]>
Commit | Line | Data |
---|---|---|
bd5635a1 RP |
1 | /* Target dependent code for the Motorola 68000 series. |
2 | Copyright (C) 1990 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
b6666a5d | 6 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 7 | it under the terms of the GNU General Public License as published by |
b6666a5d FF |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
bd5635a1 | 10 | |
b6666a5d | 11 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
b6666a5d FF |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 RP |
19 | |
20 | #include "defs.h" | |
21 | #include "ieee-float.h" | |
b6666a5d FF |
22 | #include "param.h" |
23 | #include "frame.h" | |
24 | #include "symtab.h" | |
bd5635a1 | 25 | |
b6666a5d | 26 | const struct ext_format ext_format_68881 = { |
bd5635a1 | 27 | /* tot sbyte smask expbyte manbyte */ |
b6666a5d | 28 | 12, 0, 0x80, 0,1, 4,8 /* mc68881 */ |
bd5635a1 | 29 | }; |
b6666a5d FF |
30 | |
31 | \f | |
32 | /* Things needed for making the inferior call functions. | |
33 | It seems like every m68k based machine has almost identical definitions | |
34 | in the individual machine's configuration files. Most other cpu types | |
35 | (mips, i386, etc) have routines in their *-tdep.c files to handle this | |
36 | for most configurations. The m68k family should be able to do this as | |
37 | well. These macros can still be overridden when necessary. */ | |
38 | ||
39 | /* Push an empty stack frame, to record the current PC, etc. */ | |
40 | ||
41 | void | |
42 | m68k_push_dummy_frame () | |
43 | { | |
44 | register CORE_ADDR sp = read_register (SP_REGNUM); | |
45 | register int regnum; | |
46 | char raw_buffer[12]; | |
47 | ||
48 | sp = push_word (sp, read_register (PC_REGNUM)); | |
49 | sp = push_word (sp, read_register (FP_REGNUM)); | |
50 | write_register (FP_REGNUM, sp); | |
51 | #if defined (HAVE_68881) | |
52 | for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) | |
53 | { | |
54 | read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
55 | sp = push_bytes (sp, raw_buffer, 12); | |
56 | } | |
57 | #endif | |
58 | for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) | |
59 | { | |
60 | sp = push_word (sp, read_register (regnum)); | |
61 | } | |
62 | sp = push_word (sp, read_register (PS_REGNUM)); | |
63 | write_register (SP_REGNUM, sp); | |
64 | } | |
65 | ||
66 | /* Discard from the stack the innermost frame, | |
67 | restoring all saved registers. */ | |
68 | ||
69 | void | |
70 | m68k_pop_frame () | |
71 | { | |
72 | register FRAME frame = get_current_frame (); | |
73 | register CORE_ADDR fp; | |
74 | register int regnum; | |
75 | struct frame_saved_regs fsr; | |
76 | struct frame_info *fi; | |
77 | char raw_buffer[12]; | |
78 | ||
79 | fi = get_frame_info (frame); | |
80 | fp = fi -> frame; | |
81 | get_frame_saved_regs (fi, &fsr); | |
82 | #if defined (HAVE_68881) | |
83 | for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--) | |
84 | { | |
85 | if (fsr.regs[regnum]) | |
86 | { | |
87 | read_memory (fsr.regs[regnum], raw_buffer, 12); | |
88 | write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); | |
89 | } | |
90 | } | |
91 | #endif | |
92 | for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--) | |
93 | { | |
94 | if (fsr.regs[regnum]) | |
95 | { | |
96 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
97 | } | |
98 | } | |
99 | if (fsr.regs[PS_REGNUM]) | |
100 | { | |
101 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
102 | } | |
103 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
104 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); | |
105 | write_register (SP_REGNUM, fp + 8); | |
106 | flush_cached_frames (); | |
107 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
108 | read_pc ())); | |
109 | } | |
110 | ||
111 | \f | |
112 | /* Given an ip value corresponding to the start of a function, | |
113 | return the ip of the first instruction after the function | |
114 | prologue. This is the generic m68k support. Machines which | |
115 | require something different can override the SKIP_PROLOGUE | |
116 | macro to point elsewhere. | |
117 | ||
118 | Some instructions which typically may appear in a function | |
119 | prologue include: | |
120 | ||
121 | A link instruction, word form: | |
122 | ||
123 | link.w %a6,&0 4e56 XXXX | |
124 | ||
125 | A link instruction, long form: | |
126 | ||
127 | link.l %fp,&F%1 480e XXXX XXXX | |
128 | ||
129 | A movm instruction to preserve integer regs: | |
130 | ||
131 | movm.l &M%1,(4,%sp) 48ef XXXX XXXX | |
132 | ||
133 | A fmovm instruction to preserve float regs: | |
134 | ||
135 | fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX | |
136 | ||
137 | Some profiling setup code (FIXME, not recognized yet): | |
138 | ||
139 | lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX | |
140 | bsr _mcount 61ff XXXX XXXX | |
141 | ||
142 | */ | |
143 | ||
144 | #define P_LINK_L 0x480e | |
145 | #define P_LINK_W 0x4e56 | |
146 | #define P_MOV_L 0x207c | |
147 | #define P_JSR 0x4eb9 | |
148 | #define P_BSR 0x61ff | |
149 | #define P_LEA_L 0x43fb | |
150 | #define P_MOVM_L 0x48ef | |
151 | #define P_FMOVM 0xf237 | |
152 | ||
153 | CORE_ADDR | |
154 | m68k_skip_prologue (ip) | |
155 | CORE_ADDR ip; | |
156 | { | |
157 | register CORE_ADDR limit; | |
158 | struct symtab_and_line sal; | |
159 | register int op; | |
160 | ||
161 | /* Find out if there is a known limit for the extent of the prologue. | |
162 | If so, ensure we don't go past it. If not, assume "infinity". */ | |
163 | ||
164 | sal = find_pc_line (ip, 0); | |
165 | limit = (sal.end) ? sal.end : (CORE_ADDR) ~0; | |
166 | ||
167 | while (ip < limit) | |
168 | { | |
169 | op = read_memory_integer (ip, 2); | |
170 | op &= 0xFFFF; | |
171 | ||
172 | if (op == P_LINK_W) | |
173 | { | |
174 | ip += 4; /* Skip link.w */ | |
175 | } | |
176 | else if (op == P_LINK_L) | |
177 | { | |
178 | ip += 6; /* Skip link.l */ | |
179 | } | |
180 | else if (op == P_MOVM_L) | |
181 | { | |
182 | ip += 6; /* Skip movm.l */ | |
183 | } | |
184 | else if (op == P_FMOVM) | |
185 | { | |
186 | ip += 10; /* Skip fmovm */ | |
187 | } | |
188 | else | |
189 | { | |
190 | break; /* Found unknown code, bail out. */ | |
191 | } | |
192 | } | |
193 | return (ip); | |
194 | } | |
195 | ||
196 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ | |
197 | ||
198 | #include <sys/procfs.h> | |
199 | ||
200 | /* The /proc interface divides the target machine's register set up into | |
201 | two different sets, the general register set (gregset) and the floating | |
202 | point register set (fpregset). For each set, there is an ioctl to get | |
203 | the current register set and another ioctl to set the current values. | |
204 | ||
205 | The actual structure passed through the ioctl interface is, of course, | |
206 | naturally machine dependent, and is different for each set of registers. | |
207 | For the m68k for example, the general register set is typically defined | |
208 | by: | |
209 | ||
210 | typedef int gregset_t[18]; | |
211 | ||
212 | #define R_D0 0 | |
213 | ... | |
214 | #define R_PS 17 | |
215 | ||
216 | and the floating point set by: | |
217 | ||
218 | typedef struct fpregset { | |
219 | int f_pcr; | |
220 | int f_psr; | |
221 | int f_fpiaddr; | |
222 | int f_fpregs[8][3]; (8 regs, 96 bits each) | |
223 | } fpregset_t; | |
224 | ||
225 | These routines provide the packing and unpacking of gregset_t and | |
226 | fpregset_t formatted data. | |
227 | ||
228 | */ | |
229 | ||
230 | ||
231 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
232 | unpack the register contents and supply them as gdb's idea of the current | |
233 | register values. */ | |
234 | ||
235 | void | |
236 | supply_gregset (gregsetp) | |
237 | gregset_t *gregsetp; | |
238 | { | |
239 | register int regno; | |
240 | register greg_t *regp = (greg_t *) gregsetp; | |
241 | ||
242 | for (regno = 0 ; regno < R_PC ; regno++) | |
243 | { | |
244 | supply_register (regno, (char *) (regp + regno)); | |
245 | } | |
246 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
247 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
248 | } | |
249 | ||
250 | void | |
251 | fill_gregset (gregsetp, regno) | |
252 | gregset_t *gregsetp; | |
253 | int regno; | |
254 | { | |
255 | int regi; | |
256 | register greg_t *regp = (greg_t *) gregsetp; | |
257 | extern char registers[]; | |
258 | ||
259 | for (regi = 0 ; regi < R_PC ; regi++) | |
260 | { | |
261 | if ((regno == -1) || (regno == regi)) | |
262 | { | |
263 | *(regp + regno) = *(int *) ®isters[REGISTER_BYTE (regi)]; | |
264 | } | |
265 | } | |
266 | if ((regno == -1) || (regno == PS_REGNUM)) | |
267 | { | |
268 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
269 | } | |
270 | if ((regno == -1) || (regno == PC_REGNUM)) | |
271 | { | |
272 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
273 | } | |
274 | } | |
275 | ||
276 | #if defined (FP0_REGNUM) | |
277 | ||
278 | /* Given a pointer to a floating point register set in /proc format | |
279 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
280 | idea of the current floating point register values. */ | |
281 | ||
282 | void | |
283 | supply_fpregset (fpregsetp) | |
284 | fpregset_t *fpregsetp; | |
285 | { | |
286 | register int regno; | |
287 | ||
288 | for (regno = FP0_REGNUM ; regno < FPC_REGNUM ; regno++) | |
289 | { | |
290 | supply_register (regno, (char *) &(fpregsetp -> f_fpregs[regno][0])); | |
291 | } | |
292 | supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr)); | |
293 | supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr)); | |
294 | supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr)); | |
295 | } | |
296 | ||
297 | /* Given a pointer to a floating point register set in /proc format | |
298 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
299 | of the current floating point register set. If REGNO is -1, update | |
300 | them all. */ | |
301 | ||
302 | void | |
303 | fill_fpregset (fpregsetp, regno) | |
304 | fpregset_t *fpregsetp; | |
305 | int regno; | |
306 | { | |
307 | int regi; | |
308 | char *to; | |
309 | char *from; | |
310 | extern char registers[]; | |
311 | ||
312 | for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++) | |
313 | { | |
314 | if ((regno == -1) || (regno == regi)) | |
315 | { | |
316 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
317 | to = (char *) &(fpregsetp -> f_fpregs[regi][0]); | |
318 | bcopy (from, to, REGISTER_RAW_SIZE (regno)); | |
319 | } | |
320 | } | |
321 | if ((regno == -1) || (regno == FPC_REGNUM)) | |
322 | { | |
323 | fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)]; | |
324 | } | |
325 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
326 | { | |
327 | fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
328 | } | |
329 | if ((regno == -1) || (regno == FPI_REGNUM)) | |
330 | { | |
331 | fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)]; | |
332 | } | |
333 | } | |
334 | ||
335 | #endif /* defined (FP0_REGNUM) */ | |
336 | ||
337 | #endif /* USE_PROC_FS */ |