]>
Commit | Line | Data |
---|---|---|
dd3b648e RP |
1 | /* Target-machine dependent code for the AMD 29000 |
2 | Copyright (C) 1990 Free Software Foundation, Inc. | |
3 | Contributed by Cygnus Support. Written by Jim Kingdon. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
99a7de40 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
dd3b648e RP |
11 | |
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
20 | |
21 | #include "defs.h" | |
22 | #include "gdbcore.h" | |
23 | #include <stdio.h> | |
24 | #include "frame.h" | |
25 | #include "value.h" | |
26 | #include "param.h" | |
27 | #include "symtab.h" | |
28 | #include "inferior.h" | |
29 | ||
7730bd5a JG |
30 | extern CORE_ADDR text_start; /* FIXME, kludge... */ |
31 | ||
dd3b648e RP |
32 | /* Structure to hold cached info about function prologues. */ |
33 | struct prologue_info | |
34 | { | |
35 | CORE_ADDR pc; /* First addr after fn prologue */ | |
36 | unsigned rsize, msize; /* register stack frame size, mem stack ditto */ | |
37 | unsigned mfp_used : 1; /* memory frame pointer used */ | |
38 | unsigned rsize_valid : 1; /* Validity bits for the above */ | |
39 | unsigned msize_valid : 1; | |
40 | unsigned mfp_valid : 1; | |
41 | }; | |
42 | ||
43 | /* Examine the prologue of a function which starts at PC. Return | |
44 | the first addess past the prologue. If MSIZE is non-NULL, then | |
45 | set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, | |
46 | then set *RSIZE to the register stack frame size (not including | |
47 | incoming arguments and the return address & frame pointer stored | |
48 | with them). If no prologue is found, *RSIZE is set to zero. | |
49 | If no prologue is found, or a prologue which doesn't involve | |
50 | allocating a memory stack frame, then set *MSIZE to zero. | |
51 | ||
52 | Note that both msize and rsize are in bytes. This is not consistent | |
53 | with the _User's Manual_ with respect to rsize, but it is much more | |
54 | convenient. | |
55 | ||
56 | If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory | |
57 | frame pointer is being used. */ | |
58 | CORE_ADDR | |
59 | examine_prologue (pc, rsize, msize, mfp_used) | |
60 | CORE_ADDR pc; | |
61 | unsigned *msize; | |
62 | unsigned *rsize; | |
63 | int *mfp_used; | |
64 | { | |
65 | long insn; | |
66 | CORE_ADDR p = pc; | |
67 | int misc_index = find_pc_misc_function (pc); | |
68 | struct prologue_info *mi = 0; | |
69 | ||
70 | if (misc_index >= 0) | |
71 | mi = (struct prologue_info *)misc_function_vector[misc_index].misc_info; | |
72 | ||
73 | if (mi != 0) | |
74 | { | |
75 | int valid = 1; | |
76 | if (rsize != NULL) | |
77 | { | |
78 | *rsize = mi->rsize; | |
79 | valid &= mi->rsize_valid; | |
80 | } | |
81 | if (msize != NULL) | |
82 | { | |
83 | *msize = mi->msize; | |
84 | valid &= mi->msize_valid; | |
85 | } | |
86 | if (mfp_used != NULL) | |
87 | { | |
88 | *mfp_used = mi->mfp_used; | |
89 | valid &= mi->mfp_valid; | |
90 | } | |
91 | if (valid) | |
92 | return mi->pc; | |
93 | } | |
94 | ||
95 | if (rsize != NULL) | |
96 | *rsize = 0; | |
97 | if (msize != NULL) | |
98 | *msize = 0; | |
99 | if (mfp_used != NULL) | |
100 | *mfp_used = 0; | |
101 | ||
102 | /* Prologue must start with subtracting a constant from gr1. | |
103 | Normally this is sub gr1,gr1,<rsize * 4>. */ | |
104 | insn = read_memory_integer (p, 4); | |
105 | if ((insn & 0xffffff00) != 0x25010100) | |
106 | { | |
107 | /* If the frame is large, instead of a single instruction it | |
108 | might be a pair of instructions: | |
109 | const <reg>, <rsize * 4> | |
110 | sub gr1,gr1,<reg> | |
111 | */ | |
112 | int reg; | |
113 | /* Possible value for rsize. */ | |
114 | unsigned int rsize0; | |
115 | ||
116 | if ((insn & 0xff000000) != 0x03000000) | |
117 | { | |
118 | p = pc; | |
119 | goto done; | |
120 | } | |
121 | reg = (insn >> 8) & 0xff; | |
122 | rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); | |
123 | p += 4; | |
124 | insn = read_memory_integer (p, 4); | |
125 | if ((insn & 0xffffff00) != 0x24010100 | |
126 | || (insn & 0xff) != reg) | |
127 | { | |
128 | p = pc; | |
129 | goto done; | |
130 | } | |
131 | if (rsize != NULL) | |
132 | *rsize = rsize0; | |
133 | } | |
134 | else | |
135 | { | |
136 | if (rsize != NULL) | |
137 | *rsize = (insn & 0xff); | |
138 | } | |
139 | p += 4; | |
140 | ||
141 | /* Next instruction must be asgeu V_SPILL,gr1,rab. */ | |
142 | insn = read_memory_integer (p, 4); | |
143 | if (insn != 0x5e40017e) | |
144 | { | |
145 | p = pc; | |
146 | goto done; | |
147 | } | |
148 | p += 4; | |
149 | ||
150 | /* Next instruction usually sets the frame pointer (lr1) by adding | |
151 | <size * 4> from gr1. However, this can (and high C does) be | |
152 | deferred until anytime before the first function call. So it is | |
153 | OK if we don't see anything which sets lr1. */ | |
154 | /* Normally this is just add lr1,gr1,<size * 4>. */ | |
155 | insn = read_memory_integer (p, 4); | |
156 | if ((insn & 0xffffff00) == 0x15810100) | |
157 | p += 4; | |
158 | else | |
159 | { | |
160 | /* However, for large frames it can be | |
161 | const <reg>, <size *4> | |
162 | add lr1,gr1,<reg> | |
163 | */ | |
164 | int reg; | |
165 | CORE_ADDR q; | |
166 | ||
167 | if ((insn & 0xff000000) == 0x03000000) | |
168 | { | |
169 | reg = (insn >> 8) & 0xff; | |
170 | q = p + 4; | |
171 | insn = read_memory_integer (q, 4); | |
172 | if ((insn & 0xffffff00) == 0x14810100 | |
173 | && (insn & 0xff) == reg) | |
174 | p = q; | |
175 | } | |
176 | } | |
177 | ||
178 | /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory | |
179 | frame pointer is in use. We just check for add lr<anything>,msp,0; | |
180 | we don't check this rsize against the first instruction, and | |
181 | we don't check that the trace-back tag indicates a memory frame pointer | |
182 | is in use. | |
183 | ||
184 | The recommended instruction is actually "sll lr<whatever>,msp,0". | |
185 | We check for that, too. Originally Jim Kingdon's code seemed | |
186 | to be looking for a "sub" instruction here, but the mask was set | |
187 | up to lose all the time. */ | |
188 | insn = read_memory_integer (p, 4); | |
189 | if (((insn & 0xff80ffff) == 0x15807d00) /* add */ | |
190 | || ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */ | |
191 | { | |
192 | p += 4; | |
193 | if (mfp_used != NULL) | |
194 | *mfp_used = 1; | |
195 | } | |
196 | ||
197 | /* Next comes a subtraction from msp to allocate a memory frame, | |
198 | but only if a memory frame is | |
199 | being used. We don't check msize against the trace-back tag. | |
200 | ||
201 | Normally this is just | |
202 | sub msp,msp,<msize> | |
203 | */ | |
204 | insn = read_memory_integer (p, 4); | |
205 | if ((insn & 0xffffff00) == 0x257d7d00) | |
206 | { | |
207 | p += 4; | |
208 | if (msize != NULL) | |
209 | *msize = insn & 0xff; | |
210 | } | |
211 | else | |
212 | { | |
213 | /* For large frames, instead of a single instruction it might | |
214 | be | |
215 | ||
216 | const <reg>, <msize> | |
217 | consth <reg>, <msize> ; optional | |
218 | sub msp,msp,<reg> | |
219 | */ | |
220 | int reg; | |
221 | unsigned msize0; | |
222 | CORE_ADDR q = p; | |
223 | ||
224 | if ((insn & 0xff000000) == 0x03000000) | |
225 | { | |
226 | reg = (insn >> 8) & 0xff; | |
227 | msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); | |
228 | q += 4; | |
229 | insn = read_memory_integer (q, 4); | |
230 | /* Check for consth. */ | |
231 | if ((insn & 0xff000000) == 0x02000000 | |
232 | && (insn & 0x0000ff00) == reg) | |
233 | { | |
234 | msize0 |= (insn << 8) & 0xff000000; | |
235 | msize0 |= (insn << 16) & 0x00ff0000; | |
236 | q += 4; | |
237 | insn = read_memory_integer (q, 4); | |
238 | } | |
239 | /* Check for sub msp,msp,<reg>. */ | |
240 | if ((insn & 0xffffff00) == 0x247d7d00 | |
241 | && (insn & 0xff) == reg) | |
242 | { | |
243 | p = q + 4; | |
244 | if (msize != NULL) | |
245 | *msize = msize0; | |
246 | } | |
247 | } | |
248 | } | |
249 | ||
250 | done: | |
251 | if (misc_index >= 0) | |
252 | { | |
253 | if (mi == 0) | |
254 | { | |
255 | /* Add a new cache entry. */ | |
256 | mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); | |
257 | misc_function_vector[misc_index].misc_info = (char *)mi; | |
258 | mi->rsize_valid = 0; | |
259 | mi->msize_valid = 0; | |
260 | mi->mfp_valid = 0; | |
261 | } | |
262 | /* else, cache entry exists, but info is incomplete. */ | |
263 | mi->pc = p; | |
264 | if (rsize != NULL) | |
265 | { | |
266 | mi->rsize = *rsize; | |
267 | mi->rsize_valid = 1; | |
268 | } | |
269 | if (msize != NULL) | |
270 | { | |
271 | mi->msize = *msize; | |
272 | mi->msize_valid = 1; | |
273 | } | |
274 | if (mfp_used != NULL) | |
275 | { | |
276 | mi->mfp_used = *mfp_used; | |
277 | mi->mfp_valid = 1; | |
278 | } | |
279 | } | |
280 | return p; | |
281 | } | |
282 | ||
283 | /* Advance PC across any function entry prologue instructions | |
284 | to reach some "real" code. */ | |
285 | ||
286 | CORE_ADDR | |
287 | skip_prologue (pc) | |
288 | CORE_ADDR pc; | |
289 | { | |
290 | return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL, | |
291 | (int *)NULL); | |
292 | } | |
293 | ||
294 | /* Initialize the frame. In addition to setting "extra" frame info, | |
295 | we also set ->frame because we use it in a nonstandard way, and ->pc | |
296 | because we need to know it to get the other stuff. See the diagram | |
297 | of stacks and the frame cache in tm-29k.h for more detail. */ | |
298 | static void | |
299 | init_frame_info (innermost_frame, fci) | |
300 | int innermost_frame; | |
301 | struct frame_info *fci; | |
302 | { | |
303 | CORE_ADDR p; | |
304 | long insn; | |
305 | unsigned rsize; | |
306 | unsigned msize; | |
307 | int mfp_used; | |
308 | struct symbol *func; | |
309 | ||
310 | p = fci->pc; | |
311 | ||
312 | if (innermost_frame) | |
313 | fci->frame = read_register (GR1_REGNUM); | |
314 | else | |
315 | fci->frame = fci->next_frame + fci->next->rsize; | |
316 | ||
317 | #if CALL_DUMMY_LOCATION == ON_STACK | |
318 | This wont work; | |
319 | #else | |
320 | if (PC_IN_CALL_DUMMY (p, 0, 0)) | |
321 | #endif | |
322 | { | |
323 | fci->rsize = DUMMY_FRAME_RSIZE; | |
324 | /* This doesn't matter since we never try to get locals or args | |
325 | from a dummy frame. */ | |
326 | fci->msize = 0; | |
327 | /* Dummy frames always use a memory frame pointer. */ | |
328 | fci->saved_msp = | |
329 | read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4); | |
330 | return; | |
331 | } | |
332 | ||
333 | func = find_pc_function (p); | |
334 | if (func != NULL) | |
335 | p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); | |
336 | else | |
337 | { | |
338 | /* Search backward to find the trace-back tag. However, | |
339 | do not trace back beyond the start of the text segment | |
340 | (just as a sanity check to avoid going into never-never land). */ | |
341 | while (p >= text_start | |
342 | && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0) | |
343 | p -= 4; | |
344 | ||
345 | if (p < text_start) | |
346 | { | |
347 | /* Couldn't find the trace-back tag. | |
348 | Something strange is going on. */ | |
349 | fci->saved_msp = 0; | |
350 | fci->rsize = 0; | |
351 | fci->msize = 0; | |
352 | return; | |
353 | } | |
354 | else | |
355 | /* Advance to the first word of the function, i.e. the word | |
356 | after the trace-back tag. */ | |
357 | p += 4; | |
358 | } | |
359 | /* We've found the start of the function. Since High C interchanges | |
360 | the meanings of bits 23 and 22 (as of Jul 90), and we | |
361 | need to look at the prologue anyway to figure out | |
362 | what rsize is, ignore the contents of the trace-back tag. */ | |
363 | examine_prologue (p, &rsize, &msize, &mfp_used); | |
364 | fci->rsize = rsize; | |
365 | fci->msize = msize; | |
366 | if (innermost_frame) | |
367 | { | |
368 | fci->saved_msp = read_register (MSP_REGNUM) + msize; | |
369 | } | |
370 | else | |
371 | { | |
372 | if (mfp_used) | |
373 | fci->saved_msp = | |
374 | read_register_stack_integer (fci->frame + rsize - 1, 4); | |
375 | else | |
376 | fci->saved_msp = fci->next->saved_msp + msize; | |
377 | } | |
378 | } | |
379 | ||
380 | void | |
381 | init_extra_frame_info (fci) | |
382 | struct frame_info *fci; | |
383 | { | |
384 | if (fci->next == 0) | |
385 | /* Assume innermost frame. May produce strange results for "info frame" | |
386 | but there isn't any way to tell the difference. */ | |
387 | init_frame_info (1, fci); | |
17f7e032 JG |
388 | else { |
389 | /* We're in get_prev_frame_info. | |
390 | Take care of everything in init_frame_pc. */ | |
391 | ; | |
392 | } | |
dd3b648e RP |
393 | } |
394 | ||
395 | void | |
396 | init_frame_pc (fromleaf, fci) | |
397 | int fromleaf; | |
398 | struct frame_info *fci; | |
399 | { | |
400 | fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) : | |
401 | fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ()); | |
402 | init_frame_info (0, fci); | |
403 | } | |
404 | \f | |
405 | /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their | |
406 | offsets being relative to the memory stack pointer (high C) or | |
407 | saved_msp (gcc). */ | |
408 | ||
409 | CORE_ADDR | |
410 | frame_locals_address (fi) | |
411 | struct frame_info *fi; | |
412 | { | |
413 | struct block *b = block_for_pc (fi->pc); | |
414 | /* If compiled without -g, assume GCC. */ | |
415 | if (b == NULL || BLOCK_GCC_COMPILED (b)) | |
416 | return fi->saved_msp; | |
417 | else | |
418 | return fi->saved_msp - fi->msize; | |
419 | } | |
420 | \f | |
421 | /* Routines for reading the register stack. The caller gets to treat | |
422 | the register stack as a uniform stack in memory, from address $gr1 | |
423 | straight through $rfb and beyond. */ | |
424 | ||
425 | /* Analogous to read_memory except the length is understood to be 4. | |
426 | Also, myaddr can be NULL (meaning don't bother to read), and | |
427 | if actual_mem_addr is non-NULL, store there the address that it | |
428 | was fetched from (or if from a register the offset within | |
429 | registers). Set *LVAL to lval_memory or lval_register, depending | |
430 | on where it came from. */ | |
431 | void | |
432 | read_register_stack (memaddr, myaddr, actual_mem_addr, lval) | |
433 | CORE_ADDR memaddr; | |
434 | char *myaddr; | |
435 | CORE_ADDR *actual_mem_addr; | |
436 | enum lval_type *lval; | |
437 | { | |
438 | long rfb = read_register (RFB_REGNUM); | |
439 | long rsp = read_register (RSP_REGNUM); | |
440 | if (memaddr < rfb) | |
441 | { | |
442 | /* It's in a register. */ | |
443 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
444 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
445 | error ("Attempt to read register stack out of range."); | |
446 | if (myaddr != NULL) | |
447 | read_register_gen (regnum, myaddr); | |
448 | if (lval != NULL) | |
449 | *lval = lval_register; | |
450 | if (actual_mem_addr != NULL) | |
451 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
452 | } | |
453 | else | |
454 | { | |
455 | /* It's in the memory portion of the register stack. */ | |
456 | if (myaddr != NULL) | |
457 | read_memory (memaddr, myaddr, 4); | |
458 | if (lval != NULL) | |
459 | *lval = lval_memory; | |
460 | if (actual_mem_addr != NULL) | |
17f7e032 | 461 | *actual_mem_addr = memaddr; |
dd3b648e RP |
462 | } |
463 | } | |
464 | ||
465 | /* Analogous to read_memory_integer | |
466 | except the length is understood to be 4. */ | |
467 | long | |
468 | read_register_stack_integer (memaddr, len) | |
469 | CORE_ADDR memaddr; | |
470 | int len; | |
471 | { | |
472 | long buf; | |
473 | read_register_stack (memaddr, &buf, NULL, NULL); | |
474 | SWAP_TARGET_AND_HOST (&buf, 4); | |
475 | return buf; | |
476 | } | |
477 | ||
478 | /* Copy 4 bytes from GDB memory at MYADDR into inferior memory | |
479 | at MEMADDR and put the actual address written into in | |
480 | *ACTUAL_MEM_ADDR. */ | |
481 | static void | |
482 | write_register_stack (memaddr, myaddr, actual_mem_addr) | |
483 | CORE_ADDR memaddr; | |
484 | char *myaddr; | |
485 | CORE_ADDR *actual_mem_addr; | |
486 | { | |
487 | long rfb = read_register (RFB_REGNUM); | |
488 | long rsp = read_register (RSP_REGNUM); | |
489 | if (memaddr < rfb) | |
490 | { | |
491 | /* It's in a register. */ | |
492 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
493 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
494 | error ("Attempt to read register stack out of range."); | |
495 | if (myaddr != NULL) | |
496 | write_register (regnum, *(long *)myaddr); | |
497 | if (actual_mem_addr != NULL) | |
498 | *actual_mem_addr = NULL; | |
499 | } | |
500 | else | |
501 | { | |
502 | /* It's in the memory portion of the register stack. */ | |
503 | if (myaddr != NULL) | |
504 | write_memory (memaddr, myaddr, 4); | |
505 | if (actual_mem_addr != NULL) | |
17f7e032 | 506 | *actual_mem_addr = memaddr; |
dd3b648e RP |
507 | } |
508 | } | |
509 | \f | |
510 | /* Find register number REGNUM relative to FRAME and put its | |
511 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
512 | was optimized out (and thus can't be fetched). If the variable | |
513 | was fetched from memory, set *ADDRP to where it was fetched from, | |
514 | otherwise it was fetched from a register. | |
515 | ||
516 | The argument RAW_BUFFER must point to aligned memory. */ | |
517 | void | |
518 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) | |
519 | char *raw_buffer; | |
520 | int *optimized; | |
521 | CORE_ADDR *addrp; | |
522 | FRAME frame; | |
523 | int regnum; | |
524 | enum lval_type *lvalp; | |
525 | { | |
526 | struct frame_info *fi = get_frame_info (frame); | |
527 | CORE_ADDR addr; | |
528 | enum lval_type lval; | |
529 | ||
530 | /* Once something has a register number, it doesn't get optimized out. */ | |
531 | if (optimized != NULL) | |
532 | *optimized = 0; | |
533 | if (regnum == RSP_REGNUM) | |
534 | { | |
535 | if (raw_buffer != NULL) | |
536 | *(CORE_ADDR *)raw_buffer = fi->frame; | |
537 | if (lvalp != NULL) | |
538 | *lvalp = not_lval; | |
539 | return; | |
540 | } | |
541 | else if (regnum == PC_REGNUM) | |
542 | { | |
543 | if (raw_buffer != NULL) | |
544 | *(CORE_ADDR *)raw_buffer = fi->pc; | |
545 | ||
546 | /* Not sure we have to do this. */ | |
547 | if (lvalp != NULL) | |
548 | *lvalp = not_lval; | |
549 | ||
550 | return; | |
551 | } | |
552 | else if (regnum == MSP_REGNUM) | |
553 | { | |
554 | if (raw_buffer != NULL) | |
555 | { | |
556 | if (fi->next != NULL) | |
557 | *(CORE_ADDR *)raw_buffer = fi->next->saved_msp; | |
558 | else | |
559 | *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM); | |
560 | } | |
561 | /* The value may have been computed, not fetched. */ | |
562 | if (lvalp != NULL) | |
563 | *lvalp = not_lval; | |
564 | return; | |
565 | } | |
566 | else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) | |
567 | { | |
568 | /* These registers are not saved over procedure calls, | |
569 | so just print out the current values. */ | |
570 | if (raw_buffer != NULL) | |
571 | *(CORE_ADDR *)raw_buffer = read_register (regnum); | |
572 | if (lvalp != NULL) | |
573 | *lvalp = lval_register; | |
574 | if (addrp != NULL) | |
575 | *addrp = REGISTER_BYTE (regnum); | |
576 | return; | |
577 | } | |
578 | ||
579 | addr = fi->frame + (regnum - LR0_REGNUM) * 4; | |
580 | if (raw_buffer != NULL) | |
581 | read_register_stack (addr, raw_buffer, &addr, &lval); | |
582 | if (lvalp != NULL) | |
583 | *lvalp = lval; | |
584 | if (addrp != NULL) | |
585 | *addrp = addr; | |
586 | } | |
587 | \f | |
588 | /* Discard from the stack the innermost frame, | |
589 | restoring all saved registers. */ | |
590 | ||
591 | void | |
592 | pop_frame () | |
593 | { | |
594 | FRAME frame = get_current_frame (); | |
595 | struct frame_info *fi = get_frame_info (frame); | |
596 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
597 | CORE_ADDR gr1 = fi->frame + fi->rsize; | |
598 | CORE_ADDR lr1; | |
599 | CORE_ADDR ret_addr; | |
600 | int i; | |
601 | ||
602 | /* If popping a dummy frame, need to restore registers. */ | |
603 | if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), | |
604 | read_register (SP_REGNUM), | |
605 | FRAME_FP (fi))) | |
606 | { | |
607 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
608 | write_register | |
609 | (SR_REGNUM (i + 128), | |
610 | read_register (LR0_REGNUM + DUMMY_ARG / 4 + i)); | |
6093e5b0 | 611 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
dd3b648e | 612 | write_register |
6093e5b0 | 613 | (RETURN_REGNUM + i, |
dd3b648e RP |
614 | read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i)); |
615 | } | |
616 | ||
617 | /* Restore the memory stack pointer. */ | |
618 | write_register (MSP_REGNUM, fi->saved_msp); | |
619 | /* Restore the register stack pointer. */ | |
620 | write_register (GR1_REGNUM, gr1); | |
621 | /* Check whether we need to fill registers. */ | |
622 | lr1 = read_register (LR0_REGNUM + 1); | |
623 | if (lr1 > rfb) | |
624 | { | |
625 | /* Fill. */ | |
626 | int num_bytes = lr1 - rfb; | |
627 | int i; | |
628 | long word; | |
629 | write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); | |
630 | write_register (RFB_REGNUM, lr1); | |
631 | for (i = 0; i < num_bytes; i += 4) | |
632 | { | |
633 | /* Note: word is in host byte order. */ | |
634 | word = read_memory_integer (rfb + i, 4); | |
635 | write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); | |
636 | } | |
637 | } | |
638 | ret_addr = read_register (LR0_REGNUM); | |
639 | write_register (PC_REGNUM, ret_addr); | |
640 | write_register (NPC_REGNUM, ret_addr + 4); | |
641 | flush_cached_frames (); | |
642 | set_current_frame (create_new_frame (0, read_pc())); | |
643 | } | |
644 | ||
645 | /* Push an empty stack frame, to record the current PC, etc. */ | |
646 | ||
647 | void | |
648 | push_dummy_frame () | |
649 | { | |
650 | long w; | |
651 | CORE_ADDR rab, gr1; | |
652 | CORE_ADDR msp = read_register (MSP_REGNUM); | |
653 | int i; | |
654 | ||
655 | /* Save the PC. */ | |
656 | write_register (LR0_REGNUM, read_register (PC_REGNUM)); | |
657 | ||
658 | /* Allocate the new frame. */ | |
659 | gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; | |
660 | write_register (GR1_REGNUM, gr1); | |
661 | ||
662 | rab = read_register (RAB_REGNUM); | |
663 | if (gr1 < rab) | |
664 | { | |
665 | /* We need to spill registers. */ | |
666 | int num_bytes = rab - gr1; | |
667 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
668 | int i; | |
669 | long word; | |
670 | ||
671 | write_register (RFB_REGNUM, rfb - num_bytes); | |
672 | write_register (RAB_REGNUM, gr1); | |
673 | for (i = 0; i < num_bytes; i += 4) | |
674 | { | |
675 | /* Note: word is in target byte order. */ | |
676 | read_register_gen (LR0_REGNUM + i / 4, &word, 4); | |
677 | write_memory (rfb - num_bytes + i, &word, 4); | |
678 | } | |
679 | } | |
680 | ||
681 | /* There are no arguments in to the dummy frame, so we don't need | |
682 | more than rsize plus the return address and lr1. */ | |
683 | write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); | |
684 | ||
685 | /* Set the memory frame pointer. */ | |
686 | write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); | |
687 | ||
688 | /* Allocate arg_slop. */ | |
689 | write_register (MSP_REGNUM, msp - 16 * 4); | |
690 | ||
691 | /* Save registers. */ | |
692 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
693 | write_register (LR0_REGNUM + DUMMY_ARG / 4 + i, | |
694 | read_register (SR_REGNUM (i + 128))); | |
6093e5b0 | 695 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) |
dd3b648e | 696 | write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i, |
6093e5b0 | 697 | read_register (RETURN_REGNUM + i)); |
dd3b648e | 698 | } |