]>
Commit | Line | Data |
---|---|---|
1ab3bf1b JG |
1 | /* GDB routines for manipulating objfiles. |
2 | Copyright 1992 Free Software Foundation, Inc. | |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | /* This file contains support routines for creating, manipulating, and | |
22 | destroying objfile structures. */ | |
23 | ||
1ab3bf1b JG |
24 | #include "defs.h" |
25 | #include "bfd.h" /* Binary File Description */ | |
26 | #include "symtab.h" | |
27 | #include "symfile.h" | |
5e2e79f8 | 28 | #include "objfiles.h" |
610a7e74 | 29 | #include "gdb-stabs.h" |
c5198d93 | 30 | #include "target.h" |
1ab3bf1b | 31 | |
318bf84f FF |
32 | #include <sys/types.h> |
33 | #include <sys/stat.h> | |
34 | #include <fcntl.h> | |
1ab3bf1b JG |
35 | #include <obstack.h> |
36 | ||
318bf84f FF |
37 | /* Prototypes for local functions */ |
38 | ||
1867b3be FF |
39 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
40 | ||
41 | static int | |
42 | open_existing_mapped_file PARAMS ((char *, long, int)); | |
43 | ||
318bf84f | 44 | static int |
b0246b3b | 45 | open_mapped_file PARAMS ((char *filename, long mtime, int mapped)); |
318bf84f FF |
46 | |
47 | static CORE_ADDR | |
48 | map_to_address PARAMS ((void)); | |
49 | ||
1867b3be FF |
50 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ |
51 | ||
52 | /* Message to be printed before the error message, when an error occurs. */ | |
53 | ||
54 | extern char *error_pre_print; | |
55 | ||
5e2e79f8 FF |
56 | /* Externally visible variables that are owned by this module. |
57 | See declarations in objfile.h for more info. */ | |
1ab3bf1b JG |
58 | |
59 | struct objfile *object_files; /* Linked list of all objfiles */ | |
5e2e79f8 FF |
60 | struct objfile *current_objfile; /* For symbol file being read in */ |
61 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
62 | ||
318bf84f | 63 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
1ab3bf1b | 64 | |
73d0fc78 RP |
65 | /* Locate all mappable sections of a BFD file. |
66 | objfile_p_char is a char * to get it through | |
67 | bfd_map_over_sections; we cast it back to its proper type. */ | |
68 | ||
69 | static void | |
70 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
71 | bfd *abfd; | |
72 | sec_ptr asect; | |
73 | PTR objfile_p_char; | |
74 | { | |
75 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
76 | struct obj_section section; | |
77 | flagword aflag; | |
78 | ||
79 | aflag = bfd_get_section_flags (abfd, asect); | |
e14316e7 | 80 | if (!(aflag & SEC_ALLOC)) |
73d0fc78 RP |
81 | return; |
82 | if (0 == bfd_section_size (abfd, asect)) | |
83 | return; | |
84 | section.offset = 0; | |
4365c36c | 85 | section.objfile = objfile; |
94d4b713 | 86 | section.the_bfd_section = asect; |
73d0fc78 RP |
87 | section.addr = bfd_section_vma (abfd, asect); |
88 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
89 | obstack_grow (&objfile->psymbol_obstack, §ion, sizeof(section)); | |
5573d7d4 | 90 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
73d0fc78 RP |
91 | } |
92 | ||
93 | /* Builds a section table for OBJFILE. | |
4d57c599 JK |
94 | Returns 0 if OK, 1 on error (in which case bfd_error contains the |
95 | error). */ | |
73d0fc78 | 96 | |
4d57c599 | 97 | int |
73d0fc78 RP |
98 | build_objfile_section_table (objfile) |
99 | struct objfile *objfile; | |
100 | { | |
e14316e7 JK |
101 | /* objfile->sections can be already set when reading a mapped symbol |
102 | file. I believe that we do need to rebuild the section table in | |
103 | this case (we rebuild other things derived from the bfd), but we | |
104 | can't free the old one (it's in the psymbol_obstack). So we just | |
105 | waste some memory. */ | |
73d0fc78 RP |
106 | |
107 | objfile->sections_end = 0; | |
108 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile); | |
ccd87bf2 JK |
109 | objfile->sections = (struct obj_section *) |
110 | obstack_finish (&objfile->psymbol_obstack); | |
5573d7d4 | 111 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; |
73d0fc78 RP |
112 | return(0); |
113 | } | |
114 | ||
b0246b3b FF |
115 | /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates |
116 | whether or not an objfile is to be mapped (MAPPED), allocate a new objfile | |
117 | struct, fill it in as best we can, link it into the list of all known | |
118 | objfiles, and return a pointer to the new objfile struct. */ | |
1ab3bf1b JG |
119 | |
120 | struct objfile * | |
b0246b3b | 121 | allocate_objfile (abfd, mapped) |
1ab3bf1b | 122 | bfd *abfd; |
318bf84f | 123 | int mapped; |
1ab3bf1b | 124 | { |
318bf84f | 125 | struct objfile *objfile = NULL; |
318bf84f FF |
126 | |
127 | mapped |= mapped_symbol_files; | |
128 | ||
129 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) | |
100f92e2 | 130 | { |
318bf84f | 131 | |
100f92e2 JK |
132 | /* If we can support mapped symbol files, try to open/reopen the |
133 | mapped file that corresponds to the file from which we wish to | |
134 | read symbols. If the objfile is to be mapped, we must malloc | |
135 | the structure itself using the mmap version, and arrange that | |
136 | all memory allocation for the objfile uses the mmap routines. | |
137 | If we are reusing an existing mapped file, from which we get | |
138 | our objfile pointer, we have to make sure that we update the | |
139 | pointers to the alloc/free functions in the obstack, in case | |
140 | these functions have moved within the current gdb. */ | |
141 | ||
142 | int fd; | |
143 | ||
144 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
145 | mapped); | |
146 | if (fd >= 0) | |
147 | { | |
148 | CORE_ADDR mapto; | |
149 | PTR md; | |
150 | ||
151 | if (((mapto = map_to_address ()) == 0) || | |
152 | ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL)) | |
153 | { | |
154 | close (fd); | |
155 | } | |
156 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
157 | { | |
158 | /* Update memory corruption handler function addresses. */ | |
159 | init_malloc (md); | |
160 | objfile -> md = md; | |
161 | objfile -> mmfd = fd; | |
162 | /* Update pointers to functions to *our* copies */ | |
163 | obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc); | |
164 | obstack_freefun (&objfile -> psymbol_obstack, mfree); | |
165 | obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc); | |
166 | obstack_freefun (&objfile -> symbol_obstack, mfree); | |
167 | obstack_chunkfun (&objfile -> type_obstack, xmmalloc); | |
168 | obstack_freefun (&objfile -> type_obstack, mfree); | |
169 | /* If already in objfile list, unlink it. */ | |
170 | unlink_objfile (objfile); | |
171 | /* Forget things specific to a particular gdb, may have changed. */ | |
172 | objfile -> sf = NULL; | |
173 | } | |
174 | else | |
175 | { | |
176 | ||
177 | /* Set up to detect internal memory corruption. MUST be | |
178 | done before the first malloc. See comments in | |
179 | init_malloc() and mmcheck(). */ | |
180 | ||
181 | init_malloc (md); | |
182 | ||
183 | objfile = (struct objfile *) | |
184 | xmmalloc (md, sizeof (struct objfile)); | |
185 | memset (objfile, 0, sizeof (struct objfile)); | |
186 | objfile -> md = md; | |
187 | objfile -> mmfd = fd; | |
188 | objfile -> flags |= OBJF_MAPPED; | |
189 | mmalloc_setkey (objfile -> md, 0, objfile); | |
190 | obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack, | |
191 | 0, 0, xmmalloc, mfree, | |
192 | objfile -> md); | |
193 | obstack_specify_allocation_with_arg (&objfile -> symbol_obstack, | |
194 | 0, 0, xmmalloc, mfree, | |
195 | objfile -> md); | |
196 | obstack_specify_allocation_with_arg (&objfile -> type_obstack, | |
197 | 0, 0, xmmalloc, mfree, | |
198 | objfile -> md); | |
199 | } | |
200 | } | |
201 | ||
202 | if (mapped && (objfile == NULL)) | |
203 | { | |
204 | warning ("symbol table for '%s' will not be mapped", | |
205 | bfd_get_filename (abfd)); | |
206 | } | |
207 | } | |
318bf84f | 208 | #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */ |
1ab3bf1b | 209 | |
318bf84f | 210 | if (mapped) |
1ab3bf1b | 211 | { |
318bf84f FF |
212 | warning ("this version of gdb does not support mapped symbol tables."); |
213 | ||
214 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
215 | any more, which shuts up gdb unless the user specifically gives the | |
216 | "mapped" keyword again. */ | |
217 | ||
218 | mapped_symbol_files = 0; | |
1ab3bf1b | 219 | } |
318bf84f FF |
220 | |
221 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
222 | ||
223 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
224 | mapped, or failed to open the mapped file for some reason, then revert | |
225 | back to an unmapped objfile. */ | |
226 | ||
227 | if (objfile == NULL) | |
1ab3bf1b JG |
228 | { |
229 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
4ed3a9ea | 230 | memset (objfile, 0, sizeof (struct objfile)); |
318bf84f | 231 | objfile -> md = NULL; |
cd46ffad FF |
232 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc, |
233 | free); | |
234 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc, | |
235 | free); | |
236 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc, | |
237 | free); | |
1ab3bf1b JG |
238 | } |
239 | ||
b0246b3b FF |
240 | /* Update the per-objfile information that comes from the bfd, ensuring |
241 | that any data that is reference is saved in the per-objfile data | |
242 | region. */ | |
1ab3bf1b JG |
243 | |
244 | objfile -> obfd = abfd; | |
2d6d969c FF |
245 | if (objfile -> name != NULL) |
246 | { | |
247 | mfree (objfile -> md, objfile -> name); | |
248 | } | |
b0246b3b | 249 | objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd)); |
1ab3bf1b JG |
250 | objfile -> mtime = bfd_get_mtime (abfd); |
251 | ||
73d0fc78 RP |
252 | /* Build section table. */ |
253 | ||
254 | if (build_objfile_section_table (objfile)) | |
255 | { | |
256 | error ("Can't find the file sections in `%s': %s", | |
c4a081e1 | 257 | objfile -> name, bfd_errmsg (bfd_get_error ())); |
73d0fc78 RP |
258 | } |
259 | ||
1ab3bf1b JG |
260 | /* Push this file onto the head of the linked list of other such files. */ |
261 | ||
262 | objfile -> next = object_files; | |
263 | object_files = objfile; | |
264 | ||
265 | return (objfile); | |
266 | } | |
267 | ||
6c316cfd FF |
268 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the |
269 | list. | |
270 | ||
271 | It is not a bug, or error, to call this function if OBJFILE is not known | |
272 | to be in the current list. This is done in the case of mapped objfiles, | |
273 | for example, just to ensure that the mapped objfile doesn't appear twice | |
274 | in the list. Since the list is threaded, linking in a mapped objfile | |
275 | twice would create a circular list. | |
276 | ||
277 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
278 | unlinking it, just to ensure that we have completely severed any linkages | |
279 | between the OBJFILE and the list. */ | |
280 | ||
281 | void | |
282 | unlink_objfile (objfile) | |
283 | struct objfile *objfile; | |
284 | { | |
285 | struct objfile** objpp; | |
286 | ||
287 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next)) | |
288 | { | |
289 | if (*objpp == objfile) | |
290 | { | |
291 | *objpp = (*objpp) -> next; | |
292 | objfile -> next = NULL; | |
293 | break; | |
294 | } | |
295 | } | |
296 | } | |
297 | ||
1ab3bf1b JG |
298 | |
299 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
300 | that as much as possible is allocated on the symbol_obstack and | |
80d68b1d FF |
301 | psymbol_obstack, so that the memory can be efficiently freed. |
302 | ||
303 | Things which we do NOT free because they are not in malloc'd memory | |
304 | or not in memory specific to the objfile include: | |
305 | ||
306 | objfile -> sf | |
307 | ||
2d6d969c FF |
308 | FIXME: If the objfile is using reusable symbol information (via mmalloc), |
309 | then we need to take into account the fact that more than one process | |
310 | may be using the symbol information at the same time (when mmalloc is | |
311 | extended to support cooperative locking). When more than one process | |
312 | is using the mapped symbol info, we need to be more careful about when | |
313 | we free objects in the reusable area. */ | |
1ab3bf1b JG |
314 | |
315 | void | |
316 | free_objfile (objfile) | |
317 | struct objfile *objfile; | |
318 | { | |
2d6d969c FF |
319 | /* First do any symbol file specific actions required when we are |
320 | finished with a particular symbol file. Note that if the objfile | |
321 | is using reusable symbol information (via mmalloc) then each of | |
322 | these routines is responsible for doing the correct thing, either | |
323 | freeing things which are valid only during this particular gdb | |
324 | execution, or leaving them to be reused during the next one. */ | |
1ab3bf1b | 325 | |
80d68b1d FF |
326 | if (objfile -> sf != NULL) |
327 | { | |
328 | (*objfile -> sf -> sym_finish) (objfile); | |
329 | } | |
2d6d969c FF |
330 | |
331 | /* We always close the bfd. */ | |
332 | ||
80d68b1d | 333 | if (objfile -> obfd != NULL) |
1ab3bf1b | 334 | { |
346168a2 | 335 | char *name = bfd_get_filename (objfile->obfd); |
1ab3bf1b | 336 | bfd_close (objfile -> obfd); |
346168a2 | 337 | free (name); |
1ab3bf1b JG |
338 | } |
339 | ||
2d6d969c | 340 | /* Remove it from the chain of all objfiles. */ |
1ab3bf1b | 341 | |
6c316cfd | 342 | unlink_objfile (objfile); |
1ab3bf1b | 343 | |
1ab3bf1b JG |
344 | /* Before the symbol table code was redone to make it easier to |
345 | selectively load and remove information particular to a specific | |
346 | linkage unit, gdb used to do these things whenever the monolithic | |
347 | symbol table was blown away. How much still needs to be done | |
348 | is unknown, but we play it safe for now and keep each action until | |
349 | it is shown to be no longer needed. */ | |
350 | ||
1ab3bf1b JG |
351 | #if defined (CLEAR_SOLIB) |
352 | CLEAR_SOLIB (); | |
c5198d93 JK |
353 | /* CLEAR_SOLIB closes the bfd's for any shared libraries. But |
354 | the to_sections for a core file might refer to those bfd's. So | |
355 | detach any core file. */ | |
356 | { | |
357 | struct target_ops *t = find_core_target (); | |
358 | if (t != NULL) | |
359 | (t->to_detach) (NULL, 0); | |
360 | } | |
1ab3bf1b | 361 | #endif |
4d57c599 JK |
362 | /* I *think* all our callers call clear_symtab_users. If so, no need |
363 | to call this here. */ | |
1ab3bf1b JG |
364 | clear_pc_function_cache (); |
365 | ||
2d6d969c FF |
366 | /* The last thing we do is free the objfile struct itself for the |
367 | non-reusable case, or detach from the mapped file for the reusable | |
368 | case. Note that the mmalloc_detach or the mfree is the last thing | |
369 | we can do with this objfile. */ | |
1ab3bf1b | 370 | |
55b3ef9a FF |
371 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
372 | ||
2d6d969c FF |
373 | if (objfile -> flags & OBJF_MAPPED) |
374 | { | |
375 | /* Remember the fd so we can close it. We can't close it before | |
376 | doing the detach, and after the detach the objfile is gone. */ | |
100f92e2 JK |
377 | int mmfd; |
378 | ||
2d6d969c FF |
379 | mmfd = objfile -> mmfd; |
380 | mmalloc_detach (objfile -> md); | |
55b3ef9a | 381 | objfile = NULL; |
4ed3a9ea | 382 | close (mmfd); |
2d6d969c | 383 | } |
55b3ef9a FF |
384 | |
385 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
386 | ||
387 | /* If we still have an objfile, then either we don't support reusable | |
388 | objfiles or this one was not reusable. So free it normally. */ | |
389 | ||
390 | if (objfile != NULL) | |
2d6d969c FF |
391 | { |
392 | if (objfile -> name != NULL) | |
393 | { | |
394 | mfree (objfile -> md, objfile -> name); | |
395 | } | |
346168a2 JG |
396 | if (objfile->global_psymbols.list) |
397 | mfree (objfile->md, objfile->global_psymbols.list); | |
398 | if (objfile->static_psymbols.list) | |
399 | mfree (objfile->md, objfile->static_psymbols.list); | |
2d6d969c FF |
400 | /* Free the obstacks for non-reusable objfiles */ |
401 | obstack_free (&objfile -> psymbol_obstack, 0); | |
402 | obstack_free (&objfile -> symbol_obstack, 0); | |
403 | obstack_free (&objfile -> type_obstack, 0); | |
404 | mfree (objfile -> md, objfile); | |
55b3ef9a | 405 | objfile = NULL; |
2d6d969c | 406 | } |
1ab3bf1b JG |
407 | } |
408 | ||
cba0d141 | 409 | |
0eb22669 | 410 | /* Free all the object files at once and clean up their users. */ |
cba0d141 JG |
411 | |
412 | void | |
413 | free_all_objfiles () | |
414 | { | |
415 | struct objfile *objfile, *temp; | |
416 | ||
417 | ALL_OBJFILES_SAFE (objfile, temp) | |
418 | { | |
419 | free_objfile (objfile); | |
420 | } | |
0eb22669 | 421 | clear_symtab_users (); |
cba0d141 | 422 | } |
3c02636b JK |
423 | \f |
424 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
425 | entries in new_offsets. */ | |
426 | void | |
427 | objfile_relocate (objfile, new_offsets) | |
428 | struct objfile *objfile; | |
429 | struct section_offsets *new_offsets; | |
430 | { | |
431 | struct section_offsets *delta = (struct section_offsets *) alloca | |
432 | (sizeof (struct section_offsets) | |
433 | + objfile->num_sections * sizeof (delta->offsets)); | |
434 | ||
435 | { | |
436 | int i; | |
437 | int something_changed = 0; | |
438 | for (i = 0; i < objfile->num_sections; ++i) | |
439 | { | |
440 | ANOFFSET (delta, i) = | |
441 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
442 | if (ANOFFSET (delta, i) != 0) | |
443 | something_changed = 1; | |
444 | } | |
445 | if (!something_changed) | |
446 | return; | |
447 | } | |
448 | ||
449 | /* OK, get all the symtabs. */ | |
450 | { | |
451 | struct symtab *s; | |
452 | ||
72bba93b | 453 | ALL_OBJFILE_SYMTABS (objfile, s) |
3c02636b JK |
454 | { |
455 | struct linetable *l; | |
456 | struct blockvector *bv; | |
457 | int i; | |
458 | ||
459 | /* First the line table. */ | |
460 | l = LINETABLE (s); | |
461 | if (l) | |
462 | { | |
463 | for (i = 0; i < l->nitems; ++i) | |
464 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
465 | } | |
466 | ||
467 | /* Don't relocate a shared blockvector more than once. */ | |
468 | if (!s->primary) | |
469 | continue; | |
470 | ||
471 | bv = BLOCKVECTOR (s); | |
472 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
473 | { | |
474 | struct block *b; | |
475 | int j; | |
476 | ||
477 | b = BLOCKVECTOR_BLOCK (bv, i); | |
478 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
479 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
480 | ||
481 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
482 | { | |
483 | struct symbol *sym = BLOCK_SYM (b, j); | |
484 | /* The RS6000 code from which this was taken skipped | |
485 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
486 | But I'm leaving out that test, on the theory that | |
487 | they can't possibly pass the tests below. */ | |
488 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
489 | || SYMBOL_CLASS (sym) == LOC_STATIC) | |
490 | && SYMBOL_SECTION (sym) >= 0) | |
491 | { | |
492 | SYMBOL_VALUE_ADDRESS (sym) += | |
493 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
494 | } | |
72bba93b SG |
495 | #ifdef MIPS_EFI_SYMBOL_NAME |
496 | /* Relocate Extra Function Info for ecoff. */ | |
497 | ||
498 | else | |
499 | if (SYMBOL_CLASS (sym) == LOC_CONST | |
500 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
501 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
502 | ecoff_relocate_efi (sym, ANOFFSET (delta, s->block_line_section)); | |
503 | #endif | |
3c02636b JK |
504 | } |
505 | } | |
506 | } | |
507 | } | |
508 | ||
610a7e74 ILT |
509 | { |
510 | struct partial_symtab *p; | |
511 | ||
512 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
513 | { | |
804506f6 JK |
514 | /* FIXME: specific to symbol readers which use gdb-stabs.h. |
515 | We can only get away with it since objfile_relocate is only | |
516 | used on XCOFF, which lacks psymtabs, and for gdb-stabs.h | |
517 | targets. */ | |
610a7e74 ILT |
518 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT); |
519 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT); | |
520 | } | |
521 | } | |
522 | ||
523 | { | |
524 | struct partial_symbol *psym; | |
525 | ||
526 | for (psym = objfile->global_psymbols.list; | |
527 | psym < objfile->global_psymbols.next; | |
528 | psym++) | |
529 | if (SYMBOL_SECTION (psym) >= 0) | |
530 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
531 | for (psym = objfile->static_psymbols.list; | |
532 | psym < objfile->static_psymbols.next; | |
533 | psym++) | |
534 | if (SYMBOL_SECTION (psym) >= 0) | |
535 | SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym)); | |
536 | } | |
537 | ||
3c02636b JK |
538 | { |
539 | struct minimal_symbol *msym; | |
540 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
610a7e74 ILT |
541 | if (SYMBOL_SECTION (msym) >= 0) |
542 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); | |
3c02636b JK |
543 | } |
544 | ||
545 | { | |
546 | int i; | |
547 | for (i = 0; i < objfile->num_sections; ++i) | |
548 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
549 | } | |
72bba93b SG |
550 | |
551 | { | |
552 | struct obj_section *s; | |
553 | bfd *abfd; | |
554 | ||
555 | abfd = symfile_objfile->obfd; | |
556 | ||
557 | for (s = symfile_objfile->sections; | |
558 | s < symfile_objfile->sections_end; ++s) | |
559 | { | |
560 | flagword flags; | |
561 | ||
562 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
563 | ||
564 | if (flags & SEC_CODE) | |
565 | { | |
566 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT); | |
567 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT); | |
568 | } | |
569 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
570 | { | |
571 | s->addr += ANOFFSET (delta, SECT_OFF_DATA); | |
572 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA); | |
573 | } | |
574 | else if (flags & SEC_ALLOC) | |
575 | { | |
576 | s->addr += ANOFFSET (delta, SECT_OFF_BSS); | |
577 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS); | |
578 | } | |
579 | } | |
580 | } | |
a4b4f520 SG |
581 | |
582 | if (objfile->ei.entry_point != ~0) | |
583 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT); | |
584 | ||
585 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
586 | { | |
587 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
588 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
589 | } | |
590 | ||
591 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
592 | { | |
593 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
594 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
595 | } | |
596 | ||
597 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
598 | { | |
599 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
600 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT); | |
601 | } | |
3c02636b JK |
602 | } |
603 | \f | |
1ab3bf1b JG |
604 | /* Many places in gdb want to test just to see if we have any partial |
605 | symbols available. This function returns zero if none are currently | |
606 | available, nonzero otherwise. */ | |
607 | ||
608 | int | |
609 | have_partial_symbols () | |
610 | { | |
611 | struct objfile *ofp; | |
1ab3bf1b | 612 | |
84ffdec2 | 613 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
614 | { |
615 | if (ofp -> psymtabs != NULL) | |
616 | { | |
84ffdec2 | 617 | return 1; |
1ab3bf1b JG |
618 | } |
619 | } | |
84ffdec2 | 620 | return 0; |
1ab3bf1b JG |
621 | } |
622 | ||
623 | /* Many places in gdb want to test just to see if we have any full | |
624 | symbols available. This function returns zero if none are currently | |
625 | available, nonzero otherwise. */ | |
626 | ||
627 | int | |
628 | have_full_symbols () | |
629 | { | |
630 | struct objfile *ofp; | |
1ab3bf1b | 631 | |
84ffdec2 | 632 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
633 | { |
634 | if (ofp -> symtabs != NULL) | |
635 | { | |
84ffdec2 | 636 | return 1; |
1ab3bf1b JG |
637 | } |
638 | } | |
84ffdec2 | 639 | return 0; |
1ab3bf1b JG |
640 | } |
641 | ||
642 | /* Many places in gdb want to test just to see if we have any minimal | |
643 | symbols available. This function returns zero if none are currently | |
644 | available, nonzero otherwise. */ | |
645 | ||
646 | int | |
647 | have_minimal_symbols () | |
648 | { | |
649 | struct objfile *ofp; | |
1ab3bf1b | 650 | |
84ffdec2 | 651 | ALL_OBJFILES (ofp) |
1ab3bf1b JG |
652 | { |
653 | if (ofp -> msymbols != NULL) | |
654 | { | |
84ffdec2 | 655 | return 1; |
1ab3bf1b JG |
656 | } |
657 | } | |
84ffdec2 | 658 | return 0; |
1ab3bf1b JG |
659 | } |
660 | ||
1867b3be FF |
661 | #if !defined(NO_MMALLOC) && defined(HAVE_MMAP) |
662 | ||
663 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
664 | of the corresponding symbol file in MTIME, try to open an existing file | |
665 | with the name SYMSFILENAME and verify it is more recent than the base | |
666 | file by checking it's timestamp against MTIME. | |
667 | ||
668 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
669 | ||
670 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
671 | user has specified creation of a mapped file. If so, we don't issue | |
672 | any warning message because we will be creating a new mapped file anyway, | |
673 | overwriting the old one. If not, then we issue a warning message so that | |
674 | the user will know why we aren't using this existing mapped symbol file. | |
675 | In either case, we return -1. | |
676 | ||
677 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
678 | some reason, then prints an appropriate system error message and returns -1. | |
679 | ||
680 | Otherwise, returns the open file descriptor. */ | |
681 | ||
682 | static int | |
683 | open_existing_mapped_file (symsfilename, mtime, mapped) | |
684 | char *symsfilename; | |
685 | long mtime; | |
686 | int mapped; | |
687 | { | |
688 | int fd = -1; | |
689 | struct stat sbuf; | |
690 | ||
691 | if (stat (symsfilename, &sbuf) == 0) | |
692 | { | |
693 | if (sbuf.st_mtime < mtime) | |
694 | { | |
695 | if (!mapped) | |
696 | { | |
a679650f FF |
697 | warning ("mapped symbol file `%s' is out of date, ignored it", |
698 | symsfilename); | |
1867b3be FF |
699 | } |
700 | } | |
701 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
702 | { | |
703 | if (error_pre_print) | |
704 | { | |
199b2450 | 705 | printf_unfiltered (error_pre_print); |
1867b3be FF |
706 | } |
707 | print_sys_errmsg (symsfilename, errno); | |
708 | } | |
709 | } | |
710 | return (fd); | |
711 | } | |
712 | ||
b0246b3b | 713 | /* Look for a mapped symbol file that corresponds to FILENAME and is more |
318bf84f | 714 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb |
b0246b3b FF |
715 | use a mapped symbol file for this file, so create a new one if one does |
716 | not currently exist. | |
318bf84f FF |
717 | |
718 | If found, then return an open file descriptor for the file, otherwise | |
719 | return -1. | |
720 | ||
721 | This routine is responsible for implementing the policy that generates | |
722 | the name of the mapped symbol file from the name of a file containing | |
1867b3be FF |
723 | symbols that gdb would like to read. Currently this policy is to append |
724 | ".syms" to the name of the file. | |
725 | ||
726 | This routine is also responsible for implementing the policy that | |
727 | determines where the mapped symbol file is found (the search path). | |
728 | This policy is that when reading an existing mapped file, a file of | |
729 | the correct name in the current directory takes precedence over a | |
730 | file of the correct name in the same directory as the symbol file. | |
731 | When creating a new mapped file, it is always created in the current | |
732 | directory. This helps to minimize the chances of a user unknowingly | |
733 | creating big mapped files in places like /bin and /usr/local/bin, and | |
734 | allows a local copy to override a manually installed global copy (in | |
735 | /bin for example). */ | |
318bf84f FF |
736 | |
737 | static int | |
b0246b3b FF |
738 | open_mapped_file (filename, mtime, mapped) |
739 | char *filename; | |
318bf84f FF |
740 | long mtime; |
741 | int mapped; | |
742 | { | |
743 | int fd; | |
1867b3be | 744 | char *symsfilename; |
318bf84f | 745 | |
1867b3be FF |
746 | /* First try to open an existing file in the current directory, and |
747 | then try the directory where the symbol file is located. */ | |
318bf84f | 748 | |
1867b3be FF |
749 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); |
750 | if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0) | |
318bf84f | 751 | { |
1867b3be FF |
752 | free (symsfilename); |
753 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
754 | fd = open_existing_mapped_file (symsfilename, mtime, mapped); | |
318bf84f FF |
755 | } |
756 | ||
1867b3be FF |
757 | /* If we don't have an open file by now, then either the file does not |
758 | already exist, or the base file has changed since it was created. In | |
759 | either case, if the user has specified use of a mapped file, then | |
760 | create a new mapped file, truncating any existing one. If we can't | |
761 | create one, print a system error message saying why we can't. | |
318bf84f FF |
762 | |
763 | By default the file is rw for everyone, with the user's umask taking | |
764 | care of turning off the permissions the user wants off. */ | |
765 | ||
1867b3be | 766 | if ((fd < 0) && mapped) |
318bf84f | 767 | { |
1867b3be FF |
768 | free (symsfilename); |
769 | symsfilename = concat ("./", basename (filename), ".syms", | |
770 | (char *) NULL); | |
771 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
772 | { | |
773 | if (error_pre_print) | |
774 | { | |
199b2450 | 775 | printf_unfiltered (error_pre_print); |
1867b3be FF |
776 | } |
777 | print_sys_errmsg (symsfilename, errno); | |
778 | } | |
318bf84f FF |
779 | } |
780 | ||
1867b3be | 781 | free (symsfilename); |
318bf84f FF |
782 | return (fd); |
783 | } | |
784 | ||
785 | /* Return the base address at which we would like the next objfile's | |
786 | mapped data to start. | |
787 | ||
788 | For now, we use the kludge that the configuration specifies a base | |
789 | address to which it is safe to map the first mmalloc heap, and an | |
790 | increment to add to this address for each successive heap. There are | |
791 | a lot of issues to deal with here to make this work reasonably, including: | |
792 | ||
793 | Avoid memory collisions with existing mapped address spaces | |
794 | ||
795 | Reclaim address spaces when their mmalloc heaps are unmapped | |
796 | ||
797 | When mmalloc heaps are shared between processes they have to be | |
798 | mapped at the same addresses in each | |
799 | ||
800 | Once created, a mmalloc heap that is to be mapped back in must be | |
801 | mapped at the original address. I.E. each objfile will expect to | |
802 | be remapped at it's original address. This becomes a problem if | |
803 | the desired address is already in use. | |
804 | ||
805 | etc, etc, etc. | |
806 | ||
807 | */ | |
808 | ||
809 | ||
810 | static CORE_ADDR | |
811 | map_to_address () | |
812 | { | |
813 | ||
814 | #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT) | |
815 | ||
816 | static CORE_ADDR next = MMAP_BASE_ADDRESS; | |
817 | CORE_ADDR mapto = next; | |
818 | ||
819 | next += MMAP_INCREMENT; | |
820 | return (mapto); | |
821 | ||
822 | #else | |
823 | ||
824 | return (0); | |
825 | ||
826 | #endif | |
827 | ||
828 | } | |
1867b3be FF |
829 | |
830 | #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */ | |
73d0fc78 RP |
831 | |
832 | /* Returns a section whose range includes PC or NULL if none found. */ | |
833 | ||
4365c36c | 834 | struct obj_section * |
73d0fc78 RP |
835 | find_pc_section(pc) |
836 | CORE_ADDR pc; | |
837 | { | |
838 | struct obj_section *s; | |
839 | struct objfile *objfile; | |
840 | ||
841 | ALL_OBJFILES (objfile) | |
842 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
843 | if (s->addr <= pc | |
844 | && pc < s->endaddr) | |
4365c36c | 845 | return(s); |
73d0fc78 RP |
846 | |
847 | return(NULL); | |
848 | } | |
38b90473 PS |
849 | |
850 | /* In SVR4, we recognize a trampoline by it's section name. | |
851 | That is, if the pc is in a section named ".plt" then we are in | |
852 | a trampoline. */ | |
853 | ||
854 | int | |
855 | in_plt_section(pc, name) | |
856 | CORE_ADDR pc; | |
857 | char *name; | |
858 | { | |
859 | struct obj_section *s; | |
860 | int retval = 0; | |
861 | ||
862 | s = find_pc_section(pc); | |
863 | ||
864 | retval = (s != NULL | |
865 | && s->the_bfd_section->name != NULL | |
866 | && STREQ (s->the_bfd_section->name, ".plt")); | |
867 | return(retval); | |
868 | } |