new_mainlist->fn_fieldlist.name = main_fn_name; |
2216 | ||
2217 | do | |
2218 | { | |
2219 | struct next_fnfield *new_sublist = | |
2220 | (struct next_fnfield *)alloca (sizeof (struct next_fnfield)); | |
2221 | ||
2222 | /* Check for and handle cretinous dbx symbol name continuation! */ | |
2223 | if (look_ahead_type == NULL) /* Normal case. */ | |
2224 | { | |
2225 | if (**pp == '\\') *pp = next_symbol_text (); | |
2226 | ||
2227 | new_sublist->fn_field.type = read_type (pp); | |
2228 | if (**pp != ':') | |
2229 | /* Invalid symtab info for method. */ | |
2230 | return error_type (pp); | |
2231 | } | |
2232 | else | |
2233 | { /* g++ version 1 kludge */ | |
2234 | new_sublist->fn_field.type = look_ahead_type; | |
2235 | look_ahead_type = NULL; | |
2236 | } | |
2237 | ||
2238 | *pp += 1; | |
2239 | p = *pp; | |
2240 | while (*p != ';') p++; | |
2241 | /* If this is just a stub, then we don't have the | |
2242 | real name here. */ | |
2243 | new_sublist->fn_field.physname = savestring (*pp, p - *pp); | |
2244 | *pp = p + 1; | |
2245 | new_sublist->visibility = *(*pp)++ - '0'; | |
2246 | if (**pp == '\\') *pp = next_symbol_text (); | |
2247 | switch (**pp) | |
2248 | { | |
2249 | case 'A': /* Normal functions. */ | |
2250 | new_sublist->fn_field.is_const = 0; | |
2251 | new_sublist->fn_field.is_volatile = 0; | |
2252 | (*pp)++; | |
2253 | break; | |
2254 | case 'B': /* `const' member functions. */ | |
2255 | new_sublist->fn_field.is_const = 1; | |
2256 | new_sublist->fn_field.is_volatile = 0; | |
2257 | (*pp)++; | |
2258 | break; | |
2259 | case 'C': /* `volatile' member function. */ | |
2260 | new_sublist->fn_field.is_const = 0; | |
2261 | new_sublist->fn_field.is_volatile = 1; | |
2262 | (*pp)++; | |
2263 | break; | |
2264 | case 'D': /* `const volatile' member function. */ | |
2265 | new_sublist->fn_field.is_const = 1; | |
2266 | new_sublist->fn_field.is_volatile = 1; | |
2267 | (*pp)++; | |
2268 | break; | |
2269 | default: | |
2270 | /* This probably just means we're processing a file compiled | |
2271 | with g++ version 1. */ | |
2272 | complain(&const_vol_complaint, **pp); | |
2273 | } | |
2274 | ||
2275 | switch (*(*pp)++) | |
2276 | { | |
2277 | case '*': | |
2278 | /* virtual member function, followed by index. */ | |
2279 | /* The sign bit is set to distinguish pointers-to-methods | |
2280 | from virtual function indicies. Since the array is | |
2281 | in words, the quantity must be shifted left by 1 | |
2282 | on 16 bit machine, and by 2 on 32 bit machine, forcing | |
2283 | the sign bit out, and usable as a valid index into | |
2284 | the array. Remove the sign bit here. */ | |
2285 | new_sublist->fn_field.voffset = | |
2286 | (0x7fffffff & read_number (pp, ';')) + 2; | |
2287 | ||
2288 | if (**pp == '\\') *pp = next_symbol_text (); | |
2289 | ||
2290 | if (**pp == ';' || **pp == '\0') | |
2291 | /* Must be g++ version 1. */ | |
2292 | new_sublist->fn_field.fcontext = 0; | |
2293 | else | |
2294 | { | |
2295 | /* Figure out from whence this virtual function came. | |
2296 | It may belong to virtual function table of | |
2297 | one of its baseclasses. */ | |
2298 | look_ahead_type = read_type (pp); | |
2299 | if (**pp == ':') | |
2300 | { /* g++ version 1 overloaded methods. */ } | |
2301 | else | |
2302 | { | |
2303 | new_sublist->fn_field.fcontext = look_ahead_type; | |
2304 | if (**pp != ';') | |
2305 | return error_type (pp); | |
2306 | else | |
2307 | ++*pp; | |
2308 | look_ahead_type = NULL; | |
2309 | } | |
2310 | } | |
2311 | break; | |
2312 | ||
2313 | case '?': | |
2314 | /* static member function. */ | |
2315 | new_sublist->fn_field.voffset = VOFFSET_STATIC; | |
2316 | break; | |
2317 | default: | |
2318 | /* **pp == '.'. */ | |
2319 | /* normal member function. */ | |
2320 | new_sublist->fn_field.voffset = 0; | |
2321 | new_sublist->fn_field.fcontext = 0; | |
2322 | break; | |
2323 | } | |
2324 | ||
2325 | new_sublist->next = sublist; | |
2326 | sublist = new_sublist; | |
2327 | length++; | |
2328 | if (**pp == '\\') *pp = next_symbol_text (); | |
2329 | } | |
2330 | while (**pp != ';' && **pp != '\0'); | |
2331 | ||
2332 | *pp += 1; | |
2333 | ||
2334 | new_mainlist->fn_fieldlist.fn_fields = | |
2335 | (struct fn_field *) obstack_alloc (symbol_obstack, | |
2336 | sizeof (struct fn_field) * length); | |
2337 | TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) = | |
2338 | (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length)); | |
2339 | B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length); | |
2340 | ||
2341 | TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) = | |
2342 | (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length)); | |
2343 | B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length); | |
2344 | ||
2345 | for (i = length; (i--, sublist); sublist = sublist->next) | |
2346 | { | |
2347 | new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field; | |
2348 | if (sublist->visibility == 0) | |
2349 | B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i); | |
2350 | else if (sublist->visibility == 1) | |
2351 | B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i); | |
2352 | } | |
2353 | ||
2354 | new_mainlist->fn_fieldlist.length = length; | |
2355 | new_mainlist->next = mainlist; | |
2356 | mainlist = new_mainlist; | |
2357 | nfn_fields++; | |
2358 | total_length += length; | |
2359 | } | |
2360 | while (**pp != ';'); | |
2361 | } | |
2362 | ||
2363 | *pp += 1; | |
2364 | ||
2365 | TYPE_FN_FIELDLISTS (type) = | |
2366 | (struct fn_fieldlist *) obstack_alloc (symbol_obstack, | |
2367 | sizeof (struct fn_fieldlist) * nfn_fields); | |
2368 | ||
2369 | TYPE_NFN_FIELDS (type) = nfn_fields; | |
2370 | TYPE_NFN_FIELDS_TOTAL (type) = total_length; | |
2371 | ||
2372 | { | |
2373 | int i; | |
2374 | for (i = 0; i < TYPE_N_BASECLASSES (type); ++i) | |
2375 | TYPE_NFN_FIELDS_TOTAL (type) += | |
2376 | TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i)); | |
2377 | } | |
2378 | ||
2379 | for (n = nfn_fields; mainlist; mainlist = mainlist->next) | |
2380 | TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist; | |
2381 | ||
2382 | if (**pp == '~') | |
2383 | { | |
2384 | *pp += 1; | |
2385 | ||
0e2a896c | 2386 | if (**pp == '=' || **pp == '+' || **pp == '-') |
c0302457 | 2387 | { |
0e2a896c PB |
2388 | /* Obsolete flags that used to indicate the presence |
2389 | of constructors and/or destructors. */ | |
c0302457 JG |
2390 | *pp += 1; |
2391 | } | |
2392 | ||
2393 | /* Read either a '%' or the final ';'. */ | |
2394 | if (*(*pp)++ == '%') | |
2395 | { | |
2396 | /* Now we must record the virtual function table pointer's | |
2397 | field information. */ | |
2398 | ||
2399 | struct type *t; | |
2400 | int i; | |
2401 | ||
2402 | t = read_type (pp); | |
2403 | p = (*pp)++; | |
2404 | while (*p != '\0' && *p != ';') | |
2405 | p++; | |
2406 | if (*p == '\0') | |
2407 | /* Premature end of symbol. */ | |
2408 | return error_type (pp); | |
2409 | ||
2410 | TYPE_VPTR_BASETYPE (type) = t; | |
2411 | if (type == t) | |
2412 | { | |
2413 | if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0) | |
2414 | { | |
2415 | /* FIXME-tiemann: what's this? */ | |
2416 | #if 0 | |
2417 | TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t); | |
2418 | #else | |
2419 | error_type (pp); | |
2420 | #endif | |
2421 | } | |
2422 | else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i) | |
2423 | if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name, | |
2424 | sizeof (vptr_name) -1)) | |
2425 | { | |
2426 | TYPE_VPTR_FIELDNO (type) = i; | |
2427 | break; | |
2428 | } | |
2429 | if (i < 0) | |
2430 | /* Virtual function table field not found. */ | |
2431 | return error_type (pp); | |
2432 | } | |
2433 | else | |
2434 | TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t); | |
2435 | *pp = p + 1; | |
2436 | } | |
2437 | } | |
2438 | ||
2439 | return type; | |
2440 | } | |
2441 | ||
2442 | /* Read a definition of an array type, | |
2443 | and create and return a suitable type object. | |
2444 | Also creates a range type which represents the bounds of that | |
2445 | array. */ | |
2446 | struct type * | |
2447 | read_array_type (pp, type) | |
2448 | register char **pp; | |
2449 | register struct type *type; | |
2450 | { | |
2451 | struct type *index_type, *element_type, *range_type; | |
2452 | int lower, upper; | |
2453 | int adjustable = 0; | |
2454 | ||
2455 | /* Format of an array type: | |
2456 | "ar<index type>;lower;upper;<array_contents_type>". Put code in | |
2457 | to handle this. | |
2458 | ||
2459 | Fortran adjustable arrays use Adigits or Tdigits for lower or upper; | |
2460 | for these, produce a type like float[][]. */ | |
2461 | ||
2462 | index_type = read_type (pp); | |
2463 | if (**pp != ';') | |
2464 | /* Improper format of array type decl. */ | |
2465 | return error_type (pp); | |
2466 | ++*pp; | |
2467 | ||
2468 | if (!(**pp >= '0' && **pp <= '9')) | |
2469 | { | |
2470 | *pp += 1; | |
2471 | adjustable = 1; | |
2472 | } | |
2473 | lower = read_number (pp, ';'); | |
2474 | ||
2475 | if (!(**pp >= '0' && **pp <= '9')) | |
2476 | { | |
2477 | *pp += 1; | |
2478 | adjustable = 1; | |
2479 | } | |
2480 | upper = read_number (pp, ';'); | |
2481 | ||
2482 | element_type = read_type (pp); | |
2483 | ||
2484 | if (adjustable) | |
2485 | { | |
2486 | lower = 0; | |
2487 | upper = -1; | |
2488 | } | |
2489 | ||
2490 | { | |
2491 | /* Create range type. */ | |
2492 | range_type = (struct type *) obstack_alloc (symbol_obstack, | |
2493 | sizeof (struct type)); | |
2494 | TYPE_CODE (range_type) = TYPE_CODE_RANGE; | |
2495 | TYPE_TARGET_TYPE (range_type) = index_type; | |
2496 | ||
2497 | /* This should never be needed. */ | |
2498 | TYPE_LENGTH (range_type) = sizeof (int); | |
2499 | ||
2500 | TYPE_NFIELDS (range_type) = 2; | |
2501 | TYPE_FIELDS (range_type) = | |
2502 | (struct field *) obstack_alloc (symbol_obstack, | |
2503 | 2 * sizeof (struct field)); | |
2504 | TYPE_FIELD_BITPOS (range_type, 0) = lower; | |
2505 | TYPE_FIELD_BITPOS (range_type, 1) = upper; | |
2506 | } | |
2507 | ||
2508 | TYPE_CODE (type) = TYPE_CODE_ARRAY; | |
2509 | TYPE_TARGET_TYPE (type) = element_type; | |
2510 | TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type); | |
2511 | TYPE_NFIELDS (type) = 1; | |
2512 | TYPE_FIELDS (type) = | |
2513 | (struct field *) obstack_alloc (symbol_obstack, | |
2514 | sizeof (struct field)); | |
2515 | TYPE_FIELD_TYPE (type, 0) = range_type; | |
2516 | ||
2517 | return type; | |
2518 | } | |
2519 | ||
2520 | ||
2521 | /* Read a definition of an enumeration type, | |
2522 | and create and return a suitable type object. | |
2523 | Also defines the symbols that represent the values of the type. */ | |
2524 | ||
2525 | struct type * | |
2526 | read_enum_type (pp, type) | |
2527 | register char **pp; | |
2528 | register struct type *type; | |
2529 | { | |
2530 | register char *p; | |
2531 | char *name; | |
2532 | register long n; | |
2533 | register struct symbol *sym; | |
2534 | int nsyms = 0; | |
2535 | struct pending **symlist; | |
2536 | struct pending *osyms, *syms; | |
2537 | int o_nsyms; | |
2538 | ||
2539 | if (within_function) | |
2540 | symlist = &local_symbols; | |
2541 | else | |
2542 | symlist = &file_symbols; | |
2543 | osyms = *symlist; | |
2544 | o_nsyms = osyms ? osyms->nsyms : 0; | |
2545 | ||
2546 | /* Read the value-names and their values. | |
2547 | The input syntax is NAME:VALUE,NAME:VALUE, and so on. | |
2548 | A semicolon or comman instead of a NAME means the end. */ | |
2549 | while (**pp && **pp != ';' && **pp != ',') | |
2550 | { | |
2551 | /* Check for and handle cretinous dbx symbol name continuation! */ | |
2552 | if (**pp == '\\') *pp = next_symbol_text (); | |
2553 | ||
2554 | p = *pp; | |
2555 | while (*p != ':') p++; | |
2556 | name = obsavestring (*pp, p - *pp); | |
2557 | *pp = p + 1; | |
2558 | n = read_number (pp, ','); | |
2559 | ||
2560 | sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol)); | |
2561 | bzero (sym, sizeof (struct symbol)); | |
2562 | SYMBOL_NAME (sym) = name; | |
2563 | SYMBOL_CLASS (sym) = LOC_CONST; | |
2564 | SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; | |
2565 | SYMBOL_VALUE (sym) = n; | |
2566 | add_symbol_to_list (sym, symlist); | |
2567 | nsyms++; | |
2568 | } | |
2569 | ||
2570 | if (**pp == ';') | |
2571 | (*pp)++; /* Skip the semicolon. */ | |
2572 | ||
2573 | /* Now fill in the fields of the type-structure. */ | |
2574 | ||
2575 | TYPE_LENGTH (type) = sizeof (int); | |
2576 | TYPE_CODE (type) = TYPE_CODE_ENUM; | |
2577 | TYPE_NFIELDS (type) = nsyms; | |
2578 | TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms); | |
2579 | ||
2580 | /* Find the symbols for the values and put them into the type. | |
2581 | The symbols can be found in the symlist that we put them on | |
2582 | to cause them to be defined. osyms contains the old value | |
2583 | of that symlist; everything up to there was defined by us. */ | |
2584 | /* Note that we preserve the order of the enum constants, so | |
2585 | that in something like "enum {FOO, LAST_THING=FOO}" we print | |
2586 | FOO, not LAST_THING. */ | |
2587 | ||
2588 | for (syms = *symlist, n = 0; syms; syms = syms->next) | |
2589 | { | |
2590 | int j = 0; | |
2591 | if (syms == osyms) | |
2592 | j = o_nsyms; | |
2593 | for (; j < syms->nsyms; j++,n++) | |
2594 | { | |
2595 | struct symbol *xsym = syms->symbol[j]; | |
2596 | SYMBOL_TYPE (xsym) = type; | |
2597 | TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym); | |
2598 | TYPE_FIELD_VALUE (type, n) = 0; | |
2599 | TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym); | |
2600 | TYPE_FIELD_BITSIZE (type, n) = 0; | |
2601 | } | |
2602 | if (syms == osyms) | |
2603 | break; | |
2604 | } | |
2605 | ||
2606 | #if 0 | |
2607 | /* This screws up perfectly good C programs with enums. FIXME. */ | |
2608 | /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */ | |
2609 | if(TYPE_NFIELDS(type) == 2 && | |
2610 | ((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") && | |
2611 | !strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) || | |
2612 | (!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") && | |
2613 | !strcmp(TYPE_FIELD_NAME(type,0),"FALSE")))) | |
2614 | TYPE_CODE(type) = TYPE_CODE_BOOL; | |
2615 | #endif | |
2616 | ||
2617 | return type; | |
2618 | } | |
2619 | ||
2620 | /* Read a number from the string pointed to by *PP. | |
2621 | The value of *PP is advanced over the number. | |
2622 | If END is nonzero, the character that ends the | |
2623 | number must match END, or an error happens; | |
2624 | and that character is skipped if it does match. | |
2625 | If END is zero, *PP is left pointing to that character. | |
2626 | ||
2627 | If the number fits in a long, set *VALUE and set *BITS to 0. | |
2628 | If not, set *BITS to be the number of bits in the number. | |
2629 | ||
2630 | If encounter garbage, set *BITS to -1. */ | |
2631 | ||
2632 | void | |
2633 | read_huge_number (pp, end, valu, bits) | |
2634 | char **pp; | |
2635 | int end; | |
2636 | long *valu; | |
2637 | int *bits; | |
2638 | { | |
2639 | char *p = *pp; | |
2640 | int sign = 1; | |
2641 | long n = 0; | |
2642 | int radix = 10; | |
2643 | char overflow = 0; | |
2644 | int nbits = 0; | |
2645 | int c; | |
2646 | long upper_limit; | |
2647 | ||
2648 | if (*p == '-') | |
2649 | { | |
2650 | sign = -1; | |
2651 | p++; | |
2652 | } | |
2653 | ||
2654 | /* Leading zero means octal. GCC uses this to output values larger | |
2655 | than an int (because that would be hard in decimal). */ | |
2656 | if (*p == '0') | |
2657 | { | |
2658 | radix = 8; | |
2659 | p++; | |
2660 | } | |
2661 | ||
2662 | upper_limit = LONG_MAX / radix; | |
2663 | while ((c = *p++) >= '0' && c <= ('0' + radix)) | |
2664 | { | |
2665 | if (n <= upper_limit) | |
2666 | { | |
2667 | n *= radix; | |
2668 | n += c - '0'; /* FIXME this overflows anyway */ | |
2669 | } | |
2670 | else | |
2671 | overflow = 1; | |
2672 | ||
2673 | /* This depends on large values being output in octal, which is | |
2674 | what GCC does. */ | |
2675 | if (radix == 8) | |
2676 | { | |
2677 | if (nbits == 0) | |
2678 | { | |
2679 | if (c == '0') | |
2680 | /* Ignore leading zeroes. */ | |
2681 | ; | |
2682 | else if (c == '1') | |
2683 | nbits = 1; | |
2684 | else if (c == '2' || c == '3') | |
2685 | nbits = 2; | |
2686 | else | |
2687 | nbits = 3; | |
2688 | } | |
2689 | else | |
2690 | nbits += 3; | |
2691 | } | |
2692 | } | |
2693 | if (end) | |
2694 | { | |
2695 | if (c && c != end) | |
2696 | { | |
2697 | if (bits != NULL) | |
2698 | *bits = -1; | |
2699 | return; | |
2700 | } | |
2701 | } | |
2702 | else | |
2703 | --p; | |
2704 | ||
2705 | *pp = p; | |
2706 | if (overflow) | |
2707 | { | |
2708 | if (nbits == 0) | |
2709 | { | |
2710 | /* Large decimal constants are an error (because it is hard to | |
2711 | count how many bits are in them). */ | |
2712 | if (bits != NULL) | |
2713 | *bits = -1; | |
2714 | return; | |
2715 | } | |
2716 | ||
2717 | /* -0x7f is the same as 0x80. So deal with it by adding one to | |
2718 | the number of bits. */ | |
2719 | if (sign == -1) | |
2720 | ++nbits; | |
2721 | if (bits) | |
2722 | *bits = nbits; | |
2723 | } | |
2724 | else | |
2725 | { | |
2726 | if (valu) | |
2727 | *valu = n * sign; | |
2728 | if (bits) | |
2729 | *bits = 0; | |
2730 | } | |
2731 | } | |
2732 | ||
2733 | #define MAX_OF_C_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1) | |
2734 | #define MIN_OF_C_TYPE(t) (-(1 << (sizeof (t)*8 - 1))) | |
2735 | ||
2736 | struct type * | |
2737 | read_range_type (pp, typenums) | |
2738 | char **pp; | |
2739 | int typenums[2]; | |
2740 | { | |
2741 | int rangenums[2]; | |
2742 | long n2, n3; | |
2743 | int n2bits, n3bits; | |
2744 | int self_subrange; | |
2745 | struct type *result_type; | |
2746 | ||
2747 | /* First comes a type we are a subrange of. | |
2748 | In C it is usually 0, 1 or the type being defined. */ | |
2749 | read_type_number (pp, rangenums); | |
2750 | self_subrange = (rangenums[0] == typenums[0] && | |
2751 | rangenums[1] == typenums[1]); | |
2752 | ||
2753 | /* A semicolon should now follow; skip it. */ | |
2754 | if (**pp == ';') | |
2755 | (*pp)++; | |
2756 | ||
2757 | /* The remaining two operands are usually lower and upper bounds | |
2758 | of the range. But in some special cases they mean something else. */ | |
2759 | read_huge_number (pp, ';', &n2, &n2bits); | |
2760 | read_huge_number (pp, ';', &n3, &n3bits); | |
2761 | ||
2762 | if (n2bits == -1 || n3bits == -1) | |
2763 | return error_type (pp); | |
2764 | ||
2765 | /* If limits are huge, must be large integral type. */ | |
2766 | if (n2bits != 0 || n3bits != 0) | |
2767 | { | |
2768 | char got_signed = 0; | |
2769 | char got_unsigned = 0; | |
2770 | /* Number of bits in the type. */ | |
2771 | int nbits; | |
2772 | ||
2773 | /* Range from 0 to <large number> is an unsigned large integral type. */ | |
2774 | if ((n2bits == 0 && n2 == 0) && n3bits != 0) | |
2775 | { | |
2776 | got_unsigned = 1; | |
2777 | nbits = n3bits; | |
2778 | } | |
2779 | /* Range from <large number> to <large number>-1 is a large signed | |
2780 | integral type. */ | |
2781 | else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1) | |
2782 | { | |
2783 | got_signed = 1; | |
2784 | nbits = n2bits; | |
2785 | } | |
2786 | ||
2787 | /* Check for "long long". */ | |
2788 | if (got_signed && nbits == TARGET_LONG_LONG_BIT) | |
2789 | return builtin_type_long_long; | |
2790 | if (got_unsigned && nbits == TARGET_LONG_LONG_BIT) | |
2791 | return builtin_type_unsigned_long_long; | |
2792 | ||
2793 | if (got_signed || got_unsigned) | |
2794 | { | |
2795 | result_type = (struct type *) obstack_alloc (symbol_obstack, | |
2796 | sizeof (struct type)); | |
2797 | bzero (result_type, sizeof (struct type)); | |
2798 | TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT; | |
2799 | TYPE_MAIN_VARIANT (result_type) = result_type; | |
2800 | TYPE_CODE (result_type) = TYPE_CODE_INT; | |
2801 | if (got_unsigned) | |
2802 | TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED; | |
2803 | return result_type; | |
2804 | } | |
2805 | else | |
2806 | return error_type (pp); | |
2807 | } | |
2808 | ||
2809 | /* A type defined as a subrange of itself, with bounds both 0, is void. */ | |
2810 | if (self_subrange && n2 == 0 && n3 == 0) | |
2811 | return builtin_type_void; | |
2812 | ||
2813 | /* If n3 is zero and n2 is not, we want a floating type, | |
2814 | and n2 is the width in bytes. | |
2815 | ||
2816 | Fortran programs appear to use this for complex types also, | |
2817 | and they give no way to distinguish between double and single-complex! | |
2818 | We don't have complex types, so we would lose on all fortran files! | |
2819 | So return type `double' for all of those. It won't work right | |
2820 | for the complex values, but at least it makes the file loadable. */ | |
2821 | ||
2822 | if (n3 == 0 && n2 > 0) | |
2823 | { | |
2824 | if (n2 == sizeof (float)) | |
2825 | return builtin_type_float; | |
2826 | return builtin_type_double; | |
2827 | } | |
2828 | ||
2829 | /* If the upper bound is -1, it must really be an unsigned int. */ | |
2830 | ||
2831 | else if (n2 == 0 && n3 == -1) | |
2832 | { | |
a048c8f5 | 2833 | /* FIXME -- this confuses host and target type sizes. */ |
c0302457 JG |
2834 | if (sizeof (int) == sizeof (long)) |
2835 | return builtin_type_unsigned_int; | |
2836 | else | |
2837 | return builtin_type_unsigned_long; | |
2838 | } | |
2839 | ||
2840 | /* Special case: char is defined (Who knows why) as a subrange of | |
2841 | itself with range 0-127. */ | |
2842 | else if (self_subrange && n2 == 0 && n3 == 127) | |
2843 | return builtin_type_char; | |
2844 | ||
2845 | /* Assumptions made here: Subrange of self is equivalent to subrange | |
a048c8f5 | 2846 | of int. FIXME: Host and target type-sizes assumed the same. */ |
c0302457 JG |
2847 | else if (n2 == 0 |
2848 | && (self_subrange || | |
2849 | *dbx_lookup_type (rangenums) == builtin_type_int)) | |
2850 | { | |
2851 | /* an unsigned type */ | |
2852 | #ifdef LONG_LONG | |
2853 | if (n3 == - sizeof (long long)) | |
2854 | return builtin_type_unsigned_long_long; | |
2855 | #endif | |
2856 | if (n3 == (unsigned int)~0L) | |
2857 | return builtin_type_unsigned_int; | |
2858 | if (n3 == (unsigned long)~0L) | |
2859 | return builtin_type_unsigned_long; | |
2860 | if (n3 == (unsigned short)~0L) | |
2861 | return builtin_type_unsigned_short; | |
2862 | if (n3 == (unsigned char)~0L) | |
2863 | return builtin_type_unsigned_char; | |
2864 | } | |
2865 | #ifdef LONG_LONG | |
2866 | else if (n3 == 0 && n2 == -sizeof (long long)) | |
2867 | return builtin_type_long_long; | |
2868 | #endif | |
2869 | else if (n2 == -n3 -1) | |
2870 | { | |
2871 | /* a signed type */ | |
2872 | if (n3 == (1 << (8 * sizeof (int) - 1)) - 1) | |
2873 | return builtin_type_int; | |
2874 | if (n3 == (1 << (8 * sizeof (long) - 1)) - 1) | |
2875 | return builtin_type_long; | |
2876 | if (n3 == (1 << (8 * sizeof (short) - 1)) - 1) | |
2877 | return builtin_type_short; | |
2878 | if (n3 == (1 << (8 * sizeof (char) - 1)) - 1) | |
2879 | return builtin_type_char; | |
2880 | } | |
2881 | ||
2882 | /* We have a real range type on our hands. Allocate space and | |
2883 | return a real pointer. */ | |
2884 | ||
2885 | /* At this point I don't have the faintest idea how to deal with | |
2886 | a self_subrange type; I'm going to assume that this is used | |
2887 | as an idiom, and that all of them are special cases. So . . . */ | |
2888 | if (self_subrange) | |
2889 | return error_type (pp); | |
2890 | ||
2891 | result_type = (struct type *) obstack_alloc (symbol_obstack, | |
2892 | sizeof (struct type)); | |
2893 | bzero (result_type, sizeof (struct type)); | |
2894 | ||
2895 | TYPE_CODE (result_type) = TYPE_CODE_RANGE; | |
2896 | ||
2897 | TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums); | |
2898 | if (TYPE_TARGET_TYPE (result_type) == 0) { | |
2899 | complain (&range_type_base_complaint, rangenums[1]); | |
2900 | TYPE_TARGET_TYPE (result_type) = builtin_type_int; | |
2901 | } | |
2902 | ||
2903 | TYPE_NFIELDS (result_type) = 2; | |
2904 | TYPE_FIELDS (result_type) = | |
2905 | (struct field *) obstack_alloc (symbol_obstack, | |
2906 | 2 * sizeof (struct field)); | |
2907 | bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field)); | |
2908 | TYPE_FIELD_BITPOS (result_type, 0) = n2; | |
2909 | TYPE_FIELD_BITPOS (result_type, 1) = n3; | |
2910 | ||
2911 | #if 0 | |
2912 | /* Note that TYPE_LENGTH (result_type) is just overridden a few | |
2913 | statements down. What do we really need here? */ | |
2914 | /* We have to figure out how many bytes it takes to hold this | |
2915 | range type. I'm going to assume that anything that is pushing | |
2916 | the bounds of a long was taken care of above. */ | |
2917 | if (n2 >= MIN_OF_C_TYPE(char) && n3 <= MAX_OF_C_TYPE(char)) | |
2918 | TYPE_LENGTH (result_type) = 1; | |
2919 | else if (n2 >= MIN_OF_C_TYPE(short) && n3 <= MAX_OF_C_TYPE(short)) | |
2920 | TYPE_LENGTH (result_type) = sizeof (short); | |
2921 | else if (n2 >= MIN_OF_C_TYPE(int) && n3 <= MAX_OF_C_TYPE(int)) | |
2922 | TYPE_LENGTH (result_type) = sizeof (int); | |
2923 | else if (n2 >= MIN_OF_C_TYPE(long) && n3 <= MAX_OF_C_TYPE(long)) | |
2924 | TYPE_LENGTH (result_type) = sizeof (long); | |
2925 | else | |
2926 | /* Ranged type doesn't fit within known sizes. */ | |
2927 | /* FIXME -- use "long long" here. */ | |
2928 | return error_type (pp); | |
2929 | #endif | |
2930 | ||
2931 | TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type)); | |
2932 | ||
2933 | return result_type; | |
2934 | } | |
2935 | ||
2936 | /* Read a number from the string pointed to by *PP. | |
2937 | The value of *PP is advanced over the number. | |
2938 | If END is nonzero, the character that ends the | |
2939 | number must match END, or an error happens; | |
2940 | and that character is skipped if it does match. | |
2941 | If END is zero, *PP is left pointing to that character. */ | |
2942 | ||
2943 | long | |
2944 | read_number (pp, end) | |
2945 | char **pp; | |
2946 | int end; | |
2947 | { | |
2948 | register char *p = *pp; | |
2949 | register long n = 0; | |
2950 | register int c; | |
2951 | int sign = 1; | |
2952 | ||
2953 | /* Handle an optional leading minus sign. */ | |
2954 | ||
2955 | if (*p == '-') | |
2956 | { | |
2957 | sign = -1; | |
2958 | p++; | |
2959 | } | |
2960 | ||
2961 | /* Read the digits, as far as they go. */ | |
2962 | ||
2963 | while ((c = *p++) >= '0' && c <= '9') | |
2964 | { | |
2965 | n *= 10; | |
2966 | n += c - '0'; | |
2967 | } | |
2968 | if (end) | |
2969 | { | |
2970 | if (c && c != end) | |
2971 | error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum); | |
2972 | } | |
2973 | else | |
2974 | --p; | |
2975 | ||
2976 | *pp = p; | |
2977 | return n * sign; | |
2978 | } | |
2979 | ||
2980 | /* Read in an argument list. This is a list of types, separated by commas | |
2981 | and terminated with END. Return the list of types read in, or (struct type | |
2982 | **)-1 if there is an error. */ | |
2983 | struct type ** | |
2984 | read_args (pp, end) | |
2985 | char **pp; | |
2986 | int end; | |
2987 | { | |
a048c8f5 | 2988 | /* FIXME! Remove this arbitrary limit! */ |
c0302457 JG |
2989 | struct type *types[1024], **rval; /* allow for fns of 1023 parameters */ |
2990 | int n = 0; | |
2991 | ||
2992 | while (**pp != end) | |
2993 | { | |
2994 | if (**pp != ',') | |
2995 | /* Invalid argument list: no ','. */ | |
2996 | return (struct type **)-1; | |
2997 | *pp += 1; | |
2998 | ||
2999 | /* Check for and handle cretinous dbx symbol name continuation! */ | |
3000 | if (**pp == '\\') | |
3001 | *pp = next_symbol_text (); | |
3002 | ||
3003 | types[n++] = read_type (pp); | |
3004 | } | |
3005 | *pp += 1; /* get past `end' (the ':' character) */ | |
3006 | ||
3007 | if (n == 1) | |
3008 | { | |
3009 | rval = (struct type **) xmalloc (2 * sizeof (struct type *)); | |
3010 | } | |
3011 | else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID) | |
3012 | { | |
3013 | rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *)); | |
3014 | bzero (rval + n, sizeof (struct type *)); | |
3015 | } | |
3016 | else | |
3017 | { | |
3018 | rval = (struct type **) xmalloc (n * sizeof (struct type *)); | |
3019 | } | |
3020 | bcopy (types, rval, n * sizeof (struct type *)); | |
3021 | return rval; | |
3022 | } | |
3023 | ||
3024 | /* Add a common block's start address to the offset of each symbol | |
3025 | declared to be in it (by being between a BCOMM/ECOMM pair that uses | |
3026 | the common block name). */ | |
3027 | ||
3028 | static void | |
3029 | fix_common_block (sym, valu) | |
3030 | struct symbol *sym; | |
3031 | int valu; | |
3032 | { | |
3033 | struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym); | |
3034 | for ( ; next; next = next->next) | |
3035 | { | |
3036 | register int j; | |
3037 | for (j = next->nsyms - 1; j >= 0; j--) | |
3038 | SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu; | |
3039 | } | |
3040 | } | |
3041 | ||
3042 | /* Initializer for this module */ | |
3043 | void | |
3044 | _initialize_buildsym () | |
3045 | { | |
3046 | undef_types_allocated = 20; | |
3047 | undef_types_length = 0; | |
3048 | undef_types = (struct type **) xmalloc (undef_types_allocated * | |
3049 | sizeof (struct type *)); | |
3050 | } |