]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Perform non-arithmetic operations on values, for GDB. |
e17960fb | 2 | Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc. |
bd5635a1 RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
06b6c733 | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
06b6c733 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
06b6c733 | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
06b6c733 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 19 | |
bd5635a1 | 20 | #include "defs.h" |
bd5635a1 | 21 | #include "symtab.h" |
01be6913 | 22 | #include "gdbtypes.h" |
bd5635a1 RP |
23 | #include "value.h" |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcore.h" | |
27 | #include "target.h" | |
2e4964ad | 28 | #include "demangle.h" |
54023465 | 29 | #include "language.h" |
bd5635a1 RP |
30 | |
31 | #include <errno.h> | |
32 | ||
33 | /* Local functions. */ | |
01be6913 | 34 | |
b5728692 SG |
35 | static int |
36 | typecmp PARAMS ((int staticp, struct type *t1[], value t2[])); | |
37 | ||
01be6913 PB |
38 | static CORE_ADDR |
39 | find_function_addr PARAMS ((value, struct type **)); | |
40 | ||
41 | static CORE_ADDR | |
42 | value_push PARAMS ((CORE_ADDR, value)); | |
43 | ||
44 | static CORE_ADDR | |
45 | value_arg_push PARAMS ((CORE_ADDR, value)); | |
46 | ||
47 | static value | |
48 | search_struct_field PARAMS ((char *, value, int, struct type *, int)); | |
49 | ||
50 | static value | |
bac89d6c | 51 | search_struct_method PARAMS ((char *, value *, value *, int, int *, |
01be6913 PB |
52 | struct type *)); |
53 | ||
54 | static int | |
55 | check_field_in PARAMS ((struct type *, const char *)); | |
56 | ||
a163ddec MT |
57 | static CORE_ADDR |
58 | allocate_space_in_inferior PARAMS ((int)); | |
59 | ||
bd5635a1 | 60 | \f |
a163ddec MT |
61 | /* Allocate NBYTES of space in the inferior using the inferior's malloc |
62 | and return a value that is a pointer to the allocated space. */ | |
63 | ||
64 | static CORE_ADDR | |
65 | allocate_space_in_inferior (len) | |
66 | int len; | |
67 | { | |
68 | register value val; | |
69 | register struct symbol *sym; | |
70 | struct minimal_symbol *msymbol; | |
71 | struct type *type; | |
72 | value blocklen; | |
73 | LONGEST maddr; | |
74 | ||
75 | /* Find the address of malloc in the inferior. */ | |
76 | ||
77 | sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL); | |
78 | if (sym != NULL) | |
79 | { | |
80 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
81 | { | |
82 | error ("\"malloc\" exists in this program but is not a function."); | |
83 | } | |
479fdd26 | 84 | val = value_of_variable (sym, NULL); |
a163ddec MT |
85 | } |
86 | else | |
87 | { | |
88 | msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL); | |
89 | if (msymbol != NULL) | |
90 | { | |
91 | type = lookup_pointer_type (builtin_type_char); | |
92 | type = lookup_function_type (type); | |
93 | type = lookup_pointer_type (type); | |
94 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
95 | val = value_from_longest (type, maddr); | |
96 | } | |
97 | else | |
98 | { | |
99 | error ("evaluation of this expression requires the program to have a function \"malloc\"."); | |
100 | } | |
101 | } | |
102 | ||
103 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
104 | val = call_function_by_hand (val, 1, &blocklen); | |
105 | if (value_logical_not (val)) | |
106 | { | |
107 | error ("No memory available to program."); | |
108 | } | |
109 | return (value_as_long (val)); | |
110 | } | |
111 | ||
bd5635a1 RP |
112 | /* Cast value ARG2 to type TYPE and return as a value. |
113 | More general than a C cast: accepts any two types of the same length, | |
114 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
54023465 | 115 | /* In C++, casts may change pointer or object representations. */ |
bd5635a1 RP |
116 | |
117 | value | |
118 | value_cast (type, arg2) | |
119 | struct type *type; | |
120 | register value arg2; | |
121 | { | |
122 | register enum type_code code1; | |
123 | register enum type_code code2; | |
124 | register int scalar; | |
125 | ||
126 | /* Coerce arrays but not enums. Enums will work as-is | |
127 | and coercing them would cause an infinite recursion. */ | |
128 | if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM) | |
129 | COERCE_ARRAY (arg2); | |
130 | ||
131 | code1 = TYPE_CODE (type); | |
132 | code2 = TYPE_CODE (VALUE_TYPE (arg2)); | |
133 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
134 | || code2 == TYPE_CODE_ENUM); | |
135 | ||
54023465 JK |
136 | if ( code1 == TYPE_CODE_STRUCT |
137 | && code2 == TYPE_CODE_STRUCT | |
138 | && TYPE_NAME (type) != 0) | |
139 | { | |
140 | /* Look in the type of the source to see if it contains the | |
141 | type of the target as a superclass. If so, we'll need to | |
142 | offset the object in addition to changing its type. */ | |
143 | value v = search_struct_field (type_name_no_tag (type), | |
144 | arg2, 0, VALUE_TYPE (arg2), 1); | |
145 | if (v) | |
146 | { | |
147 | VALUE_TYPE (v) = type; | |
148 | return v; | |
149 | } | |
150 | } | |
bd5635a1 RP |
151 | if (code1 == TYPE_CODE_FLT && scalar) |
152 | return value_from_double (type, value_as_double (arg2)); | |
153 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM) | |
154 | && (scalar || code2 == TYPE_CODE_PTR)) | |
06b6c733 | 155 | return value_from_longest (type, value_as_long (arg2)); |
bd5635a1 RP |
156 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2))) |
157 | { | |
158 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
159 | { | |
160 | /* Look in the type of the source to see if it contains the | |
161 | type of the target as a superclass. If so, we'll need to | |
162 | offset the pointer rather than just change its type. */ | |
163 | struct type *t1 = TYPE_TARGET_TYPE (type); | |
164 | struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); | |
2a5ec41d | 165 | if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT |
bd5635a1 RP |
166 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
167 | && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */ | |
168 | { | |
169 | value v = search_struct_field (type_name_no_tag (t1), | |
d3bab255 | 170 | value_ind (arg2), 0, t2, 1); |
bd5635a1 RP |
171 | if (v) |
172 | { | |
173 | v = value_addr (v); | |
174 | VALUE_TYPE (v) = type; | |
175 | return v; | |
176 | } | |
177 | } | |
178 | /* No superclass found, just fall through to change ptr type. */ | |
179 | } | |
180 | VALUE_TYPE (arg2) = type; | |
181 | return arg2; | |
182 | } | |
183 | else if (VALUE_LVAL (arg2) == lval_memory) | |
184 | { | |
185 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2)); | |
186 | } | |
d11c44f1 JG |
187 | else if (code1 == TYPE_CODE_VOID) |
188 | { | |
189 | return value_zero (builtin_type_void, not_lval); | |
190 | } | |
bd5635a1 RP |
191 | else |
192 | { | |
193 | error ("Invalid cast."); | |
194 | return 0; | |
195 | } | |
196 | } | |
197 | ||
198 | /* Create a value of type TYPE that is zero, and return it. */ | |
199 | ||
200 | value | |
201 | value_zero (type, lv) | |
202 | struct type *type; | |
203 | enum lval_type lv; | |
204 | { | |
205 | register value val = allocate_value (type); | |
206 | ||
4ed3a9ea | 207 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type)); |
bd5635a1 RP |
208 | VALUE_LVAL (val) = lv; |
209 | ||
210 | return val; | |
211 | } | |
212 | ||
213 | /* Return a value with type TYPE located at ADDR. | |
214 | ||
215 | Call value_at only if the data needs to be fetched immediately; | |
216 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
217 | value_at_lazy instead. value_at_lazy simply records the address of | |
218 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
219 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
220 | the contents are actually required. */ | |
221 | ||
222 | value | |
223 | value_at (type, addr) | |
224 | struct type *type; | |
225 | CORE_ADDR addr; | |
226 | { | |
227 | register value val = allocate_value (type); | |
228 | ||
229 | read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type)); | |
230 | ||
231 | VALUE_LVAL (val) = lval_memory; | |
232 | VALUE_ADDRESS (val) = addr; | |
233 | ||
234 | return val; | |
235 | } | |
236 | ||
237 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
238 | ||
239 | value | |
240 | value_at_lazy (type, addr) | |
241 | struct type *type; | |
242 | CORE_ADDR addr; | |
243 | { | |
244 | register value val = allocate_value (type); | |
245 | ||
246 | VALUE_LVAL (val) = lval_memory; | |
247 | VALUE_ADDRESS (val) = addr; | |
248 | VALUE_LAZY (val) = 1; | |
249 | ||
250 | return val; | |
251 | } | |
252 | ||
253 | /* Called only from the VALUE_CONTENTS macro, if the current data for | |
254 | a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the | |
255 | data from the user's process, and clears the lazy flag to indicate | |
256 | that the data in the buffer is valid. | |
257 | ||
9cb602e1 JG |
258 | If the value is zero-length, we avoid calling read_memory, which would |
259 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
260 | ||
bd5635a1 RP |
261 | This function returns a value because it is used in the VALUE_CONTENTS |
262 | macro as part of an expression, where a void would not work. The | |
263 | value is ignored. */ | |
264 | ||
265 | int | |
266 | value_fetch_lazy (val) | |
267 | register value val; | |
268 | { | |
269 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
270 | ||
9cb602e1 JG |
271 | if (TYPE_LENGTH (VALUE_TYPE (val))) |
272 | read_memory (addr, VALUE_CONTENTS_RAW (val), | |
273 | TYPE_LENGTH (VALUE_TYPE (val))); | |
bd5635a1 RP |
274 | VALUE_LAZY (val) = 0; |
275 | return 0; | |
276 | } | |
277 | ||
278 | ||
279 | /* Store the contents of FROMVAL into the location of TOVAL. | |
280 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
281 | ||
282 | value | |
283 | value_assign (toval, fromval) | |
284 | register value toval, fromval; | |
285 | { | |
286 | register struct type *type = VALUE_TYPE (toval); | |
287 | register value val; | |
288 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
289 | char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
290 | int use_buffer = 0; | |
291 | ||
292 | COERCE_ARRAY (fromval); | |
8e9a3f3b | 293 | COERCE_REF (toval); |
bd5635a1 RP |
294 | |
295 | if (VALUE_LVAL (toval) != lval_internalvar) | |
296 | fromval = value_cast (type, fromval); | |
297 | ||
298 | /* If TOVAL is a special machine register requiring conversion | |
299 | of program values to a special raw format, | |
300 | convert FROMVAL's contents now, with result in `raw_buffer', | |
301 | and set USE_BUFFER to the number of bytes to write. */ | |
302 | ||
303 | if (VALUE_REGNO (toval) >= 0 | |
304 | && REGISTER_CONVERTIBLE (VALUE_REGNO (toval))) | |
305 | { | |
306 | int regno = VALUE_REGNO (toval); | |
307 | if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno)) | |
308 | fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval); | |
8e9a3f3b | 309 | memcpy (virtual_buffer, VALUE_CONTENTS (fromval), |
bd5635a1 | 310 | REGISTER_VIRTUAL_SIZE (regno)); |
bac89d6c | 311 | REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer); |
bd5635a1 RP |
312 | use_buffer = REGISTER_RAW_SIZE (regno); |
313 | } | |
314 | ||
315 | switch (VALUE_LVAL (toval)) | |
316 | { | |
317 | case lval_internalvar: | |
318 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
319 | break; | |
320 | ||
321 | case lval_internalvar_component: | |
322 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
323 | VALUE_OFFSET (toval), | |
324 | VALUE_BITPOS (toval), | |
325 | VALUE_BITSIZE (toval), | |
326 | fromval); | |
327 | break; | |
328 | ||
329 | case lval_memory: | |
330 | if (VALUE_BITSIZE (toval)) | |
331 | { | |
332 | int v; /* FIXME, this won't work for large bitfields */ | |
333 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
01be6913 | 334 | (char *) &v, sizeof v); |
479fdd26 | 335 | modify_field ((char *) &v, value_as_long (fromval), |
bd5635a1 RP |
336 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
337 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
338 | (char *)&v, sizeof v); | |
339 | } | |
340 | else if (use_buffer) | |
341 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
342 | raw_buffer, use_buffer); | |
343 | else | |
344 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
345 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
346 | break; | |
347 | ||
348 | case lval_register: | |
349 | if (VALUE_BITSIZE (toval)) | |
350 | { | |
351 | int v; | |
352 | ||
353 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
e17960fb | 354 | (char *) &v, sizeof v); |
479fdd26 | 355 | modify_field ((char *) &v, value_as_long (fromval), |
bd5635a1 RP |
356 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
357 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
e17960fb | 358 | (char *) &v, sizeof v); |
bd5635a1 RP |
359 | } |
360 | else if (use_buffer) | |
361 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
362 | raw_buffer, use_buffer); | |
363 | else | |
54023465 JK |
364 | { |
365 | /* Do any conversion necessary when storing this type to more | |
366 | than one register. */ | |
367 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
368 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
369 | REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer); | |
370 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
371 | raw_buffer, TYPE_LENGTH (type)); | |
372 | #else | |
373 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
374 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
375 | #endif | |
376 | } | |
bd5635a1 RP |
377 | break; |
378 | ||
379 | case lval_reg_frame_relative: | |
380 | { | |
381 | /* value is stored in a series of registers in the frame | |
382 | specified by the structure. Copy that value out, modify | |
383 | it, and copy it back in. */ | |
384 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
385 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
386 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
387 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
388 | int amount_copied; | |
389 | char *buffer = (char *) alloca (amount_to_copy); | |
390 | int regno; | |
391 | FRAME frame; | |
392 | ||
393 | /* Figure out which frame this is in currently. */ | |
394 | for (frame = get_current_frame (); | |
395 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
396 | frame = get_prev_frame (frame)) | |
397 | ; | |
398 | ||
399 | if (!frame) | |
400 | error ("Value being assigned to is no longer active."); | |
401 | ||
402 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
403 | ||
404 | /* Copy it out. */ | |
405 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
406 | amount_copied = 0); | |
407 | amount_copied < amount_to_copy; | |
408 | amount_copied += reg_size, regno++) | |
409 | { | |
410 | get_saved_register (buffer + amount_copied, | |
51b57ded | 411 | (int *)NULL, (CORE_ADDR *)NULL, |
bd5635a1 RP |
412 | frame, regno, (enum lval_type *)NULL); |
413 | } | |
414 | ||
415 | /* Modify what needs to be modified. */ | |
416 | if (VALUE_BITSIZE (toval)) | |
417 | modify_field (buffer + byte_offset, | |
479fdd26 | 418 | value_as_long (fromval), |
bd5635a1 RP |
419 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
420 | else if (use_buffer) | |
4ed3a9ea | 421 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); |
bd5635a1 | 422 | else |
4ed3a9ea FF |
423 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), |
424 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
425 | |
426 | /* Copy it back. */ | |
427 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
428 | amount_copied = 0); | |
429 | amount_copied < amount_to_copy; | |
430 | amount_copied += reg_size, regno++) | |
431 | { | |
432 | enum lval_type lval; | |
433 | CORE_ADDR addr; | |
434 | int optim; | |
435 | ||
436 | /* Just find out where to put it. */ | |
437 | get_saved_register ((char *)NULL, | |
438 | &optim, &addr, frame, regno, &lval); | |
439 | ||
440 | if (optim) | |
441 | error ("Attempt to assign to a value that was optimized out."); | |
442 | if (lval == lval_memory) | |
443 | write_memory (addr, buffer + amount_copied, reg_size); | |
444 | else if (lval == lval_register) | |
445 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
446 | else | |
447 | error ("Attempt to assign to an unmodifiable value."); | |
448 | } | |
449 | } | |
450 | break; | |
451 | ||
452 | ||
453 | default: | |
454 | error ("Left side of = operation is not an lvalue."); | |
455 | } | |
456 | ||
457 | /* Return a value just like TOVAL except with the contents of FROMVAL | |
458 | (except in the case of the type if TOVAL is an internalvar). */ | |
459 | ||
460 | if (VALUE_LVAL (toval) == lval_internalvar | |
461 | || VALUE_LVAL (toval) == lval_internalvar_component) | |
462 | { | |
463 | type = VALUE_TYPE (fromval); | |
464 | } | |
465 | ||
466 | val = allocate_value (type); | |
4ed3a9ea FF |
467 | memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val); |
468 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
469 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
470 | VALUE_TYPE (val) = type; |
471 | ||
472 | return val; | |
473 | } | |
474 | ||
475 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
476 | ||
477 | value | |
478 | value_repeat (arg1, count) | |
479 | value arg1; | |
480 | int count; | |
481 | { | |
482 | register value val; | |
483 | ||
484 | if (VALUE_LVAL (arg1) != lval_memory) | |
485 | error ("Only values in memory can be extended with '@'."); | |
486 | if (count < 1) | |
487 | error ("Invalid number %d of repetitions.", count); | |
488 | ||
489 | val = allocate_repeat_value (VALUE_TYPE (arg1), count); | |
490 | ||
491 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
492 | VALUE_CONTENTS_RAW (val), | |
493 | TYPE_LENGTH (VALUE_TYPE (val)) * count); | |
494 | VALUE_LVAL (val) = lval_memory; | |
495 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
496 | ||
497 | return val; | |
498 | } | |
499 | ||
500 | value | |
479fdd26 | 501 | value_of_variable (var, b) |
bd5635a1 | 502 | struct symbol *var; |
479fdd26 | 503 | struct block *b; |
bd5635a1 RP |
504 | { |
505 | value val; | |
479fdd26 | 506 | FRAME fr; |
bd5635a1 | 507 | |
479fdd26 JK |
508 | if (b == NULL) |
509 | /* Use selected frame. */ | |
510 | fr = NULL; | |
511 | else | |
512 | { | |
513 | fr = block_innermost_frame (b); | |
514 | if (fr == NULL) | |
515 | { | |
516 | if (BLOCK_FUNCTION (b) != NULL | |
517 | && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL) | |
518 | error ("No frame is currently executing in block %s.", | |
519 | SYMBOL_NAME (BLOCK_FUNCTION (b))); | |
520 | else | |
521 | error ("No frame is currently executing in specified block"); | |
522 | } | |
523 | } | |
524 | val = read_var_value (var, fr); | |
bd5635a1 | 525 | if (val == 0) |
2e4964ad | 526 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
527 | return val; |
528 | } | |
529 | ||
a163ddec MT |
530 | /* Given a value which is an array, return a value which is a pointer to its |
531 | first element, regardless of whether or not the array has a nonzero lower | |
532 | bound. | |
533 | ||
534 | FIXME: A previous comment here indicated that this routine should be | |
535 | substracting the array's lower bound. It's not clear to me that this | |
536 | is correct. Given an array subscripting operation, it would certainly | |
537 | work to do the adjustment here, essentially computing: | |
538 | ||
539 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
540 | ||
541 | However I believe a more appropriate and logical place to account for | |
542 | the lower bound is to do so in value_subscript, essentially computing: | |
543 | ||
544 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
545 | ||
546 | As further evidence consider what would happen with operations other | |
547 | than array subscripting, where the caller would get back a value that | |
548 | had an address somewhere before the actual first element of the array, | |
549 | and the information about the lower bound would be lost because of | |
550 | the coercion to pointer type. | |
551 | */ | |
bd5635a1 RP |
552 | |
553 | value | |
554 | value_coerce_array (arg1) | |
555 | value arg1; | |
556 | { | |
557 | register struct type *type; | |
bd5635a1 RP |
558 | |
559 | if (VALUE_LVAL (arg1) != lval_memory) | |
560 | error ("Attempt to take address of value not located in memory."); | |
561 | ||
562 | /* Get type of elements. */ | |
563 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY) | |
564 | type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1)); | |
565 | else | |
566 | /* A phony array made by value_repeat. | |
567 | Its type is the type of the elements, not an array type. */ | |
568 | type = VALUE_TYPE (arg1); | |
569 | ||
06b6c733 | 570 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 571 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
572 | } |
573 | ||
574 | /* Given a value which is a function, return a value which is a pointer | |
575 | to it. */ | |
576 | ||
577 | value | |
578 | value_coerce_function (arg1) | |
579 | value arg1; | |
580 | { | |
bd5635a1 RP |
581 | |
582 | if (VALUE_LVAL (arg1) != lval_memory) | |
583 | error ("Attempt to take address of value not located in memory."); | |
584 | ||
06b6c733 | 585 | return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
bd5635a1 | 586 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
587 | } |
588 | ||
589 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
590 | ||
591 | value | |
592 | value_addr (arg1) | |
593 | value arg1; | |
594 | { | |
8e9a3f3b PB |
595 | struct type *type = VALUE_TYPE (arg1); |
596 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
597 | { | |
598 | /* Copy the value, but change the type from (T&) to (T*). | |
599 | We keep the same location information, which is efficient, | |
600 | and allows &(&X) to get the location containing the reference. */ | |
601 | value arg2 = value_copy (arg1); | |
602 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
603 | return arg2; | |
604 | } | |
bd5635a1 | 605 | if (VALUE_REPEATED (arg1) |
8e9a3f3b | 606 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) |
bd5635a1 | 607 | return value_coerce_array (arg1); |
8e9a3f3b | 608 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
bd5635a1 RP |
609 | return value_coerce_function (arg1); |
610 | ||
611 | if (VALUE_LVAL (arg1) != lval_memory) | |
612 | error ("Attempt to take address of value not located in memory."); | |
613 | ||
8e9a3f3b | 614 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 615 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
616 | } |
617 | ||
618 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
619 | ||
620 | value | |
621 | value_ind (arg1) | |
622 | value arg1; | |
623 | { | |
624 | COERCE_ARRAY (arg1); | |
625 | ||
626 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER) | |
627 | error ("not implemented: member types in value_ind"); | |
628 | ||
629 | /* Allow * on an integer so we can cast it to whatever we want. | |
630 | This returns an int, which seems like the most C-like thing | |
631 | to do. "long long" variables are rare enough that | |
632 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
633 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT) | |
634 | return value_at (builtin_type_int, | |
635 | (CORE_ADDR) value_as_long (arg1)); | |
636 | else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) | |
637 | return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)), | |
d11c44f1 | 638 | value_as_pointer (arg1)); |
bd5635a1 RP |
639 | error ("Attempt to take contents of a non-pointer value."); |
640 | return 0; /* For lint -- never reached */ | |
641 | } | |
642 | \f | |
643 | /* Pushing small parts of stack frames. */ | |
644 | ||
645 | /* Push one word (the size of object that a register holds). */ | |
646 | ||
647 | CORE_ADDR | |
34df79fc | 648 | push_word (sp, word) |
bd5635a1 | 649 | CORE_ADDR sp; |
34df79fc | 650 | REGISTER_TYPE word; |
bd5635a1 RP |
651 | { |
652 | register int len = sizeof (REGISTER_TYPE); | |
479fdd26 | 653 | char buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 654 | |
479fdd26 | 655 | store_unsigned_integer (buffer, len, word); |
bd5635a1 RP |
656 | #if 1 INNER_THAN 2 |
657 | sp -= len; | |
479fdd26 | 658 | write_memory (sp, buffer, len); |
bd5635a1 | 659 | #else /* stack grows upward */ |
479fdd26 | 660 | write_memory (sp, buffer, len); |
bd5635a1 RP |
661 | sp += len; |
662 | #endif /* stack grows upward */ | |
663 | ||
664 | return sp; | |
665 | } | |
666 | ||
667 | /* Push LEN bytes with data at BUFFER. */ | |
668 | ||
669 | CORE_ADDR | |
670 | push_bytes (sp, buffer, len) | |
671 | CORE_ADDR sp; | |
672 | char *buffer; | |
673 | int len; | |
674 | { | |
675 | #if 1 INNER_THAN 2 | |
676 | sp -= len; | |
677 | write_memory (sp, buffer, len); | |
678 | #else /* stack grows upward */ | |
679 | write_memory (sp, buffer, len); | |
680 | sp += len; | |
681 | #endif /* stack grows upward */ | |
682 | ||
683 | return sp; | |
684 | } | |
685 | ||
686 | /* Push onto the stack the specified value VALUE. */ | |
687 | ||
01be6913 | 688 | static CORE_ADDR |
bd5635a1 RP |
689 | value_push (sp, arg) |
690 | register CORE_ADDR sp; | |
691 | value arg; | |
692 | { | |
693 | register int len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
694 | ||
695 | #if 1 INNER_THAN 2 | |
696 | sp -= len; | |
697 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
698 | #else /* stack grows upward */ | |
699 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
700 | sp += len; | |
701 | #endif /* stack grows upward */ | |
702 | ||
703 | return sp; | |
704 | } | |
705 | ||
706 | /* Perform the standard coercions that are specified | |
707 | for arguments to be passed to C functions. */ | |
708 | ||
709 | value | |
710 | value_arg_coerce (arg) | |
711 | value arg; | |
712 | { | |
713 | register struct type *type; | |
714 | ||
479fdd26 JK |
715 | /* FIXME: We should coerce this according to the prototype (if we have |
716 | one). Right now we do a little bit of this in typecmp(), but that | |
717 | doesn't always get called. For example, if passing a ref to a function | |
718 | without a prototype, we probably should de-reference it. Currently | |
719 | we don't. */ | |
720 | ||
721 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM) | |
722 | arg = value_cast (builtin_type_unsigned_int, arg); | |
723 | ||
b5728692 SG |
724 | #if 1 /* FIXME: This is only a temporary patch. -fnf */ |
725 | if (VALUE_REPEATED (arg) | |
726 | || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY) | |
727 | arg = value_coerce_array (arg); | |
728 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC) | |
729 | arg = value_coerce_function (arg); | |
730 | #endif | |
bd5635a1 RP |
731 | |
732 | type = VALUE_TYPE (arg); | |
733 | ||
734 | if (TYPE_CODE (type) == TYPE_CODE_INT | |
2a5ec41d | 735 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
bd5635a1 RP |
736 | return value_cast (builtin_type_int, arg); |
737 | ||
2a5ec41d JG |
738 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
739 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
bd5635a1 RP |
740 | return value_cast (builtin_type_double, arg); |
741 | ||
742 | return arg; | |
743 | } | |
744 | ||
745 | /* Push the value ARG, first coercing it as an argument | |
746 | to a C function. */ | |
747 | ||
01be6913 | 748 | static CORE_ADDR |
bd5635a1 RP |
749 | value_arg_push (sp, arg) |
750 | register CORE_ADDR sp; | |
751 | value arg; | |
752 | { | |
753 | return value_push (sp, value_arg_coerce (arg)); | |
754 | } | |
755 | ||
756 | /* Determine a function's address and its return type from its value. | |
757 | Calls error() if the function is not valid for calling. */ | |
758 | ||
01be6913 | 759 | static CORE_ADDR |
bd5635a1 RP |
760 | find_function_addr (function, retval_type) |
761 | value function; | |
762 | struct type **retval_type; | |
763 | { | |
764 | register struct type *ftype = VALUE_TYPE (function); | |
765 | register enum type_code code = TYPE_CODE (ftype); | |
766 | struct type *value_type; | |
767 | CORE_ADDR funaddr; | |
768 | ||
769 | /* If it's a member function, just look at the function | |
770 | part of it. */ | |
771 | ||
772 | /* Determine address to call. */ | |
773 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
774 | { | |
775 | funaddr = VALUE_ADDRESS (function); | |
776 | value_type = TYPE_TARGET_TYPE (ftype); | |
777 | } | |
778 | else if (code == TYPE_CODE_PTR) | |
779 | { | |
d11c44f1 | 780 | funaddr = value_as_pointer (function); |
bd5635a1 RP |
781 | if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC |
782 | || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD) | |
783 | value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)); | |
784 | else | |
785 | value_type = builtin_type_int; | |
786 | } | |
787 | else if (code == TYPE_CODE_INT) | |
788 | { | |
789 | /* Handle the case of functions lacking debugging info. | |
790 | Their values are characters since their addresses are char */ | |
791 | if (TYPE_LENGTH (ftype) == 1) | |
d11c44f1 | 792 | funaddr = value_as_pointer (value_addr (function)); |
bd5635a1 RP |
793 | else |
794 | /* Handle integer used as address of a function. */ | |
d11c44f1 | 795 | funaddr = (CORE_ADDR) value_as_long (function); |
bd5635a1 RP |
796 | |
797 | value_type = builtin_type_int; | |
798 | } | |
799 | else | |
800 | error ("Invalid data type for function to be called."); | |
801 | ||
802 | *retval_type = value_type; | |
803 | return funaddr; | |
804 | } | |
805 | ||
806 | #if defined (CALL_DUMMY) | |
807 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
808 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
809 | frame which looks just like a real frame is so that if you call a | |
810 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
811 | will look right. Whether the backtrace needs to actually show the | |
812 | stack at the time the inferior function was called is debatable, but | |
813 | it certainly needs to not display garbage. So if you are contemplating | |
814 | making dummy frames be different from normal frames, consider that. */ | |
815 | ||
816 | /* Perform a function call in the inferior. | |
817 | ARGS is a vector of values of arguments (NARGS of them). | |
818 | FUNCTION is a value, the function to be called. | |
819 | Returns a value representing what the function returned. | |
820 | May fail to return, if a breakpoint or signal is hit | |
821 | during the execution of the function. */ | |
822 | ||
823 | value | |
824 | call_function_by_hand (function, nargs, args) | |
825 | value function; | |
826 | int nargs; | |
827 | value *args; | |
828 | { | |
829 | register CORE_ADDR sp; | |
830 | register int i; | |
831 | CORE_ADDR start_sp; | |
f2ebc25f | 832 | /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word |
84d82b1c | 833 | is in host byte order. It is switched to target byte order before calling |
f2ebc25f | 834 | FIX_CALL_DUMMY. */ |
bd5635a1 RP |
835 | static REGISTER_TYPE dummy[] = CALL_DUMMY; |
836 | REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)]; | |
837 | CORE_ADDR old_sp; | |
838 | struct type *value_type; | |
839 | unsigned char struct_return; | |
840 | CORE_ADDR struct_addr; | |
841 | struct inferior_status inf_status; | |
842 | struct cleanup *old_chain; | |
843 | CORE_ADDR funaddr; | |
844 | int using_gcc; | |
9f739abd | 845 | CORE_ADDR real_pc; |
bd5635a1 | 846 | |
e17960fb JG |
847 | if (!target_has_execution) |
848 | noprocess(); | |
849 | ||
bd5635a1 RP |
850 | save_inferior_status (&inf_status, 1); |
851 | old_chain = make_cleanup (restore_inferior_status, &inf_status); | |
852 | ||
853 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
854 | (and POP_FRAME for restoring them). (At least on most machines) | |
855 | they are saved on the stack in the inferior. */ | |
856 | PUSH_DUMMY_FRAME; | |
857 | ||
54023465 | 858 | old_sp = sp = read_sp (); |
bd5635a1 RP |
859 | |
860 | #if 1 INNER_THAN 2 /* Stack grows down */ | |
861 | sp -= sizeof dummy; | |
862 | start_sp = sp; | |
863 | #else /* Stack grows up */ | |
864 | start_sp = sp; | |
865 | sp += sizeof dummy; | |
866 | #endif | |
867 | ||
868 | funaddr = find_function_addr (function, &value_type); | |
869 | ||
870 | { | |
871 | struct block *b = block_for_pc (funaddr); | |
872 | /* If compiled without -g, assume GCC. */ | |
873 | using_gcc = b == NULL || BLOCK_GCC_COMPILED (b); | |
874 | } | |
875 | ||
876 | /* Are we returning a value using a structure return or a normal | |
877 | value return? */ | |
878 | ||
879 | struct_return = using_struct_return (function, funaddr, value_type, | |
880 | using_gcc); | |
881 | ||
882 | /* Create a call sequence customized for this function | |
883 | and the number of arguments for it. */ | |
f2ebc25f | 884 | for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++) |
34df79fc JK |
885 | store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE), |
886 | (unsigned LONGEST)dummy[i]); | |
9f739abd SG |
887 | |
888 | #ifdef GDB_TARGET_IS_HPPA | |
b5728692 SG |
889 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
890 | value_type, using_gcc); | |
9f739abd | 891 | #else |
bd5635a1 RP |
892 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
893 | value_type, using_gcc); | |
9f739abd SG |
894 | real_pc = start_sp; |
895 | #endif | |
bd5635a1 RP |
896 | |
897 | #if CALL_DUMMY_LOCATION == ON_STACK | |
898 | write_memory (start_sp, (char *)dummy1, sizeof dummy); | |
cef4c2e7 | 899 | #endif /* On stack. */ |
bd5635a1 | 900 | |
bd5635a1 RP |
901 | #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END |
902 | /* Convex Unix prohibits executing in the stack segment. */ | |
903 | /* Hope there is empty room at the top of the text segment. */ | |
904 | { | |
84d82b1c | 905 | extern CORE_ADDR text_end; |
bd5635a1 RP |
906 | static checked = 0; |
907 | if (!checked) | |
908 | for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp) | |
909 | if (read_memory_integer (start_sp, 1) != 0) | |
910 | error ("text segment full -- no place to put call"); | |
911 | checked = 1; | |
912 | sp = old_sp; | |
30d20d15 PS |
913 | real_pc = text_end - sizeof dummy; |
914 | write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 | 915 | } |
cef4c2e7 PS |
916 | #endif /* Before text_end. */ |
917 | ||
918 | #if CALL_DUMMY_LOCATION == AFTER_TEXT_END | |
bd5635a1 | 919 | { |
84d82b1c | 920 | extern CORE_ADDR text_end; |
bd5635a1 RP |
921 | int errcode; |
922 | sp = old_sp; | |
30d20d15 PS |
923 | real_pc = text_end; |
924 | errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 RP |
925 | if (errcode != 0) |
926 | error ("Cannot write text segment -- call_function failed"); | |
927 | } | |
928 | #endif /* After text_end. */ | |
cef4c2e7 PS |
929 | |
930 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
931 | real_pc = funaddr; | |
932 | #endif /* At entry point. */ | |
bd5635a1 RP |
933 | |
934 | #ifdef lint | |
935 | sp = old_sp; /* It really is used, for some ifdef's... */ | |
936 | #endif | |
937 | ||
938 | #ifdef STACK_ALIGN | |
939 | /* If stack grows down, we must leave a hole at the top. */ | |
940 | { | |
941 | int len = 0; | |
942 | ||
943 | /* Reserve space for the return structure to be written on the | |
944 | stack, if necessary */ | |
945 | ||
946 | if (struct_return) | |
947 | len += TYPE_LENGTH (value_type); | |
948 | ||
949 | for (i = nargs - 1; i >= 0; i--) | |
950 | len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i]))); | |
951 | #ifdef CALL_DUMMY_STACK_ADJUST | |
952 | len += CALL_DUMMY_STACK_ADJUST; | |
953 | #endif | |
954 | #if 1 INNER_THAN 2 | |
955 | sp -= STACK_ALIGN (len) - len; | |
956 | #else | |
957 | sp += STACK_ALIGN (len) - len; | |
958 | #endif | |
959 | } | |
960 | #endif /* STACK_ALIGN */ | |
961 | ||
962 | /* Reserve space for the return structure to be written on the | |
963 | stack, if necessary */ | |
964 | ||
965 | if (struct_return) | |
966 | { | |
967 | #if 1 INNER_THAN 2 | |
968 | sp -= TYPE_LENGTH (value_type); | |
969 | struct_addr = sp; | |
970 | #else | |
971 | struct_addr = sp; | |
972 | sp += TYPE_LENGTH (value_type); | |
973 | #endif | |
974 | } | |
975 | ||
976 | #if defined (REG_STRUCT_HAS_ADDR) | |
977 | { | |
978 | /* This is a machine like the sparc, where we need to pass a pointer | |
979 | to the structure, not the structure itself. */ | |
980 | if (REG_STRUCT_HAS_ADDR (using_gcc)) | |
981 | for (i = nargs - 1; i >= 0; i--) | |
982 | if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT) | |
983 | { | |
984 | CORE_ADDR addr; | |
985 | #if !(1 INNER_THAN 2) | |
986 | /* The stack grows up, so the address of the thing we push | |
987 | is the stack pointer before we push it. */ | |
988 | addr = sp; | |
989 | #endif | |
990 | /* Push the structure. */ | |
991 | sp = value_push (sp, args[i]); | |
992 | #if 1 INNER_THAN 2 | |
993 | /* The stack grows down, so the address of the thing we push | |
994 | is the stack pointer after we push it. */ | |
995 | addr = sp; | |
996 | #endif | |
997 | /* The value we're going to pass is the address of the thing | |
998 | we just pushed. */ | |
06b6c733 JG |
999 | args[i] = value_from_longest (lookup_pointer_type (value_type), |
1000 | (LONGEST) addr); | |
bd5635a1 RP |
1001 | } |
1002 | } | |
1003 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1004 | ||
1005 | #ifdef PUSH_ARGUMENTS | |
1006 | PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr); | |
1007 | #else /* !PUSH_ARGUMENTS */ | |
1008 | for (i = nargs - 1; i >= 0; i--) | |
1009 | sp = value_arg_push (sp, args[i]); | |
1010 | #endif /* !PUSH_ARGUMENTS */ | |
1011 | ||
1012 | #ifdef CALL_DUMMY_STACK_ADJUST | |
1013 | #if 1 INNER_THAN 2 | |
1014 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1015 | #else | |
1016 | sp += CALL_DUMMY_STACK_ADJUST; | |
1017 | #endif | |
1018 | #endif /* CALL_DUMMY_STACK_ADJUST */ | |
1019 | ||
1020 | /* Store the address at which the structure is supposed to be | |
1021 | written. Note that this (and the code which reserved the space | |
1022 | above) assumes that gcc was used to compile this function. Since | |
1023 | it doesn't cost us anything but space and if the function is pcc | |
1024 | it will ignore this value, we will make that assumption. | |
1025 | ||
1026 | Also note that on some machines (like the sparc) pcc uses a | |
1027 | convention like gcc's. */ | |
1028 | ||
1029 | if (struct_return) | |
1030 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1031 | ||
1032 | /* Write the stack pointer. This is here because the statements above | |
1033 | might fool with it. On SPARC, this write also stores the register | |
1034 | window into the right place in the new stack frame, which otherwise | |
5632cd56 | 1035 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ |
54023465 | 1036 | write_sp (sp); |
bd5635a1 | 1037 | |
bd5635a1 RP |
1038 | { |
1039 | char retbuf[REGISTER_BYTES]; | |
54023465 JK |
1040 | char *name; |
1041 | struct symbol *symbol; | |
1042 | ||
1043 | name = NULL; | |
1044 | symbol = find_pc_function (funaddr); | |
1045 | if (symbol) | |
1046 | { | |
1047 | name = SYMBOL_SOURCE_NAME (symbol); | |
1048 | } | |
1049 | else | |
1050 | { | |
1051 | /* Try the minimal symbols. */ | |
1052 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1053 | ||
1054 | if (msymbol) | |
1055 | { | |
1056 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1057 | } | |
1058 | } | |
1059 | if (name == NULL) | |
1060 | { | |
1061 | char format[80]; | |
1062 | sprintf (format, "at %s", local_hex_format ()); | |
1063 | name = alloca (80); | |
cef4c2e7 | 1064 | sprintf (name, format, (unsigned long) funaddr); |
54023465 | 1065 | } |
bd5635a1 RP |
1066 | |
1067 | /* Execute the stack dummy routine, calling FUNCTION. | |
1068 | When it is done, discard the empty frame | |
1069 | after storing the contents of all regs into retbuf. */ | |
860a1754 JK |
1070 | if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf)) |
1071 | { | |
1072 | /* We stopped somewhere besides the call dummy. */ | |
1073 | ||
1074 | /* If we did the cleanups, we would print a spurious error message | |
1075 | (Unable to restore previously selected frame), would write the | |
1076 | registers from the inf_status (which is wrong), and would do other | |
1077 | wrong things (like set stop_bpstat to the wrong thing). */ | |
1078 | discard_cleanups (old_chain); | |
1079 | /* Prevent memory leak. */ | |
30d20d15 | 1080 | bpstat_clear (&inf_status.stop_bpstat); |
860a1754 JK |
1081 | |
1082 | /* The following error message used to say "The expression | |
1083 | which contained the function call has been discarded." It | |
1084 | is a hard concept to explain in a few words. Ideally, GDB | |
1085 | would be able to resume evaluation of the expression when | |
1086 | the function finally is done executing. Perhaps someday | |
1087 | this will be implemented (it would not be easy). */ | |
1088 | ||
1089 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1090 | a C++ name with arguments and stuff. */ | |
1091 | error ("\ | |
1092 | The program being debugged stopped while in a function called from GDB.\n\ | |
1093 | When the function (%s) is done executing, GDB will silently\n\ | |
1094 | stop (instead of continuing to evaluate the expression containing\n\ | |
1095 | the function call).", name); | |
1096 | } | |
bd5635a1 RP |
1097 | |
1098 | do_cleanups (old_chain); | |
1099 | ||
860a1754 | 1100 | /* Figure out the value returned by the function. */ |
bd5635a1 RP |
1101 | return value_being_returned (value_type, retbuf, struct_return); |
1102 | } | |
1103 | } | |
1104 | #else /* no CALL_DUMMY. */ | |
1105 | value | |
1106 | call_function_by_hand (function, nargs, args) | |
1107 | value function; | |
1108 | int nargs; | |
1109 | value *args; | |
1110 | { | |
1111 | error ("Cannot invoke functions on this machine."); | |
1112 | } | |
1113 | #endif /* no CALL_DUMMY. */ | |
a163ddec | 1114 | |
bd5635a1 | 1115 | \f |
a163ddec MT |
1116 | /* Create a value for an array by allocating space in the inferior, copying |
1117 | the data into that space, and then setting up an array value. | |
1118 | ||
1119 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1120 | populated from the values passed in ELEMVEC. | |
1121 | ||
1122 | The element type of the array is inherited from the type of the | |
1123 | first element, and all elements must have the same size (though we | |
1124 | don't currently enforce any restriction on their types). */ | |
bd5635a1 RP |
1125 | |
1126 | value | |
a163ddec MT |
1127 | value_array (lowbound, highbound, elemvec) |
1128 | int lowbound; | |
1129 | int highbound; | |
1130 | value *elemvec; | |
bd5635a1 | 1131 | { |
a163ddec MT |
1132 | int nelem; |
1133 | int idx; | |
1134 | int typelength; | |
1135 | value val; | |
1136 | struct type *rangetype; | |
1137 | struct type *arraytype; | |
1138 | CORE_ADDR addr; | |
bd5635a1 | 1139 | |
a163ddec MT |
1140 | /* Validate that the bounds are reasonable and that each of the elements |
1141 | have the same size. */ | |
bd5635a1 | 1142 | |
a163ddec MT |
1143 | nelem = highbound - lowbound + 1; |
1144 | if (nelem <= 0) | |
bd5635a1 | 1145 | { |
a163ddec | 1146 | error ("bad array bounds (%d, %d)", lowbound, highbound); |
bd5635a1 | 1147 | } |
a163ddec MT |
1148 | typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0])); |
1149 | for (idx = 0; idx < nelem; idx++) | |
bd5635a1 | 1150 | { |
a163ddec MT |
1151 | if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength) |
1152 | { | |
1153 | error ("array elements must all be the same size"); | |
1154 | } | |
bd5635a1 RP |
1155 | } |
1156 | ||
a163ddec MT |
1157 | /* Allocate space to store the array in the inferior, and then initialize |
1158 | it by copying in each element. FIXME: Is it worth it to create a | |
1159 | local buffer in which to collect each value and then write all the | |
1160 | bytes in one operation? */ | |
1161 | ||
1162 | addr = allocate_space_in_inferior (nelem * typelength); | |
1163 | for (idx = 0; idx < nelem; idx++) | |
1164 | { | |
1165 | write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]), | |
1166 | typelength); | |
1167 | } | |
1168 | ||
1169 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1170 | ||
1171 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1172 | lowbound, highbound); | |
1173 | arraytype = create_array_type ((struct type *) NULL, | |
1174 | VALUE_TYPE (elemvec[0]), rangetype); | |
1175 | val = value_at_lazy (arraytype, addr); | |
1176 | return (val); | |
1177 | } | |
1178 | ||
1179 | /* Create a value for a string constant by allocating space in the inferior, | |
1180 | copying the data into that space, and returning the address with type | |
1181 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1182 | of characters. | |
1183 | Note that string types are like array of char types with a lower bound of | |
1184 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1185 | embedded null bytes. */ | |
1186 | ||
1187 | value | |
1188 | value_string (ptr, len) | |
1189 | char *ptr; | |
1190 | int len; | |
1191 | { | |
1192 | value val; | |
1193 | struct type *rangetype; | |
1194 | struct type *stringtype; | |
1195 | CORE_ADDR addr; | |
1196 | ||
1197 | /* Allocate space to store the string in the inferior, and then | |
1198 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1199 | ||
1200 | addr = allocate_space_in_inferior (len); | |
1201 | write_memory (addr, ptr, len); | |
1202 | ||
1203 | /* Create the string type and set up a string value to be evaluated | |
1204 | lazily. */ | |
1205 | ||
1206 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1207 | 0, len - 1); | |
1208 | stringtype = create_string_type ((struct type *) NULL, rangetype); | |
1209 | val = value_at_lazy (stringtype, addr); | |
1210 | return (val); | |
bd5635a1 RP |
1211 | } |
1212 | \f | |
479fdd26 JK |
1213 | /* See if we can pass arguments in T2 to a function which takes arguments |
1214 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1215 | arguments need coercion of some sort, then the coerced values are written | |
1216 | into T2. Return value is 0 if the arguments could be matched, or the | |
1217 | position at which they differ if not. | |
a163ddec MT |
1218 | |
1219 | STATICP is nonzero if the T1 argument list came from a | |
1220 | static member function. | |
1221 | ||
1222 | For non-static member functions, we ignore the first argument, | |
1223 | which is the type of the instance variable. This is because we want | |
1224 | to handle calls with objects from derived classes. This is not | |
1225 | entirely correct: we should actually check to make sure that a | |
1226 | requested operation is type secure, shouldn't we? FIXME. */ | |
1227 | ||
1228 | static int | |
1229 | typecmp (staticp, t1, t2) | |
1230 | int staticp; | |
1231 | struct type *t1[]; | |
1232 | value t2[]; | |
1233 | { | |
1234 | int i; | |
1235 | ||
1236 | if (t2 == 0) | |
1237 | return 1; | |
1238 | if (staticp && t1 == 0) | |
1239 | return t2[1] != 0; | |
1240 | if (t1 == 0) | |
1241 | return 1; | |
1242 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0; | |
1243 | if (t1[!staticp] == 0) return 0; | |
1244 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) | |
1245 | { | |
1246 | if (! t2[i]) | |
1247 | return i+1; | |
1248 | if (TYPE_CODE (t1[i]) == TYPE_CODE_REF | |
479fdd26 JK |
1249 | /* We should be doing hairy argument matching, as below. */ |
1250 | && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i])) | |
1251 | == TYPE_CODE (VALUE_TYPE (t2[i])))) | |
1252 | { | |
1253 | t2[i] = value_addr (t2[i]); | |
1254 | continue; | |
1255 | } | |
1256 | ||
1257 | if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR | |
1258 | && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY) | |
1259 | /* Array to pointer is a `trivial conversion' according to the ARM. */ | |
a163ddec | 1260 | continue; |
479fdd26 JK |
1261 | |
1262 | /* We should be doing much hairier argument matching (see section 13.2 | |
1263 | of the ARM), but as a quick kludge, just check for the same type | |
1264 | code. */ | |
a163ddec MT |
1265 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
1266 | return i+1; | |
1267 | } | |
1268 | if (!t1[i]) return 0; | |
1269 | return t2[i] ? i+1 : 0; | |
1270 | } | |
1271 | ||
bd5635a1 RP |
1272 | /* Helper function used by value_struct_elt to recurse through baseclasses. |
1273 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1274 | and search in it assuming it has (class) type TYPE. |
d3bab255 JK |
1275 | If found, return value, else return NULL. |
1276 | ||
1277 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1278 | look for a baseclass named NAME. */ | |
bd5635a1 RP |
1279 | |
1280 | static value | |
d3bab255 | 1281 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) |
bd5635a1 RP |
1282 | char *name; |
1283 | register value arg1; | |
1284 | int offset; | |
1285 | register struct type *type; | |
d3bab255 | 1286 | int looking_for_baseclass; |
bd5635a1 RP |
1287 | { |
1288 | int i; | |
1289 | ||
1290 | check_stub_type (type); | |
1291 | ||
d3bab255 JK |
1292 | if (! looking_for_baseclass) |
1293 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1294 | { | |
1295 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1296 | ||
2e4964ad | 1297 | if (t_field_name && STREQ (t_field_name, name)) |
d3bab255 | 1298 | { |
01be6913 PB |
1299 | value v; |
1300 | if (TYPE_FIELD_STATIC (type, i)) | |
1301 | { | |
1302 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i); | |
1303 | struct symbol *sym = | |
2e4964ad FF |
1304 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); |
1305 | if (sym == NULL) | |
1306 | error ("Internal error: could not find physical static variable named %s", | |
1307 | phys_name); | |
01be6913 PB |
1308 | v = value_at (TYPE_FIELD_TYPE (type, i), |
1309 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
1310 | } | |
1311 | else | |
1312 | v = value_primitive_field (arg1, offset, i, type); | |
d3bab255 JK |
1313 | if (v == 0) |
1314 | error("there is no field named %s", name); | |
1315 | return v; | |
1316 | } | |
1317 | } | |
bd5635a1 RP |
1318 | |
1319 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1320 | { | |
1321 | value v; | |
1322 | /* If we are looking for baseclasses, this is what we get when we | |
54023465 JK |
1323 | hit them. But it could happen that the base part's member name |
1324 | is not yet filled in. */ | |
d3bab255 | 1325 | int found_baseclass = (looking_for_baseclass |
54023465 | 1326 | && TYPE_BASECLASS_NAME (type, i) != NULL |
2e4964ad | 1327 | && STREQ (name, TYPE_BASECLASS_NAME (type, i))); |
bd5635a1 RP |
1328 | |
1329 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1330 | { | |
1331 | value v2; | |
bac89d6c | 1332 | /* Fix to use baseclass_offset instead. FIXME */ |
d11c44f1 JG |
1333 | baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, |
1334 | &v2, (int *)NULL); | |
bd5635a1 RP |
1335 | if (v2 == 0) |
1336 | error ("virtual baseclass botch"); | |
1337 | if (found_baseclass) | |
1338 | return v2; | |
d3bab255 JK |
1339 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), |
1340 | looking_for_baseclass); | |
bd5635a1 | 1341 | } |
01be6913 | 1342 | else if (found_baseclass) |
bd5635a1 RP |
1343 | v = value_primitive_field (arg1, offset, i, type); |
1344 | else | |
1345 | v = search_struct_field (name, arg1, | |
1346 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | |
d3bab255 JK |
1347 | TYPE_BASECLASS (type, i), |
1348 | looking_for_baseclass); | |
bd5635a1 RP |
1349 | if (v) return v; |
1350 | } | |
1351 | return NULL; | |
1352 | } | |
1353 | ||
1354 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1355 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1356 | and search in it assuming it has (class) type TYPE. |
cef4c2e7 | 1357 | If found, return value, else if name matched and args not return (value)-1, |
5b5c6d94 | 1358 | else return NULL. */ |
bd5635a1 RP |
1359 | |
1360 | static value | |
bac89d6c | 1361 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) |
bd5635a1 | 1362 | char *name; |
bac89d6c | 1363 | register value *arg1p, *args; |
bd5635a1 RP |
1364 | int offset, *static_memfuncp; |
1365 | register struct type *type; | |
1366 | { | |
1367 | int i; | |
5b5c6d94 | 1368 | static int name_matched = 0; |
bd5635a1 RP |
1369 | |
1370 | check_stub_type (type); | |
1371 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1372 | { | |
1373 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2e4964ad | 1374 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1375 | { |
d3bab255 | 1376 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; |
bd5635a1 | 1377 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
5b5c6d94 | 1378 | name_matched = 1; |
bd5635a1 | 1379 | |
d3bab255 JK |
1380 | if (j > 0 && args == 0) |
1381 | error ("cannot resolve overloaded method `%s'", name); | |
1382 | while (j >= 0) | |
bd5635a1 | 1383 | { |
8e9a3f3b | 1384 | if (TYPE_FN_FIELD_STUB (f, j)) |
bd5635a1 RP |
1385 | check_stub_method (type, i, j); |
1386 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
1387 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
1388 | { | |
1389 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
bac89d6c | 1390 | return (value)value_virtual_fn_field (arg1p, f, j, type, offset); |
bd5635a1 RP |
1391 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) |
1392 | *static_memfuncp = 1; | |
bac89d6c | 1393 | return (value)value_fn_field (arg1p, f, j, type, offset); |
bd5635a1 | 1394 | } |
d3bab255 | 1395 | j--; |
bd5635a1 RP |
1396 | } |
1397 | } | |
1398 | } | |
1399 | ||
1400 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1401 | { | |
bac89d6c | 1402 | value v; |
01be6913 | 1403 | int base_offset; |
bd5635a1 RP |
1404 | |
1405 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1406 | { | |
9f739abd | 1407 | base_offset = baseclass_offset (type, i, *arg1p, offset); |
bac89d6c | 1408 | if (base_offset == -1) |
bd5635a1 | 1409 | error ("virtual baseclass botch"); |
bd5635a1 | 1410 | } |
01be6913 PB |
1411 | else |
1412 | { | |
01be6913 PB |
1413 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
1414 | } | |
bac89d6c | 1415 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
bd5635a1 | 1416 | static_memfuncp, TYPE_BASECLASS (type, i)); |
cef4c2e7 | 1417 | if (v == (value) -1) |
5b5c6d94 KH |
1418 | { |
1419 | name_matched = 1; | |
1420 | } | |
1421 | else if (v) | |
bac89d6c FF |
1422 | { |
1423 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
1424 | /* *arg1p = arg1_tmp;*/ | |
1425 | return v; | |
1426 | } | |
bd5635a1 | 1427 | } |
cef4c2e7 | 1428 | if (name_matched) return (value) -1; |
5b5c6d94 | 1429 | else return NULL; |
bd5635a1 RP |
1430 | } |
1431 | ||
1432 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1433 | extract the component named NAME from the ultimate target structure/union | |
1434 | and return it as a value with its appropriate type. | |
1435 | ERR is used in the error message if *ARGP's type is wrong. | |
1436 | ||
1437 | C++: ARGS is a list of argument types to aid in the selection of | |
1438 | an appropriate method. Also, handle derived types. | |
1439 | ||
1440 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1441 | where the truthvalue of whether the function that was resolved was | |
1442 | a static member function or not is stored. | |
1443 | ||
1444 | ERR is an error message to be printed in case the field is not found. */ | |
1445 | ||
1446 | value | |
1447 | value_struct_elt (argp, args, name, static_memfuncp, err) | |
1448 | register value *argp, *args; | |
1449 | char *name; | |
1450 | int *static_memfuncp; | |
1451 | char *err; | |
1452 | { | |
1453 | register struct type *t; | |
bd5635a1 RP |
1454 | value v; |
1455 | ||
1456 | COERCE_ARRAY (*argp); | |
1457 | ||
1458 | t = VALUE_TYPE (*argp); | |
1459 | ||
1460 | /* Follow pointers until we get to a non-pointer. */ | |
1461 | ||
1462 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1463 | { | |
bd5635a1 | 1464 | *argp = value_ind (*argp); |
f2ebc25f JK |
1465 | /* Don't coerce fn pointer to fn and then back again! */ |
1466 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1467 | COERCE_ARRAY (*argp); | |
bd5635a1 RP |
1468 | t = VALUE_TYPE (*argp); |
1469 | } | |
1470 | ||
1471 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1472 | error ("not implemented: member type in value_struct_elt"); | |
1473 | ||
2a5ec41d | 1474 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1475 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1476 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1477 | ||
1478 | /* Assume it's not, unless we see that it is. */ | |
1479 | if (static_memfuncp) | |
1480 | *static_memfuncp =0; | |
1481 | ||
1482 | if (!args) | |
1483 | { | |
1484 | /* if there are no arguments ...do this... */ | |
1485 | ||
d3bab255 | 1486 | /* Try as a field first, because if we succeed, there |
bd5635a1 | 1487 | is less work to be done. */ |
d3bab255 | 1488 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1489 | if (v) |
1490 | return v; | |
1491 | ||
1492 | /* C++: If it was not found as a data field, then try to | |
1493 | return it as a pointer to a method. */ | |
1494 | ||
1495 | if (destructor_name_p (name, t)) | |
1496 | error ("Cannot get value of destructor"); | |
1497 | ||
bac89d6c | 1498 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 RP |
1499 | |
1500 | if (v == 0) | |
1501 | { | |
1502 | if (TYPE_NFN_FIELDS (t)) | |
1503 | error ("There is no member or method named %s.", name); | |
1504 | else | |
1505 | error ("There is no member named %s.", name); | |
1506 | } | |
1507 | return v; | |
1508 | } | |
1509 | ||
1510 | if (destructor_name_p (name, t)) | |
1511 | { | |
1512 | if (!args[1]) | |
1513 | { | |
1514 | /* destructors are a special case. */ | |
bac89d6c FF |
1515 | return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0), |
1516 | TYPE_FN_FIELDLIST_LENGTH (t, 0), | |
1517 | 0, 0); | |
bd5635a1 RP |
1518 | } |
1519 | else | |
1520 | { | |
1521 | error ("destructor should not have any argument"); | |
1522 | } | |
1523 | } | |
1524 | else | |
bac89d6c | 1525 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1526 | |
cef4c2e7 | 1527 | if (v == (value) -1) |
5b5c6d94 KH |
1528 | { |
1529 | error("Argument list of %s mismatch with component in the structure.", name); | |
1530 | } | |
1531 | else if (v == 0) | |
bd5635a1 RP |
1532 | { |
1533 | /* See if user tried to invoke data as function. If so, | |
1534 | hand it back. If it's not callable (i.e., a pointer to function), | |
1535 | gdb should give an error. */ | |
d3bab255 | 1536 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1537 | } |
1538 | ||
1539 | if (!v) | |
1540 | error ("Structure has no component named %s.", name); | |
1541 | return v; | |
1542 | } | |
1543 | ||
1544 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
1545 | of type TYPE. If TYPE does not have a destructor, or | |
1546 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
1547 | int | |
1548 | destructor_name_p (name, type) | |
7919c3ed JG |
1549 | const char *name; |
1550 | const struct type *type; | |
bd5635a1 RP |
1551 | { |
1552 | /* destructors are a special case. */ | |
1553 | ||
1554 | if (name[0] == '~') | |
1555 | { | |
1556 | char *dname = type_name_no_tag (type); | |
2e4964ad | 1557 | if (!STREQ (dname, name+1)) |
bd5635a1 RP |
1558 | error ("name of destructor must equal name of class"); |
1559 | else | |
1560 | return 1; | |
1561 | } | |
1562 | return 0; | |
1563 | } | |
1564 | ||
1565 | /* Helper function for check_field: Given TYPE, a structure/union, | |
1566 | return 1 if the component named NAME from the ultimate | |
1567 | target structure/union is defined, otherwise, return 0. */ | |
1568 | ||
1569 | static int | |
1570 | check_field_in (type, name) | |
1571 | register struct type *type; | |
01be6913 | 1572 | const char *name; |
bd5635a1 RP |
1573 | { |
1574 | register int i; | |
1575 | ||
1576 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1577 | { | |
1578 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2e4964ad | 1579 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 RP |
1580 | return 1; |
1581 | } | |
1582 | ||
1583 | /* C++: If it was not found as a data field, then try to | |
1584 | return it as a pointer to a method. */ | |
1585 | ||
1586 | /* Destructors are a special case. */ | |
1587 | if (destructor_name_p (name, type)) | |
1588 | return 1; | |
1589 | ||
1590 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
1591 | { | |
2e4964ad | 1592 | if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name)) |
bd5635a1 RP |
1593 | return 1; |
1594 | } | |
1595 | ||
1596 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1597 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
1598 | return 1; | |
1599 | ||
1600 | return 0; | |
1601 | } | |
1602 | ||
1603 | ||
1604 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
1605 | return 1 if the component named NAME from the ultimate | |
1606 | target structure/union is defined, otherwise, return 0. */ | |
1607 | ||
1608 | int | |
1609 | check_field (arg1, name) | |
01be6913 | 1610 | register value arg1; |
7919c3ed | 1611 | const char *name; |
bd5635a1 RP |
1612 | { |
1613 | register struct type *t; | |
1614 | ||
1615 | COERCE_ARRAY (arg1); | |
1616 | ||
1617 | t = VALUE_TYPE (arg1); | |
1618 | ||
1619 | /* Follow pointers until we get to a non-pointer. */ | |
1620 | ||
1621 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1622 | t = TYPE_TARGET_TYPE (t); | |
1623 | ||
1624 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1625 | error ("not implemented: member type in check_field"); | |
1626 | ||
2a5ec41d | 1627 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1628 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1629 | error ("Internal error: `this' is not an aggregate"); | |
1630 | ||
1631 | return check_field_in (t, name); | |
1632 | } | |
1633 | ||
01be6913 | 1634 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2a5ec41d | 1635 | return the address of this member as a "pointer to member" |
bd5635a1 RP |
1636 | type. If INTYPE is non-null, then it will be the type |
1637 | of the member we are looking for. This will help us resolve | |
01be6913 PB |
1638 | "pointers to member functions". This function is used |
1639 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
bd5635a1 RP |
1640 | |
1641 | value | |
51b57ded | 1642 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) |
01be6913 | 1643 | struct type *domain, *curtype, *intype; |
51b57ded | 1644 | int offset; |
bd5635a1 RP |
1645 | char *name; |
1646 | { | |
01be6913 | 1647 | register struct type *t = curtype; |
bd5635a1 RP |
1648 | register int i; |
1649 | value v; | |
1650 | ||
2a5ec41d | 1651 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 | 1652 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
01be6913 | 1653 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); |
bd5635a1 | 1654 | |
01be6913 | 1655 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) |
bd5635a1 | 1656 | { |
01be6913 PB |
1657 | char *t_field_name = TYPE_FIELD_NAME (t, i); |
1658 | ||
2e4964ad | 1659 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1660 | { |
01be6913 | 1661 | if (TYPE_FIELD_STATIC (t, i)) |
bd5635a1 | 1662 | { |
01be6913 PB |
1663 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i); |
1664 | struct symbol *sym = | |
1665 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
2e4964ad FF |
1666 | if (sym == NULL) |
1667 | error ("Internal error: could not find physical static variable named %s", | |
01be6913 PB |
1668 | phys_name); |
1669 | return value_at (SYMBOL_TYPE (sym), | |
1670 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
bd5635a1 | 1671 | } |
01be6913 PB |
1672 | if (TYPE_FIELD_PACKED (t, i)) |
1673 | error ("pointers to bitfield members not allowed"); | |
1674 | ||
1675 | return value_from_longest | |
1676 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
1677 | domain)), | |
51b57ded | 1678 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); |
bd5635a1 | 1679 | } |
bd5635a1 RP |
1680 | } |
1681 | ||
1682 | /* C++: If it was not found as a data field, then try to | |
1683 | return it as a pointer to a method. */ | |
bd5635a1 RP |
1684 | |
1685 | /* Destructors are a special case. */ | |
1686 | if (destructor_name_p (name, t)) | |
1687 | { | |
2a5ec41d | 1688 | error ("member pointers to destructors not implemented yet"); |
bd5635a1 RP |
1689 | } |
1690 | ||
1691 | /* Perform all necessary dereferencing. */ | |
1692 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
1693 | intype = TYPE_TARGET_TYPE (intype); | |
1694 | ||
01be6913 | 1695 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) |
bd5635a1 | 1696 | { |
2e4964ad | 1697 | if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name)) |
bd5635a1 | 1698 | { |
01be6913 PB |
1699 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); |
1700 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
1701 | ||
1702 | if (intype == 0 && j > 1) | |
1703 | error ("non-unique member `%s' requires type instantiation", name); | |
1704 | if (intype) | |
bd5635a1 | 1705 | { |
01be6913 PB |
1706 | while (j--) |
1707 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
1708 | break; | |
1709 | if (j < 0) | |
1710 | error ("no member function matches that type instantiation"); | |
1711 | } | |
1712 | else | |
1713 | j = 0; | |
1714 | ||
1715 | if (TYPE_FN_FIELD_STUB (f, j)) | |
1716 | check_stub_method (t, i, j); | |
1717 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1718 | { | |
1719 | return value_from_longest | |
1720 | (lookup_reference_type | |
1721 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1722 | domain)), | |
bac89d6c FF |
1723 | (LONGEST) METHOD_PTR_FROM_VOFFSET |
1724 | (TYPE_FN_FIELD_VOFFSET (f, j))); | |
01be6913 PB |
1725 | } |
1726 | else | |
1727 | { | |
1728 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
1729 | 0, VAR_NAMESPACE, 0, NULL); | |
35fcebce PB |
1730 | if (s == NULL) |
1731 | { | |
1732 | v = 0; | |
1733 | } | |
1734 | else | |
1735 | { | |
1736 | v = read_var_value (s, 0); | |
01be6913 | 1737 | #if 0 |
35fcebce PB |
1738 | VALUE_TYPE (v) = lookup_reference_type |
1739 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1740 | domain)); | |
01be6913 | 1741 | #endif |
bd5635a1 | 1742 | } |
35fcebce | 1743 | return v; |
bd5635a1 RP |
1744 | } |
1745 | } | |
35fcebce | 1746 | } |
01be6913 PB |
1747 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) |
1748 | { | |
51b57ded FF |
1749 | value v; |
1750 | int base_offset; | |
1751 | ||
1752 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
1753 | base_offset = 0; | |
1754 | else | |
1755 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
01be6913 | 1756 | v = value_struct_elt_for_reference (domain, |
51b57ded | 1757 | offset + base_offset, |
01be6913 PB |
1758 | TYPE_BASECLASS (t, i), |
1759 | name, | |
1760 | intype); | |
1761 | if (v) | |
1762 | return v; | |
bd5635a1 RP |
1763 | } |
1764 | return 0; | |
1765 | } | |
1766 | ||
bd5635a1 RP |
1767 | /* C++: return the value of the class instance variable, if one exists. |
1768 | Flag COMPLAIN signals an error if the request is made in an | |
1769 | inappropriate context. */ | |
1770 | value | |
1771 | value_of_this (complain) | |
1772 | int complain; | |
1773 | { | |
1774 | extern FRAME selected_frame; | |
1775 | struct symbol *func, *sym; | |
1776 | struct block *b; | |
1777 | int i; | |
1778 | static const char funny_this[] = "this"; | |
1779 | value this; | |
bd5635a1 RP |
1780 | |
1781 | if (selected_frame == 0) | |
1782 | if (complain) | |
1783 | error ("no frame selected"); | |
1784 | else return 0; | |
1785 | ||
1786 | func = get_frame_function (selected_frame); | |
1787 | if (!func) | |
1788 | { | |
1789 | if (complain) | |
1790 | error ("no `this' in nameless context"); | |
1791 | else return 0; | |
1792 | } | |
1793 | ||
1794 | b = SYMBOL_BLOCK_VALUE (func); | |
1795 | i = BLOCK_NSYMS (b); | |
1796 | if (i <= 0) | |
1797 | if (complain) | |
1798 | error ("no args, no `this'"); | |
1799 | else return 0; | |
1800 | ||
1801 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
1802 | symbol instead of the LOC_ARG one (if both exist). */ | |
1803 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
1804 | if (sym == NULL) | |
1805 | { | |
1806 | if (complain) | |
1807 | error ("current stack frame not in method"); | |
1808 | else | |
1809 | return NULL; | |
1810 | } | |
1811 | ||
1812 | this = read_var_value (sym, selected_frame); | |
1813 | if (this == 0 && complain) | |
1814 | error ("`this' argument at unknown address"); | |
1815 | return this; | |
1816 | } |