]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
6aba47ca | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 |
1ecb4ee0 | 4 | Free Software Foundation, Inc. |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
18 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
19 | Boston, MA 02110-1301, USA. */ | |
8b93c638 JM |
20 | |
21 | #include "defs.h" | |
a6c442d8 | 22 | #include "exceptions.h" |
8b93c638 JM |
23 | #include "value.h" |
24 | #include "expression.h" | |
25 | #include "frame.h" | |
8b93c638 JM |
26 | #include "language.h" |
27 | #include "wrapper.h" | |
28 | #include "gdbcmd.h" | |
d2353924 | 29 | #include "block.h" |
a6c442d8 MK |
30 | |
31 | #include "gdb_assert.h" | |
b66d6d2e | 32 | #include "gdb_string.h" |
8b93c638 JM |
33 | |
34 | #include "varobj.h" | |
28335dcc | 35 | #include "vec.h" |
8b93c638 JM |
36 | |
37 | /* Non-zero if we want to see trace of varobj level stuff. */ | |
38 | ||
39 | int varobjdebug = 0; | |
920d2a44 AC |
40 | static void |
41 | show_varobjdebug (struct ui_file *file, int from_tty, | |
42 | struct cmd_list_element *c, const char *value) | |
43 | { | |
44 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
45 | } | |
8b93c638 JM |
46 | |
47 | /* String representations of gdb's format codes */ | |
48 | char *varobj_format_string[] = | |
72330bd6 | 49 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
50 | |
51 | /* String representations of gdb's known languages */ | |
72330bd6 | 52 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 JM |
53 | |
54 | /* Data structures */ | |
55 | ||
56 | /* Every root variable has one of these structures saved in its | |
57 | varobj. Members which must be free'd are noted. */ | |
58 | struct varobj_root | |
72330bd6 | 59 | { |
8b93c638 | 60 | |
72330bd6 AC |
61 | /* Alloc'd expression for this parent. */ |
62 | struct expression *exp; | |
8b93c638 | 63 | |
72330bd6 AC |
64 | /* Block for which this expression is valid */ |
65 | struct block *valid_block; | |
8b93c638 | 66 | |
72330bd6 | 67 | /* The frame for this expression */ |
e64d9b3d | 68 | struct frame_id frame; |
8b93c638 | 69 | |
72330bd6 AC |
70 | /* If 1, "update" always recomputes the frame & valid block |
71 | using the currently selected frame. */ | |
72 | int use_selected_frame; | |
73a93a32 | 73 | |
8756216b DP |
74 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
75 | to symbols that do not exist anymore. */ | |
76 | int is_valid; | |
77 | ||
72330bd6 AC |
78 | /* Language info for this variable and its children */ |
79 | struct language_specific *lang; | |
8b93c638 | 80 | |
72330bd6 AC |
81 | /* The varobj for this root node. */ |
82 | struct varobj *rootvar; | |
8b93c638 | 83 | |
72330bd6 AC |
84 | /* Next root variable */ |
85 | struct varobj_root *next; | |
86 | }; | |
8b93c638 | 87 | |
28335dcc VP |
88 | typedef struct varobj *varobj_p; |
89 | ||
90 | DEF_VEC_P (varobj_p); | |
91 | ||
8b93c638 JM |
92 | /* Every variable in the system has a structure of this type defined |
93 | for it. This structure holds all information necessary to manipulate | |
94 | a particular object variable. Members which must be freed are noted. */ | |
95 | struct varobj | |
72330bd6 | 96 | { |
8b93c638 | 97 | |
72330bd6 AC |
98 | /* Alloc'd name of the variable for this object.. If this variable is a |
99 | child, then this name will be the child's source name. | |
100 | (bar, not foo.bar) */ | |
101 | /* NOTE: This is the "expression" */ | |
102 | char *name; | |
8b93c638 | 103 | |
72330bd6 AC |
104 | /* The alloc'd name for this variable's object. This is here for |
105 | convenience when constructing this object's children. */ | |
106 | char *obj_name; | |
8b93c638 | 107 | |
72330bd6 AC |
108 | /* Index of this variable in its parent or -1 */ |
109 | int index; | |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* The type of this variable. This may NEVER be NULL. */ |
112 | struct type *type; | |
8b93c638 | 113 | |
b20d8971 VP |
114 | /* The value of this expression or subexpression. A NULL value |
115 | indicates there was an error getting this value. | |
b2c2bd75 VP |
116 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
117 | the value is either NULL, or not lazy. */ | |
30b28db1 | 118 | struct value *value; |
8b93c638 | 119 | |
72330bd6 AC |
120 | /* The number of (immediate) children this variable has */ |
121 | int num_children; | |
8b93c638 | 122 | |
72330bd6 AC |
123 | /* If this object is a child, this points to its immediate parent. */ |
124 | struct varobj *parent; | |
8b93c638 | 125 | |
28335dcc VP |
126 | /* Children of this object. */ |
127 | VEC (varobj_p) *children; | |
8b93c638 | 128 | |
72330bd6 AC |
129 | /* Description of the root variable. Points to root variable for children. */ |
130 | struct varobj_root *root; | |
8b93c638 | 131 | |
72330bd6 AC |
132 | /* The format of the output for this object */ |
133 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
134 | |
135 | /* Was this variable updated via a varobj_set_value operation */ | |
136 | int updated; | |
85265413 NR |
137 | |
138 | /* Last print value. */ | |
139 | char *print_value; | |
25d5ea92 VP |
140 | |
141 | /* Is this variable frozen. Frozen variables are never implicitly | |
142 | updated by -var-update * | |
143 | or -var-update <direct-or-indirect-parent>. */ | |
144 | int frozen; | |
145 | ||
146 | /* Is the value of this variable intentionally not fetched? It is | |
147 | not fetched if either the variable is frozen, or any parents is | |
148 | frozen. */ | |
149 | int not_fetched; | |
72330bd6 | 150 | }; |
8b93c638 | 151 | |
8b93c638 | 152 | struct cpstack |
72330bd6 AC |
153 | { |
154 | char *name; | |
155 | struct cpstack *next; | |
156 | }; | |
8b93c638 JM |
157 | |
158 | /* A list of varobjs */ | |
159 | ||
160 | struct vlist | |
72330bd6 AC |
161 | { |
162 | struct varobj *var; | |
163 | struct vlist *next; | |
164 | }; | |
8b93c638 JM |
165 | |
166 | /* Private function prototypes */ | |
167 | ||
168 | /* Helper functions for the above subcommands. */ | |
169 | ||
a14ed312 | 170 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 171 | |
a14ed312 KB |
172 | static void delete_variable_1 (struct cpstack **, int *, |
173 | struct varobj *, int, int); | |
8b93c638 | 174 | |
a14ed312 | 175 | static int install_variable (struct varobj *); |
8b93c638 | 176 | |
a14ed312 | 177 | static void uninstall_variable (struct varobj *); |
8b93c638 | 178 | |
a14ed312 | 179 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 180 | |
8b93c638 JM |
181 | /* Utility routines */ |
182 | ||
a14ed312 | 183 | static struct varobj *new_variable (void); |
8b93c638 | 184 | |
a14ed312 | 185 | static struct varobj *new_root_variable (void); |
8b93c638 | 186 | |
a14ed312 | 187 | static void free_variable (struct varobj *var); |
8b93c638 | 188 | |
74b7792f AC |
189 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
190 | ||
a14ed312 | 191 | static struct type *get_type (struct varobj *var); |
8b93c638 | 192 | |
6e2a9270 VP |
193 | static struct type *get_value_type (struct varobj *var); |
194 | ||
a14ed312 | 195 | static struct type *get_target_type (struct type *); |
8b93c638 | 196 | |
a14ed312 | 197 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 198 | |
a14ed312 | 199 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 200 | |
a14ed312 | 201 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 202 | |
acd65feb VP |
203 | static int install_new_value (struct varobj *var, struct value *value, |
204 | int initial); | |
205 | ||
8b93c638 JM |
206 | /* Language-specific routines. */ |
207 | ||
a14ed312 | 208 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 209 | |
a14ed312 | 210 | static int number_of_children (struct varobj *); |
8b93c638 | 211 | |
a14ed312 | 212 | static char *name_of_variable (struct varobj *); |
8b93c638 | 213 | |
a14ed312 | 214 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 215 | |
30b28db1 | 216 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 217 | |
30b28db1 | 218 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 219 | |
a14ed312 | 220 | static int variable_editable (struct varobj *var); |
8b93c638 | 221 | |
a14ed312 | 222 | static char *my_value_of_variable (struct varobj *var); |
8b93c638 | 223 | |
85265413 NR |
224 | static char *value_get_print_value (struct value *value, |
225 | enum varobj_display_formats format); | |
226 | ||
b2c2bd75 VP |
227 | static int varobj_value_is_changeable_p (struct varobj *var); |
228 | ||
229 | static int is_root_p (struct varobj *var); | |
8b93c638 JM |
230 | |
231 | /* C implementation */ | |
232 | ||
a14ed312 | 233 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 234 | |
a14ed312 | 235 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 236 | |
a14ed312 | 237 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 238 | |
30b28db1 | 239 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 240 | |
30b28db1 | 241 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 242 | |
a14ed312 | 243 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 244 | |
a14ed312 | 245 | static int c_variable_editable (struct varobj *var); |
8b93c638 | 246 | |
a14ed312 | 247 | static char *c_value_of_variable (struct varobj *var); |
8b93c638 JM |
248 | |
249 | /* C++ implementation */ | |
250 | ||
a14ed312 | 251 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 252 | |
a14ed312 | 253 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 254 | |
a14ed312 | 255 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 256 | |
a14ed312 | 257 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 258 | |
30b28db1 | 259 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 260 | |
30b28db1 | 261 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 262 | |
a14ed312 | 263 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 264 | |
a14ed312 | 265 | static int cplus_variable_editable (struct varobj *var); |
8b93c638 | 266 | |
a14ed312 | 267 | static char *cplus_value_of_variable (struct varobj *var); |
8b93c638 JM |
268 | |
269 | /* Java implementation */ | |
270 | ||
a14ed312 | 271 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 272 | |
a14ed312 | 273 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 274 | |
a14ed312 | 275 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 276 | |
30b28db1 | 277 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 278 | |
30b28db1 | 279 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 280 | |
a14ed312 | 281 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 282 | |
a14ed312 | 283 | static int java_variable_editable (struct varobj *var); |
8b93c638 | 284 | |
a14ed312 | 285 | static char *java_value_of_variable (struct varobj *var); |
8b93c638 JM |
286 | |
287 | /* The language specific vector */ | |
288 | ||
289 | struct language_specific | |
72330bd6 | 290 | { |
8b93c638 | 291 | |
72330bd6 AC |
292 | /* The language of this variable */ |
293 | enum varobj_languages language; | |
8b93c638 | 294 | |
72330bd6 AC |
295 | /* The number of children of PARENT. */ |
296 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 297 | |
72330bd6 AC |
298 | /* The name (expression) of a root varobj. */ |
299 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 300 | |
72330bd6 AC |
301 | /* The name of the INDEX'th child of PARENT. */ |
302 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 303 | |
30b28db1 AC |
304 | /* The ``struct value *'' of the root variable ROOT. */ |
305 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 306 | |
30b28db1 AC |
307 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
308 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 309 | |
72330bd6 AC |
310 | /* The type of the INDEX'th child of PARENT. */ |
311 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 312 | |
72330bd6 AC |
313 | /* Is VAR editable? */ |
314 | int (*variable_editable) (struct varobj * var); | |
8b93c638 | 315 | |
72330bd6 AC |
316 | /* The current value of VAR. */ |
317 | char *(*value_of_variable) (struct varobj * var); | |
318 | }; | |
8b93c638 JM |
319 | |
320 | /* Array of known source language routines. */ | |
d5d6fca5 | 321 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
322 | /* Unknown (try treating as C */ |
323 | { | |
72330bd6 AC |
324 | vlang_unknown, |
325 | c_number_of_children, | |
326 | c_name_of_variable, | |
327 | c_name_of_child, | |
328 | c_value_of_root, | |
329 | c_value_of_child, | |
330 | c_type_of_child, | |
331 | c_variable_editable, | |
332 | c_value_of_variable} | |
8b93c638 JM |
333 | , |
334 | /* C */ | |
335 | { | |
72330bd6 AC |
336 | vlang_c, |
337 | c_number_of_children, | |
338 | c_name_of_variable, | |
339 | c_name_of_child, | |
340 | c_value_of_root, | |
341 | c_value_of_child, | |
342 | c_type_of_child, | |
343 | c_variable_editable, | |
344 | c_value_of_variable} | |
8b93c638 JM |
345 | , |
346 | /* C++ */ | |
347 | { | |
72330bd6 AC |
348 | vlang_cplus, |
349 | cplus_number_of_children, | |
350 | cplus_name_of_variable, | |
351 | cplus_name_of_child, | |
352 | cplus_value_of_root, | |
353 | cplus_value_of_child, | |
354 | cplus_type_of_child, | |
355 | cplus_variable_editable, | |
356 | cplus_value_of_variable} | |
8b93c638 JM |
357 | , |
358 | /* Java */ | |
359 | { | |
72330bd6 AC |
360 | vlang_java, |
361 | java_number_of_children, | |
362 | java_name_of_variable, | |
363 | java_name_of_child, | |
364 | java_value_of_root, | |
365 | java_value_of_child, | |
366 | java_type_of_child, | |
367 | java_variable_editable, | |
368 | java_value_of_variable} | |
8b93c638 JM |
369 | }; |
370 | ||
371 | /* A little convenience enum for dealing with C++/Java */ | |
372 | enum vsections | |
72330bd6 AC |
373 | { |
374 | v_public = 0, v_private, v_protected | |
375 | }; | |
8b93c638 JM |
376 | |
377 | /* Private data */ | |
378 | ||
379 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 380 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
381 | |
382 | /* Header of the list of root variable objects */ | |
383 | static struct varobj_root *rootlist; | |
384 | static int rootcount = 0; /* number of root varobjs in the list */ | |
385 | ||
386 | /* Prime number indicating the number of buckets in the hash table */ | |
387 | /* A prime large enough to avoid too many colisions */ | |
388 | #define VAROBJ_TABLE_SIZE 227 | |
389 | ||
390 | /* Pointer to the varobj hash table (built at run time) */ | |
391 | static struct vlist **varobj_table; | |
392 | ||
8b93c638 JM |
393 | /* Is the variable X one of our "fake" children? */ |
394 | #define CPLUS_FAKE_CHILD(x) \ | |
395 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
396 | \f | |
397 | ||
398 | /* API Implementation */ | |
b2c2bd75 VP |
399 | static int |
400 | is_root_p (struct varobj *var) | |
401 | { | |
402 | return (var->root->rootvar == var); | |
403 | } | |
8b93c638 JM |
404 | |
405 | /* Creates a varobj (not its children) */ | |
406 | ||
7d8547c9 AC |
407 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
408 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
409 | ||
410 | static struct frame_info * | |
411 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
412 | { | |
413 | struct frame_info *frame = NULL; | |
414 | ||
415 | if (frame_addr == (CORE_ADDR) 0) | |
416 | return NULL; | |
417 | ||
418 | while (1) | |
419 | { | |
420 | frame = get_prev_frame (frame); | |
421 | if (frame == NULL) | |
422 | return NULL; | |
eb5492fa | 423 | if (get_frame_base_address (frame) == frame_addr) |
7d8547c9 AC |
424 | return frame; |
425 | } | |
426 | } | |
427 | ||
8b93c638 JM |
428 | struct varobj * |
429 | varobj_create (char *objname, | |
72330bd6 | 430 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
431 | { |
432 | struct varobj *var; | |
2c67cb8b AC |
433 | struct frame_info *fi; |
434 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
435 | struct block *block; |
436 | struct cleanup *old_chain; | |
437 | ||
438 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
439 | var = new_root_variable (); | |
74b7792f | 440 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
441 | |
442 | if (expression != NULL) | |
443 | { | |
444 | char *p; | |
445 | enum varobj_languages lang; | |
e55dccf0 | 446 | struct value *value = NULL; |
8b93c638 JM |
447 | |
448 | /* Parse and evaluate the expression, filling in as much | |
449 | of the variable's data as possible */ | |
450 | ||
451 | /* Allow creator to specify context of variable */ | |
72330bd6 | 452 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) |
206415a3 | 453 | fi = deprecated_safe_get_selected_frame (); |
8b93c638 | 454 | else |
7d8547c9 AC |
455 | /* FIXME: cagney/2002-11-23: This code should be doing a |
456 | lookup using the frame ID and not just the frame's | |
457 | ``address''. This, of course, means an interface change. | |
458 | However, with out that interface change ISAs, such as the | |
459 | ia64 with its two stacks, won't work. Similar goes for the | |
460 | case where there is a frameless function. */ | |
8b93c638 JM |
461 | fi = find_frame_addr_in_frame_chain (frame); |
462 | ||
73a93a32 JI |
463 | /* frame = -2 means always use selected frame */ |
464 | if (type == USE_SELECTED_FRAME) | |
465 | var->root->use_selected_frame = 1; | |
466 | ||
8b93c638 JM |
467 | block = NULL; |
468 | if (fi != NULL) | |
ae767bfb | 469 | block = get_frame_block (fi, 0); |
8b93c638 JM |
470 | |
471 | p = expression; | |
472 | innermost_block = NULL; | |
73a93a32 JI |
473 | /* Wrap the call to parse expression, so we can |
474 | return a sensible error. */ | |
475 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
476 | { | |
477 | return NULL; | |
478 | } | |
8b93c638 JM |
479 | |
480 | /* Don't allow variables to be created for types. */ | |
481 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
482 | { | |
483 | do_cleanups (old_chain); | |
bc8332bb AC |
484 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
485 | " as an expression.\n"); | |
8b93c638 JM |
486 | return NULL; |
487 | } | |
488 | ||
489 | var->format = variable_default_display (var); | |
490 | var->root->valid_block = innermost_block; | |
491 | var->name = savestring (expression, strlen (expression)); | |
492 | ||
493 | /* When the frame is different from the current frame, | |
494 | we must select the appropriate frame before parsing | |
495 | the expression, otherwise the value will not be current. | |
496 | Since select_frame is so benign, just call it for all cases. */ | |
497 | if (fi != NULL) | |
498 | { | |
7a424e99 | 499 | var->root->frame = get_frame_id (fi); |
206415a3 | 500 | old_fi = get_selected_frame (NULL); |
0f7d239c | 501 | select_frame (fi); |
8b93c638 JM |
502 | } |
503 | ||
504 | /* We definitively need to catch errors here. | |
505 | If evaluate_expression succeeds we got the value we wanted. | |
506 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 507 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
508 | { |
509 | /* Error getting the value. Try to at least get the | |
510 | right type. */ | |
511 | struct value *type_only_value = evaluate_type (var->root->exp); | |
512 | var->type = value_type (type_only_value); | |
513 | } | |
514 | else | |
515 | var->type = value_type (value); | |
acd65feb | 516 | |
acd65feb | 517 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
518 | |
519 | /* Set language info */ | |
520 | lang = variable_language (var); | |
d5d6fca5 | 521 | var->root->lang = &languages[lang]; |
8b93c638 JM |
522 | |
523 | /* Set ourselves as our root */ | |
524 | var->root->rootvar = var; | |
525 | ||
526 | /* Reset the selected frame */ | |
527 | if (fi != NULL) | |
0f7d239c | 528 | select_frame (old_fi); |
8b93c638 JM |
529 | } |
530 | ||
73a93a32 JI |
531 | /* If the variable object name is null, that means this |
532 | is a temporary variable, so don't install it. */ | |
533 | ||
534 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 JM |
535 | { |
536 | var->obj_name = savestring (objname, strlen (objname)); | |
537 | ||
538 | /* If a varobj name is duplicated, the install will fail so | |
539 | we must clenup */ | |
540 | if (!install_variable (var)) | |
541 | { | |
542 | do_cleanups (old_chain); | |
543 | return NULL; | |
544 | } | |
545 | } | |
546 | ||
547 | discard_cleanups (old_chain); | |
548 | return var; | |
549 | } | |
550 | ||
551 | /* Generates an unique name that can be used for a varobj */ | |
552 | ||
553 | char * | |
554 | varobj_gen_name (void) | |
555 | { | |
556 | static int id = 0; | |
e64d9b3d | 557 | char *obj_name; |
8b93c638 JM |
558 | |
559 | /* generate a name for this object */ | |
560 | id++; | |
b435e160 | 561 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 562 | |
e64d9b3d | 563 | return obj_name; |
8b93c638 JM |
564 | } |
565 | ||
566 | /* Given an "objname", returns the pointer to the corresponding varobj | |
567 | or NULL if not found */ | |
568 | ||
569 | struct varobj * | |
570 | varobj_get_handle (char *objname) | |
571 | { | |
572 | struct vlist *cv; | |
573 | const char *chp; | |
574 | unsigned int index = 0; | |
575 | unsigned int i = 1; | |
576 | ||
577 | for (chp = objname; *chp; chp++) | |
578 | { | |
579 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
580 | } | |
581 | ||
582 | cv = *(varobj_table + index); | |
583 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
584 | cv = cv->next; | |
585 | ||
586 | if (cv == NULL) | |
8a3fe4f8 | 587 | error (_("Variable object not found")); |
8b93c638 JM |
588 | |
589 | return cv->var; | |
590 | } | |
591 | ||
592 | /* Given the handle, return the name of the object */ | |
593 | ||
594 | char * | |
595 | varobj_get_objname (struct varobj *var) | |
596 | { | |
597 | return var->obj_name; | |
598 | } | |
599 | ||
600 | /* Given the handle, return the expression represented by the object */ | |
601 | ||
602 | char * | |
603 | varobj_get_expression (struct varobj *var) | |
604 | { | |
605 | return name_of_variable (var); | |
606 | } | |
607 | ||
608 | /* Deletes a varobj and all its children if only_children == 0, | |
609 | otherwise deletes only the children; returns a malloc'ed list of all the | |
610 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
611 | ||
612 | int | |
613 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
614 | { | |
615 | int delcount; | |
616 | int mycount; | |
617 | struct cpstack *result = NULL; | |
618 | char **cp; | |
619 | ||
620 | /* Initialize a stack for temporary results */ | |
621 | cppush (&result, NULL); | |
622 | ||
623 | if (only_children) | |
624 | /* Delete only the variable children */ | |
625 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
626 | else | |
627 | /* Delete the variable and all its children */ | |
628 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
629 | ||
630 | /* We may have been asked to return a list of what has been deleted */ | |
631 | if (dellist != NULL) | |
632 | { | |
633 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
634 | ||
635 | cp = *dellist; | |
636 | mycount = delcount; | |
637 | *cp = cppop (&result); | |
638 | while ((*cp != NULL) && (mycount > 0)) | |
639 | { | |
640 | mycount--; | |
641 | cp++; | |
642 | *cp = cppop (&result); | |
643 | } | |
644 | ||
645 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 646 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 647 | mycount); |
8b93c638 JM |
648 | } |
649 | ||
650 | return delcount; | |
651 | } | |
652 | ||
653 | /* Set/Get variable object display format */ | |
654 | ||
655 | enum varobj_display_formats | |
656 | varobj_set_display_format (struct varobj *var, | |
657 | enum varobj_display_formats format) | |
658 | { | |
659 | switch (format) | |
660 | { | |
661 | case FORMAT_NATURAL: | |
662 | case FORMAT_BINARY: | |
663 | case FORMAT_DECIMAL: | |
664 | case FORMAT_HEXADECIMAL: | |
665 | case FORMAT_OCTAL: | |
666 | var->format = format; | |
667 | break; | |
668 | ||
669 | default: | |
670 | var->format = variable_default_display (var); | |
671 | } | |
672 | ||
673 | return var->format; | |
674 | } | |
675 | ||
676 | enum varobj_display_formats | |
677 | varobj_get_display_format (struct varobj *var) | |
678 | { | |
679 | return var->format; | |
680 | } | |
681 | ||
25d5ea92 VP |
682 | void |
683 | varobj_set_frozen (struct varobj *var, int frozen) | |
684 | { | |
685 | /* When a variable is unfrozen, we don't fetch its value. | |
686 | The 'not_fetched' flag remains set, so next -var-update | |
687 | won't complain. | |
688 | ||
689 | We don't fetch the value, because for structures the client | |
690 | should do -var-update anyway. It would be bad to have different | |
691 | client-size logic for structure and other types. */ | |
692 | var->frozen = frozen; | |
693 | } | |
694 | ||
695 | int | |
696 | varobj_get_frozen (struct varobj *var) | |
697 | { | |
698 | return var->frozen; | |
699 | } | |
700 | ||
701 | ||
8b93c638 JM |
702 | int |
703 | varobj_get_num_children (struct varobj *var) | |
704 | { | |
705 | if (var->num_children == -1) | |
706 | var->num_children = number_of_children (var); | |
707 | ||
708 | return var->num_children; | |
709 | } | |
710 | ||
711 | /* Creates a list of the immediate children of a variable object; | |
712 | the return code is the number of such children or -1 on error */ | |
713 | ||
714 | int | |
715 | varobj_list_children (struct varobj *var, struct varobj ***childlist) | |
716 | { | |
717 | struct varobj *child; | |
718 | char *name; | |
719 | int i; | |
720 | ||
721 | /* sanity check: have we been passed a pointer? */ | |
722 | if (childlist == NULL) | |
723 | return -1; | |
724 | ||
725 | *childlist = NULL; | |
726 | ||
727 | if (var->num_children == -1) | |
728 | var->num_children = number_of_children (var); | |
729 | ||
74a44383 DJ |
730 | /* If that failed, give up. */ |
731 | if (var->num_children == -1) | |
732 | return -1; | |
733 | ||
28335dcc VP |
734 | /* If we're called when the list of children is not yet initialized, |
735 | allocate enough elements in it. */ | |
736 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
737 | VEC_safe_push (varobj_p, var->children, NULL); | |
738 | ||
8b93c638 JM |
739 | /* List of children */ |
740 | *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *)); | |
741 | ||
742 | for (i = 0; i < var->num_children; i++) | |
743 | { | |
28335dcc VP |
744 | varobj_p existing; |
745 | ||
8b93c638 JM |
746 | /* Mark as the end in case we bail out */ |
747 | *((*childlist) + i) = NULL; | |
748 | ||
28335dcc VP |
749 | existing = VEC_index (varobj_p, var->children, i); |
750 | ||
751 | if (existing == NULL) | |
752 | { | |
753 | /* Either it's the first call to varobj_list_children for | |
754 | this variable object, and the child was never created, | |
755 | or it was explicitly deleted by the client. */ | |
756 | name = name_of_child (var, i); | |
757 | existing = create_child (var, i, name); | |
758 | VEC_replace (varobj_p, var->children, i, existing); | |
759 | } | |
8b93c638 | 760 | |
28335dcc | 761 | *((*childlist) + i) = existing; |
8b93c638 JM |
762 | } |
763 | ||
764 | /* End of list is marked by a NULL pointer */ | |
765 | *((*childlist) + i) = NULL; | |
766 | ||
767 | return var->num_children; | |
768 | } | |
769 | ||
770 | /* Obtain the type of an object Variable as a string similar to the one gdb | |
771 | prints on the console */ | |
772 | ||
773 | char * | |
774 | varobj_get_type (struct varobj *var) | |
775 | { | |
30b28db1 | 776 | struct value *val; |
8b93c638 JM |
777 | struct cleanup *old_chain; |
778 | struct ui_file *stb; | |
779 | char *thetype; | |
780 | long length; | |
781 | ||
782 | /* For the "fake" variables, do not return a type. (It's type is | |
8756216b DP |
783 | NULL, too.) |
784 | Do not return a type for invalid variables as well. */ | |
785 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
786 | return NULL; |
787 | ||
788 | stb = mem_fileopen (); | |
789 | old_chain = make_cleanup_ui_file_delete (stb); | |
790 | ||
30b28db1 | 791 | /* To print the type, we simply create a zero ``struct value *'' and |
8b93c638 JM |
792 | cast it to our type. We then typeprint this variable. */ |
793 | val = value_zero (var->type, not_lval); | |
df407dfe | 794 | type_print (value_type (val), "", stb, -1); |
8b93c638 JM |
795 | |
796 | thetype = ui_file_xstrdup (stb, &length); | |
797 | do_cleanups (old_chain); | |
798 | return thetype; | |
799 | } | |
800 | ||
1ecb4ee0 DJ |
801 | /* Obtain the type of an object variable. */ |
802 | ||
803 | struct type * | |
804 | varobj_get_gdb_type (struct varobj *var) | |
805 | { | |
806 | return var->type; | |
807 | } | |
808 | ||
8b93c638 JM |
809 | enum varobj_languages |
810 | varobj_get_language (struct varobj *var) | |
811 | { | |
812 | return variable_language (var); | |
813 | } | |
814 | ||
815 | int | |
816 | varobj_get_attributes (struct varobj *var) | |
817 | { | |
818 | int attributes = 0; | |
819 | ||
8756216b | 820 | if (var->root->is_valid && variable_editable (var)) |
8b93c638 JM |
821 | /* FIXME: define masks for attributes */ |
822 | attributes |= 0x00000001; /* Editable */ | |
823 | ||
824 | return attributes; | |
825 | } | |
826 | ||
827 | char * | |
828 | varobj_get_value (struct varobj *var) | |
829 | { | |
830 | return my_value_of_variable (var); | |
831 | } | |
832 | ||
833 | /* Set the value of an object variable (if it is editable) to the | |
834 | value of the given expression */ | |
835 | /* Note: Invokes functions that can call error() */ | |
836 | ||
837 | int | |
838 | varobj_set_value (struct varobj *var, char *expression) | |
839 | { | |
30b28db1 | 840 | struct value *val; |
8b93c638 | 841 | int offset = 0; |
a6c442d8 | 842 | int error = 0; |
8b93c638 JM |
843 | |
844 | /* The argument "expression" contains the variable's new value. | |
845 | We need to first construct a legal expression for this -- ugh! */ | |
846 | /* Does this cover all the bases? */ | |
847 | struct expression *exp; | |
30b28db1 | 848 | struct value *value; |
8b93c638 JM |
849 | int saved_input_radix = input_radix; |
850 | ||
b20d8971 | 851 | if (var->value != NULL && variable_editable (var)) |
8b93c638 JM |
852 | { |
853 | char *s = expression; | |
854 | int i; | |
8b93c638 JM |
855 | |
856 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ | |
7a24eb7c | 857 | exp = parse_exp_1 (&s, 0, 0); |
8b93c638 JM |
858 | if (!gdb_evaluate_expression (exp, &value)) |
859 | { | |
860 | /* We cannot proceed without a valid expression. */ | |
8038e1e2 | 861 | xfree (exp); |
8b93c638 JM |
862 | return 0; |
863 | } | |
864 | ||
acd65feb | 865 | /* All types that are editable must also be changeable. */ |
b2c2bd75 | 866 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb VP |
867 | |
868 | /* The value of a changeable variable object must not be lazy. */ | |
869 | gdb_assert (!value_lazy (var->value)); | |
870 | ||
871 | /* Need to coerce the input. We want to check if the | |
872 | value of the variable object will be different | |
873 | after assignment, and the first thing value_assign | |
874 | does is coerce the input. | |
875 | For example, if we are assigning an array to a pointer variable we | |
876 | should compare the pointer with the the array's address, not with the | |
877 | array's content. */ | |
878 | value = coerce_array (value); | |
879 | ||
acd65feb VP |
880 | /* The new value may be lazy. gdb_value_assign, or |
881 | rather value_contents, will take care of this. | |
882 | If fetching of the new value will fail, gdb_value_assign | |
883 | with catch the exception. */ | |
575bbeb6 | 884 | if (!gdb_value_assign (var->value, value, &val)) |
8a1a0112 | 885 | return 0; |
b26ed50d | 886 | |
ae097835 VP |
887 | /* If the value has changed, record it, so that next -var-update can |
888 | report this change. If a variable had a value of '1', we've set it | |
889 | to '333' and then set again to '1', when -var-update will report this | |
890 | variable as changed -- because the first assignment has set the | |
891 | 'updated' flag. There's no need to optimize that, because return value | |
892 | of -var-update should be considered an approximation. */ | |
893 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
8b93c638 JM |
894 | input_radix = saved_input_radix; |
895 | return 1; | |
896 | } | |
897 | ||
898 | return 0; | |
899 | } | |
900 | ||
901 | /* Returns a malloc'ed list with all root variable objects */ | |
902 | int | |
903 | varobj_list (struct varobj ***varlist) | |
904 | { | |
905 | struct varobj **cv; | |
906 | struct varobj_root *croot; | |
907 | int mycount = rootcount; | |
908 | ||
909 | /* Alloc (rootcount + 1) entries for the result */ | |
910 | *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *)); | |
911 | ||
912 | cv = *varlist; | |
913 | croot = rootlist; | |
914 | while ((croot != NULL) && (mycount > 0)) | |
915 | { | |
916 | *cv = croot->rootvar; | |
917 | mycount--; | |
918 | cv++; | |
919 | croot = croot->next; | |
920 | } | |
921 | /* Mark the end of the list */ | |
922 | *cv = NULL; | |
923 | ||
924 | if (mycount || (croot != NULL)) | |
72330bd6 AC |
925 | warning |
926 | ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)", | |
927 | rootcount, mycount); | |
8b93c638 JM |
928 | |
929 | return rootcount; | |
930 | } | |
931 | ||
acd65feb VP |
932 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
933 | this is the first assignement after the variable object was just | |
934 | created, or changed type. In that case, just assign the value | |
935 | and return 0. | |
936 | Otherwise, assign the value and if type_changeable returns non-zero, | |
937 | find if the new value is different from the current value. | |
b26ed50d VP |
938 | Return 1 if so, and 0 if the values are equal. |
939 | ||
940 | The VALUE parameter should not be released -- the function will | |
941 | take care of releasing it when needed. */ | |
acd65feb VP |
942 | static int |
943 | install_new_value (struct varobj *var, struct value *value, int initial) | |
944 | { | |
945 | int changeable; | |
946 | int need_to_fetch; | |
947 | int changed = 0; | |
25d5ea92 | 948 | int intentionally_not_fetched = 0; |
acd65feb | 949 | |
acd65feb VP |
950 | /* We need to know the varobj's type to decide if the value should |
951 | be fetched or not. C++ fake children (public/protected/private) don't have | |
952 | a type. */ | |
953 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 954 | changeable = varobj_value_is_changeable_p (var); |
acd65feb VP |
955 | need_to_fetch = changeable; |
956 | ||
b26ed50d VP |
957 | /* We are not interested in the address of references, and given |
958 | that in C++ a reference is not rebindable, it cannot | |
959 | meaningfully change. So, get hold of the real value. */ | |
960 | if (value) | |
961 | { | |
962 | value = coerce_ref (value); | |
963 | release_value (value); | |
964 | } | |
965 | ||
acd65feb VP |
966 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
967 | /* For unions, we need to fetch the value implicitly because | |
968 | of implementation of union member fetch. When gdb | |
969 | creates a value for a field and the value of the enclosing | |
970 | structure is not lazy, it immediately copies the necessary | |
971 | bytes from the enclosing values. If the enclosing value is | |
972 | lazy, the call to value_fetch_lazy on the field will read | |
973 | the data from memory. For unions, that means we'll read the | |
974 | same memory more than once, which is not desirable. So | |
975 | fetch now. */ | |
976 | need_to_fetch = 1; | |
977 | ||
978 | /* The new value might be lazy. If the type is changeable, | |
979 | that is we'll be comparing values of this type, fetch the | |
980 | value now. Otherwise, on the next update the old value | |
981 | will be lazy, which means we've lost that old value. */ | |
982 | if (need_to_fetch && value && value_lazy (value)) | |
983 | { | |
25d5ea92 VP |
984 | struct varobj *parent = var->parent; |
985 | int frozen = var->frozen; | |
986 | for (; !frozen && parent; parent = parent->parent) | |
987 | frozen |= parent->frozen; | |
988 | ||
989 | if (frozen && initial) | |
990 | { | |
991 | /* For variables that are frozen, or are children of frozen | |
992 | variables, we don't do fetch on initial assignment. | |
993 | For non-initial assignemnt we do the fetch, since it means we're | |
994 | explicitly asked to compare the new value with the old one. */ | |
995 | intentionally_not_fetched = 1; | |
996 | } | |
997 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 998 | { |
acd65feb VP |
999 | /* Set the value to NULL, so that for the next -var-update, |
1000 | we don't try to compare the new value with this value, | |
1001 | that we couldn't even read. */ | |
1002 | value = NULL; | |
1003 | } | |
acd65feb VP |
1004 | } |
1005 | ||
1006 | /* If the type is changeable, compare the old and the new values. | |
1007 | If this is the initial assignment, we don't have any old value | |
1008 | to compare with. */ | |
7af9851d | 1009 | if (initial && changeable) |
85265413 NR |
1010 | var->print_value = value_get_print_value (value, var->format); |
1011 | else if (changeable) | |
acd65feb VP |
1012 | { |
1013 | /* If the value of the varobj was changed by -var-set-value, then the | |
1014 | value in the varobj and in the target is the same. However, that value | |
1015 | is different from the value that the varobj had after the previous | |
57e66780 | 1016 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1017 | if (var->updated) |
57e66780 DJ |
1018 | { |
1019 | xfree (var->print_value); | |
1020 | var->print_value = value_get_print_value (value, var->format); | |
1021 | changed = 1; | |
1022 | } | |
acd65feb VP |
1023 | else |
1024 | { | |
1025 | /* Try to compare the values. That requires that both | |
1026 | values are non-lazy. */ | |
25d5ea92 VP |
1027 | if (var->not_fetched && value_lazy (var->value)) |
1028 | { | |
1029 | /* This is a frozen varobj and the value was never read. | |
1030 | Presumably, UI shows some "never read" indicator. | |
1031 | Now that we've fetched the real value, we need to report | |
1032 | this varobj as changed so that UI can show the real | |
1033 | value. */ | |
1034 | changed = 1; | |
1035 | } | |
1036 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1037 | /* Equal. */ |
1038 | ; | |
1039 | else if (var->value == NULL || value == NULL) | |
57e66780 DJ |
1040 | { |
1041 | xfree (var->print_value); | |
1042 | var->print_value = value_get_print_value (value, var->format); | |
1043 | changed = 1; | |
1044 | } | |
acd65feb VP |
1045 | else |
1046 | { | |
85265413 | 1047 | char *print_value; |
acd65feb VP |
1048 | gdb_assert (!value_lazy (var->value)); |
1049 | gdb_assert (!value_lazy (value)); | |
85265413 NR |
1050 | print_value = value_get_print_value (value, var->format); |
1051 | ||
57e66780 | 1052 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 NR |
1053 | if (strcmp (var->print_value, print_value) != 0) |
1054 | { | |
1055 | xfree (var->print_value); | |
1056 | var->print_value = print_value; | |
1057 | changed = 1; | |
1058 | } | |
1059 | else | |
1060 | xfree (print_value); | |
acd65feb VP |
1061 | } |
1062 | } | |
1063 | } | |
85265413 | 1064 | |
acd65feb | 1065 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1066 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1067 | value_free (var->value); |
1068 | var->value = value; | |
25d5ea92 VP |
1069 | if (value && value_lazy (value) && intentionally_not_fetched) |
1070 | var->not_fetched = 1; | |
1071 | else | |
1072 | var->not_fetched = 0; | |
acd65feb | 1073 | var->updated = 0; |
85265413 | 1074 | |
b26ed50d | 1075 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1076 | |
1077 | return changed; | |
1078 | } | |
acd65feb | 1079 | |
8b93c638 JM |
1080 | /* Update the values for a variable and its children. This is a |
1081 | two-pronged attack. First, re-parse the value for the root's | |
1082 | expression to see if it's changed. Then go all the way | |
1083 | through its children, reconstructing them and noting if they've | |
1084 | changed. | |
8756216b DP |
1085 | Return value: |
1086 | < 0 for error values, see varobj.h. | |
1087 | Otherwise it is the number of children + parent changed. | |
8b93c638 | 1088 | |
25d5ea92 VP |
1089 | The EXPLICIT parameter specifies if this call is result |
1090 | of MI request to update this specific variable, or | |
1091 | result of implicit -var-update *. For implicit request, we don't | |
1092 | update frozen variables. | |
705da579 KS |
1093 | |
1094 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1095 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1096 | to point to the new varobj. */ | |
8b93c638 JM |
1097 | |
1098 | int | |
25d5ea92 VP |
1099 | varobj_update (struct varobj **varp, struct varobj ***changelist, |
1100 | int explicit) | |
8b93c638 JM |
1101 | { |
1102 | int changed = 0; | |
25d5ea92 | 1103 | int type_changed = 0; |
8b93c638 JM |
1104 | int i; |
1105 | int vleft; | |
8b93c638 JM |
1106 | struct varobj *v; |
1107 | struct varobj **cv; | |
2c67cb8b | 1108 | struct varobj **templist = NULL; |
30b28db1 | 1109 | struct value *new; |
28335dcc VP |
1110 | VEC (varobj_p) *stack = NULL; |
1111 | VEC (varobj_p) *result = NULL; | |
e64d9b3d MH |
1112 | struct frame_id old_fid; |
1113 | struct frame_info *fi; | |
8b93c638 | 1114 | |
8756216b | 1115 | /* sanity check: have we been passed a pointer? */ |
a1f42e84 | 1116 | gdb_assert (changelist); |
8b93c638 | 1117 | |
25d5ea92 VP |
1118 | /* Frozen means frozen -- we don't check for any change in |
1119 | this varobj, including its going out of scope, or | |
1120 | changing type. One use case for frozen varobjs is | |
1121 | retaining previously evaluated expressions, and we don't | |
1122 | want them to be reevaluated at all. */ | |
1123 | if (!explicit && (*varp)->frozen) | |
1124 | return 0; | |
8756216b DP |
1125 | |
1126 | if (!(*varp)->root->is_valid) | |
1127 | return INVALID; | |
8b93c638 | 1128 | |
25d5ea92 | 1129 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1130 | { |
25d5ea92 VP |
1131 | /* Save the selected stack frame, since we will need to change it |
1132 | in order to evaluate expressions. */ | |
1133 | old_fid = get_frame_id (deprecated_safe_get_selected_frame ()); | |
1134 | ||
1135 | /* Update the root variable. value_of_root can return NULL | |
1136 | if the variable is no longer around, i.e. we stepped out of | |
1137 | the frame in which a local existed. We are letting the | |
1138 | value_of_root variable dispose of the varobj if the type | |
1139 | has changed. */ | |
1140 | type_changed = 1; | |
1141 | new = value_of_root (varp, &type_changed); | |
1142 | ||
1143 | /* Restore selected frame. */ | |
1144 | fi = frame_find_by_id (old_fid); | |
1145 | if (fi) | |
1146 | select_frame (fi); | |
1147 | ||
1148 | /* If this is a "use_selected_frame" varobj, and its type has changed, | |
1149 | them note that it's changed. */ | |
1150 | if (type_changed) | |
1151 | VEC_safe_push (varobj_p, result, *varp); | |
1152 | ||
1153 | if (install_new_value ((*varp), new, type_changed)) | |
1154 | { | |
1155 | /* If type_changed is 1, install_new_value will never return | |
1156 | non-zero, so we'll never report the same variable twice. */ | |
1157 | gdb_assert (!type_changed); | |
1158 | VEC_safe_push (varobj_p, result, *varp); | |
1159 | } | |
8b93c638 | 1160 | |
25d5ea92 VP |
1161 | if (new == NULL) |
1162 | { | |
1163 | /* This means the varobj itself is out of scope. | |
1164 | Report it. */ | |
1165 | VEC_free (varobj_p, result); | |
1166 | return NOT_IN_SCOPE; | |
1167 | } | |
b20d8971 VP |
1168 | } |
1169 | ||
28335dcc | 1170 | VEC_safe_push (varobj_p, stack, *varp); |
8b93c638 | 1171 | |
8756216b | 1172 | /* Walk through the children, reconstructing them all. */ |
28335dcc | 1173 | while (!VEC_empty (varobj_p, stack)) |
8b93c638 | 1174 | { |
28335dcc VP |
1175 | v = VEC_pop (varobj_p, stack); |
1176 | ||
1177 | /* Push any children. Use reverse order so that the first | |
1178 | child is popped from the work stack first, and so | |
1179 | will be added to result first. This does not | |
1180 | affect correctness, just "nicer". */ | |
1181 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1182 | { |
28335dcc VP |
1183 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1184 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1185 | if (c != NULL && !c->frozen) |
28335dcc | 1186 | VEC_safe_push (varobj_p, stack, c); |
8b93c638 JM |
1187 | } |
1188 | ||
28335dcc VP |
1189 | /* Update this variable, unless it's a root, which is already |
1190 | updated. */ | |
25d5ea92 | 1191 | if (v->root->rootvar != v) |
28335dcc VP |
1192 | { |
1193 | new = value_of_child (v->parent, v->index); | |
1194 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1195 | { | |
1196 | /* Note that it's changed */ | |
1197 | VEC_safe_push (varobj_p, result, v); | |
1198 | v->updated = 0; | |
1199 | } | |
8b93c638 | 1200 | } |
8b93c638 JM |
1201 | } |
1202 | ||
8756216b | 1203 | /* Alloc (changed + 1) list entries. */ |
28335dcc | 1204 | changed = VEC_length (varobj_p, result); |
8b93c638 | 1205 | *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *)); |
28335dcc | 1206 | cv = *changelist; |
8b93c638 | 1207 | |
28335dcc | 1208 | for (i = 0; i < changed; ++i) |
8b93c638 | 1209 | { |
28335dcc VP |
1210 | *cv = VEC_index (varobj_p, result, i); |
1211 | gdb_assert (*cv != NULL); | |
1212 | ++cv; | |
8b93c638 | 1213 | } |
28335dcc | 1214 | *cv = 0; |
8b93c638 | 1215 | |
93b979d6 NR |
1216 | VEC_free (varobj_p, stack); |
1217 | VEC_free (varobj_p, result); | |
1218 | ||
73a93a32 | 1219 | if (type_changed) |
8756216b | 1220 | return TYPE_CHANGED; |
73a93a32 JI |
1221 | else |
1222 | return changed; | |
8b93c638 JM |
1223 | } |
1224 | \f | |
1225 | ||
1226 | /* Helper functions */ | |
1227 | ||
1228 | /* | |
1229 | * Variable object construction/destruction | |
1230 | */ | |
1231 | ||
1232 | static int | |
fba45db2 KB |
1233 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1234 | int only_children_p) | |
8b93c638 JM |
1235 | { |
1236 | int delcount = 0; | |
1237 | ||
1238 | delete_variable_1 (resultp, &delcount, var, | |
1239 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1240 | ||
1241 | return delcount; | |
1242 | } | |
1243 | ||
1244 | /* Delete the variable object VAR and its children */ | |
1245 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1246 | and the parent is not removed we dump core. It must be always | |
1247 | initially called with remove_from_parent_p set */ | |
1248 | static void | |
72330bd6 AC |
1249 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1250 | struct varobj *var, int only_children_p, | |
1251 | int remove_from_parent_p) | |
8b93c638 | 1252 | { |
28335dcc | 1253 | int i; |
8b93c638 JM |
1254 | |
1255 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1256 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1257 | { | |
1258 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
8b93c638 | 1259 | if (!remove_from_parent_p) |
28335dcc VP |
1260 | child->parent = NULL; |
1261 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1262 | } |
28335dcc | 1263 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1264 | |
1265 | /* if we were called to delete only the children we are done here */ | |
1266 | if (only_children_p) | |
1267 | return; | |
1268 | ||
1269 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1270 | /* If the name is null, this is a temporary variable, that has not |
1271 | yet been installed, don't report it, it belongs to the caller... */ | |
1272 | if (var->obj_name != NULL) | |
8b93c638 | 1273 | { |
5b616ba1 | 1274 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1275 | *delcountp = *delcountp + 1; |
1276 | } | |
1277 | ||
1278 | /* If this variable has a parent, remove it from its parent's list */ | |
1279 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1280 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1281 | expensive list search to find the element to remove when we are | |
1282 | discarding the list afterwards */ | |
72330bd6 | 1283 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1284 | { |
28335dcc | 1285 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1286 | } |
72330bd6 | 1287 | |
73a93a32 JI |
1288 | if (var->obj_name != NULL) |
1289 | uninstall_variable (var); | |
8b93c638 JM |
1290 | |
1291 | /* Free memory associated with this variable */ | |
1292 | free_variable (var); | |
1293 | } | |
1294 | ||
1295 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1296 | static int | |
fba45db2 | 1297 | install_variable (struct varobj *var) |
8b93c638 JM |
1298 | { |
1299 | struct vlist *cv; | |
1300 | struct vlist *newvl; | |
1301 | const char *chp; | |
1302 | unsigned int index = 0; | |
1303 | unsigned int i = 1; | |
1304 | ||
1305 | for (chp = var->obj_name; *chp; chp++) | |
1306 | { | |
1307 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1308 | } | |
1309 | ||
1310 | cv = *(varobj_table + index); | |
1311 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1312 | cv = cv->next; | |
1313 | ||
1314 | if (cv != NULL) | |
8a3fe4f8 | 1315 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1316 | |
1317 | /* Add varobj to hash table */ | |
1318 | newvl = xmalloc (sizeof (struct vlist)); | |
1319 | newvl->next = *(varobj_table + index); | |
1320 | newvl->var = var; | |
1321 | *(varobj_table + index) = newvl; | |
1322 | ||
1323 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1324 | if (is_root_p (var)) |
8b93c638 JM |
1325 | { |
1326 | /* Add to list of root variables */ | |
1327 | if (rootlist == NULL) | |
1328 | var->root->next = NULL; | |
1329 | else | |
1330 | var->root->next = rootlist; | |
1331 | rootlist = var->root; | |
1332 | rootcount++; | |
1333 | } | |
1334 | ||
1335 | return 1; /* OK */ | |
1336 | } | |
1337 | ||
1338 | /* Unistall the object VAR. */ | |
1339 | static void | |
fba45db2 | 1340 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1341 | { |
1342 | struct vlist *cv; | |
1343 | struct vlist *prev; | |
1344 | struct varobj_root *cr; | |
1345 | struct varobj_root *prer; | |
1346 | const char *chp; | |
1347 | unsigned int index = 0; | |
1348 | unsigned int i = 1; | |
1349 | ||
1350 | /* Remove varobj from hash table */ | |
1351 | for (chp = var->obj_name; *chp; chp++) | |
1352 | { | |
1353 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1354 | } | |
1355 | ||
1356 | cv = *(varobj_table + index); | |
1357 | prev = NULL; | |
1358 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1359 | { | |
1360 | prev = cv; | |
1361 | cv = cv->next; | |
1362 | } | |
1363 | ||
1364 | if (varobjdebug) | |
1365 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1366 | ||
1367 | if (cv == NULL) | |
1368 | { | |
72330bd6 AC |
1369 | warning |
1370 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
1371 | var->obj_name); | |
8b93c638 JM |
1372 | return; |
1373 | } | |
1374 | ||
1375 | if (prev == NULL) | |
1376 | *(varobj_table + index) = cv->next; | |
1377 | else | |
1378 | prev->next = cv->next; | |
1379 | ||
b8c9b27d | 1380 | xfree (cv); |
8b93c638 JM |
1381 | |
1382 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 1383 | if (is_root_p (var)) |
8b93c638 JM |
1384 | { |
1385 | /* Remove from list of root variables */ | |
1386 | if (rootlist == var->root) | |
1387 | rootlist = var->root->next; | |
1388 | else | |
1389 | { | |
1390 | prer = NULL; | |
1391 | cr = rootlist; | |
1392 | while ((cr != NULL) && (cr->rootvar != var)) | |
1393 | { | |
1394 | prer = cr; | |
1395 | cr = cr->next; | |
1396 | } | |
1397 | if (cr == NULL) | |
1398 | { | |
72330bd6 AC |
1399 | warning |
1400 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
1401 | var->obj_name); | |
8b93c638 JM |
1402 | return; |
1403 | } | |
1404 | if (prer == NULL) | |
1405 | rootlist = NULL; | |
1406 | else | |
1407 | prer->next = cr->next; | |
1408 | } | |
1409 | rootcount--; | |
1410 | } | |
1411 | ||
1412 | } | |
1413 | ||
8b93c638 JM |
1414 | /* Create and install a child of the parent of the given name */ |
1415 | static struct varobj * | |
fba45db2 | 1416 | create_child (struct varobj *parent, int index, char *name) |
8b93c638 JM |
1417 | { |
1418 | struct varobj *child; | |
1419 | char *childs_name; | |
acd65feb | 1420 | struct value *value; |
8b93c638 JM |
1421 | |
1422 | child = new_variable (); | |
1423 | ||
1424 | /* name is allocated by name_of_child */ | |
1425 | child->name = name; | |
1426 | child->index = index; | |
acd65feb | 1427 | value = value_of_child (parent, index); |
8b93c638 JM |
1428 | child->parent = parent; |
1429 | child->root = parent->root; | |
b435e160 | 1430 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
1431 | child->obj_name = childs_name; |
1432 | install_variable (child); | |
1433 | ||
acd65feb VP |
1434 | /* Compute the type of the child. Must do this before |
1435 | calling install_new_value. */ | |
1436 | if (value != NULL) | |
1437 | /* If the child had no evaluation errors, var->value | |
1438 | will be non-NULL and contain a valid type. */ | |
1439 | child->type = value_type (value); | |
1440 | else | |
1441 | /* Otherwise, we must compute the type. */ | |
1442 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
1443 | child->index); | |
1444 | install_new_value (child, value, 1); | |
1445 | ||
8b93c638 JM |
1446 | return child; |
1447 | } | |
8b93c638 JM |
1448 | \f |
1449 | ||
1450 | /* | |
1451 | * Miscellaneous utility functions. | |
1452 | */ | |
1453 | ||
1454 | /* Allocate memory and initialize a new variable */ | |
1455 | static struct varobj * | |
1456 | new_variable (void) | |
1457 | { | |
1458 | struct varobj *var; | |
1459 | ||
1460 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1461 | var->name = NULL; | |
1462 | var->obj_name = NULL; | |
1463 | var->index = -1; | |
1464 | var->type = NULL; | |
1465 | var->value = NULL; | |
8b93c638 JM |
1466 | var->num_children = -1; |
1467 | var->parent = NULL; | |
1468 | var->children = NULL; | |
1469 | var->format = 0; | |
1470 | var->root = NULL; | |
fb9b6b35 | 1471 | var->updated = 0; |
85265413 | 1472 | var->print_value = NULL; |
25d5ea92 VP |
1473 | var->frozen = 0; |
1474 | var->not_fetched = 0; | |
8b93c638 JM |
1475 | |
1476 | return var; | |
1477 | } | |
1478 | ||
1479 | /* Allocate memory and initialize a new root variable */ | |
1480 | static struct varobj * | |
1481 | new_root_variable (void) | |
1482 | { | |
1483 | struct varobj *var = new_variable (); | |
1484 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1485 | var->root->lang = NULL; | |
1486 | var->root->exp = NULL; | |
1487 | var->root->valid_block = NULL; | |
7a424e99 | 1488 | var->root->frame = null_frame_id; |
73a93a32 | 1489 | var->root->use_selected_frame = 0; |
8b93c638 | 1490 | var->root->rootvar = NULL; |
8756216b | 1491 | var->root->is_valid = 1; |
8b93c638 JM |
1492 | |
1493 | return var; | |
1494 | } | |
1495 | ||
1496 | /* Free any allocated memory associated with VAR. */ | |
1497 | static void | |
fba45db2 | 1498 | free_variable (struct varobj *var) |
8b93c638 JM |
1499 | { |
1500 | /* Free the expression if this is a root variable. */ | |
b2c2bd75 | 1501 | if (is_root_p (var)) |
8b93c638 | 1502 | { |
96c1eda2 | 1503 | free_current_contents (&var->root->exp); |
8038e1e2 | 1504 | xfree (var->root); |
8b93c638 JM |
1505 | } |
1506 | ||
8038e1e2 AC |
1507 | xfree (var->name); |
1508 | xfree (var->obj_name); | |
85265413 | 1509 | xfree (var->print_value); |
8038e1e2 | 1510 | xfree (var); |
8b93c638 JM |
1511 | } |
1512 | ||
74b7792f AC |
1513 | static void |
1514 | do_free_variable_cleanup (void *var) | |
1515 | { | |
1516 | free_variable (var); | |
1517 | } | |
1518 | ||
1519 | static struct cleanup * | |
1520 | make_cleanup_free_variable (struct varobj *var) | |
1521 | { | |
1522 | return make_cleanup (do_free_variable_cleanup, var); | |
1523 | } | |
1524 | ||
6766a268 DJ |
1525 | /* This returns the type of the variable. It also skips past typedefs |
1526 | to return the real type of the variable. | |
94b66fa7 KS |
1527 | |
1528 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1529 | except within get_target_type and get_type. */ | |
8b93c638 | 1530 | static struct type * |
fba45db2 | 1531 | get_type (struct varobj *var) |
8b93c638 JM |
1532 | { |
1533 | struct type *type; | |
1534 | type = var->type; | |
1535 | ||
6766a268 DJ |
1536 | if (type != NULL) |
1537 | type = check_typedef (type); | |
8b93c638 JM |
1538 | |
1539 | return type; | |
1540 | } | |
1541 | ||
6e2a9270 VP |
1542 | /* Return the type of the value that's stored in VAR, |
1543 | or that would have being stored there if the | |
1544 | value were accessible. | |
1545 | ||
1546 | This differs from VAR->type in that VAR->type is always | |
1547 | the true type of the expession in the source language. | |
1548 | The return value of this function is the type we're | |
1549 | actually storing in varobj, and using for displaying | |
1550 | the values and for comparing previous and new values. | |
1551 | ||
1552 | For example, top-level references are always stripped. */ | |
1553 | static struct type * | |
1554 | get_value_type (struct varobj *var) | |
1555 | { | |
1556 | struct type *type; | |
1557 | ||
1558 | if (var->value) | |
1559 | type = value_type (var->value); | |
1560 | else | |
1561 | type = var->type; | |
1562 | ||
1563 | type = check_typedef (type); | |
1564 | ||
1565 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1566 | type = get_target_type (type); | |
1567 | ||
1568 | type = check_typedef (type); | |
1569 | ||
1570 | return type; | |
1571 | } | |
1572 | ||
8b93c638 | 1573 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
1574 | past typedefs, just like get_type (). |
1575 | ||
1576 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1577 | except within get_target_type and get_type. */ | |
8b93c638 | 1578 | static struct type * |
fba45db2 | 1579 | get_target_type (struct type *type) |
8b93c638 JM |
1580 | { |
1581 | if (type != NULL) | |
1582 | { | |
1583 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
1584 | if (type != NULL) |
1585 | type = check_typedef (type); | |
8b93c638 JM |
1586 | } |
1587 | ||
1588 | return type; | |
1589 | } | |
1590 | ||
1591 | /* What is the default display for this variable? We assume that | |
1592 | everything is "natural". Any exceptions? */ | |
1593 | static enum varobj_display_formats | |
fba45db2 | 1594 | variable_default_display (struct varobj *var) |
8b93c638 JM |
1595 | { |
1596 | return FORMAT_NATURAL; | |
1597 | } | |
1598 | ||
8b93c638 JM |
1599 | /* FIXME: The following should be generic for any pointer */ |
1600 | static void | |
fba45db2 | 1601 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
1602 | { |
1603 | struct cpstack *s; | |
1604 | ||
1605 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
1606 | s->name = name; | |
1607 | s->next = *pstack; | |
1608 | *pstack = s; | |
1609 | } | |
1610 | ||
1611 | /* FIXME: The following should be generic for any pointer */ | |
1612 | static char * | |
fba45db2 | 1613 | cppop (struct cpstack **pstack) |
8b93c638 JM |
1614 | { |
1615 | struct cpstack *s; | |
1616 | char *v; | |
1617 | ||
1618 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
1619 | return NULL; | |
1620 | ||
1621 | s = *pstack; | |
1622 | v = s->name; | |
1623 | *pstack = (*pstack)->next; | |
b8c9b27d | 1624 | xfree (s); |
8b93c638 JM |
1625 | |
1626 | return v; | |
1627 | } | |
1628 | \f | |
1629 | /* | |
1630 | * Language-dependencies | |
1631 | */ | |
1632 | ||
1633 | /* Common entry points */ | |
1634 | ||
1635 | /* Get the language of variable VAR. */ | |
1636 | static enum varobj_languages | |
fba45db2 | 1637 | variable_language (struct varobj *var) |
8b93c638 JM |
1638 | { |
1639 | enum varobj_languages lang; | |
1640 | ||
1641 | switch (var->root->exp->language_defn->la_language) | |
1642 | { | |
1643 | default: | |
1644 | case language_c: | |
1645 | lang = vlang_c; | |
1646 | break; | |
1647 | case language_cplus: | |
1648 | lang = vlang_cplus; | |
1649 | break; | |
1650 | case language_java: | |
1651 | lang = vlang_java; | |
1652 | break; | |
1653 | } | |
1654 | ||
1655 | return lang; | |
1656 | } | |
1657 | ||
1658 | /* Return the number of children for a given variable. | |
1659 | The result of this function is defined by the language | |
1660 | implementation. The number of children returned by this function | |
1661 | is the number of children that the user will see in the variable | |
1662 | display. */ | |
1663 | static int | |
fba45db2 | 1664 | number_of_children (struct varobj *var) |
8b93c638 JM |
1665 | { |
1666 | return (*var->root->lang->number_of_children) (var);; | |
1667 | } | |
1668 | ||
1669 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
1670 | static char * | |
fba45db2 | 1671 | name_of_variable (struct varobj *var) |
8b93c638 JM |
1672 | { |
1673 | return (*var->root->lang->name_of_variable) (var); | |
1674 | } | |
1675 | ||
1676 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
1677 | static char * | |
fba45db2 | 1678 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
1679 | { |
1680 | return (*var->root->lang->name_of_child) (var, index); | |
1681 | } | |
1682 | ||
30b28db1 | 1683 | /* What is the ``struct value *'' of the root variable VAR? |
73a93a32 JI |
1684 | TYPE_CHANGED controls what to do if the type of a |
1685 | use_selected_frame = 1 variable changes. On input, | |
1686 | TYPE_CHANGED = 1 means discard the old varobj, and replace | |
1687 | it with this one. TYPE_CHANGED = 0 means leave it around. | |
1688 | NB: In both cases, var_handle will point to the new varobj, | |
1689 | so if you use TYPE_CHANGED = 0, you will have to stash the | |
1690 | old varobj pointer away somewhere before calling this. | |
1691 | On return, TYPE_CHANGED will be 1 if the type has changed, and | |
1692 | 0 otherwise. */ | |
30b28db1 | 1693 | static struct value * |
fba45db2 | 1694 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 1695 | { |
73a93a32 JI |
1696 | struct varobj *var; |
1697 | ||
1698 | if (var_handle == NULL) | |
1699 | return NULL; | |
1700 | ||
1701 | var = *var_handle; | |
1702 | ||
1703 | /* This should really be an exception, since this should | |
1704 | only get called with a root variable. */ | |
1705 | ||
b2c2bd75 | 1706 | if (!is_root_p (var)) |
73a93a32 JI |
1707 | return NULL; |
1708 | ||
1709 | if (var->root->use_selected_frame) | |
1710 | { | |
1711 | struct varobj *tmp_var; | |
1712 | char *old_type, *new_type; | |
1713 | old_type = varobj_get_type (var); | |
1714 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
1715 | USE_SELECTED_FRAME); | |
1716 | if (tmp_var == NULL) | |
1717 | { | |
1718 | return NULL; | |
1719 | } | |
1720 | new_type = varobj_get_type (tmp_var); | |
72330bd6 | 1721 | if (strcmp (old_type, new_type) == 0) |
73a93a32 JI |
1722 | { |
1723 | varobj_delete (tmp_var, NULL, 0); | |
1724 | *type_changed = 0; | |
1725 | } | |
1726 | else | |
1727 | { | |
1728 | if (*type_changed) | |
1729 | { | |
72330bd6 | 1730 | tmp_var->obj_name = |
73a93a32 | 1731 | savestring (var->obj_name, strlen (var->obj_name)); |
f7635dd9 | 1732 | varobj_delete (var, NULL, 0); |
73a93a32 JI |
1733 | } |
1734 | else | |
1735 | { | |
72330bd6 | 1736 | tmp_var->obj_name = varobj_gen_name (); |
73a93a32 JI |
1737 | } |
1738 | install_variable (tmp_var); | |
1739 | *var_handle = tmp_var; | |
705da579 | 1740 | var = *var_handle; |
73a93a32 JI |
1741 | *type_changed = 1; |
1742 | } | |
1743 | } | |
1744 | else | |
1745 | { | |
1746 | *type_changed = 0; | |
1747 | } | |
1748 | ||
1749 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
1750 | } |
1751 | ||
30b28db1 AC |
1752 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
1753 | static struct value * | |
fba45db2 | 1754 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 1755 | { |
30b28db1 | 1756 | struct value *value; |
8b93c638 JM |
1757 | |
1758 | value = (*parent->root->lang->value_of_child) (parent, index); | |
1759 | ||
8b93c638 JM |
1760 | return value; |
1761 | } | |
1762 | ||
8b93c638 JM |
1763 | /* Is this variable editable? Use the variable's type to make |
1764 | this determination. */ | |
1765 | static int | |
fba45db2 | 1766 | variable_editable (struct varobj *var) |
8b93c638 JM |
1767 | { |
1768 | return (*var->root->lang->variable_editable) (var); | |
1769 | } | |
1770 | ||
1771 | /* GDB already has a command called "value_of_variable". Sigh. */ | |
1772 | static char * | |
fba45db2 | 1773 | my_value_of_variable (struct varobj *var) |
8b93c638 | 1774 | { |
8756216b DP |
1775 | if (var->root->is_valid) |
1776 | return (*var->root->lang->value_of_variable) (var); | |
1777 | else | |
1778 | return NULL; | |
8b93c638 JM |
1779 | } |
1780 | ||
85265413 NR |
1781 | static char * |
1782 | value_get_print_value (struct value *value, enum varobj_display_formats format) | |
1783 | { | |
1784 | long dummy; | |
57e66780 DJ |
1785 | struct ui_file *stb; |
1786 | struct cleanup *old_chain; | |
85265413 | 1787 | char *thevalue; |
57e66780 DJ |
1788 | |
1789 | if (value == NULL) | |
1790 | return NULL; | |
1791 | ||
1792 | stb = mem_fileopen (); | |
1793 | old_chain = make_cleanup_ui_file_delete (stb); | |
1794 | ||
85265413 NR |
1795 | common_val_print (value, stb, format_code[(int) format], 1, 0, 0); |
1796 | thevalue = ui_file_xstrdup (stb, &dummy); | |
57e66780 | 1797 | |
85265413 NR |
1798 | do_cleanups (old_chain); |
1799 | return thevalue; | |
1800 | } | |
1801 | ||
acd65feb VP |
1802 | /* Return non-zero if changes in value of VAR |
1803 | must be detected and reported by -var-update. | |
1804 | Return zero is -var-update should never report | |
1805 | changes of such values. This makes sense for structures | |
1806 | (since the changes in children values will be reported separately), | |
1807 | or for artifical objects (like 'public' pseudo-field in C++). | |
1808 | ||
1809 | Return value of 0 means that gdb need not call value_fetch_lazy | |
1810 | for the value of this variable object. */ | |
8b93c638 | 1811 | static int |
b2c2bd75 | 1812 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
1813 | { |
1814 | int r; | |
1815 | struct type *type; | |
1816 | ||
1817 | if (CPLUS_FAKE_CHILD (var)) | |
1818 | return 0; | |
1819 | ||
6e2a9270 | 1820 | type = get_value_type (var); |
8b93c638 JM |
1821 | |
1822 | switch (TYPE_CODE (type)) | |
1823 | { | |
72330bd6 AC |
1824 | case TYPE_CODE_STRUCT: |
1825 | case TYPE_CODE_UNION: | |
1826 | case TYPE_CODE_ARRAY: | |
1827 | r = 0; | |
1828 | break; | |
8b93c638 | 1829 | |
72330bd6 AC |
1830 | default: |
1831 | r = 1; | |
8b93c638 JM |
1832 | } |
1833 | ||
1834 | return r; | |
1835 | } | |
1836 | ||
2024f65a VP |
1837 | /* Given the value and the type of a variable object, |
1838 | adjust the value and type to those necessary | |
1839 | for getting children of the variable object. | |
1840 | This includes dereferencing top-level references | |
1841 | to all types and dereferencing pointers to | |
1842 | structures. | |
1843 | ||
1844 | Both TYPE and *TYPE should be non-null. VALUE | |
1845 | can be null if we want to only translate type. | |
1846 | *VALUE can be null as well -- if the parent | |
1847 | value is not known. */ | |
1848 | static void | |
1849 | adjust_value_for_child_access (struct value **value, | |
1850 | struct type **type) | |
1851 | { | |
1852 | gdb_assert (type && *type); | |
1853 | ||
1854 | *type = check_typedef (*type); | |
1855 | ||
1856 | /* The type of value stored in varobj, that is passed | |
1857 | to us, is already supposed to be | |
1858 | reference-stripped. */ | |
1859 | ||
1860 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
1861 | ||
1862 | /* Pointers to structures are treated just like | |
1863 | structures when accessing children. Don't | |
1864 | dererences pointers to other types. */ | |
1865 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
1866 | { | |
1867 | struct type *target_type = get_target_type (*type); | |
1868 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
1869 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
1870 | { | |
1871 | if (value && *value) | |
1872 | gdb_value_ind (*value, value); | |
1873 | *type = target_type; | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | /* The 'get_target_type' function calls check_typedef on | |
1878 | result, so we can immediately check type code. No | |
1879 | need to call check_typedef here. */ | |
1880 | } | |
1881 | ||
8b93c638 JM |
1882 | /* C */ |
1883 | static int | |
fba45db2 | 1884 | c_number_of_children (struct varobj *var) |
8b93c638 | 1885 | { |
2024f65a VP |
1886 | struct type *type = get_value_type (var); |
1887 | int children = 0; | |
8b93c638 | 1888 | struct type *target; |
8b93c638 | 1889 | |
2024f65a | 1890 | adjust_value_for_child_access (NULL, &type); |
8b93c638 | 1891 | target = get_target_type (type); |
8b93c638 JM |
1892 | |
1893 | switch (TYPE_CODE (type)) | |
1894 | { | |
1895 | case TYPE_CODE_ARRAY: | |
1896 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
72330bd6 | 1897 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED) |
8b93c638 JM |
1898 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
1899 | else | |
74a44383 DJ |
1900 | /* If we don't know how many elements there are, don't display |
1901 | any. */ | |
1902 | children = 0; | |
8b93c638 JM |
1903 | break; |
1904 | ||
1905 | case TYPE_CODE_STRUCT: | |
1906 | case TYPE_CODE_UNION: | |
1907 | children = TYPE_NFIELDS (type); | |
1908 | break; | |
1909 | ||
1910 | case TYPE_CODE_PTR: | |
2024f65a VP |
1911 | /* The type here is a pointer to non-struct. Typically, pointers |
1912 | have one child, except for function ptrs, which have no children, | |
1913 | and except for void*, as we don't know what to show. | |
1914 | ||
0755e6c1 FN |
1915 | We can show char* so we allow it to be dereferenced. If you decide |
1916 | to test for it, please mind that a little magic is necessary to | |
1917 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
1918 | TYPE_NAME == "char" */ | |
2024f65a VP |
1919 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
1920 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
1921 | children = 0; | |
1922 | else | |
1923 | children = 1; | |
8b93c638 JM |
1924 | break; |
1925 | ||
1926 | default: | |
1927 | /* Other types have no children */ | |
1928 | break; | |
1929 | } | |
1930 | ||
1931 | return children; | |
1932 | } | |
1933 | ||
1934 | static char * | |
fba45db2 | 1935 | c_name_of_variable (struct varobj *parent) |
8b93c638 JM |
1936 | { |
1937 | return savestring (parent->name, strlen (parent->name)); | |
1938 | } | |
1939 | ||
bbec2603 VP |
1940 | /* Return the value of element TYPE_INDEX of a structure |
1941 | value VALUE. VALUE's type should be a structure, | |
1942 | or union, or a typedef to struct/union. | |
1943 | ||
1944 | Returns NULL if getting the value fails. Never throws. */ | |
1945 | static struct value * | |
1946 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 1947 | { |
bbec2603 VP |
1948 | struct value *result = NULL; |
1949 | volatile struct gdb_exception e; | |
8b93c638 | 1950 | |
bbec2603 VP |
1951 | struct type *type = value_type (value); |
1952 | type = check_typedef (type); | |
1953 | ||
1954 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1955 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 1956 | |
bbec2603 VP |
1957 | TRY_CATCH (e, RETURN_MASK_ERROR) |
1958 | { | |
1959 | if (TYPE_FIELD_STATIC (type, type_index)) | |
1960 | result = value_static_field (type, type_index); | |
1961 | else | |
1962 | result = value_primitive_field (value, 0, type_index, type); | |
1963 | } | |
1964 | if (e.reason < 0) | |
1965 | { | |
1966 | return NULL; | |
1967 | } | |
1968 | else | |
1969 | { | |
1970 | return result; | |
1971 | } | |
1972 | } | |
1973 | ||
1974 | /* Obtain the information about child INDEX of the variable | |
1975 | object PARENT. | |
1976 | If CNAME is not null, sets *CNAME to the name of the child relative | |
1977 | to the parent. | |
1978 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
1979 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
1980 | ||
1981 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
1982 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
1983 | to NULL. */ | |
1984 | static void | |
1985 | c_describe_child (struct varobj *parent, int index, | |
1986 | char **cname, struct value **cvalue, struct type **ctype) | |
1987 | { | |
1988 | struct value *value = parent->value; | |
2024f65a | 1989 | struct type *type = get_value_type (parent); |
bbec2603 VP |
1990 | |
1991 | if (cname) | |
1992 | *cname = NULL; | |
1993 | if (cvalue) | |
1994 | *cvalue = NULL; | |
1995 | if (ctype) | |
1996 | *ctype = NULL; | |
1997 | ||
2024f65a | 1998 | adjust_value_for_child_access (&value, &type); |
bbec2603 | 1999 | |
8b93c638 JM |
2000 | switch (TYPE_CODE (type)) |
2001 | { | |
2002 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2003 | if (cname) |
2004 | *cname = xstrprintf ("%d", index | |
2005 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2006 | ||
2007 | if (cvalue && value) | |
2008 | { | |
2009 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2010 | struct value *indval = | |
2011 | value_from_longest (builtin_type_int, (LONGEST) real_index); | |
2012 | gdb_value_subscript (value, indval, cvalue); | |
2013 | } | |
2014 | ||
2015 | if (ctype) | |
2016 | *ctype = get_target_type (type); | |
2017 | ||
8b93c638 JM |
2018 | break; |
2019 | ||
2020 | case TYPE_CODE_STRUCT: | |
2021 | case TYPE_CODE_UNION: | |
bbec2603 VP |
2022 | if (cname) |
2023 | { | |
2024 | char *string = TYPE_FIELD_NAME (type, index); | |
2025 | *cname = savestring (string, strlen (string)); | |
2026 | } | |
2027 | ||
2028 | if (cvalue && value) | |
2029 | { | |
2030 | /* For C, varobj index is the same as type index. */ | |
2031 | *cvalue = value_struct_element_index (value, index); | |
2032 | } | |
2033 | ||
2034 | if (ctype) | |
2035 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2036 | ||
8b93c638 JM |
2037 | break; |
2038 | ||
2039 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2040 | if (cname) |
2041 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2042 | |
bbec2603 VP |
2043 | if (cvalue && value) |
2044 | gdb_value_ind (value, cvalue); | |
2045 | ||
2024f65a VP |
2046 | /* Don't use get_target_type because it calls |
2047 | check_typedef and here, we want to show the true | |
2048 | declared type of the variable. */ | |
bbec2603 | 2049 | if (ctype) |
2024f65a | 2050 | *ctype = TYPE_TARGET_TYPE (type); |
bbec2603 | 2051 | |
8b93c638 JM |
2052 | break; |
2053 | ||
2054 | default: | |
2055 | /* This should not happen */ | |
bbec2603 VP |
2056 | if (cname) |
2057 | *cname = xstrdup ("???"); | |
2058 | /* Don't set value and type, we don't know then. */ | |
8b93c638 | 2059 | } |
bbec2603 | 2060 | } |
8b93c638 | 2061 | |
bbec2603 VP |
2062 | static char * |
2063 | c_name_of_child (struct varobj *parent, int index) | |
2064 | { | |
2065 | char *name; | |
2066 | c_describe_child (parent, index, &name, NULL, NULL); | |
8b93c638 JM |
2067 | return name; |
2068 | } | |
2069 | ||
30b28db1 | 2070 | static struct value * |
fba45db2 | 2071 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2072 | { |
5e572bb4 | 2073 | struct value *new_val = NULL; |
73a93a32 | 2074 | struct varobj *var = *var_handle; |
8b93c638 JM |
2075 | struct frame_info *fi; |
2076 | int within_scope; | |
2077 | ||
73a93a32 | 2078 | /* Only root variables can be updated... */ |
b2c2bd75 | 2079 | if (!is_root_p (var)) |
73a93a32 JI |
2080 | /* Not a root var */ |
2081 | return NULL; | |
2082 | ||
72330bd6 | 2083 | |
8b93c638 | 2084 | /* Determine whether the variable is still around. */ |
b20d8971 | 2085 | if (var->root->valid_block == NULL || var->root->use_selected_frame) |
8b93c638 JM |
2086 | within_scope = 1; |
2087 | else | |
2088 | { | |
e64d9b3d | 2089 | fi = frame_find_by_id (var->root->frame); |
8b93c638 JM |
2090 | within_scope = fi != NULL; |
2091 | /* FIXME: select_frame could fail */ | |
d2353924 NR |
2092 | if (fi) |
2093 | { | |
2094 | CORE_ADDR pc = get_frame_pc (fi); | |
2095 | if (pc < BLOCK_START (var->root->valid_block) || | |
2096 | pc >= BLOCK_END (var->root->valid_block)) | |
2097 | within_scope = 0; | |
2d43bda2 NR |
2098 | else |
2099 | select_frame (fi); | |
d2353924 | 2100 | } |
8b93c638 | 2101 | } |
72330bd6 | 2102 | |
8b93c638 JM |
2103 | if (within_scope) |
2104 | { | |
73a93a32 | 2105 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2106 | expression fails we want to just return NULL. */ |
2107 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2108 | return new_val; |
2109 | } | |
2110 | ||
2111 | return NULL; | |
2112 | } | |
2113 | ||
30b28db1 | 2114 | static struct value * |
fba45db2 | 2115 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2116 | { |
bbec2603 VP |
2117 | struct value *value = NULL; |
2118 | c_describe_child (parent, index, NULL, &value, NULL); | |
8b93c638 JM |
2119 | |
2120 | return value; | |
2121 | } | |
2122 | ||
2123 | static struct type * | |
fba45db2 | 2124 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2125 | { |
bbec2603 VP |
2126 | struct type *type = NULL; |
2127 | c_describe_child (parent, index, NULL, NULL, &type); | |
8b93c638 JM |
2128 | return type; |
2129 | } | |
2130 | ||
2131 | static int | |
fba45db2 | 2132 | c_variable_editable (struct varobj *var) |
8b93c638 | 2133 | { |
6e2a9270 | 2134 | switch (TYPE_CODE (get_value_type (var))) |
8b93c638 JM |
2135 | { |
2136 | case TYPE_CODE_STRUCT: | |
2137 | case TYPE_CODE_UNION: | |
2138 | case TYPE_CODE_ARRAY: | |
2139 | case TYPE_CODE_FUNC: | |
8b93c638 JM |
2140 | case TYPE_CODE_METHOD: |
2141 | return 0; | |
2142 | break; | |
2143 | ||
2144 | default: | |
2145 | return 1; | |
2146 | break; | |
2147 | } | |
2148 | } | |
2149 | ||
2150 | static char * | |
fba45db2 | 2151 | c_value_of_variable (struct varobj *var) |
8b93c638 | 2152 | { |
14b3d9c9 JB |
2153 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2154 | it will print out its children instead of "{...}". So we need to | |
2155 | catch that case explicitly. */ | |
2156 | struct type *type = get_type (var); | |
e64d9b3d | 2157 | |
14b3d9c9 JB |
2158 | /* Strip top-level references. */ |
2159 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2160 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2161 | ||
2162 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2163 | { |
2164 | case TYPE_CODE_STRUCT: | |
2165 | case TYPE_CODE_UNION: | |
2166 | return xstrdup ("{...}"); | |
2167 | /* break; */ | |
2168 | ||
2169 | case TYPE_CODE_ARRAY: | |
2170 | { | |
e64d9b3d | 2171 | char *number; |
b435e160 | 2172 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 2173 | return (number); |
8b93c638 JM |
2174 | } |
2175 | /* break; */ | |
2176 | ||
2177 | default: | |
2178 | { | |
575bbeb6 KS |
2179 | if (var->value == NULL) |
2180 | { | |
2181 | /* This can happen if we attempt to get the value of a struct | |
2182 | member when the parent is an invalid pointer. This is an | |
2183 | error condition, so we should tell the caller. */ | |
2184 | return NULL; | |
2185 | } | |
2186 | else | |
2187 | { | |
25d5ea92 VP |
2188 | if (var->not_fetched && value_lazy (var->value)) |
2189 | /* Frozen variable and no value yet. We don't | |
2190 | implicitly fetch the value. MI response will | |
2191 | use empty string for the value, which is OK. */ | |
2192 | return NULL; | |
2193 | ||
b2c2bd75 | 2194 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 2195 | gdb_assert (!value_lazy (var->value)); |
85265413 NR |
2196 | return value_get_print_value (var->value, var->format); |
2197 | } | |
e64d9b3d | 2198 | } |
8b93c638 JM |
2199 | } |
2200 | } | |
2201 | \f | |
2202 | ||
2203 | /* C++ */ | |
2204 | ||
2205 | static int | |
fba45db2 | 2206 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
2207 | { |
2208 | struct type *type; | |
2209 | int children, dont_know; | |
2210 | ||
2211 | dont_know = 1; | |
2212 | children = 0; | |
2213 | ||
2214 | if (!CPLUS_FAKE_CHILD (var)) | |
2215 | { | |
2024f65a VP |
2216 | type = get_value_type (var); |
2217 | adjust_value_for_child_access (NULL, &type); | |
8b93c638 JM |
2218 | |
2219 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 2220 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
2221 | { |
2222 | int kids[3]; | |
2223 | ||
2224 | cplus_class_num_children (type, kids); | |
2225 | if (kids[v_public] != 0) | |
2226 | children++; | |
2227 | if (kids[v_private] != 0) | |
2228 | children++; | |
2229 | if (kids[v_protected] != 0) | |
2230 | children++; | |
2231 | ||
2232 | /* Add any baseclasses */ | |
2233 | children += TYPE_N_BASECLASSES (type); | |
2234 | dont_know = 0; | |
2235 | ||
2236 | /* FIXME: save children in var */ | |
2237 | } | |
2238 | } | |
2239 | else | |
2240 | { | |
2241 | int kids[3]; | |
2242 | ||
2024f65a VP |
2243 | type = get_value_type (var->parent); |
2244 | adjust_value_for_child_access (NULL, &type); | |
8b93c638 JM |
2245 | |
2246 | cplus_class_num_children (type, kids); | |
6e382aa3 | 2247 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 2248 | children = kids[v_public]; |
6e382aa3 | 2249 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
2250 | children = kids[v_private]; |
2251 | else | |
2252 | children = kids[v_protected]; | |
2253 | dont_know = 0; | |
2254 | } | |
2255 | ||
2256 | if (dont_know) | |
2257 | children = c_number_of_children (var); | |
2258 | ||
2259 | return children; | |
2260 | } | |
2261 | ||
2262 | /* Compute # of public, private, and protected variables in this class. | |
2263 | That means we need to descend into all baseclasses and find out | |
2264 | how many are there, too. */ | |
2265 | static void | |
1669605f | 2266 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 JM |
2267 | { |
2268 | int i; | |
2269 | ||
2270 | children[v_public] = 0; | |
2271 | children[v_private] = 0; | |
2272 | children[v_protected] = 0; | |
2273 | ||
2274 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2275 | { | |
2276 | /* If we have a virtual table pointer, omit it. */ | |
72330bd6 | 2277 | if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i) |
8b93c638 JM |
2278 | continue; |
2279 | ||
2280 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2281 | children[v_protected]++; | |
2282 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2283 | children[v_private]++; | |
2284 | else | |
2285 | children[v_public]++; | |
2286 | } | |
2287 | } | |
2288 | ||
2289 | static char * | |
fba45db2 | 2290 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2291 | { |
2292 | return c_name_of_variable (parent); | |
2293 | } | |
2294 | ||
2024f65a VP |
2295 | enum accessibility { private_field, protected_field, public_field }; |
2296 | ||
2297 | /* Check if field INDEX of TYPE has the specified accessibility. | |
2298 | Return 0 if so and 1 otherwise. */ | |
2299 | static int | |
2300 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 2301 | { |
2024f65a VP |
2302 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
2303 | return 1; | |
2304 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
2305 | return 1; | |
2306 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
2307 | && !TYPE_FIELD_PROTECTED (type, index)) | |
2308 | return 1; | |
2309 | else | |
2310 | return 0; | |
2311 | } | |
2312 | ||
2313 | static void | |
2314 | cplus_describe_child (struct varobj *parent, int index, | |
2315 | char **cname, struct value **cvalue, struct type **ctype) | |
2316 | { | |
2317 | char *name = 0; | |
2318 | struct value *value; | |
8b93c638 | 2319 | struct type *type; |
8b93c638 | 2320 | |
2024f65a VP |
2321 | if (cname) |
2322 | *cname = NULL; | |
2323 | if (cvalue) | |
2324 | *cvalue = NULL; | |
2325 | if (ctype) | |
2326 | *ctype = NULL; | |
2327 | ||
2328 | ||
8b93c638 JM |
2329 | if (CPLUS_FAKE_CHILD (parent)) |
2330 | { | |
2024f65a VP |
2331 | value = parent->parent->value; |
2332 | type = get_value_type (parent->parent); | |
8b93c638 JM |
2333 | } |
2334 | else | |
2024f65a VP |
2335 | { |
2336 | value = parent->value; | |
2337 | type = get_value_type (parent); | |
2338 | } | |
8b93c638 | 2339 | |
2024f65a VP |
2340 | adjust_value_for_child_access (&value, &type); |
2341 | ||
2342 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2343 | || TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
8b93c638 | 2344 | { |
8b93c638 JM |
2345 | if (CPLUS_FAKE_CHILD (parent)) |
2346 | { | |
6e382aa3 JJ |
2347 | /* The fields of the class type are ordered as they |
2348 | appear in the class. We are given an index for a | |
2349 | particular access control type ("public","protected", | |
2350 | or "private"). We must skip over fields that don't | |
2351 | have the access control we are looking for to properly | |
2352 | find the indexed field. */ | |
2353 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 2354 | enum accessibility acc = public_field; |
6e382aa3 | 2355 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 2356 | acc = private_field; |
6e382aa3 | 2357 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
2358 | acc = protected_field; |
2359 | ||
2360 | while (index >= 0) | |
6e382aa3 | 2361 | { |
2024f65a VP |
2362 | if (TYPE_VPTR_BASETYPE (type) == type |
2363 | && type_index == TYPE_VPTR_FIELDNO (type)) | |
2364 | ; /* ignore vptr */ | |
2365 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
2366 | --index; |
2367 | ++type_index; | |
6e382aa3 | 2368 | } |
2024f65a VP |
2369 | --type_index; |
2370 | ||
2371 | if (cname) | |
2372 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
2373 | ||
2374 | if (cvalue && value) | |
2375 | *cvalue = value_struct_element_index (value, type_index); | |
2376 | ||
2377 | if (ctype) | |
2378 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
2379 | } | |
2380 | else if (index < TYPE_N_BASECLASSES (type)) | |
2381 | { | |
2382 | /* This is a baseclass. */ | |
2383 | if (cname) | |
2384 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
2385 | ||
2386 | if (cvalue && value) | |
6e382aa3 | 2387 | { |
2024f65a | 2388 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 JJ |
2389 | } |
2390 | ||
2024f65a VP |
2391 | if (ctype) |
2392 | { | |
2393 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2394 | } | |
8b93c638 | 2395 | } |
8b93c638 JM |
2396 | else |
2397 | { | |
2024f65a | 2398 | char *access = 0; |
6e382aa3 | 2399 | int children[3]; |
2024f65a | 2400 | cplus_class_num_children (type, children); |
6e382aa3 | 2401 | |
8b93c638 | 2402 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
2403 | only be "public", "private", or "protected" |
2404 | ||
2405 | The special "fake" children are always output by varobj in | |
2406 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
2407 | index -= TYPE_N_BASECLASSES (type); |
2408 | switch (index) | |
2409 | { | |
2410 | case 0: | |
6e382aa3 | 2411 | if (children[v_public] > 0) |
2024f65a | 2412 | access = "public"; |
6e382aa3 | 2413 | else if (children[v_private] > 0) |
2024f65a | 2414 | access = "private"; |
6e382aa3 | 2415 | else |
2024f65a | 2416 | access = "protected"; |
6e382aa3 | 2417 | break; |
8b93c638 | 2418 | case 1: |
6e382aa3 | 2419 | if (children[v_public] > 0) |
8b93c638 | 2420 | { |
6e382aa3 | 2421 | if (children[v_private] > 0) |
2024f65a | 2422 | access = "private"; |
6e382aa3 | 2423 | else |
2024f65a | 2424 | access = "protected"; |
8b93c638 | 2425 | } |
6e382aa3 | 2426 | else if (children[v_private] > 0) |
2024f65a | 2427 | access = "protected"; |
6e382aa3 | 2428 | break; |
8b93c638 | 2429 | case 2: |
6e382aa3 | 2430 | /* Must be protected */ |
2024f65a | 2431 | access = "protected"; |
6e382aa3 | 2432 | break; |
8b93c638 JM |
2433 | default: |
2434 | /* error! */ | |
2435 | break; | |
2436 | } | |
2024f65a VP |
2437 | |
2438 | if (cname) | |
2439 | *cname = xstrdup (access); | |
8b93c638 | 2440 | |
2024f65a VP |
2441 | /* Value and type are null here. */ |
2442 | } | |
8b93c638 | 2443 | } |
8b93c638 JM |
2444 | else |
2445 | { | |
2024f65a VP |
2446 | c_describe_child (parent, index, cname, cvalue, ctype); |
2447 | } | |
2448 | } | |
8b93c638 | 2449 | |
2024f65a VP |
2450 | static char * |
2451 | cplus_name_of_child (struct varobj *parent, int index) | |
2452 | { | |
2453 | char *name = NULL; | |
2454 | cplus_describe_child (parent, index, &name, NULL, NULL); | |
8b93c638 JM |
2455 | return name; |
2456 | } | |
2457 | ||
30b28db1 | 2458 | static struct value * |
fba45db2 | 2459 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 2460 | { |
73a93a32 | 2461 | return c_value_of_root (var_handle); |
8b93c638 JM |
2462 | } |
2463 | ||
30b28db1 | 2464 | static struct value * |
fba45db2 | 2465 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2466 | { |
2024f65a VP |
2467 | struct value *value = NULL; |
2468 | cplus_describe_child (parent, index, NULL, &value, NULL); | |
8b93c638 JM |
2469 | return value; |
2470 | } | |
2471 | ||
2472 | static struct type * | |
fba45db2 | 2473 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2474 | { |
2024f65a VP |
2475 | struct type *type = NULL; |
2476 | cplus_describe_child (parent, index, NULL, NULL, &type); | |
8b93c638 JM |
2477 | return type; |
2478 | } | |
2479 | ||
2480 | static int | |
fba45db2 | 2481 | cplus_variable_editable (struct varobj *var) |
8b93c638 JM |
2482 | { |
2483 | if (CPLUS_FAKE_CHILD (var)) | |
2484 | return 0; | |
2485 | ||
2486 | return c_variable_editable (var); | |
2487 | } | |
2488 | ||
2489 | static char * | |
fba45db2 | 2490 | cplus_value_of_variable (struct varobj *var) |
8b93c638 JM |
2491 | { |
2492 | ||
2493 | /* If we have one of our special types, don't print out | |
2494 | any value. */ | |
2495 | if (CPLUS_FAKE_CHILD (var)) | |
2496 | return xstrdup (""); | |
2497 | ||
2498 | return c_value_of_variable (var); | |
2499 | } | |
2500 | \f | |
2501 | /* Java */ | |
2502 | ||
2503 | static int | |
fba45db2 | 2504 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
2505 | { |
2506 | return cplus_number_of_children (var); | |
2507 | } | |
2508 | ||
2509 | static char * | |
fba45db2 | 2510 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2511 | { |
2512 | char *p, *name; | |
2513 | ||
2514 | name = cplus_name_of_variable (parent); | |
2515 | /* If the name has "-" in it, it is because we | |
2516 | needed to escape periods in the name... */ | |
2517 | p = name; | |
2518 | ||
2519 | while (*p != '\000') | |
2520 | { | |
2521 | if (*p == '-') | |
2522 | *p = '.'; | |
2523 | p++; | |
2524 | } | |
2525 | ||
2526 | return name; | |
2527 | } | |
2528 | ||
2529 | static char * | |
fba45db2 | 2530 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2531 | { |
2532 | char *name, *p; | |
2533 | ||
2534 | name = cplus_name_of_child (parent, index); | |
2535 | /* Escape any periods in the name... */ | |
2536 | p = name; | |
2537 | ||
2538 | while (*p != '\000') | |
2539 | { | |
2540 | if (*p == '.') | |
2541 | *p = '-'; | |
2542 | p++; | |
2543 | } | |
2544 | ||
2545 | return name; | |
2546 | } | |
2547 | ||
30b28db1 | 2548 | static struct value * |
fba45db2 | 2549 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 2550 | { |
73a93a32 | 2551 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
2552 | } |
2553 | ||
30b28db1 | 2554 | static struct value * |
fba45db2 | 2555 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2556 | { |
2557 | return cplus_value_of_child (parent, index); | |
2558 | } | |
2559 | ||
2560 | static struct type * | |
fba45db2 | 2561 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2562 | { |
2563 | return cplus_type_of_child (parent, index); | |
2564 | } | |
2565 | ||
2566 | static int | |
fba45db2 | 2567 | java_variable_editable (struct varobj *var) |
8b93c638 JM |
2568 | { |
2569 | return cplus_variable_editable (var); | |
2570 | } | |
2571 | ||
2572 | static char * | |
fba45db2 | 2573 | java_value_of_variable (struct varobj *var) |
8b93c638 JM |
2574 | { |
2575 | return cplus_value_of_variable (var); | |
2576 | } | |
2577 | \f | |
2578 | extern void _initialize_varobj (void); | |
2579 | void | |
2580 | _initialize_varobj (void) | |
2581 | { | |
2582 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
2583 | ||
2584 | varobj_table = xmalloc (sizeof_table); | |
2585 | memset (varobj_table, 0, sizeof_table); | |
2586 | ||
85c07804 AC |
2587 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
2588 | &varobjdebug, _("\ | |
2589 | Set varobj debugging."), _("\ | |
2590 | Show varobj debugging."), _("\ | |
2591 | When non-zero, varobj debugging is enabled."), | |
2592 | NULL, | |
920d2a44 | 2593 | show_varobjdebug, |
85c07804 | 2594 | &setlist, &showlist); |
8b93c638 | 2595 | } |
8756216b DP |
2596 | |
2597 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
2598 | are defined on globals. | |
2599 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
2600 | void | |
2601 | varobj_invalidate (void) | |
2602 | { | |
2603 | struct varobj **all_rootvarobj; | |
2604 | struct varobj **varp; | |
2605 | ||
2606 | if (varobj_list (&all_rootvarobj) > 0) | |
2607 | { | |
2608 | varp = all_rootvarobj; | |
2609 | while (*varp != NULL) | |
2610 | { | |
2611 | /* global var must be re-evaluated. */ | |
2612 | if ((*varp)->root->valid_block == NULL) | |
2613 | { | |
2614 | struct varobj *tmp_var; | |
2615 | ||
2616 | /* Try to create a varobj with same expression. If we succeed replace | |
2617 | the old varobj, otherwise invalidate it. */ | |
2618 | tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME); | |
2619 | if (tmp_var != NULL) | |
2620 | { | |
2621 | tmp_var->obj_name = xstrdup ((*varp)->obj_name); | |
2622 | varobj_delete (*varp, NULL, 0); | |
2623 | install_variable (tmp_var); | |
2624 | } | |
2625 | else | |
2626 | (*varp)->root->is_valid = 0; | |
2627 | } | |
2628 | else /* locals must be invalidated. */ | |
2629 | (*varp)->root->is_valid = 0; | |
2630 | ||
2631 | varp++; | |
2632 | } | |
2633 | xfree (all_rootvarobj); | |
2634 | } | |
2635 | return; | |
2636 | } |