]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Print values for GDB, the GNU debugger. |
5c1c87f0 | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
9b254dd1 | 4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
777ea8f1 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "target.h" | |
c906108c | 30 | #include "language.h" |
c906108c SS |
31 | #include "annotate.h" |
32 | #include "valprint.h" | |
39424bef | 33 | #include "floatformat.h" |
d16aafd8 | 34 | #include "doublest.h" |
19ca80ba | 35 | #include "exceptions.h" |
7678ef8f | 36 | #include "dfp.h" |
c906108c SS |
37 | |
38 | #include <errno.h> | |
39 | ||
40 | /* Prototypes for local functions */ | |
41 | ||
777ea8f1 | 42 | static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
917317f4 JM |
43 | int len, int *errnoptr); |
44 | ||
a14ed312 | 45 | static void show_print (char *, int); |
c906108c | 46 | |
a14ed312 | 47 | static void set_print (char *, int); |
c906108c | 48 | |
a14ed312 | 49 | static void set_radix (char *, int); |
c906108c | 50 | |
a14ed312 | 51 | static void show_radix (char *, int); |
c906108c | 52 | |
a14ed312 | 53 | static void set_input_radix (char *, int, struct cmd_list_element *); |
c906108c | 54 | |
a14ed312 | 55 | static void set_input_radix_1 (int, unsigned); |
c906108c | 56 | |
a14ed312 | 57 | static void set_output_radix (char *, int, struct cmd_list_element *); |
c906108c | 58 | |
a14ed312 | 59 | static void set_output_radix_1 (int, unsigned); |
c906108c | 60 | |
a14ed312 | 61 | void _initialize_valprint (void); |
c906108c SS |
62 | |
63 | /* Maximum number of chars to print for a string pointer value or vector | |
64 | contents, or UINT_MAX for no limit. Note that "set print elements 0" | |
65 | stores UINT_MAX in print_max, which displays in a show command as | |
66 | "unlimited". */ | |
67 | ||
68 | unsigned int print_max; | |
69 | #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ | |
920d2a44 AC |
70 | static void |
71 | show_print_max (struct ui_file *file, int from_tty, | |
72 | struct cmd_list_element *c, const char *value) | |
73 | { | |
74 | fprintf_filtered (file, _("\ | |
75 | Limit on string chars or array elements to print is %s.\n"), | |
76 | value); | |
77 | } | |
78 | ||
c906108c SS |
79 | |
80 | /* Default input and output radixes, and output format letter. */ | |
81 | ||
82 | unsigned input_radix = 10; | |
920d2a44 AC |
83 | static void |
84 | show_input_radix (struct ui_file *file, int from_tty, | |
85 | struct cmd_list_element *c, const char *value) | |
86 | { | |
87 | fprintf_filtered (file, _("\ | |
88 | Default input radix for entering numbers is %s.\n"), | |
89 | value); | |
90 | } | |
91 | ||
c906108c | 92 | unsigned output_radix = 10; |
920d2a44 AC |
93 | static void |
94 | show_output_radix (struct ui_file *file, int from_tty, | |
95 | struct cmd_list_element *c, const char *value) | |
96 | { | |
97 | fprintf_filtered (file, _("\ | |
98 | Default output radix for printing of values is %s.\n"), | |
99 | value); | |
100 | } | |
c906108c SS |
101 | int output_format = 0; |
102 | ||
e79af960 JB |
103 | /* By default we print arrays without printing the index of each element in |
104 | the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ | |
105 | ||
106 | static int print_array_indexes = 0; | |
107 | static void | |
108 | show_print_array_indexes (struct ui_file *file, int from_tty, | |
109 | struct cmd_list_element *c, const char *value) | |
110 | { | |
111 | fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); | |
112 | } | |
113 | ||
c906108c SS |
114 | /* Print repeat counts if there are more than this many repetitions of an |
115 | element in an array. Referenced by the low level language dependent | |
116 | print routines. */ | |
117 | ||
118 | unsigned int repeat_count_threshold = 10; | |
920d2a44 AC |
119 | static void |
120 | show_repeat_count_threshold (struct ui_file *file, int from_tty, | |
121 | struct cmd_list_element *c, const char *value) | |
122 | { | |
123 | fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), | |
124 | value); | |
125 | } | |
c906108c SS |
126 | |
127 | /* If nonzero, stops printing of char arrays at first null. */ | |
128 | ||
129 | int stop_print_at_null; | |
920d2a44 AC |
130 | static void |
131 | show_stop_print_at_null (struct ui_file *file, int from_tty, | |
132 | struct cmd_list_element *c, const char *value) | |
133 | { | |
134 | fprintf_filtered (file, _("\ | |
135 | Printing of char arrays to stop at first null char is %s.\n"), | |
136 | value); | |
137 | } | |
c906108c SS |
138 | |
139 | /* Controls pretty printing of structures. */ | |
140 | ||
141 | int prettyprint_structs; | |
920d2a44 AC |
142 | static void |
143 | show_prettyprint_structs (struct ui_file *file, int from_tty, | |
144 | struct cmd_list_element *c, const char *value) | |
145 | { | |
146 | fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value); | |
147 | } | |
c906108c SS |
148 | |
149 | /* Controls pretty printing of arrays. */ | |
150 | ||
151 | int prettyprint_arrays; | |
920d2a44 AC |
152 | static void |
153 | show_prettyprint_arrays (struct ui_file *file, int from_tty, | |
154 | struct cmd_list_element *c, const char *value) | |
155 | { | |
156 | fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value); | |
157 | } | |
c906108c SS |
158 | |
159 | /* If nonzero, causes unions inside structures or other unions to be | |
160 | printed. */ | |
161 | ||
162 | int unionprint; /* Controls printing of nested unions. */ | |
920d2a44 AC |
163 | static void |
164 | show_unionprint (struct ui_file *file, int from_tty, | |
165 | struct cmd_list_element *c, const char *value) | |
166 | { | |
167 | fprintf_filtered (file, _("\ | |
168 | Printing of unions interior to structures is %s.\n"), | |
169 | value); | |
170 | } | |
c906108c SS |
171 | |
172 | /* If nonzero, causes machine addresses to be printed in certain contexts. */ | |
173 | ||
174 | int addressprint; /* Controls printing of machine addresses */ | |
920d2a44 AC |
175 | static void |
176 | show_addressprint (struct ui_file *file, int from_tty, | |
177 | struct cmd_list_element *c, const char *value) | |
178 | { | |
179 | fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); | |
180 | } | |
c906108c | 181 | \f |
c5aa993b | 182 | |
d8ca156b JB |
183 | /* Print using the given LANGUAGE the data of type TYPE located at VALADDR |
184 | (within GDB), which came from the inferior at address ADDRESS, onto | |
185 | stdio stream STREAM according to FORMAT (a letter, or 0 for natural | |
186 | format using TYPE). | |
c906108c SS |
187 | |
188 | If DEREF_REF is nonzero, then dereference references, otherwise just print | |
189 | them like pointers. | |
190 | ||
191 | The PRETTY parameter controls prettyprinting. | |
192 | ||
193 | If the data are a string pointer, returns the number of string characters | |
194 | printed. | |
195 | ||
196 | FIXME: The data at VALADDR is in target byte order. If gdb is ever | |
197 | enhanced to be able to debug more than the single target it was compiled | |
198 | for (specific CPU type and thus specific target byte ordering), then | |
199 | either the print routines are going to have to take this into account, | |
200 | or the data is going to have to be passed into here already converted | |
201 | to the host byte ordering, whichever is more convenient. */ | |
202 | ||
203 | ||
204 | int | |
fc1a4b47 | 205 | val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset, |
a2bd3dcd | 206 | CORE_ADDR address, struct ui_file *stream, int format, |
d8ca156b JB |
207 | int deref_ref, int recurse, enum val_prettyprint pretty, |
208 | const struct language_defn *language) | |
c906108c | 209 | { |
19ca80ba | 210 | volatile struct gdb_exception except; |
d5d6fca5 | 211 | volatile enum val_prettyprint real_pretty = pretty; |
19ca80ba DJ |
212 | int ret = 0; |
213 | ||
c906108c SS |
214 | struct type *real_type = check_typedef (type); |
215 | if (pretty == Val_pretty_default) | |
d5d6fca5 | 216 | real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint; |
c5aa993b | 217 | |
c906108c SS |
218 | QUIT; |
219 | ||
220 | /* Ensure that the type is complete and not just a stub. If the type is | |
221 | only a stub and we can't find and substitute its complete type, then | |
222 | print appropriate string and return. */ | |
223 | ||
74a9bb82 | 224 | if (TYPE_STUB (real_type)) |
c906108c SS |
225 | { |
226 | fprintf_filtered (stream, "<incomplete type>"); | |
227 | gdb_flush (stream); | |
228 | return (0); | |
229 | } | |
c5aa993b | 230 | |
19ca80ba DJ |
231 | TRY_CATCH (except, RETURN_MASK_ERROR) |
232 | { | |
d8ca156b JB |
233 | ret = language->la_val_print (type, valaddr, embedded_offset, address, |
234 | stream, format, deref_ref, recurse, | |
235 | real_pretty); | |
19ca80ba DJ |
236 | } |
237 | if (except.reason < 0) | |
238 | fprintf_filtered (stream, _("<error reading variable>")); | |
239 | ||
240 | return ret; | |
c906108c SS |
241 | } |
242 | ||
806048c6 DJ |
243 | /* Check whether the value VAL is printable. Return 1 if it is; |
244 | return 0 and print an appropriate error message to STREAM if it | |
245 | is not. */ | |
c906108c | 246 | |
806048c6 DJ |
247 | static int |
248 | value_check_printable (struct value *val, struct ui_file *stream) | |
c906108c SS |
249 | { |
250 | if (val == 0) | |
251 | { | |
806048c6 | 252 | fprintf_filtered (stream, _("<address of value unknown>")); |
c906108c SS |
253 | return 0; |
254 | } | |
806048c6 | 255 | |
feb13ab0 | 256 | if (value_optimized_out (val)) |
c906108c | 257 | { |
806048c6 | 258 | fprintf_filtered (stream, _("<value optimized out>")); |
c906108c SS |
259 | return 0; |
260 | } | |
806048c6 DJ |
261 | |
262 | return 1; | |
263 | } | |
264 | ||
d8ca156b JB |
265 | /* Print using the given LANGUAGE the value VAL onto stream STREAM according |
266 | to FORMAT (a letter, or 0 for natural format using TYPE). | |
806048c6 DJ |
267 | |
268 | If DEREF_REF is nonzero, then dereference references, otherwise just print | |
269 | them like pointers. | |
270 | ||
271 | The PRETTY parameter controls prettyprinting. | |
272 | ||
273 | If the data are a string pointer, returns the number of string characters | |
274 | printed. | |
275 | ||
276 | This is a preferable interface to val_print, above, because it uses | |
277 | GDB's value mechanism. */ | |
278 | ||
279 | int | |
280 | common_val_print (struct value *val, struct ui_file *stream, int format, | |
d8ca156b JB |
281 | int deref_ref, int recurse, enum val_prettyprint pretty, |
282 | const struct language_defn *language) | |
806048c6 DJ |
283 | { |
284 | if (!value_check_printable (val, stream)) | |
285 | return 0; | |
286 | ||
287 | return val_print (value_type (val), value_contents_all (val), | |
288 | value_embedded_offset (val), VALUE_ADDRESS (val), | |
d8ca156b JB |
289 | stream, format, deref_ref, recurse, pretty, |
290 | language); | |
806048c6 DJ |
291 | } |
292 | ||
293 | /* Print the value VAL in C-ish syntax on stream STREAM. | |
294 | FORMAT is a format-letter, or 0 for print in natural format of data type. | |
295 | If the object printed is a string pointer, returns | |
296 | the number of string bytes printed. */ | |
297 | ||
298 | int | |
299 | value_print (struct value *val, struct ui_file *stream, int format, | |
300 | enum val_prettyprint pretty) | |
301 | { | |
302 | if (!value_check_printable (val, stream)) | |
303 | return 0; | |
304 | ||
c906108c SS |
305 | return LA_VALUE_PRINT (val, stream, format, pretty); |
306 | } | |
307 | ||
308 | /* Called by various <lang>_val_print routines to print | |
309 | TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the | |
310 | value. STREAM is where to print the value. */ | |
311 | ||
312 | void | |
fc1a4b47 | 313 | val_print_type_code_int (struct type *type, const gdb_byte *valaddr, |
fba45db2 | 314 | struct ui_file *stream) |
c906108c | 315 | { |
d44e8473 MD |
316 | enum bfd_endian byte_order = gdbarch_byte_order (current_gdbarch); |
317 | ||
c906108c SS |
318 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) |
319 | { | |
320 | LONGEST val; | |
321 | ||
322 | if (TYPE_UNSIGNED (type) | |
323 | && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), | |
324 | &val)) | |
325 | { | |
326 | print_longest (stream, 'u', 0, val); | |
327 | } | |
328 | else | |
329 | { | |
330 | /* Signed, or we couldn't turn an unsigned value into a | |
331 | LONGEST. For signed values, one could assume two's | |
332 | complement (a reasonable assumption, I think) and do | |
333 | better than this. */ | |
334 | print_hex_chars (stream, (unsigned char *) valaddr, | |
d44e8473 | 335 | TYPE_LENGTH (type), byte_order); |
c906108c SS |
336 | } |
337 | } | |
338 | else | |
339 | { | |
c906108c SS |
340 | print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, |
341 | unpack_long (type, valaddr)); | |
c906108c SS |
342 | } |
343 | } | |
344 | ||
4f2aea11 MK |
345 | void |
346 | val_print_type_code_flags (struct type *type, const gdb_byte *valaddr, | |
347 | struct ui_file *stream) | |
348 | { | |
befae759 | 349 | ULONGEST val = unpack_long (type, valaddr); |
4f2aea11 MK |
350 | int bitpos, nfields = TYPE_NFIELDS (type); |
351 | ||
352 | fputs_filtered ("[ ", stream); | |
353 | for (bitpos = 0; bitpos < nfields; bitpos++) | |
354 | { | |
316703b9 MK |
355 | if (TYPE_FIELD_BITPOS (type, bitpos) != -1 |
356 | && (val & ((ULONGEST)1 << bitpos))) | |
4f2aea11 MK |
357 | { |
358 | if (TYPE_FIELD_NAME (type, bitpos)) | |
359 | fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos)); | |
360 | else | |
361 | fprintf_filtered (stream, "#%d ", bitpos); | |
362 | } | |
363 | } | |
364 | fputs_filtered ("]", stream); | |
365 | } | |
366 | ||
c906108c SS |
367 | /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. |
368 | The raison d'etre of this function is to consolidate printing of | |
bb599908 PH |
369 | LONG_LONG's into this one function. The format chars b,h,w,g are |
370 | from print_scalar_formatted(). Numbers are printed using C | |
371 | format. | |
372 | ||
373 | USE_C_FORMAT means to use C format in all cases. Without it, | |
374 | 'o' and 'x' format do not include the standard C radix prefix | |
375 | (leading 0 or 0x). | |
376 | ||
377 | Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL | |
378 | and was intended to request formating according to the current | |
379 | language and would be used for most integers that GDB prints. The | |
380 | exceptional cases were things like protocols where the format of | |
381 | the integer is a protocol thing, not a user-visible thing). The | |
382 | parameter remains to preserve the information of what things might | |
383 | be printed with language-specific format, should we ever resurrect | |
384 | that capability. */ | |
c906108c SS |
385 | |
386 | void | |
bb599908 | 387 | print_longest (struct ui_file *stream, int format, int use_c_format, |
fba45db2 | 388 | LONGEST val_long) |
c906108c | 389 | { |
2bfb72ee AC |
390 | const char *val; |
391 | ||
c906108c SS |
392 | switch (format) |
393 | { | |
394 | case 'd': | |
bb599908 | 395 | val = int_string (val_long, 10, 1, 0, 1); break; |
c906108c | 396 | case 'u': |
bb599908 | 397 | val = int_string (val_long, 10, 0, 0, 1); break; |
c906108c | 398 | case 'x': |
bb599908 | 399 | val = int_string (val_long, 16, 0, 0, use_c_format); break; |
c906108c | 400 | case 'b': |
bb599908 | 401 | val = int_string (val_long, 16, 0, 2, 1); break; |
c906108c | 402 | case 'h': |
bb599908 | 403 | val = int_string (val_long, 16, 0, 4, 1); break; |
c906108c | 404 | case 'w': |
bb599908 | 405 | val = int_string (val_long, 16, 0, 8, 1); break; |
c906108c | 406 | case 'g': |
bb599908 | 407 | val = int_string (val_long, 16, 0, 16, 1); break; |
c906108c SS |
408 | break; |
409 | case 'o': | |
bb599908 | 410 | val = int_string (val_long, 8, 0, 0, use_c_format); break; |
c906108c | 411 | default: |
e2e0b3e5 | 412 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
bb599908 | 413 | } |
2bfb72ee | 414 | fputs_filtered (val, stream); |
c906108c SS |
415 | } |
416 | ||
c906108c SS |
417 | /* This used to be a macro, but I don't think it is called often enough |
418 | to merit such treatment. */ | |
419 | /* Convert a LONGEST to an int. This is used in contexts (e.g. number of | |
420 | arguments to a function, number in a value history, register number, etc.) | |
421 | where the value must not be larger than can fit in an int. */ | |
422 | ||
423 | int | |
fba45db2 | 424 | longest_to_int (LONGEST arg) |
c906108c SS |
425 | { |
426 | /* Let the compiler do the work */ | |
427 | int rtnval = (int) arg; | |
428 | ||
429 | /* Check for overflows or underflows */ | |
430 | if (sizeof (LONGEST) > sizeof (int)) | |
431 | { | |
432 | if (rtnval != arg) | |
433 | { | |
8a3fe4f8 | 434 | error (_("Value out of range.")); |
c906108c SS |
435 | } |
436 | } | |
437 | return (rtnval); | |
438 | } | |
439 | ||
a73c86fb AC |
440 | /* Print a floating point value of type TYPE (not always a |
441 | TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */ | |
c906108c SS |
442 | |
443 | void | |
fc1a4b47 | 444 | print_floating (const gdb_byte *valaddr, struct type *type, |
c84141d6 | 445 | struct ui_file *stream) |
c906108c SS |
446 | { |
447 | DOUBLEST doub; | |
448 | int inv; | |
a73c86fb | 449 | const struct floatformat *fmt = NULL; |
c906108c | 450 | unsigned len = TYPE_LENGTH (type); |
20389057 | 451 | enum float_kind kind; |
c5aa993b | 452 | |
a73c86fb AC |
453 | /* If it is a floating-point, check for obvious problems. */ |
454 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
455 | fmt = floatformat_from_type (type); | |
20389057 | 456 | if (fmt != NULL) |
39424bef | 457 | { |
20389057 DJ |
458 | kind = floatformat_classify (fmt, valaddr); |
459 | if (kind == float_nan) | |
460 | { | |
461 | if (floatformat_is_negative (fmt, valaddr)) | |
462 | fprintf_filtered (stream, "-"); | |
463 | fprintf_filtered (stream, "nan("); | |
464 | fputs_filtered ("0x", stream); | |
465 | fputs_filtered (floatformat_mantissa (fmt, valaddr), stream); | |
466 | fprintf_filtered (stream, ")"); | |
467 | return; | |
468 | } | |
469 | else if (kind == float_infinite) | |
470 | { | |
471 | if (floatformat_is_negative (fmt, valaddr)) | |
472 | fputs_filtered ("-", stream); | |
473 | fputs_filtered ("inf", stream); | |
474 | return; | |
475 | } | |
7355ddba | 476 | } |
c906108c | 477 | |
a73c86fb AC |
478 | /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating() |
479 | isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double | |
480 | needs to be used as that takes care of any necessary type | |
481 | conversions. Such conversions are of course direct to DOUBLEST | |
482 | and disregard any possible target floating point limitations. | |
483 | For instance, a u64 would be converted and displayed exactly on a | |
484 | host with 80 bit DOUBLEST but with loss of information on a host | |
485 | with 64 bit DOUBLEST. */ | |
c2f05ac9 | 486 | |
c906108c SS |
487 | doub = unpack_double (type, valaddr, &inv); |
488 | if (inv) | |
489 | { | |
490 | fprintf_filtered (stream, "<invalid float value>"); | |
491 | return; | |
492 | } | |
493 | ||
39424bef MK |
494 | /* FIXME: kettenis/2001-01-20: The following code makes too much |
495 | assumptions about the host and target floating point format. */ | |
496 | ||
a73c86fb | 497 | /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may |
c41b8590 | 498 | not necessarily be a TYPE_CODE_FLT, the below ignores that and |
a73c86fb AC |
499 | instead uses the type's length to determine the precision of the |
500 | floating-point value being printed. */ | |
c2f05ac9 | 501 | |
c906108c | 502 | if (len < sizeof (double)) |
c5aa993b | 503 | fprintf_filtered (stream, "%.9g", (double) doub); |
c906108c | 504 | else if (len == sizeof (double)) |
c5aa993b | 505 | fprintf_filtered (stream, "%.17g", (double) doub); |
c906108c SS |
506 | else |
507 | #ifdef PRINTF_HAS_LONG_DOUBLE | |
508 | fprintf_filtered (stream, "%.35Lg", doub); | |
509 | #else | |
39424bef MK |
510 | /* This at least wins with values that are representable as |
511 | doubles. */ | |
c906108c SS |
512 | fprintf_filtered (stream, "%.17g", (double) doub); |
513 | #endif | |
514 | } | |
515 | ||
7678ef8f TJB |
516 | void |
517 | print_decimal_floating (const gdb_byte *valaddr, struct type *type, | |
518 | struct ui_file *stream) | |
519 | { | |
520 | char decstr[MAX_DECIMAL_STRING]; | |
521 | unsigned len = TYPE_LENGTH (type); | |
522 | ||
523 | decimal_to_string (valaddr, len, decstr); | |
524 | fputs_filtered (decstr, stream); | |
525 | return; | |
526 | } | |
527 | ||
c5aa993b | 528 | void |
fc1a4b47 | 529 | print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 530 | unsigned len, enum bfd_endian byte_order) |
c906108c SS |
531 | { |
532 | ||
533 | #define BITS_IN_BYTES 8 | |
534 | ||
fc1a4b47 | 535 | const gdb_byte *p; |
745b8ca0 | 536 | unsigned int i; |
c5aa993b | 537 | int b; |
c906108c SS |
538 | |
539 | /* Declared "int" so it will be signed. | |
540 | * This ensures that right shift will shift in zeros. | |
541 | */ | |
c5aa993b | 542 | const int mask = 0x080; |
c906108c SS |
543 | |
544 | /* FIXME: We should be not printing leading zeroes in most cases. */ | |
545 | ||
d44e8473 | 546 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
547 | { |
548 | for (p = valaddr; | |
549 | p < valaddr + len; | |
550 | p++) | |
551 | { | |
c5aa993b JM |
552 | /* Every byte has 8 binary characters; peel off |
553 | * and print from the MSB end. | |
554 | */ | |
555 | for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) | |
556 | { | |
557 | if (*p & (mask >> i)) | |
558 | b = 1; | |
559 | else | |
560 | b = 0; | |
561 | ||
562 | fprintf_filtered (stream, "%1d", b); | |
563 | } | |
c906108c SS |
564 | } |
565 | } | |
566 | else | |
567 | { | |
568 | for (p = valaddr + len - 1; | |
569 | p >= valaddr; | |
570 | p--) | |
571 | { | |
c5aa993b JM |
572 | for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) |
573 | { | |
574 | if (*p & (mask >> i)) | |
575 | b = 1; | |
576 | else | |
577 | b = 0; | |
578 | ||
579 | fprintf_filtered (stream, "%1d", b); | |
580 | } | |
c906108c SS |
581 | } |
582 | } | |
c906108c SS |
583 | } |
584 | ||
585 | /* VALADDR points to an integer of LEN bytes. | |
586 | * Print it in octal on stream or format it in buf. | |
587 | */ | |
588 | void | |
fc1a4b47 | 589 | print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 590 | unsigned len, enum bfd_endian byte_order) |
c906108c | 591 | { |
fc1a4b47 | 592 | const gdb_byte *p; |
c906108c | 593 | unsigned char octa1, octa2, octa3, carry; |
c5aa993b JM |
594 | int cycle; |
595 | ||
c906108c SS |
596 | /* FIXME: We should be not printing leading zeroes in most cases. */ |
597 | ||
598 | ||
599 | /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track | |
600 | * the extra bits, which cycle every three bytes: | |
601 | * | |
602 | * Byte side: 0 1 2 3 | |
603 | * | | | | | |
604 | * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | | |
605 | * | |
606 | * Octal side: 0 1 carry 3 4 carry ... | |
607 | * | |
608 | * Cycle number: 0 1 2 | |
609 | * | |
610 | * But of course we are printing from the high side, so we have to | |
611 | * figure out where in the cycle we are so that we end up with no | |
612 | * left over bits at the end. | |
613 | */ | |
614 | #define BITS_IN_OCTAL 3 | |
615 | #define HIGH_ZERO 0340 | |
616 | #define LOW_ZERO 0016 | |
617 | #define CARRY_ZERO 0003 | |
618 | #define HIGH_ONE 0200 | |
619 | #define MID_ONE 0160 | |
620 | #define LOW_ONE 0016 | |
621 | #define CARRY_ONE 0001 | |
622 | #define HIGH_TWO 0300 | |
623 | #define MID_TWO 0070 | |
624 | #define LOW_TWO 0007 | |
625 | ||
626 | /* For 32 we start in cycle 2, with two bits and one bit carry; | |
627 | * for 64 in cycle in cycle 1, with one bit and a two bit carry. | |
628 | */ | |
629 | cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL; | |
630 | carry = 0; | |
c5aa993b | 631 | |
bb599908 | 632 | fputs_filtered ("0", stream); |
d44e8473 | 633 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
634 | { |
635 | for (p = valaddr; | |
636 | p < valaddr + len; | |
637 | p++) | |
638 | { | |
c5aa993b JM |
639 | switch (cycle) |
640 | { | |
641 | case 0: | |
642 | /* No carry in, carry out two bits. | |
643 | */ | |
644 | octa1 = (HIGH_ZERO & *p) >> 5; | |
645 | octa2 = (LOW_ZERO & *p) >> 2; | |
646 | carry = (CARRY_ZERO & *p); | |
647 | fprintf_filtered (stream, "%o", octa1); | |
648 | fprintf_filtered (stream, "%o", octa2); | |
649 | break; | |
650 | ||
651 | case 1: | |
652 | /* Carry in two bits, carry out one bit. | |
653 | */ | |
654 | octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); | |
655 | octa2 = (MID_ONE & *p) >> 4; | |
656 | octa3 = (LOW_ONE & *p) >> 1; | |
657 | carry = (CARRY_ONE & *p); | |
658 | fprintf_filtered (stream, "%o", octa1); | |
659 | fprintf_filtered (stream, "%o", octa2); | |
660 | fprintf_filtered (stream, "%o", octa3); | |
661 | break; | |
662 | ||
663 | case 2: | |
664 | /* Carry in one bit, no carry out. | |
665 | */ | |
666 | octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); | |
667 | octa2 = (MID_TWO & *p) >> 3; | |
668 | octa3 = (LOW_TWO & *p); | |
669 | carry = 0; | |
670 | fprintf_filtered (stream, "%o", octa1); | |
671 | fprintf_filtered (stream, "%o", octa2); | |
672 | fprintf_filtered (stream, "%o", octa3); | |
673 | break; | |
674 | ||
675 | default: | |
8a3fe4f8 | 676 | error (_("Internal error in octal conversion;")); |
c5aa993b JM |
677 | } |
678 | ||
679 | cycle++; | |
680 | cycle = cycle % BITS_IN_OCTAL; | |
c906108c SS |
681 | } |
682 | } | |
683 | else | |
684 | { | |
685 | for (p = valaddr + len - 1; | |
686 | p >= valaddr; | |
687 | p--) | |
688 | { | |
c5aa993b JM |
689 | switch (cycle) |
690 | { | |
691 | case 0: | |
692 | /* Carry out, no carry in */ | |
693 | octa1 = (HIGH_ZERO & *p) >> 5; | |
694 | octa2 = (LOW_ZERO & *p) >> 2; | |
695 | carry = (CARRY_ZERO & *p); | |
696 | fprintf_filtered (stream, "%o", octa1); | |
697 | fprintf_filtered (stream, "%o", octa2); | |
698 | break; | |
699 | ||
700 | case 1: | |
701 | /* Carry in, carry out */ | |
702 | octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); | |
703 | octa2 = (MID_ONE & *p) >> 4; | |
704 | octa3 = (LOW_ONE & *p) >> 1; | |
705 | carry = (CARRY_ONE & *p); | |
706 | fprintf_filtered (stream, "%o", octa1); | |
707 | fprintf_filtered (stream, "%o", octa2); | |
708 | fprintf_filtered (stream, "%o", octa3); | |
709 | break; | |
710 | ||
711 | case 2: | |
712 | /* Carry in, no carry out */ | |
713 | octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); | |
714 | octa2 = (MID_TWO & *p) >> 3; | |
715 | octa3 = (LOW_TWO & *p); | |
716 | carry = 0; | |
717 | fprintf_filtered (stream, "%o", octa1); | |
718 | fprintf_filtered (stream, "%o", octa2); | |
719 | fprintf_filtered (stream, "%o", octa3); | |
720 | break; | |
721 | ||
722 | default: | |
8a3fe4f8 | 723 | error (_("Internal error in octal conversion;")); |
c5aa993b JM |
724 | } |
725 | ||
726 | cycle++; | |
727 | cycle = cycle % BITS_IN_OCTAL; | |
c906108c SS |
728 | } |
729 | } | |
730 | ||
c906108c SS |
731 | } |
732 | ||
733 | /* VALADDR points to an integer of LEN bytes. | |
734 | * Print it in decimal on stream or format it in buf. | |
735 | */ | |
736 | void | |
fc1a4b47 | 737 | print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 738 | unsigned len, enum bfd_endian byte_order) |
c906108c SS |
739 | { |
740 | #define TEN 10 | |
c5aa993b | 741 | #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ |
c906108c SS |
742 | #define CARRY_LEFT( x ) ((x) % TEN) |
743 | #define SHIFT( x ) ((x) << 4) | |
c906108c SS |
744 | #define LOW_NIBBLE( x ) ( (x) & 0x00F) |
745 | #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) | |
746 | ||
fc1a4b47 | 747 | const gdb_byte *p; |
c906108c | 748 | unsigned char *digits; |
c5aa993b JM |
749 | int carry; |
750 | int decimal_len; | |
751 | int i, j, decimal_digits; | |
752 | int dummy; | |
753 | int flip; | |
754 | ||
c906108c SS |
755 | /* Base-ten number is less than twice as many digits |
756 | * as the base 16 number, which is 2 digits per byte. | |
757 | */ | |
758 | decimal_len = len * 2 * 2; | |
3c37485b | 759 | digits = xmalloc (decimal_len); |
c906108c | 760 | |
c5aa993b JM |
761 | for (i = 0; i < decimal_len; i++) |
762 | { | |
c906108c | 763 | digits[i] = 0; |
c5aa993b | 764 | } |
c906108c | 765 | |
c906108c SS |
766 | /* Ok, we have an unknown number of bytes of data to be printed in |
767 | * decimal. | |
768 | * | |
769 | * Given a hex number (in nibbles) as XYZ, we start by taking X and | |
770 | * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply | |
771 | * the nibbles by 16, add Y and re-decimalize. Repeat with Z. | |
772 | * | |
773 | * The trick is that "digits" holds a base-10 number, but sometimes | |
774 | * the individual digits are > 10. | |
775 | * | |
776 | * Outer loop is per nibble (hex digit) of input, from MSD end to | |
777 | * LSD end. | |
778 | */ | |
c5aa993b | 779 | decimal_digits = 0; /* Number of decimal digits so far */ |
d44e8473 | 780 | p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; |
c906108c | 781 | flip = 0; |
d44e8473 | 782 | while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) |
c5aa993b | 783 | { |
c906108c SS |
784 | /* |
785 | * Multiply current base-ten number by 16 in place. | |
786 | * Each digit was between 0 and 9, now is between | |
787 | * 0 and 144. | |
788 | */ | |
c5aa993b JM |
789 | for (j = 0; j < decimal_digits; j++) |
790 | { | |
791 | digits[j] = SHIFT (digits[j]); | |
792 | } | |
793 | ||
c906108c SS |
794 | /* Take the next nibble off the input and add it to what |
795 | * we've got in the LSB position. Bottom 'digit' is now | |
796 | * between 0 and 159. | |
797 | * | |
798 | * "flip" is used to run this loop twice for each byte. | |
799 | */ | |
c5aa993b JM |
800 | if (flip == 0) |
801 | { | |
802 | /* Take top nibble. | |
803 | */ | |
804 | digits[0] += HIGH_NIBBLE (*p); | |
805 | flip = 1; | |
806 | } | |
807 | else | |
808 | { | |
809 | /* Take low nibble and bump our pointer "p". | |
810 | */ | |
811 | digits[0] += LOW_NIBBLE (*p); | |
d44e8473 MD |
812 | if (byte_order == BFD_ENDIAN_BIG) |
813 | p++; | |
814 | else | |
815 | p--; | |
c5aa993b JM |
816 | flip = 0; |
817 | } | |
c906108c SS |
818 | |
819 | /* Re-decimalize. We have to do this often enough | |
820 | * that we don't overflow, but once per nibble is | |
821 | * overkill. Easier this way, though. Note that the | |
822 | * carry is often larger than 10 (e.g. max initial | |
823 | * carry out of lowest nibble is 15, could bubble all | |
824 | * the way up greater than 10). So we have to do | |
825 | * the carrying beyond the last current digit. | |
826 | */ | |
827 | carry = 0; | |
c5aa993b JM |
828 | for (j = 0; j < decimal_len - 1; j++) |
829 | { | |
830 | digits[j] += carry; | |
831 | ||
832 | /* "/" won't handle an unsigned char with | |
833 | * a value that if signed would be negative. | |
834 | * So extend to longword int via "dummy". | |
835 | */ | |
836 | dummy = digits[j]; | |
837 | carry = CARRY_OUT (dummy); | |
838 | digits[j] = CARRY_LEFT (dummy); | |
839 | ||
840 | if (j >= decimal_digits && carry == 0) | |
841 | { | |
842 | /* | |
843 | * All higher digits are 0 and we | |
844 | * no longer have a carry. | |
845 | * | |
846 | * Note: "j" is 0-based, "decimal_digits" is | |
847 | * 1-based. | |
848 | */ | |
849 | decimal_digits = j + 1; | |
850 | break; | |
851 | } | |
852 | } | |
853 | } | |
c906108c SS |
854 | |
855 | /* Ok, now "digits" is the decimal representation, with | |
856 | * the "decimal_digits" actual digits. Print! | |
857 | */ | |
c5aa993b JM |
858 | for (i = decimal_digits - 1; i >= 0; i--) |
859 | { | |
860 | fprintf_filtered (stream, "%1d", digits[i]); | |
861 | } | |
b8c9b27d | 862 | xfree (digits); |
c906108c SS |
863 | } |
864 | ||
865 | /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ | |
866 | ||
6b9acc27 | 867 | void |
fc1a4b47 | 868 | print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 869 | unsigned len, enum bfd_endian byte_order) |
c906108c | 870 | { |
fc1a4b47 | 871 | const gdb_byte *p; |
c906108c SS |
872 | |
873 | /* FIXME: We should be not printing leading zeroes in most cases. */ | |
874 | ||
bb599908 | 875 | fputs_filtered ("0x", stream); |
d44e8473 | 876 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
877 | { |
878 | for (p = valaddr; | |
879 | p < valaddr + len; | |
880 | p++) | |
881 | { | |
882 | fprintf_filtered (stream, "%02x", *p); | |
883 | } | |
884 | } | |
885 | else | |
886 | { | |
887 | for (p = valaddr + len - 1; | |
888 | p >= valaddr; | |
889 | p--) | |
890 | { | |
891 | fprintf_filtered (stream, "%02x", *p); | |
892 | } | |
893 | } | |
c906108c SS |
894 | } |
895 | ||
6b9acc27 JJ |
896 | /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream. |
897 | Omit any leading zero chars. */ | |
898 | ||
899 | void | |
fc1a4b47 | 900 | print_char_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 901 | unsigned len, enum bfd_endian byte_order) |
6b9acc27 | 902 | { |
fc1a4b47 | 903 | const gdb_byte *p; |
6b9acc27 | 904 | |
d44e8473 | 905 | if (byte_order == BFD_ENDIAN_BIG) |
6b9acc27 JJ |
906 | { |
907 | p = valaddr; | |
908 | while (p < valaddr + len - 1 && *p == 0) | |
909 | ++p; | |
910 | ||
911 | while (p < valaddr + len) | |
912 | { | |
913 | LA_EMIT_CHAR (*p, stream, '\''); | |
914 | ++p; | |
915 | } | |
916 | } | |
917 | else | |
918 | { | |
919 | p = valaddr + len - 1; | |
920 | while (p > valaddr && *p == 0) | |
921 | --p; | |
922 | ||
923 | while (p >= valaddr) | |
924 | { | |
925 | LA_EMIT_CHAR (*p, stream, '\''); | |
926 | --p; | |
927 | } | |
928 | } | |
929 | } | |
930 | ||
e79af960 JB |
931 | /* Return non-zero if the debugger should print the index of each element |
932 | when printing array values. */ | |
933 | ||
934 | int | |
935 | print_array_indexes_p (void) | |
936 | { | |
937 | return print_array_indexes; | |
938 | } | |
939 | ||
e936309c JB |
940 | /* Assuming TYPE is a simple, non-empty array type, compute its upper |
941 | and lower bound. Save the low bound into LOW_BOUND if not NULL. | |
942 | Save the high bound into HIGH_BOUND if not NULL. | |
e79af960 JB |
943 | |
944 | Return 1 if the operation was successful. Return zero otherwise, | |
e936309c | 945 | in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. |
e79af960 | 946 | |
e936309c JB |
947 | Computing the array upper and lower bounds is pretty easy, but this |
948 | function does some additional verifications before returning them. | |
e79af960 JB |
949 | If something incorrect is detected, it is better to return a status |
950 | rather than throwing an error, making it easier for the caller to | |
951 | implement an error-recovery plan. For instance, it may decide to | |
e936309c JB |
952 | warn the user that the bounds were not found and then use some |
953 | default values instead. */ | |
e79af960 JB |
954 | |
955 | int | |
e936309c | 956 | get_array_bounds (struct type *type, long *low_bound, long *high_bound) |
e79af960 JB |
957 | { |
958 | struct type *index = TYPE_INDEX_TYPE (type); | |
959 | long low = 0; | |
e936309c | 960 | long high = 0; |
e79af960 JB |
961 | |
962 | if (index == NULL) | |
963 | return 0; | |
964 | ||
e936309c JB |
965 | if (TYPE_CODE (index) == TYPE_CODE_RANGE) |
966 | { | |
967 | low = TYPE_LOW_BOUND (index); | |
968 | high = TYPE_HIGH_BOUND (index); | |
969 | } | |
970 | else if (TYPE_CODE (index) == TYPE_CODE_ENUM) | |
971 | { | |
972 | const int n_enums = TYPE_NFIELDS (index); | |
973 | ||
974 | low = TYPE_FIELD_BITPOS (index, 0); | |
975 | high = TYPE_FIELD_BITPOS (index, n_enums - 1); | |
976 | } | |
977 | else | |
e79af960 JB |
978 | return 0; |
979 | ||
e936309c JB |
980 | /* Abort if the lower bound is greater than the higher bound, except |
981 | when low = high + 1. This is a very common idiom used in Ada when | |
982 | defining empty ranges (for instance "range 1 .. 0"). */ | |
983 | if (low > high + 1) | |
e79af960 JB |
984 | return 0; |
985 | ||
986 | if (low_bound) | |
987 | *low_bound = low; | |
988 | ||
e936309c JB |
989 | if (high_bound) |
990 | *high_bound = high; | |
991 | ||
e79af960 JB |
992 | return 1; |
993 | } | |
e936309c | 994 | |
e79af960 JB |
995 | /* Print on STREAM using the given FORMAT the index for the element |
996 | at INDEX of an array whose index type is INDEX_TYPE. */ | |
997 | ||
998 | void | |
999 | maybe_print_array_index (struct type *index_type, LONGEST index, | |
1000 | struct ui_file *stream, int format, | |
1001 | enum val_prettyprint pretty) | |
1002 | { | |
1003 | struct value *index_value; | |
1004 | ||
1005 | if (!print_array_indexes) | |
1006 | return; | |
1007 | ||
1008 | index_value = value_from_longest (index_type, index); | |
1009 | ||
1010 | LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty); | |
1011 | } | |
1012 | ||
c906108c | 1013 | /* Called by various <lang>_val_print routines to print elements of an |
c5aa993b | 1014 | array in the form "<elem1>, <elem2>, <elem3>, ...". |
c906108c | 1015 | |
c5aa993b JM |
1016 | (FIXME?) Assumes array element separator is a comma, which is correct |
1017 | for all languages currently handled. | |
1018 | (FIXME?) Some languages have a notation for repeated array elements, | |
1019 | perhaps we should try to use that notation when appropriate. | |
1020 | */ | |
c906108c SS |
1021 | |
1022 | void | |
fc1a4b47 | 1023 | val_print_array_elements (struct type *type, const gdb_byte *valaddr, |
a2bd3dcd AC |
1024 | CORE_ADDR address, struct ui_file *stream, |
1025 | int format, int deref_ref, | |
fba45db2 KB |
1026 | int recurse, enum val_prettyprint pretty, |
1027 | unsigned int i) | |
c906108c SS |
1028 | { |
1029 | unsigned int things_printed = 0; | |
1030 | unsigned len; | |
e79af960 | 1031 | struct type *elttype, *index_type; |
c906108c SS |
1032 | unsigned eltlen; |
1033 | /* Position of the array element we are examining to see | |
1034 | whether it is repeated. */ | |
1035 | unsigned int rep1; | |
1036 | /* Number of repetitions we have detected so far. */ | |
1037 | unsigned int reps; | |
168de233 | 1038 | long low_bound_index = 0; |
c5aa993b | 1039 | |
c906108c SS |
1040 | elttype = TYPE_TARGET_TYPE (type); |
1041 | eltlen = TYPE_LENGTH (check_typedef (elttype)); | |
e79af960 | 1042 | index_type = TYPE_INDEX_TYPE (type); |
c906108c | 1043 | |
e936309c JB |
1044 | /* Compute the number of elements in the array. On most arrays, |
1045 | the size of its elements is not zero, and so the number of elements | |
1046 | is simply the size of the array divided by the size of the elements. | |
1047 | But for arrays of elements whose size is zero, we need to look at | |
1048 | the bounds. */ | |
1049 | if (eltlen != 0) | |
1050 | len = TYPE_LENGTH (type) / eltlen; | |
1051 | else | |
1052 | { | |
1053 | long low, hi; | |
1054 | if (get_array_bounds (type, &low, &hi)) | |
1055 | len = hi - low + 1; | |
1056 | else | |
1057 | { | |
1058 | warning (_("unable to get bounds of array, assuming null array")); | |
1059 | len = 0; | |
1060 | } | |
1061 | } | |
1062 | ||
168de233 JB |
1063 | /* Get the array low bound. This only makes sense if the array |
1064 | has one or more element in it. */ | |
e936309c | 1065 | if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL)) |
168de233 | 1066 | { |
e936309c | 1067 | warning (_("unable to get low bound of array, using zero as default")); |
168de233 JB |
1068 | low_bound_index = 0; |
1069 | } | |
1070 | ||
c906108c SS |
1071 | annotate_array_section_begin (i, elttype); |
1072 | ||
1073 | for (; i < len && things_printed < print_max; i++) | |
1074 | { | |
1075 | if (i != 0) | |
1076 | { | |
1077 | if (prettyprint_arrays) | |
1078 | { | |
1079 | fprintf_filtered (stream, ",\n"); | |
1080 | print_spaces_filtered (2 + 2 * recurse, stream); | |
1081 | } | |
1082 | else | |
1083 | { | |
1084 | fprintf_filtered (stream, ", "); | |
1085 | } | |
1086 | } | |
1087 | wrap_here (n_spaces (2 + 2 * recurse)); | |
e79af960 JB |
1088 | maybe_print_array_index (index_type, i + low_bound_index, |
1089 | stream, format, pretty); | |
c906108c SS |
1090 | |
1091 | rep1 = i + 1; | |
1092 | reps = 1; | |
c5aa993b | 1093 | while ((rep1 < len) && |
c906108c SS |
1094 | !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen)) |
1095 | { | |
1096 | ++reps; | |
1097 | ++rep1; | |
1098 | } | |
1099 | ||
1100 | if (reps > repeat_count_threshold) | |
1101 | { | |
1102 | val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format, | |
d8ca156b | 1103 | deref_ref, recurse + 1, pretty, current_language); |
c906108c SS |
1104 | annotate_elt_rep (reps); |
1105 | fprintf_filtered (stream, " <repeats %u times>", reps); | |
1106 | annotate_elt_rep_end (); | |
1107 | ||
1108 | i = rep1 - 1; | |
1109 | things_printed += repeat_count_threshold; | |
1110 | } | |
1111 | else | |
1112 | { | |
1113 | val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format, | |
d8ca156b | 1114 | deref_ref, recurse + 1, pretty, current_language); |
c906108c SS |
1115 | annotate_elt (); |
1116 | things_printed++; | |
1117 | } | |
1118 | } | |
1119 | annotate_array_section_end (); | |
1120 | if (i < len) | |
1121 | { | |
1122 | fprintf_filtered (stream, "..."); | |
1123 | } | |
1124 | } | |
1125 | ||
917317f4 JM |
1126 | /* Read LEN bytes of target memory at address MEMADDR, placing the |
1127 | results in GDB's memory at MYADDR. Returns a count of the bytes | |
1128 | actually read, and optionally an errno value in the location | |
1129 | pointed to by ERRNOPTR if ERRNOPTR is non-null. */ | |
1130 | ||
1131 | /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this | |
1132 | function be eliminated. */ | |
1133 | ||
1134 | static int | |
777ea8f1 | 1135 | partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr) |
917317f4 JM |
1136 | { |
1137 | int nread; /* Number of bytes actually read. */ | |
1138 | int errcode; /* Error from last read. */ | |
1139 | ||
1140 | /* First try a complete read. */ | |
1141 | errcode = target_read_memory (memaddr, myaddr, len); | |
1142 | if (errcode == 0) | |
1143 | { | |
1144 | /* Got it all. */ | |
1145 | nread = len; | |
1146 | } | |
1147 | else | |
1148 | { | |
1149 | /* Loop, reading one byte at a time until we get as much as we can. */ | |
1150 | for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) | |
1151 | { | |
1152 | errcode = target_read_memory (memaddr++, myaddr++, 1); | |
1153 | } | |
1154 | /* If an error, the last read was unsuccessful, so adjust count. */ | |
1155 | if (errcode != 0) | |
1156 | { | |
1157 | nread--; | |
1158 | } | |
1159 | } | |
1160 | if (errnoptr != NULL) | |
1161 | { | |
1162 | *errnoptr = errcode; | |
1163 | } | |
1164 | return (nread); | |
1165 | } | |
1166 | ||
c906108c | 1167 | /* Print a string from the inferior, starting at ADDR and printing up to LEN |
c5aa993b JM |
1168 | characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing |
1169 | stops at the first null byte, otherwise printing proceeds (including null | |
1170 | bytes) until either print_max or LEN characters have been printed, | |
1171 | whichever is smaller. */ | |
c906108c SS |
1172 | |
1173 | /* FIXME: Use target_read_string. */ | |
1174 | ||
1175 | int | |
fba45db2 | 1176 | val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream) |
c906108c SS |
1177 | { |
1178 | int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ | |
1179 | int errcode; /* Errno returned from bad reads. */ | |
1180 | unsigned int fetchlimit; /* Maximum number of chars to print. */ | |
1181 | unsigned int nfetch; /* Chars to fetch / chars fetched. */ | |
1182 | unsigned int chunksize; /* Size of each fetch, in chars. */ | |
777ea8f1 DJ |
1183 | gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */ |
1184 | gdb_byte *bufptr; /* Pointer to next available byte in buffer. */ | |
1185 | gdb_byte *limit; /* First location past end of fetch buffer. */ | |
c5aa993b | 1186 | struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ |
c906108c SS |
1187 | int found_nul; /* Non-zero if we found the nul char */ |
1188 | ||
1189 | /* First we need to figure out the limit on the number of characters we are | |
1190 | going to attempt to fetch and print. This is actually pretty simple. If | |
1191 | LEN >= zero, then the limit is the minimum of LEN and print_max. If | |
1192 | LEN is -1, then the limit is print_max. This is true regardless of | |
1193 | whether print_max is zero, UINT_MAX (unlimited), or something in between, | |
1194 | because finding the null byte (or available memory) is what actually | |
1195 | limits the fetch. */ | |
1196 | ||
1197 | fetchlimit = (len == -1 ? print_max : min (len, print_max)); | |
1198 | ||
1199 | /* Now decide how large of chunks to try to read in one operation. This | |
1200 | is also pretty simple. If LEN >= zero, then we want fetchlimit chars, | |
1201 | so we might as well read them all in one operation. If LEN is -1, we | |
1202 | are looking for a null terminator to end the fetching, so we might as | |
1203 | well read in blocks that are large enough to be efficient, but not so | |
1204 | large as to be slow if fetchlimit happens to be large. So we choose the | |
1205 | minimum of 8 and fetchlimit. We used to use 200 instead of 8 but | |
1206 | 200 is way too big for remote debugging over a serial line. */ | |
1207 | ||
1208 | chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit); | |
1209 | ||
1210 | /* Loop until we either have all the characters to print, or we encounter | |
1211 | some error, such as bumping into the end of the address space. */ | |
1212 | ||
1213 | found_nul = 0; | |
1214 | old_chain = make_cleanup (null_cleanup, 0); | |
1215 | ||
1216 | if (len > 0) | |
1217 | { | |
777ea8f1 | 1218 | buffer = (gdb_byte *) xmalloc (len * width); |
c906108c | 1219 | bufptr = buffer; |
b8c9b27d | 1220 | old_chain = make_cleanup (xfree, buffer); |
c906108c | 1221 | |
917317f4 | 1222 | nfetch = partial_memory_read (addr, bufptr, len * width, &errcode) |
c906108c SS |
1223 | / width; |
1224 | addr += nfetch * width; | |
1225 | bufptr += nfetch * width; | |
1226 | } | |
1227 | else if (len == -1) | |
1228 | { | |
1229 | unsigned long bufsize = 0; | |
1230 | do | |
1231 | { | |
1232 | QUIT; | |
1233 | nfetch = min (chunksize, fetchlimit - bufsize); | |
1234 | ||
1235 | if (buffer == NULL) | |
777ea8f1 | 1236 | buffer = (gdb_byte *) xmalloc (nfetch * width); |
c906108c SS |
1237 | else |
1238 | { | |
1239 | discard_cleanups (old_chain); | |
777ea8f1 | 1240 | buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width); |
c906108c SS |
1241 | } |
1242 | ||
b8c9b27d | 1243 | old_chain = make_cleanup (xfree, buffer); |
c906108c SS |
1244 | bufptr = buffer + bufsize * width; |
1245 | bufsize += nfetch; | |
1246 | ||
1247 | /* Read as much as we can. */ | |
917317f4 | 1248 | nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) |
c5aa993b | 1249 | / width; |
c906108c SS |
1250 | |
1251 | /* Scan this chunk for the null byte that terminates the string | |
1252 | to print. If found, we don't need to fetch any more. Note | |
1253 | that bufptr is explicitly left pointing at the next character | |
1254 | after the null byte, or at the next character after the end of | |
1255 | the buffer. */ | |
1256 | ||
1257 | limit = bufptr + nfetch * width; | |
1258 | while (bufptr < limit) | |
1259 | { | |
1260 | unsigned long c; | |
1261 | ||
1262 | c = extract_unsigned_integer (bufptr, width); | |
1263 | addr += width; | |
1264 | bufptr += width; | |
1265 | if (c == 0) | |
1266 | { | |
1267 | /* We don't care about any error which happened after | |
1268 | the NULL terminator. */ | |
1269 | errcode = 0; | |
1270 | found_nul = 1; | |
1271 | break; | |
1272 | } | |
1273 | } | |
1274 | } | |
c5aa993b JM |
1275 | while (errcode == 0 /* no error */ |
1276 | && bufptr - buffer < fetchlimit * width /* no overrun */ | |
1277 | && !found_nul); /* haven't found nul yet */ | |
c906108c SS |
1278 | } |
1279 | else | |
1280 | { /* length of string is really 0! */ | |
1281 | buffer = bufptr = NULL; | |
1282 | errcode = 0; | |
1283 | } | |
1284 | ||
1285 | /* bufptr and addr now point immediately beyond the last byte which we | |
1286 | consider part of the string (including a '\0' which ends the string). */ | |
1287 | ||
1288 | /* We now have either successfully filled the buffer to fetchlimit, or | |
1289 | terminated early due to an error or finding a null char when LEN is -1. */ | |
1290 | ||
1291 | if (len == -1 && !found_nul) | |
1292 | { | |
777ea8f1 | 1293 | gdb_byte *peekbuf; |
c906108c SS |
1294 | |
1295 | /* We didn't find a null terminator we were looking for. Attempt | |
c5aa993b JM |
1296 | to peek at the next character. If not successful, or it is not |
1297 | a null byte, then force ellipsis to be printed. */ | |
c906108c | 1298 | |
777ea8f1 | 1299 | peekbuf = (gdb_byte *) alloca (width); |
c906108c SS |
1300 | |
1301 | if (target_read_memory (addr, peekbuf, width) == 0 | |
1302 | && extract_unsigned_integer (peekbuf, width) != 0) | |
1303 | force_ellipsis = 1; | |
1304 | } | |
c5aa993b | 1305 | else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width)) |
c906108c SS |
1306 | { |
1307 | /* Getting an error when we have a requested length, or fetching less | |
c5aa993b JM |
1308 | than the number of characters actually requested, always make us |
1309 | print ellipsis. */ | |
c906108c SS |
1310 | force_ellipsis = 1; |
1311 | } | |
1312 | ||
1313 | QUIT; | |
1314 | ||
1315 | /* If we get an error before fetching anything, don't print a string. | |
1316 | But if we fetch something and then get an error, print the string | |
1317 | and then the error message. */ | |
1318 | if (errcode == 0 || bufptr > buffer) | |
1319 | { | |
1320 | if (addressprint) | |
1321 | { | |
1322 | fputs_filtered (" ", stream); | |
1323 | } | |
c5aa993b | 1324 | LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis); |
c906108c SS |
1325 | } |
1326 | ||
1327 | if (errcode != 0) | |
1328 | { | |
1329 | if (errcode == EIO) | |
1330 | { | |
1331 | fprintf_filtered (stream, " <Address "); | |
ed49a04f | 1332 | fputs_filtered (paddress (addr), stream); |
c906108c SS |
1333 | fprintf_filtered (stream, " out of bounds>"); |
1334 | } | |
1335 | else | |
1336 | { | |
1337 | fprintf_filtered (stream, " <Error reading address "); | |
ed49a04f | 1338 | fputs_filtered (paddress (addr), stream); |
c906108c SS |
1339 | fprintf_filtered (stream, ": %s>", safe_strerror (errcode)); |
1340 | } | |
1341 | } | |
1342 | gdb_flush (stream); | |
1343 | do_cleanups (old_chain); | |
c5aa993b | 1344 | return ((bufptr - buffer) / width); |
c906108c | 1345 | } |
c906108c | 1346 | \f |
c5aa993b | 1347 | |
c906108c SS |
1348 | /* Validate an input or output radix setting, and make sure the user |
1349 | knows what they really did here. Radix setting is confusing, e.g. | |
1350 | setting the input radix to "10" never changes it! */ | |
1351 | ||
c906108c | 1352 | static void |
fba45db2 | 1353 | set_input_radix (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 1354 | { |
f66c9f11 | 1355 | set_input_radix_1 (from_tty, input_radix); |
c906108c SS |
1356 | } |
1357 | ||
c906108c | 1358 | static void |
fba45db2 | 1359 | set_input_radix_1 (int from_tty, unsigned radix) |
c906108c SS |
1360 | { |
1361 | /* We don't currently disallow any input radix except 0 or 1, which don't | |
1362 | make any mathematical sense. In theory, we can deal with any input | |
1363 | radix greater than 1, even if we don't have unique digits for every | |
1364 | value from 0 to radix-1, but in practice we lose on large radix values. | |
1365 | We should either fix the lossage or restrict the radix range more. | |
1366 | (FIXME). */ | |
1367 | ||
1368 | if (radix < 2) | |
1369 | { | |
f66c9f11 AC |
1370 | /* FIXME: cagney/2002-03-17: This needs to revert the bad radix |
1371 | value. */ | |
8a3fe4f8 | 1372 | error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), |
c906108c SS |
1373 | radix); |
1374 | } | |
1375 | input_radix = radix; | |
1376 | if (from_tty) | |
1377 | { | |
a3f17187 | 1378 | printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"), |
c906108c SS |
1379 | radix, radix, radix); |
1380 | } | |
1381 | } | |
1382 | ||
c906108c | 1383 | static void |
fba45db2 | 1384 | set_output_radix (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 1385 | { |
f66c9f11 | 1386 | set_output_radix_1 (from_tty, output_radix); |
c906108c SS |
1387 | } |
1388 | ||
1389 | static void | |
fba45db2 | 1390 | set_output_radix_1 (int from_tty, unsigned radix) |
c906108c SS |
1391 | { |
1392 | /* Validate the radix and disallow ones that we aren't prepared to | |
1393 | handle correctly, leaving the radix unchanged. */ | |
1394 | switch (radix) | |
1395 | { | |
1396 | case 16: | |
c5aa993b | 1397 | output_format = 'x'; /* hex */ |
c906108c SS |
1398 | break; |
1399 | case 10: | |
c5aa993b | 1400 | output_format = 0; /* decimal */ |
c906108c SS |
1401 | break; |
1402 | case 8: | |
c5aa993b | 1403 | output_format = 'o'; /* octal */ |
c906108c SS |
1404 | break; |
1405 | default: | |
f66c9f11 AC |
1406 | /* FIXME: cagney/2002-03-17: This needs to revert the bad radix |
1407 | value. */ | |
8a3fe4f8 | 1408 | error (_("Unsupported output radix ``decimal %u''; output radix unchanged."), |
c906108c SS |
1409 | radix); |
1410 | } | |
1411 | output_radix = radix; | |
1412 | if (from_tty) | |
1413 | { | |
a3f17187 | 1414 | printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"), |
c906108c SS |
1415 | radix, radix, radix); |
1416 | } | |
1417 | } | |
1418 | ||
1419 | /* Set both the input and output radix at once. Try to set the output radix | |
1420 | first, since it has the most restrictive range. An radix that is valid as | |
1421 | an output radix is also valid as an input radix. | |
1422 | ||
1423 | It may be useful to have an unusual input radix. If the user wishes to | |
1424 | set an input radix that is not valid as an output radix, he needs to use | |
1425 | the 'set input-radix' command. */ | |
1426 | ||
1427 | static void | |
fba45db2 | 1428 | set_radix (char *arg, int from_tty) |
c906108c SS |
1429 | { |
1430 | unsigned radix; | |
1431 | ||
bb518678 | 1432 | radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); |
c906108c SS |
1433 | set_output_radix_1 (0, radix); |
1434 | set_input_radix_1 (0, radix); | |
1435 | if (from_tty) | |
1436 | { | |
a3f17187 | 1437 | printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"), |
c906108c SS |
1438 | radix, radix, radix); |
1439 | } | |
1440 | } | |
1441 | ||
1442 | /* Show both the input and output radices. */ | |
1443 | ||
c906108c | 1444 | static void |
fba45db2 | 1445 | show_radix (char *arg, int from_tty) |
c906108c SS |
1446 | { |
1447 | if (from_tty) | |
1448 | { | |
1449 | if (input_radix == output_radix) | |
1450 | { | |
a3f17187 | 1451 | printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"), |
c906108c SS |
1452 | input_radix, input_radix, input_radix); |
1453 | } | |
1454 | else | |
1455 | { | |
a3f17187 | 1456 | printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"), |
c906108c | 1457 | input_radix, input_radix, input_radix); |
a3f17187 | 1458 | printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"), |
c906108c SS |
1459 | output_radix, output_radix, output_radix); |
1460 | } | |
1461 | } | |
1462 | } | |
c906108c | 1463 | \f |
c5aa993b | 1464 | |
c906108c | 1465 | static void |
fba45db2 | 1466 | set_print (char *arg, int from_tty) |
c906108c SS |
1467 | { |
1468 | printf_unfiltered ( | |
c5aa993b | 1469 | "\"set print\" must be followed by the name of a print subcommand.\n"); |
c906108c SS |
1470 | help_list (setprintlist, "set print ", -1, gdb_stdout); |
1471 | } | |
1472 | ||
c906108c | 1473 | static void |
fba45db2 | 1474 | show_print (char *args, int from_tty) |
c906108c SS |
1475 | { |
1476 | cmd_show_list (showprintlist, from_tty, ""); | |
1477 | } | |
1478 | \f | |
1479 | void | |
fba45db2 | 1480 | _initialize_valprint (void) |
c906108c SS |
1481 | { |
1482 | struct cmd_list_element *c; | |
1483 | ||
1484 | add_prefix_cmd ("print", no_class, set_print, | |
1bedd215 | 1485 | _("Generic command for setting how things print."), |
c906108c | 1486 | &setprintlist, "set print ", 0, &setlist); |
c5aa993b JM |
1487 | add_alias_cmd ("p", "print", no_class, 1, &setlist); |
1488 | /* prefer set print to set prompt */ | |
c906108c SS |
1489 | add_alias_cmd ("pr", "print", no_class, 1, &setlist); |
1490 | ||
1491 | add_prefix_cmd ("print", no_class, show_print, | |
1bedd215 | 1492 | _("Generic command for showing print settings."), |
c906108c | 1493 | &showprintlist, "show print ", 0, &showlist); |
c5aa993b JM |
1494 | add_alias_cmd ("p", "print", no_class, 1, &showlist); |
1495 | add_alias_cmd ("pr", "print", no_class, 1, &showlist); | |
c906108c | 1496 | |
35096d9d AC |
1497 | add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\ |
1498 | Set limit on string chars or array elements to print."), _("\ | |
1499 | Show limit on string chars or array elements to print."), _("\ | |
1500 | \"set print elements 0\" causes there to be no limit."), | |
1501 | NULL, | |
920d2a44 | 1502 | show_print_max, |
35096d9d | 1503 | &setprintlist, &showprintlist); |
c906108c | 1504 | |
5bf193a2 AC |
1505 | add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\ |
1506 | Set printing of char arrays to stop at first null char."), _("\ | |
1507 | Show printing of char arrays to stop at first null char."), NULL, | |
1508 | NULL, | |
920d2a44 | 1509 | show_stop_print_at_null, |
5bf193a2 | 1510 | &setprintlist, &showprintlist); |
c906108c | 1511 | |
35096d9d AC |
1512 | add_setshow_uinteger_cmd ("repeats", no_class, |
1513 | &repeat_count_threshold, _("\ | |
1514 | Set threshold for repeated print elements."), _("\ | |
1515 | Show threshold for repeated print elements."), _("\ | |
1516 | \"set print repeats 0\" causes all elements to be individually printed."), | |
1517 | NULL, | |
920d2a44 | 1518 | show_repeat_count_threshold, |
35096d9d | 1519 | &setprintlist, &showprintlist); |
c906108c | 1520 | |
5bf193a2 AC |
1521 | add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\ |
1522 | Set prettyprinting of structures."), _("\ | |
1523 | Show prettyprinting of structures."), NULL, | |
1524 | NULL, | |
920d2a44 | 1525 | show_prettyprint_structs, |
5bf193a2 AC |
1526 | &setprintlist, &showprintlist); |
1527 | ||
1528 | add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\ | |
1529 | Set printing of unions interior to structures."), _("\ | |
1530 | Show printing of unions interior to structures."), NULL, | |
1531 | NULL, | |
920d2a44 | 1532 | show_unionprint, |
5bf193a2 AC |
1533 | &setprintlist, &showprintlist); |
1534 | ||
1535 | add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\ | |
1536 | Set prettyprinting of arrays."), _("\ | |
1537 | Show prettyprinting of arrays."), NULL, | |
1538 | NULL, | |
920d2a44 | 1539 | show_prettyprint_arrays, |
5bf193a2 AC |
1540 | &setprintlist, &showprintlist); |
1541 | ||
1542 | add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\ | |
1543 | Set printing of addresses."), _("\ | |
1544 | Show printing of addresses."), NULL, | |
1545 | NULL, | |
920d2a44 | 1546 | show_addressprint, |
5bf193a2 | 1547 | &setprintlist, &showprintlist); |
c906108c | 1548 | |
35096d9d AC |
1549 | add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\ |
1550 | Set default input radix for entering numbers."), _("\ | |
1551 | Show default input radix for entering numbers."), NULL, | |
1552 | set_input_radix, | |
920d2a44 | 1553 | show_input_radix, |
35096d9d AC |
1554 | &setlist, &showlist); |
1555 | ||
1556 | add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\ | |
1557 | Set default output radix for printing of values."), _("\ | |
1558 | Show default output radix for printing of values."), NULL, | |
1559 | set_output_radix, | |
920d2a44 | 1560 | show_output_radix, |
35096d9d | 1561 | &setlist, &showlist); |
c906108c | 1562 | |
cb1a6d5f AC |
1563 | /* The "set radix" and "show radix" commands are special in that |
1564 | they are like normal set and show commands but allow two normally | |
1565 | independent variables to be either set or shown with a single | |
b66df561 | 1566 | command. So the usual deprecated_add_set_cmd() and [deleted] |
cb1a6d5f | 1567 | add_show_from_set() commands aren't really appropriate. */ |
b66df561 AC |
1568 | /* FIXME: i18n: With the new add_setshow_integer command, that is no |
1569 | longer true - show can display anything. */ | |
1a966eab AC |
1570 | add_cmd ("radix", class_support, set_radix, _("\ |
1571 | Set default input and output number radices.\n\ | |
c906108c | 1572 | Use 'set input-radix' or 'set output-radix' to independently set each.\n\ |
1a966eab | 1573 | Without an argument, sets both radices back to the default value of 10."), |
c906108c | 1574 | &setlist); |
1a966eab AC |
1575 | add_cmd ("radix", class_support, show_radix, _("\ |
1576 | Show the default input and output number radices.\n\ | |
1577 | Use 'show input-radix' or 'show output-radix' to independently show each."), | |
c906108c SS |
1578 | &showlist); |
1579 | ||
e79af960 JB |
1580 | add_setshow_boolean_cmd ("array-indexes", class_support, |
1581 | &print_array_indexes, _("\ | |
1582 | Set printing of array indexes."), _("\ | |
1583 | Show printing of array indexes"), NULL, NULL, show_print_array_indexes, | |
1584 | &setprintlist, &showprintlist); | |
1585 | ||
c906108c SS |
1586 | /* Give people the defaults which they are used to. */ |
1587 | prettyprint_structs = 0; | |
1588 | prettyprint_arrays = 0; | |
1589 | unionprint = 1; | |
1590 | addressprint = 1; | |
1591 | print_max = PRINT_MAX_DEFAULT; | |
1592 | } |