]>
Commit | Line | Data |
---|---|---|
771b4502 | 1 | /* SPU target-dependent code for GDB, the GNU debugger. |
6aba47ca | 2 | Copyright (C) 2006, 2007 Free Software Foundation, Inc. |
771b4502 UW |
3 | |
4 | Contributed by Ulrich Weigand <[email protected]>. | |
5 | Based on a port by Sid Manning <[email protected]>. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
22 | Boston, MA 02110-1301, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "arch-utils.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdb_string.h" | |
30 | #include "gdb_assert.h" | |
31 | #include "frame.h" | |
32 | #include "frame-unwind.h" | |
33 | #include "frame-base.h" | |
34 | #include "trad-frame.h" | |
35 | #include "symtab.h" | |
36 | #include "symfile.h" | |
37 | #include "value.h" | |
38 | #include "inferior.h" | |
39 | #include "dis-asm.h" | |
40 | #include "objfiles.h" | |
41 | #include "language.h" | |
42 | #include "regcache.h" | |
43 | #include "reggroups.h" | |
44 | #include "floatformat.h" | |
dcf52cd8 | 45 | #include "observer.h" |
771b4502 UW |
46 | |
47 | #include "spu-tdep.h" | |
48 | ||
794ac428 UW |
49 | |
50 | /* The tdep structure. */ | |
51 | struct gdbarch_tdep | |
52 | { | |
53 | /* SPU-specific vector type. */ | |
54 | struct type *spu_builtin_type_vec128; | |
55 | }; | |
56 | ||
57 | ||
f2d43c2c | 58 | /* SPU-specific vector type. */ |
794ac428 UW |
59 | static struct type * |
60 | spu_builtin_type_vec128 (struct gdbarch *gdbarch) | |
61 | { | |
62 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
63 | ||
64 | if (!tdep->spu_builtin_type_vec128) | |
65 | { | |
66 | struct type *t; | |
67 | ||
68 | t = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION); | |
69 | append_composite_type_field (t, "uint128", builtin_type_int128); | |
70 | append_composite_type_field (t, "v2_int64", | |
71 | init_vector_type (builtin_type_int64, 2)); | |
72 | append_composite_type_field (t, "v4_int32", | |
73 | init_vector_type (builtin_type_int32, 4)); | |
74 | append_composite_type_field (t, "v8_int16", | |
75 | init_vector_type (builtin_type_int16, 8)); | |
76 | append_composite_type_field (t, "v16_int8", | |
77 | init_vector_type (builtin_type_int8, 16)); | |
78 | append_composite_type_field (t, "v2_double", | |
79 | init_vector_type (builtin_type_double, 2)); | |
80 | append_composite_type_field (t, "v4_float", | |
81 | init_vector_type (builtin_type_float, 4)); | |
82 | ||
83 | TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR; | |
84 | TYPE_NAME (t) = "spu_builtin_type_vec128"; | |
85 | ||
86 | tdep->spu_builtin_type_vec128 = t; | |
87 | } | |
88 | ||
89 | return tdep->spu_builtin_type_vec128; | |
90 | } | |
91 | ||
771b4502 | 92 | |
23d964e7 UW |
93 | /* The list of available "info spu " commands. */ |
94 | static struct cmd_list_element *infospucmdlist = NULL; | |
95 | ||
771b4502 UW |
96 | /* Registers. */ |
97 | ||
98 | static const char * | |
99 | spu_register_name (int reg_nr) | |
100 | { | |
101 | static char *register_names[] = | |
102 | { | |
103 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
104 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
105 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
106 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
107 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
108 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
109 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
110 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
111 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
112 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
113 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
114 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
115 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
116 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
117 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
118 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
23d964e7 | 119 | "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status" |
771b4502 UW |
120 | }; |
121 | ||
122 | if (reg_nr < 0) | |
123 | return NULL; | |
124 | if (reg_nr >= sizeof register_names / sizeof *register_names) | |
125 | return NULL; | |
126 | ||
127 | return register_names[reg_nr]; | |
128 | } | |
129 | ||
130 | static struct type * | |
131 | spu_register_type (struct gdbarch *gdbarch, int reg_nr) | |
132 | { | |
133 | if (reg_nr < SPU_NUM_GPRS) | |
794ac428 | 134 | return spu_builtin_type_vec128 (gdbarch); |
771b4502 UW |
135 | |
136 | switch (reg_nr) | |
137 | { | |
138 | case SPU_ID_REGNUM: | |
139 | return builtin_type_uint32; | |
140 | ||
141 | case SPU_PC_REGNUM: | |
142 | return builtin_type_void_func_ptr; | |
143 | ||
144 | case SPU_SP_REGNUM: | |
145 | return builtin_type_void_data_ptr; | |
146 | ||
23d964e7 UW |
147 | case SPU_FPSCR_REGNUM: |
148 | return builtin_type_uint128; | |
149 | ||
150 | case SPU_SRR0_REGNUM: | |
151 | return builtin_type_uint32; | |
152 | ||
153 | case SPU_LSLR_REGNUM: | |
154 | return builtin_type_uint32; | |
155 | ||
156 | case SPU_DECR_REGNUM: | |
157 | return builtin_type_uint32; | |
158 | ||
159 | case SPU_DECR_STATUS_REGNUM: | |
160 | return builtin_type_uint32; | |
161 | ||
771b4502 UW |
162 | default: |
163 | internal_error (__FILE__, __LINE__, "invalid regnum"); | |
164 | } | |
165 | } | |
166 | ||
167 | /* Pseudo registers for preferred slots - stack pointer. */ | |
168 | ||
23d964e7 UW |
169 | static void |
170 | spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname, | |
171 | gdb_byte *buf) | |
172 | { | |
173 | gdb_byte reg[32]; | |
174 | char annex[32]; | |
175 | ULONGEST id; | |
176 | ||
177 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
178 | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); | |
179 | memset (reg, 0, sizeof reg); | |
180 | target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
181 | reg, 0, sizeof reg); | |
182 | ||
183 | store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16)); | |
184 | } | |
185 | ||
771b4502 UW |
186 | static void |
187 | spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
188 | int regnum, gdb_byte *buf) | |
189 | { | |
190 | gdb_byte reg[16]; | |
23d964e7 UW |
191 | char annex[32]; |
192 | ULONGEST id; | |
771b4502 UW |
193 | |
194 | switch (regnum) | |
195 | { | |
196 | case SPU_SP_REGNUM: | |
197 | regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); | |
198 | memcpy (buf, reg, 4); | |
199 | break; | |
200 | ||
23d964e7 UW |
201 | case SPU_FPSCR_REGNUM: |
202 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
203 | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); | |
204 | target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | |
205 | break; | |
206 | ||
207 | case SPU_SRR0_REGNUM: | |
208 | spu_pseudo_register_read_spu (regcache, "srr0", buf); | |
209 | break; | |
210 | ||
211 | case SPU_LSLR_REGNUM: | |
212 | spu_pseudo_register_read_spu (regcache, "lslr", buf); | |
213 | break; | |
214 | ||
215 | case SPU_DECR_REGNUM: | |
216 | spu_pseudo_register_read_spu (regcache, "decr", buf); | |
217 | break; | |
218 | ||
219 | case SPU_DECR_STATUS_REGNUM: | |
220 | spu_pseudo_register_read_spu (regcache, "decr_status", buf); | |
221 | break; | |
222 | ||
771b4502 UW |
223 | default: |
224 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
225 | } | |
226 | } | |
227 | ||
23d964e7 UW |
228 | static void |
229 | spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname, | |
230 | const gdb_byte *buf) | |
231 | { | |
232 | gdb_byte reg[32]; | |
233 | char annex[32]; | |
234 | ULONGEST id; | |
235 | ||
236 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
237 | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); | |
238 | xsnprintf (reg, sizeof reg, "0x%s", | |
239 | phex_nz (extract_unsigned_integer (buf, 4), 4)); | |
240 | target_write (¤t_target, TARGET_OBJECT_SPU, annex, | |
241 | reg, 0, strlen (reg)); | |
242 | } | |
243 | ||
771b4502 UW |
244 | static void |
245 | spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
246 | int regnum, const gdb_byte *buf) | |
247 | { | |
248 | gdb_byte reg[16]; | |
23d964e7 UW |
249 | char annex[32]; |
250 | ULONGEST id; | |
771b4502 UW |
251 | |
252 | switch (regnum) | |
253 | { | |
254 | case SPU_SP_REGNUM: | |
255 | regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); | |
256 | memcpy (reg, buf, 4); | |
257 | regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg); | |
258 | break; | |
259 | ||
23d964e7 UW |
260 | case SPU_FPSCR_REGNUM: |
261 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
262 | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); | |
263 | target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | |
264 | break; | |
265 | ||
266 | case SPU_SRR0_REGNUM: | |
267 | spu_pseudo_register_write_spu (regcache, "srr0", buf); | |
268 | break; | |
269 | ||
270 | case SPU_LSLR_REGNUM: | |
271 | spu_pseudo_register_write_spu (regcache, "lslr", buf); | |
272 | break; | |
273 | ||
274 | case SPU_DECR_REGNUM: | |
275 | spu_pseudo_register_write_spu (regcache, "decr", buf); | |
276 | break; | |
277 | ||
278 | case SPU_DECR_STATUS_REGNUM: | |
279 | spu_pseudo_register_write_spu (regcache, "decr_status", buf); | |
280 | break; | |
281 | ||
771b4502 UW |
282 | default: |
283 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
284 | } | |
285 | } | |
286 | ||
287 | /* Value conversion -- access scalar values at the preferred slot. */ | |
288 | ||
9acbedc0 UW |
289 | static struct value * |
290 | spu_value_from_register (struct type *type, int regnum, | |
291 | struct frame_info *frame) | |
771b4502 | 292 | { |
9acbedc0 UW |
293 | struct value *value = default_value_from_register (type, regnum, frame); |
294 | int len = TYPE_LENGTH (type); | |
771b4502 | 295 | |
9acbedc0 UW |
296 | if (regnum < SPU_NUM_GPRS && len < 16) |
297 | { | |
298 | int preferred_slot = len < 4 ? 4 - len : 0; | |
299 | set_value_offset (value, preferred_slot); | |
300 | } | |
771b4502 | 301 | |
9acbedc0 | 302 | return value; |
771b4502 UW |
303 | } |
304 | ||
305 | /* Register groups. */ | |
306 | ||
307 | static int | |
308 | spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
309 | struct reggroup *group) | |
310 | { | |
311 | /* Registers displayed via 'info regs'. */ | |
312 | if (group == general_reggroup) | |
313 | return 1; | |
314 | ||
315 | /* Registers displayed via 'info float'. */ | |
316 | if (group == float_reggroup) | |
317 | return 0; | |
318 | ||
319 | /* Registers that need to be saved/restored in order to | |
320 | push or pop frames. */ | |
321 | if (group == save_reggroup || group == restore_reggroup) | |
322 | return 1; | |
323 | ||
324 | return default_register_reggroup_p (gdbarch, regnum, group); | |
325 | } | |
326 | ||
327 | ||
328 | /* Decoding SPU instructions. */ | |
329 | ||
330 | enum | |
331 | { | |
332 | op_lqd = 0x34, | |
333 | op_lqx = 0x3c4, | |
334 | op_lqa = 0x61, | |
335 | op_lqr = 0x67, | |
336 | op_stqd = 0x24, | |
337 | op_stqx = 0x144, | |
338 | op_stqa = 0x41, | |
339 | op_stqr = 0x47, | |
340 | ||
341 | op_il = 0x081, | |
342 | op_ila = 0x21, | |
343 | op_a = 0x0c0, | |
344 | op_ai = 0x1c, | |
345 | ||
346 | op_selb = 0x4, | |
347 | ||
348 | op_br = 0x64, | |
349 | op_bra = 0x60, | |
350 | op_brsl = 0x66, | |
351 | op_brasl = 0x62, | |
352 | op_brnz = 0x42, | |
353 | op_brz = 0x40, | |
354 | op_brhnz = 0x46, | |
355 | op_brhz = 0x44, | |
356 | op_bi = 0x1a8, | |
357 | op_bisl = 0x1a9, | |
358 | op_biz = 0x128, | |
359 | op_binz = 0x129, | |
360 | op_bihz = 0x12a, | |
361 | op_bihnz = 0x12b, | |
362 | }; | |
363 | ||
364 | static int | |
365 | is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb) | |
366 | { | |
367 | if ((insn >> 21) == op) | |
368 | { | |
369 | *rt = insn & 127; | |
370 | *ra = (insn >> 7) & 127; | |
371 | *rb = (insn >> 14) & 127; | |
372 | return 1; | |
373 | } | |
374 | ||
375 | return 0; | |
376 | } | |
377 | ||
378 | static int | |
379 | is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc) | |
380 | { | |
381 | if ((insn >> 28) == op) | |
382 | { | |
383 | *rt = (insn >> 21) & 127; | |
384 | *ra = (insn >> 7) & 127; | |
385 | *rb = (insn >> 14) & 127; | |
386 | *rc = insn & 127; | |
387 | return 1; | |
388 | } | |
389 | ||
390 | return 0; | |
391 | } | |
392 | ||
393 | static int | |
394 | is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7) | |
395 | { | |
396 | if ((insn >> 21) == op) | |
397 | { | |
398 | *rt = insn & 127; | |
399 | *ra = (insn >> 7) & 127; | |
400 | *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40; | |
401 | return 1; | |
402 | } | |
403 | ||
404 | return 0; | |
405 | } | |
406 | ||
407 | static int | |
408 | is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10) | |
409 | { | |
410 | if ((insn >> 24) == op) | |
411 | { | |
412 | *rt = insn & 127; | |
413 | *ra = (insn >> 7) & 127; | |
414 | *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200; | |
415 | return 1; | |
416 | } | |
417 | ||
418 | return 0; | |
419 | } | |
420 | ||
421 | static int | |
422 | is_ri16 (unsigned int insn, int op, int *rt, int *i16) | |
423 | { | |
424 | if ((insn >> 23) == op) | |
425 | { | |
426 | *rt = insn & 127; | |
427 | *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000; | |
428 | return 1; | |
429 | } | |
430 | ||
431 | return 0; | |
432 | } | |
433 | ||
434 | static int | |
435 | is_ri18 (unsigned int insn, int op, int *rt, int *i18) | |
436 | { | |
437 | if ((insn >> 25) == op) | |
438 | { | |
439 | *rt = insn & 127; | |
440 | *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000; | |
441 | return 1; | |
442 | } | |
443 | ||
444 | return 0; | |
445 | } | |
446 | ||
447 | static int | |
448 | is_branch (unsigned int insn, int *offset, int *reg) | |
449 | { | |
450 | int rt, i7, i16; | |
451 | ||
452 | if (is_ri16 (insn, op_br, &rt, &i16) | |
453 | || is_ri16 (insn, op_brsl, &rt, &i16) | |
454 | || is_ri16 (insn, op_brnz, &rt, &i16) | |
455 | || is_ri16 (insn, op_brz, &rt, &i16) | |
456 | || is_ri16 (insn, op_brhnz, &rt, &i16) | |
457 | || is_ri16 (insn, op_brhz, &rt, &i16)) | |
458 | { | |
459 | *reg = SPU_PC_REGNUM; | |
460 | *offset = i16 << 2; | |
461 | return 1; | |
462 | } | |
463 | ||
464 | if (is_ri16 (insn, op_bra, &rt, &i16) | |
465 | || is_ri16 (insn, op_brasl, &rt, &i16)) | |
466 | { | |
467 | *reg = -1; | |
468 | *offset = i16 << 2; | |
469 | return 1; | |
470 | } | |
471 | ||
472 | if (is_ri7 (insn, op_bi, &rt, reg, &i7) | |
473 | || is_ri7 (insn, op_bisl, &rt, reg, &i7) | |
474 | || is_ri7 (insn, op_biz, &rt, reg, &i7) | |
475 | || is_ri7 (insn, op_binz, &rt, reg, &i7) | |
476 | || is_ri7 (insn, op_bihz, &rt, reg, &i7) | |
477 | || is_ri7 (insn, op_bihnz, &rt, reg, &i7)) | |
478 | { | |
479 | *offset = 0; | |
480 | return 1; | |
481 | } | |
482 | ||
483 | return 0; | |
484 | } | |
485 | ||
486 | ||
487 | /* Prolog parsing. */ | |
488 | ||
489 | struct spu_prologue_data | |
490 | { | |
491 | /* Stack frame size. -1 if analysis was unsuccessful. */ | |
492 | int size; | |
493 | ||
494 | /* How to find the CFA. The CFA is equal to SP at function entry. */ | |
495 | int cfa_reg; | |
496 | int cfa_offset; | |
497 | ||
498 | /* Offset relative to CFA where a register is saved. -1 if invalid. */ | |
499 | int reg_offset[SPU_NUM_GPRS]; | |
500 | }; | |
501 | ||
502 | static CORE_ADDR | |
503 | spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc, | |
504 | struct spu_prologue_data *data) | |
505 | { | |
506 | int found_sp = 0; | |
507 | int found_fp = 0; | |
508 | int found_lr = 0; | |
509 | int reg_immed[SPU_NUM_GPRS]; | |
510 | gdb_byte buf[16]; | |
511 | CORE_ADDR prolog_pc = start_pc; | |
512 | CORE_ADDR pc; | |
513 | int i; | |
514 | ||
515 | ||
516 | /* Initialize DATA to default values. */ | |
517 | data->size = -1; | |
518 | ||
519 | data->cfa_reg = SPU_RAW_SP_REGNUM; | |
520 | data->cfa_offset = 0; | |
521 | ||
522 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
523 | data->reg_offset[i] = -1; | |
524 | ||
525 | /* Set up REG_IMMED array. This is non-zero for a register if we know its | |
526 | preferred slot currently holds this immediate value. */ | |
527 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
528 | reg_immed[i] = 0; | |
529 | ||
530 | /* Scan instructions until the first branch. | |
531 | ||
532 | The following instructions are important prolog components: | |
533 | ||
534 | - The first instruction to set up the stack pointer. | |
535 | - The first instruction to set up the frame pointer. | |
536 | - The first instruction to save the link register. | |
537 | ||
538 | We return the instruction after the latest of these three, | |
539 | or the incoming PC if none is found. The first instruction | |
540 | to set up the stack pointer also defines the frame size. | |
541 | ||
542 | Note that instructions saving incoming arguments to their stack | |
543 | slots are not counted as important, because they are hard to | |
544 | identify with certainty. This should not matter much, because | |
545 | arguments are relevant only in code compiled with debug data, | |
546 | and in such code the GDB core will advance until the first source | |
547 | line anyway, using SAL data. | |
548 | ||
549 | For purposes of stack unwinding, we analyze the following types | |
550 | of instructions in addition: | |
551 | ||
552 | - Any instruction adding to the current frame pointer. | |
553 | - Any instruction loading an immediate constant into a register. | |
554 | - Any instruction storing a register onto the stack. | |
555 | ||
556 | These are used to compute the CFA and REG_OFFSET output. */ | |
557 | ||
558 | for (pc = start_pc; pc < end_pc; pc += 4) | |
559 | { | |
560 | unsigned int insn; | |
561 | int rt, ra, rb, rc, immed; | |
562 | ||
563 | if (target_read_memory (pc, buf, 4)) | |
564 | break; | |
565 | insn = extract_unsigned_integer (buf, 4); | |
566 | ||
567 | /* AI is the typical instruction to set up a stack frame. | |
568 | It is also used to initialize the frame pointer. */ | |
569 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed)) | |
570 | { | |
571 | if (rt == data->cfa_reg && ra == data->cfa_reg) | |
572 | data->cfa_offset -= immed; | |
573 | ||
574 | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
575 | && !found_sp) | |
576 | { | |
577 | found_sp = 1; | |
578 | prolog_pc = pc + 4; | |
579 | ||
580 | data->size = -immed; | |
581 | } | |
582 | else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
583 | && !found_fp) | |
584 | { | |
585 | found_fp = 1; | |
586 | prolog_pc = pc + 4; | |
587 | ||
588 | data->cfa_reg = SPU_FP_REGNUM; | |
589 | data->cfa_offset -= immed; | |
590 | } | |
591 | } | |
592 | ||
593 | /* A is used to set up stack frames of size >= 512 bytes. | |
594 | If we have tracked the contents of the addend register, | |
595 | we can handle this as well. */ | |
596 | else if (is_rr (insn, op_a, &rt, &ra, &rb)) | |
597 | { | |
598 | if (rt == data->cfa_reg && ra == data->cfa_reg) | |
599 | { | |
600 | if (reg_immed[rb] != 0) | |
601 | data->cfa_offset -= reg_immed[rb]; | |
602 | else | |
603 | data->cfa_reg = -1; /* We don't know the CFA any more. */ | |
604 | } | |
605 | ||
606 | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
607 | && !found_sp) | |
608 | { | |
609 | found_sp = 1; | |
610 | prolog_pc = pc + 4; | |
611 | ||
612 | if (reg_immed[rb] != 0) | |
613 | data->size = -reg_immed[rb]; | |
614 | } | |
615 | } | |
616 | ||
617 | /* We need to track IL and ILA used to load immediate constants | |
618 | in case they are later used as input to an A instruction. */ | |
619 | else if (is_ri16 (insn, op_il, &rt, &immed)) | |
620 | { | |
621 | reg_immed[rt] = immed; | |
12102450 UW |
622 | |
623 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
624 | found_sp = 1; | |
771b4502 UW |
625 | } |
626 | ||
627 | else if (is_ri18 (insn, op_ila, &rt, &immed)) | |
628 | { | |
629 | reg_immed[rt] = immed & 0x3ffff; | |
12102450 UW |
630 | |
631 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
632 | found_sp = 1; | |
771b4502 UW |
633 | } |
634 | ||
635 | /* STQD is used to save registers to the stack. */ | |
636 | else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed)) | |
637 | { | |
638 | if (ra == data->cfa_reg) | |
639 | data->reg_offset[rt] = data->cfa_offset - (immed << 4); | |
640 | ||
641 | if (ra == data->cfa_reg && rt == SPU_LR_REGNUM | |
642 | && !found_lr) | |
643 | { | |
644 | found_lr = 1; | |
645 | prolog_pc = pc + 4; | |
646 | } | |
647 | } | |
648 | ||
649 | /* _start uses SELB to set up the stack pointer. */ | |
650 | else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc)) | |
651 | { | |
652 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
653 | found_sp = 1; | |
654 | } | |
655 | ||
656 | /* We terminate if we find a branch. */ | |
657 | else if (is_branch (insn, &immed, &ra)) | |
658 | break; | |
659 | } | |
660 | ||
661 | ||
662 | /* If we successfully parsed until here, and didn't find any instruction | |
663 | modifying SP, we assume we have a frameless function. */ | |
664 | if (!found_sp) | |
665 | data->size = 0; | |
666 | ||
667 | /* Return cooked instead of raw SP. */ | |
668 | if (data->cfa_reg == SPU_RAW_SP_REGNUM) | |
669 | data->cfa_reg = SPU_SP_REGNUM; | |
670 | ||
671 | return prolog_pc; | |
672 | } | |
673 | ||
674 | /* Return the first instruction after the prologue starting at PC. */ | |
675 | static CORE_ADDR | |
676 | spu_skip_prologue (CORE_ADDR pc) | |
677 | { | |
678 | struct spu_prologue_data data; | |
679 | return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data); | |
680 | } | |
681 | ||
682 | /* Return the frame pointer in use at address PC. */ | |
683 | static void | |
684 | spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset) | |
685 | { | |
686 | struct spu_prologue_data data; | |
687 | spu_analyze_prologue (pc, (CORE_ADDR)-1, &data); | |
688 | ||
689 | if (data.size != -1 && data.cfa_reg != -1) | |
690 | { | |
691 | /* The 'frame pointer' address is CFA minus frame size. */ | |
692 | *reg = data.cfa_reg; | |
693 | *offset = data.cfa_offset - data.size; | |
694 | } | |
695 | else | |
696 | { | |
697 | /* ??? We don't really know ... */ | |
698 | *reg = SPU_SP_REGNUM; | |
699 | *offset = 0; | |
700 | } | |
701 | } | |
702 | ||
fe5febed UW |
703 | /* Return true if we are in the function's epilogue, i.e. after the |
704 | instruction that destroyed the function's stack frame. | |
705 | ||
706 | 1) scan forward from the point of execution: | |
707 | a) If you find an instruction that modifies the stack pointer | |
708 | or transfers control (except a return), execution is not in | |
709 | an epilogue, return. | |
710 | b) Stop scanning if you find a return instruction or reach the | |
711 | end of the function or reach the hard limit for the size of | |
712 | an epilogue. | |
713 | 2) scan backward from the point of execution: | |
714 | a) If you find an instruction that modifies the stack pointer, | |
715 | execution *is* in an epilogue, return. | |
716 | b) Stop scanning if you reach an instruction that transfers | |
717 | control or the beginning of the function or reach the hard | |
718 | limit for the size of an epilogue. */ | |
719 | ||
720 | static int | |
721 | spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
722 | { | |
723 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | |
724 | bfd_byte buf[4]; | |
725 | unsigned int insn; | |
726 | int rt, ra, rb, rc, immed; | |
727 | ||
728 | /* Find the search limits based on function boundaries and hard limit. | |
729 | We assume the epilogue can be up to 64 instructions long. */ | |
730 | ||
731 | const int spu_max_epilogue_size = 64 * 4; | |
732 | ||
733 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
734 | return 0; | |
735 | ||
736 | if (pc - func_start < spu_max_epilogue_size) | |
737 | epilogue_start = func_start; | |
738 | else | |
739 | epilogue_start = pc - spu_max_epilogue_size; | |
740 | ||
741 | if (func_end - pc < spu_max_epilogue_size) | |
742 | epilogue_end = func_end; | |
743 | else | |
744 | epilogue_end = pc + spu_max_epilogue_size; | |
745 | ||
746 | /* Scan forward until next 'bi $0'. */ | |
747 | ||
748 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4) | |
749 | { | |
750 | if (target_read_memory (scan_pc, buf, 4)) | |
751 | return 0; | |
752 | insn = extract_unsigned_integer (buf, 4); | |
753 | ||
754 | if (is_branch (insn, &immed, &ra)) | |
755 | { | |
756 | if (immed == 0 && ra == SPU_LR_REGNUM) | |
757 | break; | |
758 | ||
759 | return 0; | |
760 | } | |
761 | ||
762 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | |
763 | || is_rr (insn, op_a, &rt, &ra, &rb) | |
764 | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | |
765 | { | |
766 | if (rt == SPU_RAW_SP_REGNUM) | |
767 | return 0; | |
768 | } | |
769 | } | |
770 | ||
771 | if (scan_pc >= epilogue_end) | |
772 | return 0; | |
773 | ||
774 | /* Scan backward until adjustment to stack pointer (R1). */ | |
775 | ||
776 | for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4) | |
777 | { | |
778 | if (target_read_memory (scan_pc, buf, 4)) | |
779 | return 0; | |
780 | insn = extract_unsigned_integer (buf, 4); | |
781 | ||
782 | if (is_branch (insn, &immed, &ra)) | |
783 | return 0; | |
784 | ||
785 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | |
786 | || is_rr (insn, op_a, &rt, &ra, &rb) | |
787 | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | |
788 | { | |
789 | if (rt == SPU_RAW_SP_REGNUM) | |
790 | return 1; | |
791 | } | |
792 | } | |
793 | ||
794 | return 0; | |
795 | } | |
796 | ||
797 | ||
771b4502 UW |
798 | /* Normal stack frames. */ |
799 | ||
800 | struct spu_unwind_cache | |
801 | { | |
802 | CORE_ADDR func; | |
803 | CORE_ADDR frame_base; | |
804 | CORE_ADDR local_base; | |
805 | ||
806 | struct trad_frame_saved_reg *saved_regs; | |
807 | }; | |
808 | ||
809 | static struct spu_unwind_cache * | |
810 | spu_frame_unwind_cache (struct frame_info *next_frame, | |
811 | void **this_prologue_cache) | |
812 | { | |
813 | struct spu_unwind_cache *info; | |
814 | struct spu_prologue_data data; | |
dcf52cd8 | 815 | gdb_byte buf[16]; |
771b4502 UW |
816 | |
817 | if (*this_prologue_cache) | |
818 | return *this_prologue_cache; | |
819 | ||
820 | info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache); | |
821 | *this_prologue_cache = info; | |
822 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
823 | info->frame_base = 0; | |
824 | info->local_base = 0; | |
825 | ||
826 | /* Find the start of the current function, and analyze its prologue. */ | |
93d42b30 | 827 | info->func = frame_func_unwind (next_frame, NORMAL_FRAME); |
771b4502 UW |
828 | if (info->func == 0) |
829 | { | |
830 | /* Fall back to using the current PC as frame ID. */ | |
831 | info->func = frame_pc_unwind (next_frame); | |
832 | data.size = -1; | |
833 | } | |
834 | else | |
835 | spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data); | |
836 | ||
837 | ||
838 | /* If successful, use prologue analysis data. */ | |
839 | if (data.size != -1 && data.cfa_reg != -1) | |
840 | { | |
841 | CORE_ADDR cfa; | |
842 | int i; | |
771b4502 UW |
843 | |
844 | /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */ | |
845 | frame_unwind_register (next_frame, data.cfa_reg, buf); | |
846 | cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset; | |
847 | ||
848 | /* Call-saved register slots. */ | |
849 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
850 | if (i == SPU_LR_REGNUM | |
851 | || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM)) | |
852 | if (data.reg_offset[i] != -1) | |
853 | info->saved_regs[i].addr = cfa - data.reg_offset[i]; | |
854 | ||
771b4502 UW |
855 | /* Frame bases. */ |
856 | info->frame_base = cfa; | |
857 | info->local_base = cfa - data.size; | |
858 | } | |
859 | ||
860 | /* Otherwise, fall back to reading the backchain link. */ | |
861 | else | |
862 | { | |
863 | CORE_ADDR reg, backchain; | |
864 | ||
865 | /* Get the backchain. */ | |
866 | reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); | |
867 | backchain = read_memory_unsigned_integer (reg, 4); | |
868 | ||
869 | /* A zero backchain terminates the frame chain. Also, sanity | |
870 | check against the local store size limit. */ | |
871 | if (backchain != 0 && backchain < SPU_LS_SIZE) | |
872 | { | |
873 | /* Assume the link register is saved into its slot. */ | |
874 | if (backchain + 16 < SPU_LS_SIZE) | |
875 | info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16; | |
876 | ||
771b4502 UW |
877 | /* Frame bases. */ |
878 | info->frame_base = backchain; | |
879 | info->local_base = reg; | |
880 | } | |
881 | } | |
dcf52cd8 UW |
882 | |
883 | /* The previous SP is equal to the CFA. */ | |
884 | trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base); | |
885 | ||
0a44cb36 UW |
886 | /* Read full contents of the unwound link register in order to |
887 | be able to determine the return address. */ | |
dcf52cd8 UW |
888 | if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM)) |
889 | target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16); | |
890 | else | |
891 | frame_unwind_register (next_frame, SPU_LR_REGNUM, buf); | |
892 | ||
0a44cb36 UW |
893 | /* Normally, the return address is contained in the slot 0 of the |
894 | link register, and slots 1-3 are zero. For an overlay return, | |
895 | slot 0 contains the address of the overlay manager return stub, | |
896 | slot 1 contains the partition number of the overlay section to | |
897 | be returned to, and slot 2 contains the return address within | |
898 | that section. Return the latter address in that case. */ | |
dcf52cd8 UW |
899 | if (extract_unsigned_integer (buf + 8, 4) != 0) |
900 | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, | |
901 | extract_unsigned_integer (buf + 8, 4)); | |
902 | else | |
903 | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, | |
904 | extract_unsigned_integer (buf, 4)); | |
771b4502 UW |
905 | |
906 | return info; | |
907 | } | |
908 | ||
909 | static void | |
910 | spu_frame_this_id (struct frame_info *next_frame, | |
911 | void **this_prologue_cache, struct frame_id *this_id) | |
912 | { | |
913 | struct spu_unwind_cache *info = | |
914 | spu_frame_unwind_cache (next_frame, this_prologue_cache); | |
915 | ||
916 | if (info->frame_base == 0) | |
917 | return; | |
918 | ||
919 | *this_id = frame_id_build (info->frame_base, info->func); | |
920 | } | |
921 | ||
922 | static void | |
923 | spu_frame_prev_register (struct frame_info *next_frame, | |
924 | void **this_prologue_cache, | |
925 | int regnum, int *optimizedp, | |
926 | enum lval_type *lvalp, CORE_ADDR * addrp, | |
927 | int *realnump, gdb_byte *bufferp) | |
928 | { | |
929 | struct spu_unwind_cache *info | |
930 | = spu_frame_unwind_cache (next_frame, this_prologue_cache); | |
931 | ||
932 | /* Special-case the stack pointer. */ | |
933 | if (regnum == SPU_RAW_SP_REGNUM) | |
934 | regnum = SPU_SP_REGNUM; | |
935 | ||
936 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, | |
937 | optimizedp, lvalp, addrp, realnump, bufferp); | |
938 | } | |
939 | ||
940 | static const struct frame_unwind spu_frame_unwind = { | |
941 | NORMAL_FRAME, | |
942 | spu_frame_this_id, | |
943 | spu_frame_prev_register | |
944 | }; | |
945 | ||
946 | const struct frame_unwind * | |
947 | spu_frame_sniffer (struct frame_info *next_frame) | |
948 | { | |
949 | return &spu_frame_unwind; | |
950 | } | |
951 | ||
952 | static CORE_ADDR | |
953 | spu_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
954 | { | |
955 | struct spu_unwind_cache *info | |
956 | = spu_frame_unwind_cache (next_frame, this_cache); | |
957 | return info->local_base; | |
958 | } | |
959 | ||
960 | static const struct frame_base spu_frame_base = { | |
961 | &spu_frame_unwind, | |
962 | spu_frame_base_address, | |
963 | spu_frame_base_address, | |
964 | spu_frame_base_address | |
965 | }; | |
966 | ||
967 | static CORE_ADDR | |
968 | spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
969 | { | |
118dfbaf UW |
970 | CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM); |
971 | /* Mask off interrupt enable bit. */ | |
972 | return pc & -4; | |
771b4502 UW |
973 | } |
974 | ||
975 | static CORE_ADDR | |
976 | spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
977 | { | |
978 | return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); | |
979 | } | |
980 | ||
118dfbaf | 981 | static CORE_ADDR |
61a1198a | 982 | spu_read_pc (struct regcache *regcache) |
118dfbaf | 983 | { |
61a1198a UW |
984 | ULONGEST pc; |
985 | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc); | |
118dfbaf UW |
986 | /* Mask off interrupt enable bit. */ |
987 | return pc & -4; | |
988 | } | |
989 | ||
990 | static void | |
61a1198a | 991 | spu_write_pc (struct regcache *regcache, CORE_ADDR pc) |
118dfbaf UW |
992 | { |
993 | /* Keep interrupt enabled state unchanged. */ | |
61a1198a UW |
994 | ULONGEST old_pc; |
995 | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc); | |
996 | regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM, | |
997 | (pc & -4) | (old_pc & 3)); | |
118dfbaf UW |
998 | } |
999 | ||
771b4502 UW |
1000 | |
1001 | /* Function calling convention. */ | |
1002 | ||
7b3dc0b7 UW |
1003 | static CORE_ADDR |
1004 | spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1005 | { | |
1006 | return sp & ~15; | |
1007 | } | |
1008 | ||
771b4502 UW |
1009 | static int |
1010 | spu_scalar_value_p (struct type *type) | |
1011 | { | |
1012 | switch (TYPE_CODE (type)) | |
1013 | { | |
1014 | case TYPE_CODE_INT: | |
1015 | case TYPE_CODE_ENUM: | |
1016 | case TYPE_CODE_RANGE: | |
1017 | case TYPE_CODE_CHAR: | |
1018 | case TYPE_CODE_BOOL: | |
1019 | case TYPE_CODE_PTR: | |
1020 | case TYPE_CODE_REF: | |
1021 | return TYPE_LENGTH (type) <= 16; | |
1022 | ||
1023 | default: | |
1024 | return 0; | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | static void | |
1029 | spu_value_to_regcache (struct regcache *regcache, int regnum, | |
1030 | struct type *type, const gdb_byte *in) | |
1031 | { | |
1032 | int len = TYPE_LENGTH (type); | |
1033 | ||
1034 | if (spu_scalar_value_p (type)) | |
1035 | { | |
1036 | int preferred_slot = len < 4 ? 4 - len : 0; | |
1037 | regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in); | |
1038 | } | |
1039 | else | |
1040 | { | |
1041 | while (len >= 16) | |
1042 | { | |
1043 | regcache_cooked_write (regcache, regnum++, in); | |
1044 | in += 16; | |
1045 | len -= 16; | |
1046 | } | |
1047 | ||
1048 | if (len > 0) | |
1049 | regcache_cooked_write_part (regcache, regnum, 0, len, in); | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | static void | |
1054 | spu_regcache_to_value (struct regcache *regcache, int regnum, | |
1055 | struct type *type, gdb_byte *out) | |
1056 | { | |
1057 | int len = TYPE_LENGTH (type); | |
1058 | ||
1059 | if (spu_scalar_value_p (type)) | |
1060 | { | |
1061 | int preferred_slot = len < 4 ? 4 - len : 0; | |
1062 | regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out); | |
1063 | } | |
1064 | else | |
1065 | { | |
1066 | while (len >= 16) | |
1067 | { | |
1068 | regcache_cooked_read (regcache, regnum++, out); | |
1069 | out += 16; | |
1070 | len -= 16; | |
1071 | } | |
1072 | ||
1073 | if (len > 0) | |
1074 | regcache_cooked_read_part (regcache, regnum, 0, len, out); | |
1075 | } | |
1076 | } | |
1077 | ||
1078 | static CORE_ADDR | |
1079 | spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1080 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1081 | int nargs, struct value **args, CORE_ADDR sp, | |
1082 | int struct_return, CORE_ADDR struct_addr) | |
1083 | { | |
1084 | int i; | |
1085 | int regnum = SPU_ARG1_REGNUM; | |
1086 | int stack_arg = -1; | |
1087 | gdb_byte buf[16]; | |
1088 | ||
1089 | /* Set the return address. */ | |
1090 | memset (buf, 0, sizeof buf); | |
1091 | store_unsigned_integer (buf, 4, bp_addr); | |
1092 | regcache_cooked_write (regcache, SPU_LR_REGNUM, buf); | |
1093 | ||
1094 | /* If STRUCT_RETURN is true, then the struct return address (in | |
1095 | STRUCT_ADDR) will consume the first argument-passing register. | |
1096 | Both adjust the register count and store that value. */ | |
1097 | if (struct_return) | |
1098 | { | |
1099 | memset (buf, 0, sizeof buf); | |
1100 | store_unsigned_integer (buf, 4, struct_addr); | |
1101 | regcache_cooked_write (regcache, regnum++, buf); | |
1102 | } | |
1103 | ||
1104 | /* Fill in argument registers. */ | |
1105 | for (i = 0; i < nargs; i++) | |
1106 | { | |
1107 | struct value *arg = args[i]; | |
1108 | struct type *type = check_typedef (value_type (arg)); | |
1109 | const gdb_byte *contents = value_contents (arg); | |
1110 | int len = TYPE_LENGTH (type); | |
1111 | int n_regs = align_up (len, 16) / 16; | |
1112 | ||
1113 | /* If the argument doesn't wholly fit into registers, it and | |
1114 | all subsequent arguments go to the stack. */ | |
1115 | if (regnum + n_regs - 1 > SPU_ARGN_REGNUM) | |
1116 | { | |
1117 | stack_arg = i; | |
1118 | break; | |
1119 | } | |
1120 | ||
1121 | spu_value_to_regcache (regcache, regnum, type, contents); | |
1122 | regnum += n_regs; | |
1123 | } | |
1124 | ||
1125 | /* Overflow arguments go to the stack. */ | |
1126 | if (stack_arg != -1) | |
1127 | { | |
1128 | CORE_ADDR ap; | |
1129 | ||
1130 | /* Allocate all required stack size. */ | |
1131 | for (i = stack_arg; i < nargs; i++) | |
1132 | { | |
1133 | struct type *type = check_typedef (value_type (args[i])); | |
1134 | sp -= align_up (TYPE_LENGTH (type), 16); | |
1135 | } | |
1136 | ||
1137 | /* Fill in stack arguments. */ | |
1138 | ap = sp; | |
1139 | for (i = stack_arg; i < nargs; i++) | |
1140 | { | |
1141 | struct value *arg = args[i]; | |
1142 | struct type *type = check_typedef (value_type (arg)); | |
1143 | int len = TYPE_LENGTH (type); | |
1144 | int preferred_slot; | |
1145 | ||
1146 | if (spu_scalar_value_p (type)) | |
1147 | preferred_slot = len < 4 ? 4 - len : 0; | |
1148 | else | |
1149 | preferred_slot = 0; | |
1150 | ||
1151 | target_write_memory (ap + preferred_slot, value_contents (arg), len); | |
1152 | ap += align_up (TYPE_LENGTH (type), 16); | |
1153 | } | |
1154 | } | |
1155 | ||
1156 | /* Allocate stack frame header. */ | |
1157 | sp -= 32; | |
1158 | ||
ee82e879 UW |
1159 | /* Store stack back chain. */ |
1160 | regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf); | |
1161 | target_write_memory (sp, buf, 16); | |
1162 | ||
771b4502 UW |
1163 | /* Finally, update the SP register. */ |
1164 | regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp); | |
1165 | ||
1166 | return sp; | |
1167 | } | |
1168 | ||
1169 | static struct frame_id | |
1170 | spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1171 | { | |
1172 | return frame_id_build (spu_unwind_sp (gdbarch, next_frame), | |
1173 | spu_unwind_pc (gdbarch, next_frame)); | |
1174 | } | |
1175 | ||
1176 | /* Function return value access. */ | |
1177 | ||
1178 | static enum return_value_convention | |
1179 | spu_return_value (struct gdbarch *gdbarch, struct type *type, | |
1180 | struct regcache *regcache, gdb_byte *out, const gdb_byte *in) | |
1181 | { | |
1182 | enum return_value_convention rvc; | |
1183 | ||
1184 | if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16) | |
1185 | rvc = RETURN_VALUE_REGISTER_CONVENTION; | |
1186 | else | |
1187 | rvc = RETURN_VALUE_STRUCT_CONVENTION; | |
1188 | ||
1189 | if (in) | |
1190 | { | |
1191 | switch (rvc) | |
1192 | { | |
1193 | case RETURN_VALUE_REGISTER_CONVENTION: | |
1194 | spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in); | |
1195 | break; | |
1196 | ||
1197 | case RETURN_VALUE_STRUCT_CONVENTION: | |
1198 | error ("Cannot set function return value."); | |
1199 | break; | |
1200 | } | |
1201 | } | |
1202 | else if (out) | |
1203 | { | |
1204 | switch (rvc) | |
1205 | { | |
1206 | case RETURN_VALUE_REGISTER_CONVENTION: | |
1207 | spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out); | |
1208 | break; | |
1209 | ||
1210 | case RETURN_VALUE_STRUCT_CONVENTION: | |
1211 | error ("Function return value unknown."); | |
1212 | break; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | return rvc; | |
1217 | } | |
1218 | ||
1219 | ||
1220 | /* Breakpoints. */ | |
1221 | ||
1222 | static const gdb_byte * | |
1223 | spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) | |
1224 | { | |
1225 | static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; | |
1226 | ||
1227 | *lenptr = sizeof breakpoint; | |
1228 | return breakpoint; | |
1229 | } | |
1230 | ||
1231 | ||
1232 | /* Software single-stepping support. */ | |
1233 | ||
e6590a1b | 1234 | int |
0b1b3e42 | 1235 | spu_software_single_step (struct frame_info *frame) |
771b4502 | 1236 | { |
e0cd558a UW |
1237 | CORE_ADDR pc, next_pc; |
1238 | unsigned int insn; | |
1239 | int offset, reg; | |
1240 | gdb_byte buf[4]; | |
771b4502 | 1241 | |
0b1b3e42 | 1242 | pc = get_frame_pc (frame); |
771b4502 | 1243 | |
e0cd558a UW |
1244 | if (target_read_memory (pc, buf, 4)) |
1245 | return 1; | |
1246 | insn = extract_unsigned_integer (buf, 4); | |
771b4502 | 1247 | |
e0cd558a UW |
1248 | /* Next sequential instruction is at PC + 4, except if the current |
1249 | instruction is a PPE-assisted call, in which case it is at PC + 8. | |
1250 | Wrap around LS limit to be on the safe side. */ | |
1251 | if ((insn & 0xffffff00) == 0x00002100) | |
1252 | next_pc = (pc + 8) & (SPU_LS_SIZE - 1); | |
1253 | else | |
1254 | next_pc = (pc + 4) & (SPU_LS_SIZE - 1); | |
771b4502 | 1255 | |
e0cd558a | 1256 | insert_single_step_breakpoint (next_pc); |
771b4502 | 1257 | |
e0cd558a UW |
1258 | if (is_branch (insn, &offset, ®)) |
1259 | { | |
1260 | CORE_ADDR target = offset; | |
771b4502 | 1261 | |
e0cd558a UW |
1262 | if (reg == SPU_PC_REGNUM) |
1263 | target += pc; | |
1264 | else if (reg != -1) | |
1265 | { | |
0b1b3e42 | 1266 | get_frame_register_bytes (frame, reg, 0, 4, buf); |
e0cd558a | 1267 | target += extract_unsigned_integer (buf, 4) & -4; |
771b4502 | 1268 | } |
e0cd558a UW |
1269 | |
1270 | target = target & (SPU_LS_SIZE - 1); | |
1271 | if (target != next_pc) | |
1272 | insert_single_step_breakpoint (target); | |
771b4502 | 1273 | } |
e6590a1b UW |
1274 | |
1275 | return 1; | |
771b4502 UW |
1276 | } |
1277 | ||
dcf52cd8 UW |
1278 | /* Target overlays for the SPU overlay manager. |
1279 | ||
1280 | See the documentation of simple_overlay_update for how the | |
1281 | interface is supposed to work. | |
1282 | ||
1283 | Data structures used by the overlay manager: | |
1284 | ||
1285 | struct ovly_table | |
1286 | { | |
1287 | u32 vma; | |
1288 | u32 size; | |
1289 | u32 pos; | |
1290 | u32 buf; | |
1291 | } _ovly_table[]; -- one entry per overlay section | |
1292 | ||
1293 | struct ovly_buf_table | |
1294 | { | |
1295 | u32 mapped; | |
1296 | } _ovly_buf_table[]; -- one entry per overlay buffer | |
1297 | ||
1298 | _ovly_table should never change. | |
1299 | ||
1300 | Both tables are aligned to a 16-byte boundary, the symbols _ovly_table | |
1301 | and _ovly_buf_table are of type STT_OBJECT and their size set to the size | |
1302 | of the respective array. buf in _ovly_table is an index into _ovly_buf_table. | |
1303 | ||
1304 | mapped is an index into _ovly_table. Both the mapped and buf indices start | |
1305 | from one to reference the first entry in their respective tables. */ | |
1306 | ||
1307 | /* Using the per-objfile private data mechanism, we store for each | |
1308 | objfile an array of "struct spu_overlay_table" structures, one | |
1309 | for each obj_section of the objfile. This structure holds two | |
1310 | fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this | |
1311 | is *not* an overlay section. If it is non-zero, it represents | |
1312 | a target address. The overlay section is mapped iff the target | |
1313 | integer at this location equals MAPPED_VAL. */ | |
1314 | ||
1315 | static const struct objfile_data *spu_overlay_data; | |
1316 | ||
1317 | struct spu_overlay_table | |
1318 | { | |
1319 | CORE_ADDR mapped_ptr; | |
1320 | CORE_ADDR mapped_val; | |
1321 | }; | |
1322 | ||
1323 | /* Retrieve the overlay table for OBJFILE. If not already cached, read | |
1324 | the _ovly_table data structure from the target and initialize the | |
1325 | spu_overlay_table data structure from it. */ | |
1326 | static struct spu_overlay_table * | |
1327 | spu_get_overlay_table (struct objfile *objfile) | |
1328 | { | |
1329 | struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym; | |
1330 | CORE_ADDR ovly_table_base, ovly_buf_table_base; | |
1331 | unsigned ovly_table_size, ovly_buf_table_size; | |
1332 | struct spu_overlay_table *tbl; | |
1333 | struct obj_section *osect; | |
1334 | char *ovly_table; | |
1335 | int i; | |
1336 | ||
1337 | tbl = objfile_data (objfile, spu_overlay_data); | |
1338 | if (tbl) | |
1339 | return tbl; | |
1340 | ||
1341 | ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile); | |
1342 | if (!ovly_table_msym) | |
1343 | return NULL; | |
1344 | ||
1345 | ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile); | |
1346 | if (!ovly_buf_table_msym) | |
1347 | return NULL; | |
1348 | ||
1349 | ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym); | |
1350 | ovly_table_size = MSYMBOL_SIZE (ovly_table_msym); | |
1351 | ||
1352 | ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym); | |
1353 | ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym); | |
1354 | ||
1355 | ovly_table = xmalloc (ovly_table_size); | |
1356 | read_memory (ovly_table_base, ovly_table, ovly_table_size); | |
1357 | ||
1358 | tbl = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
1359 | objfile->sections_end - objfile->sections, | |
1360 | struct spu_overlay_table); | |
1361 | ||
1362 | for (i = 0; i < ovly_table_size / 16; i++) | |
1363 | { | |
1364 | CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4); | |
1365 | CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4); | |
1366 | CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4); | |
1367 | CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4); | |
1368 | ||
1369 | if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size) | |
1370 | continue; | |
1371 | ||
1372 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
1373 | if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section) | |
1374 | && pos == osect->the_bfd_section->filepos) | |
1375 | { | |
1376 | int ndx = osect - objfile->sections; | |
1377 | tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4; | |
1378 | tbl[ndx].mapped_val = i + 1; | |
1379 | break; | |
1380 | } | |
1381 | } | |
1382 | ||
1383 | xfree (ovly_table); | |
1384 | set_objfile_data (objfile, spu_overlay_data, tbl); | |
1385 | return tbl; | |
1386 | } | |
1387 | ||
1388 | /* Read _ovly_buf_table entry from the target to dermine whether | |
1389 | OSECT is currently mapped, and update the mapped state. */ | |
1390 | static void | |
1391 | spu_overlay_update_osect (struct obj_section *osect) | |
1392 | { | |
1393 | struct spu_overlay_table *ovly_table; | |
1394 | CORE_ADDR val; | |
1395 | ||
1396 | ovly_table = spu_get_overlay_table (osect->objfile); | |
1397 | if (!ovly_table) | |
1398 | return; | |
1399 | ||
1400 | ovly_table += osect - osect->objfile->sections; | |
1401 | if (ovly_table->mapped_ptr == 0) | |
1402 | return; | |
1403 | ||
1404 | val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4); | |
1405 | osect->ovly_mapped = (val == ovly_table->mapped_val); | |
1406 | } | |
1407 | ||
1408 | /* If OSECT is NULL, then update all sections' mapped state. | |
1409 | If OSECT is non-NULL, then update only OSECT's mapped state. */ | |
1410 | static void | |
1411 | spu_overlay_update (struct obj_section *osect) | |
1412 | { | |
1413 | /* Just one section. */ | |
1414 | if (osect) | |
1415 | spu_overlay_update_osect (osect); | |
1416 | ||
1417 | /* All sections. */ | |
1418 | else | |
1419 | { | |
1420 | struct objfile *objfile; | |
1421 | ||
1422 | ALL_OBJSECTIONS (objfile, osect) | |
1423 | if (section_is_overlay (osect->the_bfd_section)) | |
1424 | spu_overlay_update_osect (osect); | |
1425 | } | |
1426 | } | |
1427 | ||
1428 | /* Whenever a new objfile is loaded, read the target's _ovly_table. | |
1429 | If there is one, go through all sections and make sure for non- | |
1430 | overlay sections LMA equals VMA, while for overlay sections LMA | |
1431 | is larger than local store size. */ | |
1432 | static void | |
1433 | spu_overlay_new_objfile (struct objfile *objfile) | |
1434 | { | |
1435 | struct spu_overlay_table *ovly_table; | |
1436 | struct obj_section *osect; | |
1437 | ||
1438 | /* If we've already touched this file, do nothing. */ | |
1439 | if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL) | |
1440 | return; | |
1441 | ||
1442 | /* Check if this objfile has overlays. */ | |
1443 | ovly_table = spu_get_overlay_table (objfile); | |
1444 | if (!ovly_table) | |
1445 | return; | |
1446 | ||
1447 | /* Now go and fiddle with all the LMAs. */ | |
1448 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
1449 | { | |
1450 | bfd *obfd = objfile->obfd; | |
1451 | asection *bsect = osect->the_bfd_section; | |
1452 | int ndx = osect - objfile->sections; | |
1453 | ||
1454 | if (ovly_table[ndx].mapped_ptr == 0) | |
1455 | bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect); | |
1456 | else | |
1457 | bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE; | |
1458 | } | |
1459 | } | |
1460 | ||
771b4502 | 1461 | |
23d964e7 UW |
1462 | /* "info spu" commands. */ |
1463 | ||
1464 | static void | |
1465 | info_spu_event_command (char *args, int from_tty) | |
1466 | { | |
1467 | struct frame_info *frame = get_selected_frame (NULL); | |
1468 | ULONGEST event_status = 0; | |
1469 | ULONGEST event_mask = 0; | |
1470 | struct cleanup *chain; | |
1471 | gdb_byte buf[100]; | |
1472 | char annex[32]; | |
1473 | LONGEST len; | |
1474 | int rc, id; | |
1475 | ||
1476 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | |
1477 | ||
1478 | xsnprintf (annex, sizeof annex, "%d/event_status", id); | |
1479 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1480 | buf, 0, sizeof buf); | |
1481 | if (len <= 0) | |
1482 | error (_("Could not read event_status.")); | |
1483 | event_status = strtoulst (buf, NULL, 16); | |
1484 | ||
1485 | xsnprintf (annex, sizeof annex, "%d/event_mask", id); | |
1486 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1487 | buf, 0, sizeof buf); | |
1488 | if (len <= 0) | |
1489 | error (_("Could not read event_mask.")); | |
1490 | event_mask = strtoulst (buf, NULL, 16); | |
1491 | ||
1492 | chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent"); | |
1493 | ||
1494 | if (ui_out_is_mi_like_p (uiout)) | |
1495 | { | |
1496 | ui_out_field_fmt (uiout, "event_status", | |
1497 | "0x%s", phex_nz (event_status, 4)); | |
1498 | ui_out_field_fmt (uiout, "event_mask", | |
1499 | "0x%s", phex_nz (event_mask, 4)); | |
1500 | } | |
1501 | else | |
1502 | { | |
1503 | printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4)); | |
1504 | printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4)); | |
1505 | } | |
1506 | ||
1507 | do_cleanups (chain); | |
1508 | } | |
1509 | ||
1510 | static void | |
1511 | info_spu_signal_command (char *args, int from_tty) | |
1512 | { | |
1513 | struct frame_info *frame = get_selected_frame (NULL); | |
1514 | ULONGEST signal1 = 0; | |
1515 | ULONGEST signal1_type = 0; | |
1516 | int signal1_pending = 0; | |
1517 | ULONGEST signal2 = 0; | |
1518 | ULONGEST signal2_type = 0; | |
1519 | int signal2_pending = 0; | |
1520 | struct cleanup *chain; | |
1521 | char annex[32]; | |
1522 | gdb_byte buf[100]; | |
1523 | LONGEST len; | |
1524 | int rc, id; | |
1525 | ||
1526 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | |
1527 | ||
1528 | xsnprintf (annex, sizeof annex, "%d/signal1", id); | |
1529 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | |
1530 | if (len < 0) | |
1531 | error (_("Could not read signal1.")); | |
1532 | else if (len == 4) | |
1533 | { | |
1534 | signal1 = extract_unsigned_integer (buf, 4); | |
1535 | signal1_pending = 1; | |
1536 | } | |
1537 | ||
1538 | xsnprintf (annex, sizeof annex, "%d/signal1_type", id); | |
1539 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1540 | buf, 0, sizeof buf); | |
1541 | if (len <= 0) | |
1542 | error (_("Could not read signal1_type.")); | |
1543 | signal1_type = strtoulst (buf, NULL, 16); | |
1544 | ||
1545 | xsnprintf (annex, sizeof annex, "%d/signal2", id); | |
1546 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | |
1547 | if (len < 0) | |
1548 | error (_("Could not read signal2.")); | |
1549 | else if (len == 4) | |
1550 | { | |
1551 | signal2 = extract_unsigned_integer (buf, 4); | |
1552 | signal2_pending = 1; | |
1553 | } | |
1554 | ||
1555 | xsnprintf (annex, sizeof annex, "%d/signal2_type", id); | |
1556 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1557 | buf, 0, sizeof buf); | |
1558 | if (len <= 0) | |
1559 | error (_("Could not read signal2_type.")); | |
1560 | signal2_type = strtoulst (buf, NULL, 16); | |
1561 | ||
1562 | chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal"); | |
1563 | ||
1564 | if (ui_out_is_mi_like_p (uiout)) | |
1565 | { | |
1566 | ui_out_field_int (uiout, "signal1_pending", signal1_pending); | |
1567 | ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4)); | |
1568 | ui_out_field_int (uiout, "signal1_type", signal1_type); | |
1569 | ui_out_field_int (uiout, "signal2_pending", signal2_pending); | |
1570 | ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4)); | |
1571 | ui_out_field_int (uiout, "signal2_type", signal2_type); | |
1572 | } | |
1573 | else | |
1574 | { | |
1575 | if (signal1_pending) | |
1576 | printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4)); | |
1577 | else | |
1578 | printf_filtered (_("Signal 1 not pending ")); | |
1579 | ||
1580 | if (signal1_type) | |
1581 | printf_filtered (_("(Type Overwrite)\n")); | |
1582 | else | |
1583 | printf_filtered (_("(Type Or)\n")); | |
1584 | ||
1585 | if (signal2_pending) | |
1586 | printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4)); | |
1587 | else | |
1588 | printf_filtered (_("Signal 2 not pending ")); | |
1589 | ||
1590 | if (signal2_type) | |
1591 | printf_filtered (_("(Type Overwrite)\n")); | |
1592 | else | |
1593 | printf_filtered (_("(Type Or)\n")); | |
1594 | } | |
1595 | ||
1596 | do_cleanups (chain); | |
1597 | } | |
1598 | ||
1599 | static void | |
1600 | info_spu_mailbox_list (gdb_byte *buf, int nr, | |
1601 | const char *field, const char *msg) | |
1602 | { | |
1603 | struct cleanup *chain; | |
1604 | int i; | |
1605 | ||
1606 | if (nr <= 0) | |
1607 | return; | |
1608 | ||
1609 | chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox"); | |
1610 | ||
1611 | ui_out_table_header (uiout, 32, ui_left, field, msg); | |
1612 | ui_out_table_body (uiout); | |
1613 | ||
1614 | for (i = 0; i < nr; i++) | |
1615 | { | |
1616 | struct cleanup *val_chain; | |
1617 | ULONGEST val; | |
1618 | val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox"); | |
1619 | val = extract_unsigned_integer (buf + 4*i, 4); | |
1620 | ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4)); | |
1621 | do_cleanups (val_chain); | |
1622 | ||
1623 | if (!ui_out_is_mi_like_p (uiout)) | |
1624 | printf_filtered ("\n"); | |
1625 | } | |
1626 | ||
1627 | do_cleanups (chain); | |
1628 | } | |
1629 | ||
1630 | static void | |
1631 | info_spu_mailbox_command (char *args, int from_tty) | |
1632 | { | |
1633 | struct frame_info *frame = get_selected_frame (NULL); | |
1634 | struct cleanup *chain; | |
1635 | char annex[32]; | |
1636 | gdb_byte buf[1024]; | |
1637 | LONGEST len; | |
1638 | int i, id; | |
1639 | ||
1640 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | |
1641 | ||
1642 | chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox"); | |
1643 | ||
1644 | xsnprintf (annex, sizeof annex, "%d/mbox_info", id); | |
1645 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1646 | buf, 0, sizeof buf); | |
1647 | if (len < 0) | |
1648 | error (_("Could not read mbox_info.")); | |
1649 | ||
1650 | info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox"); | |
1651 | ||
1652 | xsnprintf (annex, sizeof annex, "%d/ibox_info", id); | |
1653 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1654 | buf, 0, sizeof buf); | |
1655 | if (len < 0) | |
1656 | error (_("Could not read ibox_info.")); | |
1657 | ||
1658 | info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox"); | |
1659 | ||
1660 | xsnprintf (annex, sizeof annex, "%d/wbox_info", id); | |
1661 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1662 | buf, 0, sizeof buf); | |
1663 | if (len < 0) | |
1664 | error (_("Could not read wbox_info.")); | |
1665 | ||
1666 | info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox"); | |
1667 | ||
1668 | do_cleanups (chain); | |
1669 | } | |
1670 | ||
1671 | static ULONGEST | |
1672 | spu_mfc_get_bitfield (ULONGEST word, int first, int last) | |
1673 | { | |
1674 | ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1)); | |
1675 | return (word >> (63 - last)) & mask; | |
1676 | } | |
1677 | ||
1678 | static void | |
1679 | info_spu_dma_cmdlist (gdb_byte *buf, int nr) | |
1680 | { | |
1681 | static char *spu_mfc_opcode[256] = | |
1682 | { | |
1683 | /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1684 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1685 | /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1686 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1687 | /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL, | |
1688 | "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL, | |
1689 | /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL, | |
1690 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1691 | /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL, | |
1692 | "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL, | |
1693 | /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1694 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1695 | /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1696 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1697 | /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1698 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1699 | /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL, | |
1700 | NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf", | |
1701 | /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1702 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1703 | /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL, | |
1704 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1705 | /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL, | |
1706 | "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1707 | /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1708 | "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL, | |
1709 | /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1710 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1711 | /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1712 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1713 | /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1714 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
1715 | }; | |
1716 | ||
1717 | struct cleanup *chain; | |
1718 | int i; | |
1719 | ||
1720 | chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd"); | |
1721 | ||
1722 | ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode"); | |
1723 | ui_out_table_header (uiout, 3, ui_left, "tag", "Tag"); | |
1724 | ui_out_table_header (uiout, 3, ui_left, "tid", "TId"); | |
1725 | ui_out_table_header (uiout, 3, ui_left, "rid", "RId"); | |
1726 | ui_out_table_header (uiout, 18, ui_left, "ea", "EA"); | |
1727 | ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA"); | |
1728 | ui_out_table_header (uiout, 7, ui_left, "size", "Size"); | |
1729 | ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr"); | |
1730 | ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize"); | |
1731 | ui_out_table_header (uiout, 1, ui_left, "error_p", "E"); | |
1732 | ||
1733 | ui_out_table_body (uiout); | |
1734 | ||
1735 | for (i = 0; i < nr; i++) | |
1736 | { | |
1737 | struct cleanup *cmd_chain; | |
1738 | ULONGEST mfc_cq_dw0; | |
1739 | ULONGEST mfc_cq_dw1; | |
1740 | ULONGEST mfc_cq_dw2; | |
1741 | ULONGEST mfc_cq_dw3; | |
1742 | int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id; | |
1743 | int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size; | |
1744 | ULONGEST mfc_ea; | |
1745 | int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p; | |
1746 | ||
1747 | /* Decode contents of MFC Command Queue Context Save/Restore Registers. | |
1748 | See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */ | |
1749 | ||
1750 | mfc_cq_dw0 = extract_unsigned_integer (buf + 32*i, 8); | |
1751 | mfc_cq_dw1 = extract_unsigned_integer (buf + 32*i + 8, 8); | |
1752 | mfc_cq_dw2 = extract_unsigned_integer (buf + 32*i + 16, 8); | |
1753 | mfc_cq_dw3 = extract_unsigned_integer (buf + 32*i + 24, 8); | |
1754 | ||
1755 | list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14); | |
1756 | list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26); | |
1757 | mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34); | |
1758 | mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39); | |
1759 | list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40); | |
1760 | rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43); | |
1761 | tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46); | |
1762 | ||
1763 | mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12 | |
1764 | | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36); | |
1765 | ||
1766 | mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13); | |
1767 | mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24); | |
1768 | noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37); | |
1769 | qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38); | |
1770 | ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39); | |
1771 | cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40); | |
1772 | ||
1773 | cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd"); | |
1774 | ||
1775 | if (spu_mfc_opcode[mfc_cmd_opcode]) | |
1776 | ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]); | |
1777 | else | |
1778 | ui_out_field_int (uiout, "opcode", mfc_cmd_opcode); | |
1779 | ||
1780 | ui_out_field_int (uiout, "tag", mfc_cmd_tag); | |
1781 | ui_out_field_int (uiout, "tid", tclass_id); | |
1782 | ui_out_field_int (uiout, "rid", rclass_id); | |
1783 | ||
1784 | if (ea_valid_p) | |
1785 | ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8)); | |
1786 | else | |
1787 | ui_out_field_skip (uiout, "ea"); | |
1788 | ||
1789 | ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4); | |
1790 | if (qw_valid_p) | |
1791 | ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4); | |
1792 | else | |
1793 | ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size); | |
1794 | ||
1795 | if (list_valid_p) | |
1796 | { | |
1797 | ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3); | |
1798 | ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3); | |
1799 | } | |
1800 | else | |
1801 | { | |
1802 | ui_out_field_skip (uiout, "lstaddr"); | |
1803 | ui_out_field_skip (uiout, "lstsize"); | |
1804 | } | |
1805 | ||
1806 | if (cmd_error_p) | |
1807 | ui_out_field_string (uiout, "error_p", "*"); | |
1808 | else | |
1809 | ui_out_field_skip (uiout, "error_p"); | |
1810 | ||
1811 | do_cleanups (cmd_chain); | |
1812 | ||
1813 | if (!ui_out_is_mi_like_p (uiout)) | |
1814 | printf_filtered ("\n"); | |
1815 | } | |
1816 | ||
1817 | do_cleanups (chain); | |
1818 | } | |
1819 | ||
1820 | static void | |
1821 | info_spu_dma_command (char *args, int from_tty) | |
1822 | { | |
1823 | struct frame_info *frame = get_selected_frame (NULL); | |
1824 | ULONGEST dma_info_type; | |
1825 | ULONGEST dma_info_mask; | |
1826 | ULONGEST dma_info_status; | |
1827 | ULONGEST dma_info_stall_and_notify; | |
1828 | ULONGEST dma_info_atomic_command_status; | |
1829 | struct cleanup *chain; | |
1830 | char annex[32]; | |
1831 | gdb_byte buf[1024]; | |
1832 | LONGEST len; | |
1833 | int i, id; | |
1834 | ||
1835 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | |
1836 | ||
1837 | xsnprintf (annex, sizeof annex, "%d/dma_info", id); | |
1838 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1839 | buf, 0, 40 + 16 * 32); | |
1840 | if (len <= 0) | |
1841 | error (_("Could not read dma_info.")); | |
1842 | ||
1843 | dma_info_type = extract_unsigned_integer (buf, 8); | |
1844 | dma_info_mask = extract_unsigned_integer (buf + 8, 8); | |
1845 | dma_info_status = extract_unsigned_integer (buf + 16, 8); | |
1846 | dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8); | |
1847 | dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8); | |
1848 | ||
1849 | chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA"); | |
1850 | ||
1851 | if (ui_out_is_mi_like_p (uiout)) | |
1852 | { | |
1853 | ui_out_field_fmt (uiout, "dma_info_type", "0x%s", | |
1854 | phex_nz (dma_info_type, 4)); | |
1855 | ui_out_field_fmt (uiout, "dma_info_mask", "0x%s", | |
1856 | phex_nz (dma_info_mask, 4)); | |
1857 | ui_out_field_fmt (uiout, "dma_info_status", "0x%s", | |
1858 | phex_nz (dma_info_status, 4)); | |
1859 | ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s", | |
1860 | phex_nz (dma_info_stall_and_notify, 4)); | |
1861 | ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s", | |
1862 | phex_nz (dma_info_atomic_command_status, 4)); | |
1863 | } | |
1864 | else | |
1865 | { | |
1866 | const char *query_msg; | |
1867 | ||
1868 | switch (dma_info_type) | |
1869 | { | |
1870 | case 0: query_msg = _("no query pending"); break; | |
1871 | case 1: query_msg = _("'any' query pending"); break; | |
1872 | case 2: query_msg = _("'all' query pending"); break; | |
1873 | default: query_msg = _("undefined query type"); break; | |
1874 | } | |
1875 | ||
1876 | printf_filtered (_("Tag-Group Status 0x%s\n"), | |
1877 | phex (dma_info_status, 4)); | |
1878 | printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"), | |
1879 | phex (dma_info_mask, 4), query_msg); | |
1880 | printf_filtered (_("Stall-and-Notify 0x%s\n"), | |
1881 | phex (dma_info_stall_and_notify, 4)); | |
1882 | printf_filtered (_("Atomic Cmd Status 0x%s\n"), | |
1883 | phex (dma_info_atomic_command_status, 4)); | |
1884 | printf_filtered ("\n"); | |
1885 | } | |
1886 | ||
1887 | info_spu_dma_cmdlist (buf + 40, 16); | |
1888 | do_cleanups (chain); | |
1889 | } | |
1890 | ||
1891 | static void | |
1892 | info_spu_proxydma_command (char *args, int from_tty) | |
1893 | { | |
1894 | struct frame_info *frame = get_selected_frame (NULL); | |
1895 | ULONGEST dma_info_type; | |
1896 | ULONGEST dma_info_mask; | |
1897 | ULONGEST dma_info_status; | |
1898 | struct cleanup *chain; | |
1899 | char annex[32]; | |
1900 | gdb_byte buf[1024]; | |
1901 | LONGEST len; | |
1902 | int i, id; | |
1903 | ||
1904 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | |
1905 | ||
1906 | xsnprintf (annex, sizeof annex, "%d/proxydma_info", id); | |
1907 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
1908 | buf, 0, 24 + 8 * 32); | |
1909 | if (len <= 0) | |
1910 | error (_("Could not read proxydma_info.")); | |
1911 | ||
1912 | dma_info_type = extract_unsigned_integer (buf, 8); | |
1913 | dma_info_mask = extract_unsigned_integer (buf + 8, 8); | |
1914 | dma_info_status = extract_unsigned_integer (buf + 16, 8); | |
1915 | ||
1916 | chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA"); | |
1917 | ||
1918 | if (ui_out_is_mi_like_p (uiout)) | |
1919 | { | |
1920 | ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s", | |
1921 | phex_nz (dma_info_type, 4)); | |
1922 | ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s", | |
1923 | phex_nz (dma_info_mask, 4)); | |
1924 | ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s", | |
1925 | phex_nz (dma_info_status, 4)); | |
1926 | } | |
1927 | else | |
1928 | { | |
1929 | const char *query_msg; | |
1930 | ||
1931 | switch (dma_info_type) | |
1932 | { | |
1933 | case 0: query_msg = _("no query pending"); break; | |
1934 | case 1: query_msg = _("'any' query pending"); break; | |
1935 | case 2: query_msg = _("'all' query pending"); break; | |
1936 | default: query_msg = _("undefined query type"); break; | |
1937 | } | |
1938 | ||
1939 | printf_filtered (_("Tag-Group Status 0x%s\n"), | |
1940 | phex (dma_info_status, 4)); | |
1941 | printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"), | |
1942 | phex (dma_info_mask, 4), query_msg); | |
1943 | printf_filtered ("\n"); | |
1944 | } | |
1945 | ||
1946 | info_spu_dma_cmdlist (buf + 24, 8); | |
1947 | do_cleanups (chain); | |
1948 | } | |
1949 | ||
1950 | static void | |
1951 | info_spu_command (char *args, int from_tty) | |
1952 | { | |
1953 | printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n")); | |
1954 | help_list (infospucmdlist, "info spu ", -1, gdb_stdout); | |
1955 | } | |
1956 | ||
1957 | ||
771b4502 UW |
1958 | /* Set up gdbarch struct. */ |
1959 | ||
1960 | static struct gdbarch * | |
1961 | spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1962 | { | |
1963 | struct gdbarch *gdbarch; | |
794ac428 | 1964 | struct gdbarch_tdep *tdep; |
771b4502 UW |
1965 | |
1966 | /* Find a candidate among the list of pre-declared architectures. */ | |
1967 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1968 | if (arches != NULL) | |
1969 | return arches->gdbarch; | |
1970 | ||
1971 | /* Is is for us? */ | |
1972 | if (info.bfd_arch_info->mach != bfd_mach_spu) | |
1973 | return NULL; | |
1974 | ||
1975 | /* Yes, create a new architecture. */ | |
794ac428 UW |
1976 | tdep = XCALLOC (1, struct gdbarch_tdep); |
1977 | gdbarch = gdbarch_alloc (&info, tdep); | |
771b4502 UW |
1978 | |
1979 | /* Disassembler. */ | |
1980 | set_gdbarch_print_insn (gdbarch, print_insn_spu); | |
1981 | ||
1982 | /* Registers. */ | |
1983 | set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS); | |
1984 | set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS); | |
1985 | set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM); | |
1986 | set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM); | |
118dfbaf UW |
1987 | set_gdbarch_read_pc (gdbarch, spu_read_pc); |
1988 | set_gdbarch_write_pc (gdbarch, spu_write_pc); | |
771b4502 UW |
1989 | set_gdbarch_register_name (gdbarch, spu_register_name); |
1990 | set_gdbarch_register_type (gdbarch, spu_register_type); | |
1991 | set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read); | |
1992 | set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write); | |
9acbedc0 | 1993 | set_gdbarch_value_from_register (gdbarch, spu_value_from_register); |
771b4502 UW |
1994 | set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p); |
1995 | ||
1996 | /* Data types. */ | |
1997 | set_gdbarch_char_signed (gdbarch, 0); | |
1998 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1999 | set_gdbarch_addr_bit (gdbarch, 32); | |
2000 | set_gdbarch_short_bit (gdbarch, 16); | |
2001 | set_gdbarch_int_bit (gdbarch, 32); | |
2002 | set_gdbarch_long_bit (gdbarch, 32); | |
2003 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2004 | set_gdbarch_float_bit (gdbarch, 32); | |
2005 | set_gdbarch_double_bit (gdbarch, 64); | |
2006 | set_gdbarch_long_double_bit (gdbarch, 64); | |
8da61cc4 DJ |
2007 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
2008 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
2009 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
771b4502 UW |
2010 | |
2011 | /* Inferior function calls. */ | |
7b3dc0b7 UW |
2012 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
2013 | set_gdbarch_frame_align (gdbarch, spu_frame_align); | |
771b4502 UW |
2014 | set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call); |
2015 | set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id); | |
2016 | set_gdbarch_return_value (gdbarch, spu_return_value); | |
2017 | ||
2018 | /* Frame handling. */ | |
2019 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2020 | frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer); | |
2021 | frame_base_set_default (gdbarch, &spu_frame_base); | |
2022 | set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc); | |
2023 | set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp); | |
2024 | set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer); | |
2025 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
2026 | set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue); | |
fe5febed | 2027 | set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p); |
771b4502 UW |
2028 | |
2029 | /* Breakpoints. */ | |
2030 | set_gdbarch_decr_pc_after_break (gdbarch, 4); | |
2031 | set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc); | |
2032 | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); | |
2033 | set_gdbarch_software_single_step (gdbarch, spu_software_single_step); | |
2034 | ||
dcf52cd8 UW |
2035 | /* Overlays. */ |
2036 | set_gdbarch_overlay_update (gdbarch, spu_overlay_update); | |
2037 | ||
771b4502 UW |
2038 | return gdbarch; |
2039 | } | |
2040 | ||
2041 | void | |
2042 | _initialize_spu_tdep (void) | |
2043 | { | |
2044 | register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init); | |
f2d43c2c | 2045 | |
dcf52cd8 UW |
2046 | /* Add ourselves to objfile event chain. */ |
2047 | observer_attach_new_objfile (spu_overlay_new_objfile); | |
2048 | spu_overlay_data = register_objfile_data (); | |
23d964e7 UW |
2049 | |
2050 | /* Add root prefix command for all "info spu" commands. */ | |
2051 | add_prefix_cmd ("spu", class_info, info_spu_command, | |
2052 | _("Various SPU specific commands."), | |
2053 | &infospucmdlist, "info spu ", 0, &infolist); | |
2054 | ||
2055 | /* Add various "info spu" commands. */ | |
2056 | add_cmd ("event", class_info, info_spu_event_command, | |
2057 | _("Display SPU event facility status.\n"), | |
2058 | &infospucmdlist); | |
2059 | add_cmd ("signal", class_info, info_spu_signal_command, | |
2060 | _("Display SPU signal notification facility status.\n"), | |
2061 | &infospucmdlist); | |
2062 | add_cmd ("mailbox", class_info, info_spu_mailbox_command, | |
2063 | _("Display SPU mailbox facility status.\n"), | |
2064 | &infospucmdlist); | |
2065 | add_cmd ("dma", class_info, info_spu_dma_command, | |
2066 | _("Display MFC DMA status.\n"), | |
2067 | &infospucmdlist); | |
2068 | add_cmd ("proxydma", class_info, info_spu_proxydma_command, | |
2069 | _("Display MFC Proxy-DMA status.\n"), | |
2070 | &infospucmdlist); | |
771b4502 | 2071 | } |