]>
Commit | Line | Data |
---|---|---|
32090b8e | 1 | /* ELF executable support for BFD. |
6014cea7 | 2 | Copyright 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
32090b8e KR |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
6f904fce | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
32090b8e | 19 | |
d1b44e83 ILT |
20 | /* |
21 | ||
22 | SECTION | |
23 | ELF backends | |
24 | ||
25 | BFD support for ELF formats is being worked on. | |
26 | Currently, the best supported back ends are for sparc and i386 | |
27 | (running svr4 or Solaris 2). | |
28 | ||
29 | Documentation of the internals of the support code still needs | |
30 | to be written. The code is changing quickly enough that we | |
31 | haven't bothered yet. | |
32 | */ | |
33 | ||
32090b8e KR |
34 | #include "bfd.h" |
35 | #include "sysdep.h" | |
013dec1a | 36 | #include "bfdlink.h" |
32090b8e KR |
37 | #include "libbfd.h" |
38 | #define ARCH_SIZE 0 | |
6ab826bd | 39 | #include "elf-bfd.h" |
32090b8e | 40 | |
fd0198f0 | 41 | static INLINE struct elf_segment_map *make_mapping |
edf3fe48 | 42 | PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean)); |
191d910c | 43 | static boolean map_sections_to_segments PARAMS ((bfd *)); |
fd0198f0 ILT |
44 | static int elf_sort_sections PARAMS ((const PTR, const PTR)); |
45 | static boolean assign_file_positions_for_segments PARAMS ((bfd *)); | |
46 | static boolean assign_file_positions_except_relocs PARAMS ((bfd *)); | |
ede4eed4 KR |
47 | static boolean prep_headers PARAMS ((bfd *)); |
48 | static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **)); | |
3dbf33ee | 49 | static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *)); |
ea3f0585 FF |
50 | static char *elf_read PARAMS ((bfd *, long, unsigned int)); |
51 | static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); | |
52 | static boolean assign_section_numbers PARAMS ((bfd *)); | |
53 | static INLINE int sym_is_global PARAMS ((bfd *, asymbol *)); | |
54 | static boolean elf_map_symbols PARAMS ((bfd *)); | |
55 | static bfd_size_type get_program_header_size PARAMS ((bfd *)); | |
ede4eed4 | 56 | |
32090b8e KR |
57 | /* Standard ELF hash function. Do not change this function; you will |
58 | cause invalid hash tables to be generated. (Well, you would if this | |
59 | were being used yet.) */ | |
60 | unsigned long | |
013dec1a ILT |
61 | bfd_elf_hash (name) |
62 | CONST unsigned char *name; | |
32090b8e KR |
63 | { |
64 | unsigned long h = 0; | |
65 | unsigned long g; | |
66 | int ch; | |
67 | ||
68 | while ((ch = *name++) != '\0') | |
69 | { | |
70 | h = (h << 4) + ch; | |
71 | if ((g = (h & 0xf0000000)) != 0) | |
72 | { | |
73 | h ^= g >> 24; | |
74 | h &= ~g; | |
75 | } | |
76 | } | |
77 | return h; | |
78 | } | |
79 | ||
80 | /* Read a specified number of bytes at a specified offset in an ELF | |
81 | file, into a newly allocated buffer, and return a pointer to the | |
82 | buffer. */ | |
83 | ||
84 | static char * | |
013dec1a ILT |
85 | elf_read (abfd, offset, size) |
86 | bfd * abfd; | |
87 | long offset; | |
ae115e51 | 88 | unsigned int size; |
32090b8e KR |
89 | { |
90 | char *buf; | |
91 | ||
92 | if ((buf = bfd_alloc (abfd, size)) == NULL) | |
a9713b91 | 93 | return NULL; |
32090b8e | 94 | if (bfd_seek (abfd, offset, SEEK_SET) == -1) |
013dec1a | 95 | return NULL; |
32090b8e KR |
96 | if (bfd_read ((PTR) buf, size, 1, abfd) != size) |
97 | { | |
013dec1a ILT |
98 | if (bfd_get_error () != bfd_error_system_call) |
99 | bfd_set_error (bfd_error_file_truncated); | |
32090b8e KR |
100 | return NULL; |
101 | } | |
102 | return buf; | |
103 | } | |
104 | ||
105 | boolean | |
ff12f303 | 106 | bfd_elf_mkobject (abfd) |
013dec1a | 107 | bfd * abfd; |
32090b8e KR |
108 | { |
109 | /* this just does initialization */ | |
110 | /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ | |
111 | elf_tdata (abfd) = (struct elf_obj_tdata *) | |
112 | bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); | |
113 | if (elf_tdata (abfd) == 0) | |
a9713b91 | 114 | return false; |
32090b8e KR |
115 | /* since everything is done at close time, do we need any |
116 | initialization? */ | |
117 | ||
118 | return true; | |
119 | } | |
120 | ||
121 | char * | |
ede4eed4 | 122 | bfd_elf_get_str_section (abfd, shindex) |
013dec1a ILT |
123 | bfd * abfd; |
124 | unsigned int shindex; | |
32090b8e KR |
125 | { |
126 | Elf_Internal_Shdr **i_shdrp; | |
127 | char *shstrtab = NULL; | |
128 | unsigned int offset; | |
129 | unsigned int shstrtabsize; | |
130 | ||
131 | i_shdrp = elf_elfsections (abfd); | |
132 | if (i_shdrp == 0 || i_shdrp[shindex] == 0) | |
133 | return 0; | |
134 | ||
b176e1e9 | 135 | shstrtab = (char *) i_shdrp[shindex]->contents; |
32090b8e KR |
136 | if (shstrtab == NULL) |
137 | { | |
138 | /* No cached one, attempt to read, and cache what we read. */ | |
139 | offset = i_shdrp[shindex]->sh_offset; | |
140 | shstrtabsize = i_shdrp[shindex]->sh_size; | |
141 | shstrtab = elf_read (abfd, offset, shstrtabsize); | |
b176e1e9 | 142 | i_shdrp[shindex]->contents = (PTR) shstrtab; |
32090b8e KR |
143 | } |
144 | return shstrtab; | |
145 | } | |
146 | ||
147 | char * | |
ede4eed4 | 148 | bfd_elf_string_from_elf_section (abfd, shindex, strindex) |
013dec1a ILT |
149 | bfd * abfd; |
150 | unsigned int shindex; | |
151 | unsigned int strindex; | |
32090b8e KR |
152 | { |
153 | Elf_Internal_Shdr *hdr; | |
154 | ||
155 | if (strindex == 0) | |
156 | return ""; | |
157 | ||
158 | hdr = elf_elfsections (abfd)[shindex]; | |
159 | ||
b176e1e9 | 160 | if (hdr->contents == NULL |
ede4eed4 | 161 | && bfd_elf_get_str_section (abfd, shindex) == NULL) |
32090b8e KR |
162 | return NULL; |
163 | ||
b176e1e9 | 164 | return ((char *) hdr->contents) + strindex; |
32090b8e KR |
165 | } |
166 | ||
497c5434 | 167 | /* Make a BFD section from an ELF section. We store a pointer to the |
b176e1e9 | 168 | BFD section in the bfd_section field of the header. */ |
497c5434 ILT |
169 | |
170 | boolean | |
171 | _bfd_elf_make_section_from_shdr (abfd, hdr, name) | |
172 | bfd *abfd; | |
173 | Elf_Internal_Shdr *hdr; | |
174 | const char *name; | |
175 | { | |
176 | asection *newsect; | |
177 | flagword flags; | |
178 | ||
b176e1e9 | 179 | if (hdr->bfd_section != NULL) |
497c5434 | 180 | { |
b176e1e9 ILT |
181 | BFD_ASSERT (strcmp (name, |
182 | bfd_get_section_name (abfd, hdr->bfd_section)) == 0); | |
497c5434 ILT |
183 | return true; |
184 | } | |
185 | ||
186 | newsect = bfd_make_section_anyway (abfd, name); | |
187 | if (newsect == NULL) | |
188 | return false; | |
189 | ||
190 | newsect->filepos = hdr->sh_offset; | |
191 | ||
192 | if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) | |
193 | || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) | |
194 | || ! bfd_set_section_alignment (abfd, newsect, | |
195 | bfd_log2 (hdr->sh_addralign))) | |
196 | return false; | |
197 | ||
198 | flags = SEC_NO_FLAGS; | |
199 | if (hdr->sh_type != SHT_NOBITS) | |
200 | flags |= SEC_HAS_CONTENTS; | |
201 | if ((hdr->sh_flags & SHF_ALLOC) != 0) | |
202 | { | |
203 | flags |= SEC_ALLOC; | |
204 | if (hdr->sh_type != SHT_NOBITS) | |
205 | flags |= SEC_LOAD; | |
206 | } | |
207 | if ((hdr->sh_flags & SHF_WRITE) == 0) | |
208 | flags |= SEC_READONLY; | |
209 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
210 | flags |= SEC_CODE; | |
7c6da9ca | 211 | else if ((flags & SEC_LOAD) != 0) |
497c5434 ILT |
212 | flags |= SEC_DATA; |
213 | ||
214 | /* The debugging sections appear to be recognized only by name, not | |
215 | any sort of flag. */ | |
216 | if (strncmp (name, ".debug", sizeof ".debug" - 1) == 0 | |
217 | || strncmp (name, ".line", sizeof ".line" - 1) == 0 | |
218 | || strncmp (name, ".stab", sizeof ".stab" - 1) == 0) | |
219 | flags |= SEC_DEBUGGING; | |
220 | ||
f0c12b73 DE |
221 | /* As a GNU extension, if the name begins with .gnu.linkonce, we |
222 | only link a single copy of the section. This is used to support | |
223 | g++. g++ will emit each template expansion in its own section. | |
224 | The symbols will be defined as weak, so that multiple definitions | |
225 | are permitted. The GNU linker extension is to actually discard | |
226 | all but one of the sections. */ | |
227 | if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) | |
228 | flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; | |
229 | ||
497c5434 ILT |
230 | if (! bfd_set_section_flags (abfd, newsect, flags)) |
231 | return false; | |
232 | ||
fd0198f0 ILT |
233 | if ((flags & SEC_ALLOC) != 0) |
234 | { | |
235 | Elf_Internal_Phdr *phdr; | |
236 | unsigned int i; | |
237 | ||
238 | /* Look through the phdrs to see if we need to adjust the lma. */ | |
239 | phdr = elf_tdata (abfd)->phdr; | |
240 | for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) | |
241 | { | |
242 | if (phdr->p_type == PT_LOAD | |
6933148a | 243 | && phdr->p_paddr != 0 |
fd0198f0 ILT |
244 | && phdr->p_vaddr != phdr->p_paddr |
245 | && phdr->p_vaddr <= hdr->sh_addr | |
b944e7e8 ILT |
246 | && phdr->p_vaddr + phdr->p_memsz >= hdr->sh_addr + hdr->sh_size |
247 | && ((flags & SEC_LOAD) == 0 | |
248 | || (phdr->p_offset <= hdr->sh_offset | |
249 | && (phdr->p_offset + phdr->p_filesz | |
250 | >= hdr->sh_offset + hdr->sh_size)))) | |
fd0198f0 ILT |
251 | { |
252 | newsect->lma += phdr->p_paddr - phdr->p_vaddr; | |
253 | break; | |
254 | } | |
255 | } | |
256 | } | |
257 | ||
b176e1e9 | 258 | hdr->bfd_section = newsect; |
497c5434 ILT |
259 | elf_section_data (newsect)->this_hdr = *hdr; |
260 | ||
261 | return true; | |
262 | } | |
263 | ||
32090b8e KR |
264 | /* |
265 | INTERNAL_FUNCTION | |
266 | bfd_elf_find_section | |
267 | ||
268 | SYNOPSIS | |
269 | struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); | |
270 | ||
271 | DESCRIPTION | |
272 | Helper functions for GDB to locate the string tables. | |
273 | Since BFD hides string tables from callers, GDB needs to use an | |
274 | internal hook to find them. Sun's .stabstr, in particular, | |
275 | isn't even pointed to by the .stab section, so ordinary | |
276 | mechanisms wouldn't work to find it, even if we had some. | |
277 | */ | |
278 | ||
279 | struct elf_internal_shdr * | |
013dec1a ILT |
280 | bfd_elf_find_section (abfd, name) |
281 | bfd * abfd; | |
282 | char *name; | |
32090b8e KR |
283 | { |
284 | Elf_Internal_Shdr **i_shdrp; | |
285 | char *shstrtab; | |
286 | unsigned int max; | |
287 | unsigned int i; | |
288 | ||
289 | i_shdrp = elf_elfsections (abfd); | |
290 | if (i_shdrp != NULL) | |
291 | { | |
ede4eed4 | 292 | shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx); |
32090b8e KR |
293 | if (shstrtab != NULL) |
294 | { | |
295 | max = elf_elfheader (abfd)->e_shnum; | |
296 | for (i = 1; i < max; i++) | |
297 | if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name)) | |
298 | return i_shdrp[i]; | |
299 | } | |
300 | } | |
301 | return 0; | |
302 | } | |
303 | ||
32090b8e KR |
304 | const char *const bfd_elf_section_type_names[] = { |
305 | "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", | |
306 | "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", | |
307 | "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", | |
308 | }; | |
309 | ||
310 | /* ELF relocs are against symbols. If we are producing relocateable | |
311 | output, and the reloc is against an external symbol, and nothing | |
312 | has given us any additional addend, the resulting reloc will also | |
313 | be against the same symbol. In such a case, we don't want to | |
314 | change anything about the way the reloc is handled, since it will | |
315 | all be done at final link time. Rather than put special case code | |
316 | into bfd_perform_relocation, all the reloc types use this howto | |
317 | function. It just short circuits the reloc if producing | |
318 | relocateable output against an external symbol. */ | |
319 | ||
013dec1a | 320 | /*ARGSUSED*/ |
32090b8e KR |
321 | bfd_reloc_status_type |
322 | bfd_elf_generic_reloc (abfd, | |
323 | reloc_entry, | |
324 | symbol, | |
325 | data, | |
326 | input_section, | |
4c3721d5 ILT |
327 | output_bfd, |
328 | error_message) | |
32090b8e KR |
329 | bfd *abfd; |
330 | arelent *reloc_entry; | |
331 | asymbol *symbol; | |
332 | PTR data; | |
333 | asection *input_section; | |
334 | bfd *output_bfd; | |
4c3721d5 | 335 | char **error_message; |
32090b8e KR |
336 | { |
337 | if (output_bfd != (bfd *) NULL | |
338 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
d1b44e83 ILT |
339 | && (! reloc_entry->howto->partial_inplace |
340 | || reloc_entry->addend == 0)) | |
32090b8e KR |
341 | { |
342 | reloc_entry->address += input_section->output_offset; | |
343 | return bfd_reloc_ok; | |
344 | } | |
345 | ||
346 | return bfd_reloc_continue; | |
347 | } | |
013dec1a | 348 | \f |
27fb8f29 ILT |
349 | /* Print out the program headers. */ |
350 | ||
351 | boolean | |
352 | _bfd_elf_print_private_bfd_data (abfd, farg) | |
353 | bfd *abfd; | |
354 | PTR farg; | |
355 | { | |
356 | FILE *f = (FILE *) farg; | |
357 | Elf_Internal_Phdr *p; | |
02fcd126 ILT |
358 | asection *s; |
359 | bfd_byte *dynbuf = NULL; | |
27fb8f29 ILT |
360 | |
361 | p = elf_tdata (abfd)->phdr; | |
02fcd126 | 362 | if (p != NULL) |
27fb8f29 | 363 | { |
02fcd126 | 364 | unsigned int i, c; |
27fb8f29 | 365 | |
02fcd126 ILT |
366 | fprintf (f, "\nProgram Header:\n"); |
367 | c = elf_elfheader (abfd)->e_phnum; | |
368 | for (i = 0; i < c; i++, p++) | |
27fb8f29 | 369 | { |
02fcd126 ILT |
370 | const char *s; |
371 | char buf[20]; | |
372 | ||
373 | switch (p->p_type) | |
374 | { | |
375 | case PT_NULL: s = "NULL"; break; | |
376 | case PT_LOAD: s = "LOAD"; break; | |
377 | case PT_DYNAMIC: s = "DYNAMIC"; break; | |
378 | case PT_INTERP: s = "INTERP"; break; | |
379 | case PT_NOTE: s = "NOTE"; break; | |
380 | case PT_SHLIB: s = "SHLIB"; break; | |
381 | case PT_PHDR: s = "PHDR"; break; | |
382 | default: sprintf (buf, "0x%lx", p->p_type); s = buf; break; | |
383 | } | |
384 | fprintf (f, "%8s off 0x", s); | |
385 | fprintf_vma (f, p->p_offset); | |
386 | fprintf (f, " vaddr 0x"); | |
387 | fprintf_vma (f, p->p_vaddr); | |
388 | fprintf (f, " paddr 0x"); | |
389 | fprintf_vma (f, p->p_paddr); | |
390 | fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); | |
391 | fprintf (f, " filesz 0x"); | |
392 | fprintf_vma (f, p->p_filesz); | |
393 | fprintf (f, " memsz 0x"); | |
394 | fprintf_vma (f, p->p_memsz); | |
395 | fprintf (f, " flags %c%c%c", | |
396 | (p->p_flags & PF_R) != 0 ? 'r' : '-', | |
397 | (p->p_flags & PF_W) != 0 ? 'w' : '-', | |
398 | (p->p_flags & PF_X) != 0 ? 'x' : '-'); | |
399 | if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0) | |
400 | fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X)); | |
401 | fprintf (f, "\n"); | |
402 | } | |
403 | } | |
404 | ||
405 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
406 | if (s != NULL) | |
407 | { | |
408 | int elfsec; | |
409 | unsigned long link; | |
410 | bfd_byte *extdyn, *extdynend; | |
411 | size_t extdynsize; | |
412 | void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); | |
413 | ||
414 | fprintf (f, "\nDynamic Section:\n"); | |
415 | ||
416 | dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); | |
417 | if (dynbuf == NULL) | |
418 | goto error_return; | |
419 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, | |
420 | s->_raw_size)) | |
421 | goto error_return; | |
422 | ||
423 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
424 | if (elfsec == -1) | |
425 | goto error_return; | |
426 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
427 | ||
428 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; | |
429 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | |
430 | ||
431 | extdyn = dynbuf; | |
432 | extdynend = extdyn + s->_raw_size; | |
433 | for (; extdyn < extdynend; extdyn += extdynsize) | |
434 | { | |
435 | Elf_Internal_Dyn dyn; | |
436 | const char *name; | |
437 | char ab[20]; | |
438 | boolean stringp; | |
439 | ||
440 | (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); | |
441 | ||
442 | if (dyn.d_tag == DT_NULL) | |
443 | break; | |
444 | ||
445 | stringp = false; | |
446 | switch (dyn.d_tag) | |
447 | { | |
448 | default: | |
927d05b5 | 449 | sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); |
02fcd126 ILT |
450 | name = ab; |
451 | break; | |
452 | ||
453 | case DT_NEEDED: name = "NEEDED"; stringp = true; break; | |
454 | case DT_PLTRELSZ: name = "PLTRELSZ"; break; | |
455 | case DT_PLTGOT: name = "PLTGOT"; break; | |
456 | case DT_HASH: name = "HASH"; break; | |
457 | case DT_STRTAB: name = "STRTAB"; break; | |
458 | case DT_SYMTAB: name = "SYMTAB"; break; | |
459 | case DT_RELA: name = "RELA"; break; | |
460 | case DT_RELASZ: name = "RELASZ"; break; | |
461 | case DT_RELAENT: name = "RELAENT"; break; | |
462 | case DT_STRSZ: name = "STRSZ"; break; | |
463 | case DT_SYMENT: name = "SYMENT"; break; | |
464 | case DT_INIT: name = "INIT"; break; | |
465 | case DT_FINI: name = "FINI"; break; | |
466 | case DT_SONAME: name = "SONAME"; stringp = true; break; | |
467 | case DT_RPATH: name = "RPATH"; stringp = true; break; | |
468 | case DT_SYMBOLIC: name = "SYMBOLIC"; break; | |
469 | case DT_REL: name = "REL"; break; | |
470 | case DT_RELSZ: name = "RELSZ"; break; | |
471 | case DT_RELENT: name = "RELENT"; break; | |
472 | case DT_PLTREL: name = "PLTREL"; break; | |
473 | case DT_DEBUG: name = "DEBUG"; break; | |
474 | case DT_TEXTREL: name = "TEXTREL"; break; | |
475 | case DT_JMPREL: name = "JMPREL"; break; | |
148437ec ILT |
476 | case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break; |
477 | case DT_FILTER: name = "FILTER"; stringp = true; break; | |
02fcd126 ILT |
478 | } |
479 | ||
480 | fprintf (f, " %-11s ", name); | |
481 | if (! stringp) | |
927d05b5 | 482 | fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val); |
02fcd126 ILT |
483 | else |
484 | { | |
485 | const char *string; | |
486 | ||
487 | string = bfd_elf_string_from_elf_section (abfd, link, | |
488 | dyn.d_un.d_val); | |
489 | if (string == NULL) | |
490 | goto error_return; | |
491 | fprintf (f, "%s", string); | |
492 | } | |
493 | fprintf (f, "\n"); | |
27fb8f29 | 494 | } |
02fcd126 ILT |
495 | |
496 | free (dynbuf); | |
497 | dynbuf = NULL; | |
27fb8f29 ILT |
498 | } |
499 | ||
500 | return true; | |
02fcd126 ILT |
501 | |
502 | error_return: | |
503 | if (dynbuf != NULL) | |
504 | free (dynbuf); | |
505 | return false; | |
27fb8f29 ILT |
506 | } |
507 | ||
b176e1e9 ILT |
508 | /* Display ELF-specific fields of a symbol. */ |
509 | void | |
510 | bfd_elf_print_symbol (ignore_abfd, filep, symbol, how) | |
511 | bfd *ignore_abfd; | |
512 | PTR filep; | |
513 | asymbol *symbol; | |
514 | bfd_print_symbol_type how; | |
515 | { | |
516 | FILE *file = (FILE *) filep; | |
517 | switch (how) | |
518 | { | |
519 | case bfd_print_symbol_name: | |
520 | fprintf (file, "%s", symbol->name); | |
521 | break; | |
522 | case bfd_print_symbol_more: | |
523 | fprintf (file, "elf "); | |
524 | fprintf_vma (file, symbol->value); | |
525 | fprintf (file, " %lx", (long) symbol->flags); | |
526 | break; | |
527 | case bfd_print_symbol_all: | |
528 | { | |
529 | CONST char *section_name; | |
530 | section_name = symbol->section ? symbol->section->name : "(*none*)"; | |
531 | bfd_print_symbol_vandf ((PTR) file, symbol); | |
532 | fprintf (file, " %s\t", section_name); | |
533 | /* Print the "other" value for a symbol. For common symbols, | |
534 | we've already printed the size; now print the alignment. | |
535 | For other symbols, we have no specified alignment, and | |
536 | we've printed the address; now print the size. */ | |
537 | fprintf_vma (file, | |
538 | (bfd_is_com_section (symbol->section) | |
539 | ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value | |
540 | : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size)); | |
69e2ff18 ILT |
541 | /* If the st_other field is not zero, print it. */ |
542 | if (((elf_symbol_type *) symbol)->internal_elf_sym.st_other != 0) | |
543 | fprintf (file, " 0x%02x", | |
544 | ((unsigned int) | |
545 | ((elf_symbol_type *) symbol)->internal_elf_sym.st_other)); | |
b176e1e9 ILT |
546 | fprintf (file, " %s", symbol->name); |
547 | } | |
548 | break; | |
549 | } | |
550 | } | |
551 | \f | |
013dec1a ILT |
552 | /* Create an entry in an ELF linker hash table. */ |
553 | ||
5315c428 ILT |
554 | struct bfd_hash_entry * |
555 | _bfd_elf_link_hash_newfunc (entry, table, string) | |
013dec1a ILT |
556 | struct bfd_hash_entry *entry; |
557 | struct bfd_hash_table *table; | |
558 | const char *string; | |
559 | { | |
560 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; | |
561 | ||
562 | /* Allocate the structure if it has not already been allocated by a | |
563 | subclass. */ | |
564 | if (ret == (struct elf_link_hash_entry *) NULL) | |
565 | ret = ((struct elf_link_hash_entry *) | |
566 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry))); | |
567 | if (ret == (struct elf_link_hash_entry *) NULL) | |
a9713b91 | 568 | return (struct bfd_hash_entry *) ret; |
013dec1a ILT |
569 | |
570 | /* Call the allocation method of the superclass. */ | |
571 | ret = ((struct elf_link_hash_entry *) | |
572 | _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
573 | table, string)); | |
574 | if (ret != (struct elf_link_hash_entry *) NULL) | |
575 | { | |
576 | /* Set local fields. */ | |
577 | ret->indx = -1; | |
578 | ret->size = 0; | |
013dec1a ILT |
579 | ret->dynindx = -1; |
580 | ret->dynstr_index = 0; | |
581 | ret->weakdef = NULL; | |
b176e1e9 ILT |
582 | ret->got_offset = (bfd_vma) -1; |
583 | ret->plt_offset = (bfd_vma) -1; | |
86aac8ea | 584 | ret->linker_section_pointer = (elf_linker_section_pointers_t *)0; |
013dec1a | 585 | ret->type = STT_NOTYPE; |
80be821d | 586 | ret->other = 0; |
869b7d80 ILT |
587 | /* Assume that we have been called by a non-ELF symbol reader. |
588 | This flag is then reset by the code which reads an ELF input | |
589 | file. This ensures that a symbol created by a non-ELF symbol | |
590 | reader will have the flag set correctly. */ | |
591 | ret->elf_link_hash_flags = ELF_LINK_NON_ELF; | |
013dec1a ILT |
592 | } |
593 | ||
594 | return (struct bfd_hash_entry *) ret; | |
595 | } | |
596 | ||
5315c428 ILT |
597 | /* Initialize an ELF linker hash table. */ |
598 | ||
599 | boolean | |
600 | _bfd_elf_link_hash_table_init (table, abfd, newfunc) | |
601 | struct elf_link_hash_table *table; | |
602 | bfd *abfd; | |
603 | struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, | |
604 | struct bfd_hash_table *, | |
605 | const char *)); | |
606 | { | |
b176e1e9 | 607 | table->dynamic_sections_created = false; |
5315c428 | 608 | table->dynobj = NULL; |
b176e1e9 ILT |
609 | /* The first dynamic symbol is a dummy. */ |
610 | table->dynsymcount = 1; | |
5315c428 ILT |
611 | table->dynstr = NULL; |
612 | table->bucketcount = 0; | |
b176e1e9 | 613 | table->needed = NULL; |
19bfbcbe | 614 | table->hgot = NULL; |
d1bf45aa | 615 | table->stab_info = NULL; |
5315c428 ILT |
616 | return _bfd_link_hash_table_init (&table->root, abfd, newfunc); |
617 | } | |
618 | ||
013dec1a ILT |
619 | /* Create an ELF linker hash table. */ |
620 | ||
621 | struct bfd_link_hash_table * | |
622 | _bfd_elf_link_hash_table_create (abfd) | |
623 | bfd *abfd; | |
624 | { | |
625 | struct elf_link_hash_table *ret; | |
626 | ||
627 | ret = ((struct elf_link_hash_table *) | |
628 | bfd_alloc (abfd, sizeof (struct elf_link_hash_table))); | |
629 | if (ret == (struct elf_link_hash_table *) NULL) | |
a9713b91 | 630 | return NULL; |
5315c428 ILT |
631 | |
632 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc)) | |
013dec1a ILT |
633 | { |
634 | bfd_release (abfd, ret); | |
635 | return NULL; | |
636 | } | |
637 | ||
013dec1a ILT |
638 | return &ret->root; |
639 | } | |
7c6da9ca ILT |
640 | |
641 | /* This is a hook for the ELF emulation code in the generic linker to | |
642 | tell the backend linker what file name to use for the DT_NEEDED | |
b176e1e9 ILT |
643 | entry for a dynamic object. The generic linker passes name as an |
644 | empty string to indicate that no DT_NEEDED entry should be made. */ | |
7c6da9ca ILT |
645 | |
646 | void | |
647 | bfd_elf_set_dt_needed_name (abfd, name) | |
648 | bfd *abfd; | |
649 | const char *name; | |
650 | { | |
053ae1d7 ILT |
651 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
652 | && bfd_get_format (abfd) == bfd_object) | |
653 | elf_dt_name (abfd) = name; | |
7c6da9ca | 654 | } |
b176e1e9 | 655 | |
053ae1d7 ILT |
656 | /* Get the list of DT_NEEDED entries for a link. This is a hook for |
657 | the ELF emulation code. */ | |
b176e1e9 | 658 | |
5fe14a9f | 659 | struct bfd_link_needed_list * |
b176e1e9 ILT |
660 | bfd_elf_get_needed_list (abfd, info) |
661 | bfd *abfd; | |
662 | struct bfd_link_info *info; | |
663 | { | |
b2193cc5 ILT |
664 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
665 | return NULL; | |
b176e1e9 ILT |
666 | return elf_hash_table (info)->needed; |
667 | } | |
053ae1d7 ILT |
668 | |
669 | /* Get the name actually used for a dynamic object for a link. This | |
670 | is the SONAME entry if there is one. Otherwise, it is the string | |
671 | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ | |
672 | ||
673 | const char * | |
674 | bfd_elf_get_dt_soname (abfd) | |
675 | bfd *abfd; | |
676 | { | |
677 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
678 | && bfd_get_format (abfd) == bfd_object) | |
679 | return elf_dt_name (abfd); | |
680 | return NULL; | |
681 | } | |
ede4eed4 KR |
682 | \f |
683 | /* Allocate an ELF string table--force the first byte to be zero. */ | |
684 | ||
685 | struct bfd_strtab_hash * | |
686 | _bfd_elf_stringtab_init () | |
687 | { | |
688 | struct bfd_strtab_hash *ret; | |
689 | ||
690 | ret = _bfd_stringtab_init (); | |
691 | if (ret != NULL) | |
692 | { | |
693 | bfd_size_type loc; | |
694 | ||
695 | loc = _bfd_stringtab_add (ret, "", true, false); | |
696 | BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); | |
697 | if (loc == (bfd_size_type) -1) | |
698 | { | |
699 | _bfd_stringtab_free (ret); | |
700 | ret = NULL; | |
701 | } | |
702 | } | |
703 | return ret; | |
704 | } | |
705 | \f | |
706 | /* ELF .o/exec file reading */ | |
707 | ||
708 | /* Create a new bfd section from an ELF section header. */ | |
709 | ||
710 | boolean | |
711 | bfd_section_from_shdr (abfd, shindex) | |
712 | bfd *abfd; | |
713 | unsigned int shindex; | |
714 | { | |
715 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; | |
716 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); | |
717 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
718 | char *name; | |
719 | ||
720 | name = elf_string_from_elf_strtab (abfd, hdr->sh_name); | |
721 | ||
722 | switch (hdr->sh_type) | |
723 | { | |
724 | case SHT_NULL: | |
725 | /* Inactive section. Throw it away. */ | |
726 | return true; | |
727 | ||
728 | case SHT_PROGBITS: /* Normal section with contents. */ | |
729 | case SHT_DYNAMIC: /* Dynamic linking information. */ | |
730 | case SHT_NOBITS: /* .bss section. */ | |
731 | case SHT_HASH: /* .hash section. */ | |
5b3b9ff6 | 732 | case SHT_NOTE: /* .note section. */ |
ede4eed4 KR |
733 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
734 | ||
735 | case SHT_SYMTAB: /* A symbol table */ | |
736 | if (elf_onesymtab (abfd) == shindex) | |
737 | return true; | |
738 | ||
739 | BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); | |
740 | BFD_ASSERT (elf_onesymtab (abfd) == 0); | |
741 | elf_onesymtab (abfd) = shindex; | |
742 | elf_tdata (abfd)->symtab_hdr = *hdr; | |
fd0198f0 | 743 | elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; |
ede4eed4 KR |
744 | abfd->flags |= HAS_SYMS; |
745 | ||
746 | /* Sometimes a shared object will map in the symbol table. If | |
747 | SHF_ALLOC is set, and this is a shared object, then we also | |
748 | treat this section as a BFD section. We can not base the | |
749 | decision purely on SHF_ALLOC, because that flag is sometimes | |
750 | set in a relocateable object file, which would confuse the | |
751 | linker. */ | |
752 | if ((hdr->sh_flags & SHF_ALLOC) != 0 | |
753 | && (abfd->flags & DYNAMIC) != 0 | |
754 | && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
755 | return false; | |
756 | ||
757 | return true; | |
758 | ||
759 | case SHT_DYNSYM: /* A dynamic symbol table */ | |
760 | if (elf_dynsymtab (abfd) == shindex) | |
761 | return true; | |
762 | ||
763 | BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); | |
764 | BFD_ASSERT (elf_dynsymtab (abfd) == 0); | |
765 | elf_dynsymtab (abfd) = shindex; | |
766 | elf_tdata (abfd)->dynsymtab_hdr = *hdr; | |
fd0198f0 | 767 | elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
ede4eed4 KR |
768 | abfd->flags |= HAS_SYMS; |
769 | ||
770 | /* Besides being a symbol table, we also treat this as a regular | |
771 | section, so that objcopy can handle it. */ | |
772 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); | |
773 | ||
774 | case SHT_STRTAB: /* A string table */ | |
775 | if (hdr->bfd_section != NULL) | |
776 | return true; | |
777 | if (ehdr->e_shstrndx == shindex) | |
778 | { | |
779 | elf_tdata (abfd)->shstrtab_hdr = *hdr; | |
780 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; | |
781 | return true; | |
782 | } | |
783 | { | |
784 | unsigned int i; | |
785 | ||
786 | for (i = 1; i < ehdr->e_shnum; i++) | |
787 | { | |
788 | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; | |
789 | if (hdr2->sh_link == shindex) | |
790 | { | |
791 | if (! bfd_section_from_shdr (abfd, i)) | |
792 | return false; | |
793 | if (elf_onesymtab (abfd) == i) | |
794 | { | |
795 | elf_tdata (abfd)->strtab_hdr = *hdr; | |
796 | elf_elfsections (abfd)[shindex] = | |
797 | &elf_tdata (abfd)->strtab_hdr; | |
798 | return true; | |
799 | } | |
800 | if (elf_dynsymtab (abfd) == i) | |
801 | { | |
802 | elf_tdata (abfd)->dynstrtab_hdr = *hdr; | |
fd0198f0 | 803 | elf_elfsections (abfd)[shindex] = hdr = |
ede4eed4 KR |
804 | &elf_tdata (abfd)->dynstrtab_hdr; |
805 | /* We also treat this as a regular section, so | |
806 | that objcopy can handle it. */ | |
807 | break; | |
808 | } | |
809 | #if 0 /* Not handling other string tables specially right now. */ | |
810 | hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ | |
811 | /* We have a strtab for some random other section. */ | |
812 | newsect = (asection *) hdr2->bfd_section; | |
813 | if (!newsect) | |
814 | break; | |
815 | hdr->bfd_section = newsect; | |
816 | hdr2 = &elf_section_data (newsect)->str_hdr; | |
817 | *hdr2 = *hdr; | |
818 | elf_elfsections (abfd)[shindex] = hdr2; | |
819 | #endif | |
820 | } | |
821 | } | |
822 | } | |
823 | ||
824 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); | |
825 | ||
826 | case SHT_REL: | |
827 | case SHT_RELA: | |
828 | /* *These* do a lot of work -- but build no sections! */ | |
829 | { | |
830 | asection *target_sect; | |
831 | Elf_Internal_Shdr *hdr2; | |
ede4eed4 | 832 | |
ae115e51 ILT |
833 | /* For some incomprehensible reason Oracle distributes |
834 | libraries for Solaris in which some of the objects have | |
835 | bogus sh_link fields. It would be nice if we could just | |
836 | reject them, but, unfortunately, some people need to use | |
837 | them. We scan through the section headers; if we find only | |
838 | one suitable symbol table, we clobber the sh_link to point | |
839 | to it. I hope this doesn't break anything. */ | |
840 | if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB | |
841 | && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) | |
842 | { | |
843 | int scan; | |
844 | int found; | |
845 | ||
846 | found = 0; | |
847 | for (scan = 1; scan < ehdr->e_shnum; scan++) | |
848 | { | |
849 | if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB | |
850 | || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) | |
851 | { | |
852 | if (found != 0) | |
853 | { | |
854 | found = 0; | |
855 | break; | |
856 | } | |
857 | found = scan; | |
858 | } | |
859 | } | |
860 | if (found != 0) | |
861 | hdr->sh_link = found; | |
862 | } | |
863 | ||
ede4eed4 | 864 | /* Get the symbol table. */ |
ae115e51 ILT |
865 | if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB |
866 | && ! bfd_section_from_shdr (abfd, hdr->sh_link)) | |
ede4eed4 KR |
867 | return false; |
868 | ||
869 | /* If this reloc section does not use the main symbol table we | |
870 | don't treat it as a reloc section. BFD can't adequately | |
871 | represent such a section, so at least for now, we don't | |
872 | try. We just present it as a normal section. */ | |
873 | if (hdr->sh_link != elf_onesymtab (abfd)) | |
e85f2fbd | 874 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
ede4eed4 | 875 | |
ede4eed4 KR |
876 | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) |
877 | return false; | |
878 | target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); | |
879 | if (target_sect == NULL) | |
880 | return false; | |
881 | ||
d1bf45aa ILT |
882 | if ((target_sect->flags & SEC_RELOC) == 0 |
883 | || target_sect->reloc_count == 0) | |
884 | hdr2 = &elf_section_data (target_sect)->rel_hdr; | |
885 | else | |
886 | { | |
887 | BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); | |
888 | hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); | |
889 | elf_section_data (target_sect)->rel_hdr2 = hdr2; | |
890 | } | |
ede4eed4 KR |
891 | *hdr2 = *hdr; |
892 | elf_elfsections (abfd)[shindex] = hdr2; | |
d1bf45aa | 893 | target_sect->reloc_count += hdr->sh_size / hdr->sh_entsize; |
ede4eed4 KR |
894 | target_sect->flags |= SEC_RELOC; |
895 | target_sect->relocation = NULL; | |
896 | target_sect->rel_filepos = hdr->sh_offset; | |
897 | abfd->flags |= HAS_RELOC; | |
898 | return true; | |
899 | } | |
900 | break; | |
901 | ||
ede4eed4 | 902 | case SHT_SHLIB: |
ede4eed4 KR |
903 | return true; |
904 | ||
905 | default: | |
906 | /* Check for any processor-specific section types. */ | |
907 | { | |
908 | if (bed->elf_backend_section_from_shdr) | |
909 | (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); | |
910 | } | |
911 | break; | |
912 | } | |
913 | ||
914 | return true; | |
915 | } | |
916 | ||
917 | /* Given an ELF section number, retrieve the corresponding BFD | |
918 | section. */ | |
919 | ||
920 | asection * | |
921 | bfd_section_from_elf_index (abfd, index) | |
922 | bfd *abfd; | |
923 | unsigned int index; | |
924 | { | |
925 | BFD_ASSERT (index > 0 && index < SHN_LORESERVE); | |
926 | if (index >= elf_elfheader (abfd)->e_shnum) | |
927 | return NULL; | |
928 | return elf_elfsections (abfd)[index]->bfd_section; | |
929 | } | |
930 | ||
931 | boolean | |
932 | _bfd_elf_new_section_hook (abfd, sec) | |
933 | bfd *abfd; | |
934 | asection *sec; | |
935 | { | |
936 | struct bfd_elf_section_data *sdata; | |
937 | ||
938 | sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata)); | |
939 | if (!sdata) | |
a9713b91 | 940 | return false; |
ede4eed4 KR |
941 | sec->used_by_bfd = (PTR) sdata; |
942 | memset (sdata, 0, sizeof (*sdata)); | |
943 | return true; | |
944 | } | |
945 | ||
946 | /* Create a new bfd section from an ELF program header. | |
947 | ||
948 | Since program segments have no names, we generate a synthetic name | |
949 | of the form segment<NUM>, where NUM is generally the index in the | |
950 | program header table. For segments that are split (see below) we | |
951 | generate the names segment<NUM>a and segment<NUM>b. | |
952 | ||
953 | Note that some program segments may have a file size that is different than | |
954 | (less than) the memory size. All this means is that at execution the | |
955 | system must allocate the amount of memory specified by the memory size, | |
956 | but only initialize it with the first "file size" bytes read from the | |
957 | file. This would occur for example, with program segments consisting | |
958 | of combined data+bss. | |
959 | ||
960 | To handle the above situation, this routine generates TWO bfd sections | |
961 | for the single program segment. The first has the length specified by | |
962 | the file size of the segment, and the second has the length specified | |
963 | by the difference between the two sizes. In effect, the segment is split | |
964 | into it's initialized and uninitialized parts. | |
965 | ||
966 | */ | |
967 | ||
968 | boolean | |
969 | bfd_section_from_phdr (abfd, hdr, index) | |
970 | bfd *abfd; | |
971 | Elf_Internal_Phdr *hdr; | |
972 | int index; | |
973 | { | |
974 | asection *newsect; | |
975 | char *name; | |
976 | char namebuf[64]; | |
977 | int split; | |
978 | ||
979 | split = ((hdr->p_memsz > 0) && | |
980 | (hdr->p_filesz > 0) && | |
981 | (hdr->p_memsz > hdr->p_filesz)); | |
982 | sprintf (namebuf, split ? "segment%da" : "segment%d", index); | |
983 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
984 | if (!name) | |
a9713b91 | 985 | return false; |
ede4eed4 KR |
986 | strcpy (name, namebuf); |
987 | newsect = bfd_make_section (abfd, name); | |
988 | if (newsect == NULL) | |
989 | return false; | |
990 | newsect->vma = hdr->p_vaddr; | |
ae115e51 | 991 | newsect->lma = hdr->p_paddr; |
ede4eed4 KR |
992 | newsect->_raw_size = hdr->p_filesz; |
993 | newsect->filepos = hdr->p_offset; | |
994 | newsect->flags |= SEC_HAS_CONTENTS; | |
995 | if (hdr->p_type == PT_LOAD) | |
996 | { | |
997 | newsect->flags |= SEC_ALLOC; | |
998 | newsect->flags |= SEC_LOAD; | |
999 | if (hdr->p_flags & PF_X) | |
1000 | { | |
1001 | /* FIXME: all we known is that it has execute PERMISSION, | |
1002 | may be data. */ | |
1003 | newsect->flags |= SEC_CODE; | |
1004 | } | |
1005 | } | |
1006 | if (!(hdr->p_flags & PF_W)) | |
1007 | { | |
1008 | newsect->flags |= SEC_READONLY; | |
1009 | } | |
1010 | ||
1011 | if (split) | |
1012 | { | |
1013 | sprintf (namebuf, "segment%db", index); | |
1014 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
1015 | if (!name) | |
a9713b91 | 1016 | return false; |
ede4eed4 KR |
1017 | strcpy (name, namebuf); |
1018 | newsect = bfd_make_section (abfd, name); | |
1019 | if (newsect == NULL) | |
1020 | return false; | |
1021 | newsect->vma = hdr->p_vaddr + hdr->p_filesz; | |
ae115e51 | 1022 | newsect->lma = hdr->p_paddr + hdr->p_filesz; |
ede4eed4 KR |
1023 | newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; |
1024 | if (hdr->p_type == PT_LOAD) | |
1025 | { | |
1026 | newsect->flags |= SEC_ALLOC; | |
1027 | if (hdr->p_flags & PF_X) | |
1028 | newsect->flags |= SEC_CODE; | |
1029 | } | |
1030 | if (!(hdr->p_flags & PF_W)) | |
1031 | newsect->flags |= SEC_READONLY; | |
1032 | } | |
1033 | ||
1034 | return true; | |
1035 | } | |
1036 | ||
1037 | /* Set up an ELF internal section header for a section. */ | |
1038 | ||
1039 | /*ARGSUSED*/ | |
1040 | static void | |
1041 | elf_fake_sections (abfd, asect, failedptrarg) | |
1042 | bfd *abfd; | |
1043 | asection *asect; | |
1044 | PTR failedptrarg; | |
1045 | { | |
1046 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1047 | boolean *failedptr = (boolean *) failedptrarg; | |
1048 | Elf_Internal_Shdr *this_hdr; | |
1049 | ||
1050 | if (*failedptr) | |
1051 | { | |
1052 | /* We already failed; just get out of the bfd_map_over_sections | |
1053 | loop. */ | |
1054 | return; | |
1055 | } | |
1056 | ||
1057 | this_hdr = &elf_section_data (asect)->this_hdr; | |
1058 | ||
1059 | this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), | |
1060 | asect->name, | |
1061 | true, false); | |
1062 | if (this_hdr->sh_name == (unsigned long) -1) | |
1063 | { | |
1064 | *failedptr = true; | |
1065 | return; | |
1066 | } | |
1067 | ||
1068 | this_hdr->sh_flags = 0; | |
ae115e51 | 1069 | |
50bd50d4 MH |
1070 | if ((asect->flags & SEC_ALLOC) != 0 |
1071 | || asect->user_set_vma) | |
fd0198f0 | 1072 | this_hdr->sh_addr = asect->vma; |
ede4eed4 KR |
1073 | else |
1074 | this_hdr->sh_addr = 0; | |
ae115e51 | 1075 | |
ede4eed4 KR |
1076 | this_hdr->sh_offset = 0; |
1077 | this_hdr->sh_size = asect->_raw_size; | |
1078 | this_hdr->sh_link = 0; | |
ede4eed4 | 1079 | this_hdr->sh_addralign = 1 << asect->alignment_power; |
fd0198f0 ILT |
1080 | /* The sh_entsize and sh_info fields may have been set already by |
1081 | copy_private_section_data. */ | |
ede4eed4 KR |
1082 | |
1083 | this_hdr->bfd_section = asect; | |
1084 | this_hdr->contents = NULL; | |
1085 | ||
1086 | /* FIXME: This should not be based on section names. */ | |
1087 | if (strcmp (asect->name, ".dynstr") == 0) | |
1088 | this_hdr->sh_type = SHT_STRTAB; | |
1089 | else if (strcmp (asect->name, ".hash") == 0) | |
1090 | { | |
1091 | this_hdr->sh_type = SHT_HASH; | |
1092 | this_hdr->sh_entsize = bed->s->arch_size / 8; | |
1093 | } | |
1094 | else if (strcmp (asect->name, ".dynsym") == 0) | |
1095 | { | |
1096 | this_hdr->sh_type = SHT_DYNSYM; | |
1097 | this_hdr->sh_entsize = bed->s->sizeof_sym; | |
1098 | } | |
1099 | else if (strcmp (asect->name, ".dynamic") == 0) | |
1100 | { | |
1101 | this_hdr->sh_type = SHT_DYNAMIC; | |
1102 | this_hdr->sh_entsize = bed->s->sizeof_dyn; | |
1103 | } | |
1104 | else if (strncmp (asect->name, ".rela", 5) == 0 | |
1105 | && get_elf_backend_data (abfd)->use_rela_p) | |
1106 | { | |
1107 | this_hdr->sh_type = SHT_RELA; | |
1108 | this_hdr->sh_entsize = bed->s->sizeof_rela; | |
1109 | } | |
1110 | else if (strncmp (asect->name, ".rel", 4) == 0 | |
1111 | && ! get_elf_backend_data (abfd)->use_rela_p) | |
1112 | { | |
1113 | this_hdr->sh_type = SHT_REL; | |
1114 | this_hdr->sh_entsize = bed->s->sizeof_rel; | |
1115 | } | |
1116 | else if (strcmp (asect->name, ".note") == 0) | |
1117 | this_hdr->sh_type = SHT_NOTE; | |
1118 | else if (strncmp (asect->name, ".stab", 5) == 0 | |
1119 | && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) | |
1120 | this_hdr->sh_type = SHT_STRTAB; | |
1121 | else if ((asect->flags & SEC_ALLOC) != 0 | |
1122 | && (asect->flags & SEC_LOAD) != 0) | |
1123 | this_hdr->sh_type = SHT_PROGBITS; | |
1124 | else if ((asect->flags & SEC_ALLOC) != 0 | |
1125 | && ((asect->flags & SEC_LOAD) == 0)) | |
5fe14a9f | 1126 | this_hdr->sh_type = SHT_NOBITS; |
ede4eed4 KR |
1127 | else |
1128 | { | |
1129 | /* Who knows? */ | |
1130 | this_hdr->sh_type = SHT_PROGBITS; | |
1131 | } | |
1132 | ||
1133 | if ((asect->flags & SEC_ALLOC) != 0) | |
1134 | this_hdr->sh_flags |= SHF_ALLOC; | |
1135 | if ((asect->flags & SEC_READONLY) == 0) | |
1136 | this_hdr->sh_flags |= SHF_WRITE; | |
1137 | if ((asect->flags & SEC_CODE) != 0) | |
1138 | this_hdr->sh_flags |= SHF_EXECINSTR; | |
1139 | ||
1140 | /* Check for processor-specific section types. */ | |
1141 | { | |
1142 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1143 | ||
1144 | if (bed->elf_backend_fake_sections) | |
1145 | (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); | |
1146 | } | |
1147 | ||
1148 | /* If the section has relocs, set up a section header for the | |
1149 | SHT_REL[A] section. */ | |
1150 | if ((asect->flags & SEC_RELOC) != 0) | |
1151 | { | |
1152 | Elf_Internal_Shdr *rela_hdr; | |
1153 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
1154 | char *name; | |
1155 | ||
1156 | rela_hdr = &elf_section_data (asect)->rel_hdr; | |
1157 | name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); | |
1158 | if (name == NULL) | |
1159 | { | |
ede4eed4 KR |
1160 | *failedptr = true; |
1161 | return; | |
1162 | } | |
1163 | sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); | |
1164 | rela_hdr->sh_name = | |
1165 | (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, | |
1166 | true, false); | |
1167 | if (rela_hdr->sh_name == (unsigned int) -1) | |
1168 | { | |
1169 | *failedptr = true; | |
1170 | return; | |
1171 | } | |
1172 | rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; | |
1173 | rela_hdr->sh_entsize = (use_rela_p | |
1174 | ? bed->s->sizeof_rela | |
1175 | : bed->s->sizeof_rel); | |
1176 | rela_hdr->sh_addralign = bed->s->file_align; | |
1177 | rela_hdr->sh_flags = 0; | |
1178 | rela_hdr->sh_addr = 0; | |
1179 | rela_hdr->sh_size = 0; | |
1180 | rela_hdr->sh_offset = 0; | |
1181 | } | |
1182 | } | |
1183 | ||
1184 | /* Assign all ELF section numbers. The dummy first section is handled here | |
1185 | too. The link/info pointers for the standard section types are filled | |
1186 | in here too, while we're at it. */ | |
1187 | ||
1188 | static boolean | |
1189 | assign_section_numbers (abfd) | |
1190 | bfd *abfd; | |
1191 | { | |
1192 | struct elf_obj_tdata *t = elf_tdata (abfd); | |
1193 | asection *sec; | |
1194 | unsigned int section_number; | |
1195 | Elf_Internal_Shdr **i_shdrp; | |
1196 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1197 | ||
1198 | section_number = 1; | |
1199 | ||
1200 | for (sec = abfd->sections; sec; sec = sec->next) | |
1201 | { | |
1202 | struct bfd_elf_section_data *d = elf_section_data (sec); | |
1203 | ||
1204 | d->this_idx = section_number++; | |
1205 | if ((sec->flags & SEC_RELOC) == 0) | |
1206 | d->rel_idx = 0; | |
1207 | else | |
1208 | d->rel_idx = section_number++; | |
1209 | } | |
1210 | ||
1211 | t->shstrtab_section = section_number++; | |
1212 | elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; | |
1213 | t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); | |
1214 | ||
1215 | if (abfd->symcount > 0) | |
1216 | { | |
1217 | t->symtab_section = section_number++; | |
1218 | t->strtab_section = section_number++; | |
1219 | } | |
1220 | ||
1221 | elf_elfheader (abfd)->e_shnum = section_number; | |
1222 | ||
1223 | /* Set up the list of section header pointers, in agreement with the | |
1224 | indices. */ | |
1225 | i_shdrp = ((Elf_Internal_Shdr **) | |
1226 | bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); | |
1227 | if (i_shdrp == NULL) | |
a9713b91 | 1228 | return false; |
ede4eed4 KR |
1229 | |
1230 | i_shdrp[0] = ((Elf_Internal_Shdr *) | |
1231 | bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); | |
1232 | if (i_shdrp[0] == NULL) | |
1233 | { | |
1234 | bfd_release (abfd, i_shdrp); | |
ede4eed4 KR |
1235 | return false; |
1236 | } | |
1237 | memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); | |
1238 | ||
1239 | elf_elfsections (abfd) = i_shdrp; | |
1240 | ||
1241 | i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; | |
1242 | if (abfd->symcount > 0) | |
1243 | { | |
1244 | i_shdrp[t->symtab_section] = &t->symtab_hdr; | |
1245 | i_shdrp[t->strtab_section] = &t->strtab_hdr; | |
1246 | t->symtab_hdr.sh_link = t->strtab_section; | |
1247 | } | |
1248 | for (sec = abfd->sections; sec; sec = sec->next) | |
1249 | { | |
1250 | struct bfd_elf_section_data *d = elf_section_data (sec); | |
1251 | asection *s; | |
1252 | const char *name; | |
1253 | ||
1254 | i_shdrp[d->this_idx] = &d->this_hdr; | |
1255 | if (d->rel_idx != 0) | |
1256 | i_shdrp[d->rel_idx] = &d->rel_hdr; | |
1257 | ||
1258 | /* Fill in the sh_link and sh_info fields while we're at it. */ | |
1259 | ||
1260 | /* sh_link of a reloc section is the section index of the symbol | |
1261 | table. sh_info is the section index of the section to which | |
1262 | the relocation entries apply. */ | |
1263 | if (d->rel_idx != 0) | |
1264 | { | |
1265 | d->rel_hdr.sh_link = t->symtab_section; | |
1266 | d->rel_hdr.sh_info = d->this_idx; | |
1267 | } | |
1268 | ||
1269 | switch (d->this_hdr.sh_type) | |
1270 | { | |
1271 | case SHT_REL: | |
1272 | case SHT_RELA: | |
1273 | /* A reloc section which we are treating as a normal BFD | |
1274 | section. sh_link is the section index of the symbol | |
1275 | table. sh_info is the section index of the section to | |
1276 | which the relocation entries apply. We assume that an | |
1277 | allocated reloc section uses the dynamic symbol table. | |
1278 | FIXME: How can we be sure? */ | |
1279 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1280 | if (s != NULL) | |
1281 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1282 | ||
1283 | /* We look up the section the relocs apply to by name. */ | |
1284 | name = sec->name; | |
1285 | if (d->this_hdr.sh_type == SHT_REL) | |
1286 | name += 4; | |
1287 | else | |
1288 | name += 5; | |
1289 | s = bfd_get_section_by_name (abfd, name); | |
1290 | if (s != NULL) | |
1291 | d->this_hdr.sh_info = elf_section_data (s)->this_idx; | |
1292 | break; | |
1293 | ||
1294 | case SHT_STRTAB: | |
1295 | /* We assume that a section named .stab*str is a stabs | |
1296 | string section. We look for a section with the same name | |
1297 | but without the trailing ``str'', and set its sh_link | |
1298 | field to point to this section. */ | |
1299 | if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 | |
1300 | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) | |
1301 | { | |
1302 | size_t len; | |
1303 | char *alc; | |
1304 | ||
1305 | len = strlen (sec->name); | |
58142f10 | 1306 | alc = (char *) bfd_malloc (len - 2); |
ede4eed4 | 1307 | if (alc == NULL) |
58142f10 | 1308 | return false; |
ede4eed4 KR |
1309 | strncpy (alc, sec->name, len - 3); |
1310 | alc[len - 3] = '\0'; | |
1311 | s = bfd_get_section_by_name (abfd, alc); | |
1312 | free (alc); | |
1313 | if (s != NULL) | |
1314 | { | |
1315 | elf_section_data (s)->this_hdr.sh_link = d->this_idx; | |
1316 | ||
1317 | /* This is a .stab section. */ | |
1318 | elf_section_data (s)->this_hdr.sh_entsize = | |
1319 | 4 + 2 * (bed->s->arch_size / 8); | |
1320 | } | |
1321 | } | |
1322 | break; | |
1323 | ||
1324 | case SHT_DYNAMIC: | |
1325 | case SHT_DYNSYM: | |
1326 | /* sh_link is the section header index of the string table | |
1327 | used for the dynamic entries or symbol table. */ | |
1328 | s = bfd_get_section_by_name (abfd, ".dynstr"); | |
1329 | if (s != NULL) | |
1330 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1331 | break; | |
1332 | ||
1333 | case SHT_HASH: | |
1334 | /* sh_link is the section header index of the symbol table | |
1335 | this hash table is for. */ | |
1336 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1337 | if (s != NULL) | |
1338 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1339 | break; | |
1340 | } | |
1341 | } | |
1342 | ||
1343 | return true; | |
1344 | } | |
1345 | ||
1346 | /* Map symbol from it's internal number to the external number, moving | |
1347 | all local symbols to be at the head of the list. */ | |
1348 | ||
1349 | static INLINE int | |
1350 | sym_is_global (abfd, sym) | |
1351 | bfd *abfd; | |
1352 | asymbol *sym; | |
1353 | { | |
1354 | /* If the backend has a special mapping, use it. */ | |
1355 | if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1356 | return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1357 | (abfd, sym)); | |
1358 | ||
1359 | return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1360 | || bfd_is_und_section (bfd_get_section (sym)) | |
1361 | || bfd_is_com_section (bfd_get_section (sym))); | |
1362 | } | |
1363 | ||
1364 | static boolean | |
1365 | elf_map_symbols (abfd) | |
1366 | bfd *abfd; | |
1367 | { | |
1368 | int symcount = bfd_get_symcount (abfd); | |
1369 | asymbol **syms = bfd_get_outsymbols (abfd); | |
1370 | asymbol **sect_syms; | |
1371 | int num_locals = 0; | |
1372 | int num_globals = 0; | |
1373 | int num_locals2 = 0; | |
1374 | int num_globals2 = 0; | |
1375 | int max_index = 0; | |
1376 | int num_sections = 0; | |
1377 | int idx; | |
1378 | asection *asect; | |
1379 | asymbol **new_syms; | |
1380 | ||
1381 | #ifdef DEBUG | |
1382 | fprintf (stderr, "elf_map_symbols\n"); | |
1383 | fflush (stderr); | |
1384 | #endif | |
1385 | ||
1386 | /* Add a section symbol for each BFD section. FIXME: Is this really | |
1387 | necessary? */ | |
1388 | for (asect = abfd->sections; asect; asect = asect->next) | |
1389 | { | |
1390 | if (max_index < asect->index) | |
1391 | max_index = asect->index; | |
1392 | } | |
1393 | ||
1394 | max_index++; | |
1395 | sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); | |
1396 | if (sect_syms == NULL) | |
a9713b91 | 1397 | return false; |
ede4eed4 KR |
1398 | elf_section_syms (abfd) = sect_syms; |
1399 | ||
1400 | for (idx = 0; idx < symcount; idx++) | |
1401 | { | |
1402 | if ((syms[idx]->flags & BSF_SECTION_SYM) != 0 | |
fd0198f0 | 1403 | && (syms[idx]->value + syms[idx]->section->vma) == 0) |
ede4eed4 KR |
1404 | { |
1405 | asection *sec; | |
1406 | ||
1407 | sec = syms[idx]->section; | |
1408 | if (sec->owner != NULL) | |
1409 | { | |
1410 | if (sec->owner != abfd) | |
1411 | { | |
1412 | if (sec->output_offset != 0) | |
1413 | continue; | |
1414 | sec = sec->output_section; | |
1415 | BFD_ASSERT (sec->owner == abfd); | |
1416 | } | |
1417 | sect_syms[sec->index] = syms[idx]; | |
1418 | } | |
1419 | } | |
1420 | } | |
1421 | ||
1422 | for (asect = abfd->sections; asect; asect = asect->next) | |
1423 | { | |
1424 | asymbol *sym; | |
1425 | ||
1426 | if (sect_syms[asect->index] != NULL) | |
1427 | continue; | |
1428 | ||
1429 | sym = bfd_make_empty_symbol (abfd); | |
1430 | if (sym == NULL) | |
1431 | return false; | |
1432 | sym->the_bfd = abfd; | |
1433 | sym->name = asect->name; | |
1434 | sym->value = 0; | |
1435 | /* Set the flags to 0 to indicate that this one was newly added. */ | |
1436 | sym->flags = 0; | |
1437 | sym->section = asect; | |
1438 | sect_syms[asect->index] = sym; | |
1439 | num_sections++; | |
1440 | #ifdef DEBUG | |
1441 | fprintf (stderr, | |
1442 | "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n", | |
1443 | asect->name, (long) asect->vma, asect->index, (long) asect); | |
1444 | #endif | |
1445 | } | |
1446 | ||
1447 | /* Classify all of the symbols. */ | |
1448 | for (idx = 0; idx < symcount; idx++) | |
1449 | { | |
1450 | if (!sym_is_global (abfd, syms[idx])) | |
1451 | num_locals++; | |
1452 | else | |
1453 | num_globals++; | |
1454 | } | |
1455 | for (asect = abfd->sections; asect; asect = asect->next) | |
1456 | { | |
1457 | if (sect_syms[asect->index] != NULL | |
1458 | && sect_syms[asect->index]->flags == 0) | |
1459 | { | |
1460 | sect_syms[asect->index]->flags = BSF_SECTION_SYM; | |
1461 | if (!sym_is_global (abfd, sect_syms[asect->index])) | |
1462 | num_locals++; | |
1463 | else | |
1464 | num_globals++; | |
1465 | sect_syms[asect->index]->flags = 0; | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | /* Now sort the symbols so the local symbols are first. */ | |
1470 | new_syms = ((asymbol **) | |
1471 | bfd_alloc (abfd, | |
1472 | (num_locals + num_globals) * sizeof (asymbol *))); | |
1473 | if (new_syms == NULL) | |
a9713b91 | 1474 | return false; |
ede4eed4 KR |
1475 | |
1476 | for (idx = 0; idx < symcount; idx++) | |
1477 | { | |
1478 | asymbol *sym = syms[idx]; | |
1479 | int i; | |
1480 | ||
1481 | if (!sym_is_global (abfd, sym)) | |
1482 | i = num_locals2++; | |
1483 | else | |
1484 | i = num_locals + num_globals2++; | |
1485 | new_syms[i] = sym; | |
1486 | sym->udata.i = i + 1; | |
1487 | } | |
1488 | for (asect = abfd->sections; asect; asect = asect->next) | |
1489 | { | |
1490 | if (sect_syms[asect->index] != NULL | |
1491 | && sect_syms[asect->index]->flags == 0) | |
1492 | { | |
1493 | asymbol *sym = sect_syms[asect->index]; | |
1494 | int i; | |
1495 | ||
1496 | sym->flags = BSF_SECTION_SYM; | |
1497 | if (!sym_is_global (abfd, sym)) | |
1498 | i = num_locals2++; | |
1499 | else | |
1500 | i = num_locals + num_globals2++; | |
1501 | new_syms[i] = sym; | |
1502 | sym->udata.i = i + 1; | |
1503 | } | |
1504 | } | |
1505 | ||
1506 | bfd_set_symtab (abfd, new_syms, num_locals + num_globals); | |
1507 | ||
1508 | elf_num_locals (abfd) = num_locals; | |
1509 | elf_num_globals (abfd) = num_globals; | |
1510 | return true; | |
1511 | } | |
1512 | ||
fd0198f0 ILT |
1513 | /* Align to the maximum file alignment that could be required for any |
1514 | ELF data structure. */ | |
1515 | ||
1516 | static INLINE file_ptr align_file_position PARAMS ((file_ptr, int)); | |
1517 | static INLINE file_ptr | |
1518 | align_file_position (off, align) | |
1519 | file_ptr off; | |
1520 | int align; | |
1521 | { | |
1522 | return (off + align - 1) & ~(align - 1); | |
1523 | } | |
1524 | ||
1525 | /* Assign a file position to a section, optionally aligning to the | |
1526 | required section alignment. */ | |
1527 | ||
1528 | INLINE file_ptr | |
1529 | _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align) | |
1530 | Elf_Internal_Shdr *i_shdrp; | |
1531 | file_ptr offset; | |
1532 | boolean align; | |
1533 | { | |
1534 | if (align) | |
1535 | { | |
1536 | unsigned int al; | |
1537 | ||
1538 | al = i_shdrp->sh_addralign; | |
1539 | if (al > 1) | |
1540 | offset = BFD_ALIGN (offset, al); | |
1541 | } | |
1542 | i_shdrp->sh_offset = offset; | |
1543 | if (i_shdrp->bfd_section != NULL) | |
1544 | i_shdrp->bfd_section->filepos = offset; | |
1545 | if (i_shdrp->sh_type != SHT_NOBITS) | |
1546 | offset += i_shdrp->sh_size; | |
1547 | return offset; | |
1548 | } | |
1549 | ||
ede4eed4 KR |
1550 | /* Compute the file positions we are going to put the sections at, and |
1551 | otherwise prepare to begin writing out the ELF file. If LINK_INFO | |
1552 | is not NULL, this is being called by the ELF backend linker. */ | |
1553 | ||
1554 | boolean | |
1555 | _bfd_elf_compute_section_file_positions (abfd, link_info) | |
1556 | bfd *abfd; | |
1557 | struct bfd_link_info *link_info; | |
1558 | { | |
1559 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1560 | boolean failed; | |
1561 | struct bfd_strtab_hash *strtab; | |
1562 | Elf_Internal_Shdr *shstrtab_hdr; | |
1563 | ||
1564 | if (abfd->output_has_begun) | |
1565 | return true; | |
1566 | ||
1567 | /* Do any elf backend specific processing first. */ | |
1568 | if (bed->elf_backend_begin_write_processing) | |
1569 | (*bed->elf_backend_begin_write_processing) (abfd, link_info); | |
1570 | ||
1571 | if (! prep_headers (abfd)) | |
1572 | return false; | |
1573 | ||
1574 | failed = false; | |
1575 | bfd_map_over_sections (abfd, elf_fake_sections, &failed); | |
1576 | if (failed) | |
1577 | return false; | |
1578 | ||
1579 | if (!assign_section_numbers (abfd)) | |
1580 | return false; | |
1581 | ||
1582 | /* The backend linker builds symbol table information itself. */ | |
fd0198f0 | 1583 | if (link_info == NULL && abfd->symcount > 0) |
ede4eed4 KR |
1584 | { |
1585 | if (! swap_out_syms (abfd, &strtab)) | |
1586 | return false; | |
1587 | } | |
1588 | ||
1589 | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; | |
1590 | /* sh_name was set in prep_headers. */ | |
1591 | shstrtab_hdr->sh_type = SHT_STRTAB; | |
1592 | shstrtab_hdr->sh_flags = 0; | |
1593 | shstrtab_hdr->sh_addr = 0; | |
1594 | shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); | |
1595 | shstrtab_hdr->sh_entsize = 0; | |
1596 | shstrtab_hdr->sh_link = 0; | |
1597 | shstrtab_hdr->sh_info = 0; | |
fd0198f0 | 1598 | /* sh_offset is set in assign_file_positions_except_relocs. */ |
ede4eed4 KR |
1599 | shstrtab_hdr->sh_addralign = 1; |
1600 | ||
fd0198f0 | 1601 | if (!assign_file_positions_except_relocs (abfd)) |
ede4eed4 KR |
1602 | return false; |
1603 | ||
fd0198f0 | 1604 | if (link_info == NULL && abfd->symcount > 0) |
ede4eed4 | 1605 | { |
fd0198f0 ILT |
1606 | file_ptr off; |
1607 | Elf_Internal_Shdr *hdr; | |
1608 | ||
1609 | off = elf_tdata (abfd)->next_file_pos; | |
1610 | ||
1611 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
1612 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | |
1613 | ||
1614 | hdr = &elf_tdata (abfd)->strtab_hdr; | |
1615 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | |
1616 | ||
1617 | elf_tdata (abfd)->next_file_pos = off; | |
1618 | ||
ede4eed4 KR |
1619 | /* Now that we know where the .strtab section goes, write it |
1620 | out. */ | |
fd0198f0 | 1621 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
ede4eed4 KR |
1622 | || ! _bfd_stringtab_emit (abfd, strtab)) |
1623 | return false; | |
1624 | _bfd_stringtab_free (strtab); | |
1625 | } | |
1626 | ||
1627 | abfd->output_has_begun = true; | |
1628 | ||
1629 | return true; | |
1630 | } | |
1631 | ||
fd0198f0 | 1632 | /* Create a mapping from a set of sections to a program segment. */ |
ede4eed4 | 1633 | |
fd0198f0 | 1634 | static INLINE struct elf_segment_map * |
edf3fe48 | 1635 | make_mapping (abfd, sections, from, to, phdr) |
fd0198f0 ILT |
1636 | bfd *abfd; |
1637 | asection **sections; | |
1638 | unsigned int from; | |
1639 | unsigned int to; | |
edf3fe48 | 1640 | boolean phdr; |
ede4eed4 | 1641 | { |
fd0198f0 ILT |
1642 | struct elf_segment_map *m; |
1643 | unsigned int i; | |
1644 | asection **hdrpp; | |
1645 | ||
1646 | m = ((struct elf_segment_map *) | |
1647 | bfd_zalloc (abfd, | |
1648 | (sizeof (struct elf_segment_map) | |
1649 | + (to - from - 1) * sizeof (asection *)))); | |
1650 | if (m == NULL) | |
a9713b91 | 1651 | return NULL; |
fd0198f0 ILT |
1652 | m->next = NULL; |
1653 | m->p_type = PT_LOAD; | |
1654 | for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) | |
1655 | m->sections[i - from] = *hdrpp; | |
1656 | m->count = to - from; | |
1657 | ||
edf3fe48 | 1658 | if (from == 0 && phdr) |
6933148a ILT |
1659 | { |
1660 | /* Include the headers in the first PT_LOAD segment. */ | |
1661 | m->includes_filehdr = 1; | |
1662 | m->includes_phdrs = 1; | |
1663 | } | |
1664 | ||
fd0198f0 | 1665 | return m; |
ede4eed4 KR |
1666 | } |
1667 | ||
fd0198f0 | 1668 | /* Set up a mapping from BFD sections to program segments. */ |
ede4eed4 | 1669 | |
fd0198f0 ILT |
1670 | static boolean |
1671 | map_sections_to_segments (abfd) | |
1672 | bfd *abfd; | |
ede4eed4 | 1673 | { |
fd0198f0 ILT |
1674 | asection **sections = NULL; |
1675 | asection *s; | |
1676 | unsigned int i; | |
1677 | unsigned int count; | |
1678 | struct elf_segment_map *mfirst; | |
1679 | struct elf_segment_map **pm; | |
1680 | struct elf_segment_map *m; | |
1681 | asection *last_hdr; | |
1682 | unsigned int phdr_index; | |
1683 | bfd_vma maxpagesize; | |
1684 | asection **hdrpp; | |
edf3fe48 ILT |
1685 | boolean phdr_in_section = true; |
1686 | boolean writable; | |
1687 | asection *dynsec; | |
fd0198f0 ILT |
1688 | |
1689 | if (elf_tdata (abfd)->segment_map != NULL) | |
1690 | return true; | |
1691 | ||
1692 | if (bfd_count_sections (abfd) == 0) | |
1693 | return true; | |
1694 | ||
1695 | /* Select the allocated sections, and sort them. */ | |
1696 | ||
58142f10 ILT |
1697 | sections = (asection **) bfd_malloc (bfd_count_sections (abfd) |
1698 | * sizeof (asection *)); | |
fd0198f0 | 1699 | if (sections == NULL) |
58142f10 | 1700 | goto error_return; |
ede4eed4 | 1701 | |
fd0198f0 ILT |
1702 | i = 0; |
1703 | for (s = abfd->sections; s != NULL; s = s->next) | |
1704 | { | |
1705 | if ((s->flags & SEC_ALLOC) != 0) | |
1706 | { | |
1707 | sections[i] = s; | |
1708 | ++i; | |
1709 | } | |
5fe14a9f | 1710 | } |
fd0198f0 ILT |
1711 | BFD_ASSERT (i <= bfd_count_sections (abfd)); |
1712 | count = i; | |
ede4eed4 | 1713 | |
fd0198f0 | 1714 | qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); |
ede4eed4 | 1715 | |
fd0198f0 | 1716 | /* Build the mapping. */ |
ede4eed4 | 1717 | |
fd0198f0 ILT |
1718 | mfirst = NULL; |
1719 | pm = &mfirst; | |
ede4eed4 | 1720 | |
fd0198f0 ILT |
1721 | /* If we have a .interp section, then create a PT_PHDR segment for |
1722 | the program headers and a PT_INTERP segment for the .interp | |
1723 | section. */ | |
1724 | s = bfd_get_section_by_name (abfd, ".interp"); | |
1725 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
1726 | { | |
1727 | m = ((struct elf_segment_map *) | |
1728 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); | |
1729 | if (m == NULL) | |
a9713b91 | 1730 | goto error_return; |
fd0198f0 ILT |
1731 | m->next = NULL; |
1732 | m->p_type = PT_PHDR; | |
1733 | /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ | |
1734 | m->p_flags = PF_R | PF_X; | |
1735 | m->p_flags_valid = 1; | |
6933148a | 1736 | m->includes_phdrs = 1; |
ede4eed4 | 1737 | |
fd0198f0 ILT |
1738 | *pm = m; |
1739 | pm = &m->next; | |
ede4eed4 | 1740 | |
fd0198f0 ILT |
1741 | m = ((struct elf_segment_map *) |
1742 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); | |
1743 | if (m == NULL) | |
a9713b91 | 1744 | goto error_return; |
fd0198f0 ILT |
1745 | m->next = NULL; |
1746 | m->p_type = PT_INTERP; | |
1747 | m->count = 1; | |
1748 | m->sections[0] = s; | |
ede4eed4 | 1749 | |
fd0198f0 ILT |
1750 | *pm = m; |
1751 | pm = &m->next; | |
1752 | } | |
ede4eed4 | 1753 | |
fd0198f0 ILT |
1754 | /* Look through the sections. We put sections in the same program |
1755 | segment when the start of the second section can be placed within | |
1756 | a few bytes of the end of the first section. */ | |
1757 | last_hdr = NULL; | |
1758 | phdr_index = 0; | |
1759 | maxpagesize = get_elf_backend_data (abfd)->maxpagesize; | |
edf3fe48 ILT |
1760 | writable = false; |
1761 | dynsec = bfd_get_section_by_name (abfd, ".dynamic"); | |
1762 | if (dynsec != NULL | |
1763 | && (dynsec->flags & SEC_LOAD) == 0) | |
1764 | dynsec = NULL; | |
1765 | ||
7fc6a16a ILT |
1766 | /* Deal with -Ttext or something similar such that the first section |
1767 | is not adjacent to the program headers. This is an | |
1768 | approximation, since at this point we don't know exactly how many | |
1769 | program headers we will need. */ | |
1770 | if (count > 0) | |
1771 | { | |
1772 | bfd_size_type phdr_size; | |
1773 | ||
1774 | phdr_size = elf_tdata (abfd)->program_header_size; | |
1775 | if (phdr_size == 0) | |
1776 | phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr; | |
cdb88e87 ILT |
1777 | if ((abfd->flags & D_PAGED) == 0 |
1778 | || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) | |
7fc6a16a ILT |
1779 | phdr_in_section = false; |
1780 | } | |
edf3fe48 | 1781 | |
fd0198f0 | 1782 | for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) |
ede4eed4 | 1783 | { |
fd0198f0 | 1784 | asection *hdr; |
191d910c | 1785 | boolean new_segment; |
ede4eed4 | 1786 | |
fd0198f0 | 1787 | hdr = *hdrpp; |
ede4eed4 | 1788 | |
fd0198f0 | 1789 | /* See if this section and the last one will fit in the same |
191d910c ILT |
1790 | segment. */ |
1791 | ||
1792 | if (last_hdr == NULL) | |
1793 | { | |
1794 | /* If we don't have a segment yet, then we don't need a new | |
1795 | one (we build the last one after this loop). */ | |
1796 | new_segment = false; | |
1797 | } | |
1798 | else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) | |
1799 | { | |
1800 | /* If this section has a different relation between the | |
1801 | virtual address and the load address, then we need a new | |
1802 | segment. */ | |
1803 | new_segment = true; | |
1804 | } | |
191d910c ILT |
1805 | else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) |
1806 | < hdr->lma) | |
1807 | { | |
1808 | /* If putting this section in this segment would force us to | |
1809 | skip a page in the segment, then we need a new segment. */ | |
1810 | new_segment = true; | |
1811 | } | |
f0c12b73 DE |
1812 | else if ((abfd->flags & D_PAGED) == 0) |
1813 | { | |
1814 | /* If the file is not demand paged, which means that we | |
1815 | don't require the sections to be correctly aligned in the | |
1816 | file, then there is no other reason for a new segment. */ | |
1817 | new_segment = false; | |
1818 | } | |
191d910c ILT |
1819 | else if ((last_hdr->flags & SEC_LOAD) == 0 |
1820 | && (hdr->flags & SEC_LOAD) != 0) | |
1821 | { | |
1822 | /* We don't want to put a loadable section after a | |
1823 | nonloadable section in the same segment. */ | |
1824 | new_segment = true; | |
1825 | } | |
1826 | else if (! writable | |
1827 | && (hdr->flags & SEC_READONLY) == 0 | |
1828 | && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) | |
1829 | == hdr->lma)) | |
1830 | { | |
1831 | /* We don't want to put a writable section in a read only | |
1832 | segment, unless they are on the same page in memory | |
1833 | anyhow. We already know that the last section does not | |
1834 | bring us past the current section on the page, so the | |
1835 | only case in which the new section is not on the same | |
1836 | page as the previous section is when the previous section | |
1837 | ends precisely on a page boundary. */ | |
1838 | new_segment = true; | |
1839 | } | |
1840 | else | |
1841 | { | |
1842 | /* Otherwise, we can use the same segment. */ | |
1843 | new_segment = false; | |
1844 | } | |
1845 | ||
1846 | if (! new_segment) | |
fd0198f0 | 1847 | { |
50bd50d4 MH |
1848 | if ((hdr->flags & SEC_READONLY) == 0) |
1849 | writable = true; | |
fd0198f0 ILT |
1850 | last_hdr = hdr; |
1851 | continue; | |
1852 | } | |
ede4eed4 | 1853 | |
191d910c ILT |
1854 | /* We need a new program segment. We must create a new program |
1855 | header holding all the sections from phdr_index until hdr. */ | |
ede4eed4 | 1856 | |
edf3fe48 | 1857 | m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section); |
fd0198f0 ILT |
1858 | if (m == NULL) |
1859 | goto error_return; | |
ede4eed4 | 1860 | |
fd0198f0 ILT |
1861 | *pm = m; |
1862 | pm = &m->next; | |
ede4eed4 | 1863 | |
edf3fe48 ILT |
1864 | if ((hdr->flags & SEC_READONLY) == 0) |
1865 | writable = true; | |
50bd50d4 MH |
1866 | else |
1867 | writable = false; | |
edf3fe48 | 1868 | |
fd0198f0 ILT |
1869 | last_hdr = hdr; |
1870 | phdr_index = i; | |
edf3fe48 | 1871 | phdr_in_section = false; |
ede4eed4 | 1872 | } |
fd0198f0 ILT |
1873 | |
1874 | /* Create a final PT_LOAD program segment. */ | |
1875 | if (last_hdr != NULL) | |
ede4eed4 | 1876 | { |
edf3fe48 | 1877 | m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section); |
fd0198f0 ILT |
1878 | if (m == NULL) |
1879 | goto error_return; | |
1880 | ||
1881 | *pm = m; | |
1882 | pm = &m->next; | |
ede4eed4 KR |
1883 | } |
1884 | ||
fd0198f0 | 1885 | /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ |
edf3fe48 | 1886 | if (dynsec != NULL) |
ede4eed4 | 1887 | { |
fd0198f0 ILT |
1888 | m = ((struct elf_segment_map *) |
1889 | bfd_zalloc (abfd, sizeof (struct elf_segment_map))); | |
1890 | if (m == NULL) | |
a9713b91 | 1891 | goto error_return; |
fd0198f0 ILT |
1892 | m->next = NULL; |
1893 | m->p_type = PT_DYNAMIC; | |
1894 | m->count = 1; | |
edf3fe48 | 1895 | m->sections[0] = dynsec; |
ede4eed4 | 1896 | |
fd0198f0 ILT |
1897 | *pm = m; |
1898 | pm = &m->next; | |
ede4eed4 KR |
1899 | } |
1900 | ||
fd0198f0 ILT |
1901 | free (sections); |
1902 | sections = NULL; | |
ae115e51 | 1903 | |
fd0198f0 ILT |
1904 | elf_tdata (abfd)->segment_map = mfirst; |
1905 | return true; | |
1906 | ||
1907 | error_return: | |
1908 | if (sections != NULL) | |
1909 | free (sections); | |
1910 | return false; | |
ede4eed4 KR |
1911 | } |
1912 | ||
fd0198f0 | 1913 | /* Sort sections by VMA. */ |
ede4eed4 | 1914 | |
fd0198f0 ILT |
1915 | static int |
1916 | elf_sort_sections (arg1, arg2) | |
1917 | const PTR arg1; | |
1918 | const PTR arg2; | |
ede4eed4 | 1919 | { |
fd0198f0 ILT |
1920 | const asection *sec1 = *(const asection **) arg1; |
1921 | const asection *sec2 = *(const asection **) arg2; | |
ede4eed4 | 1922 | |
fd0198f0 ILT |
1923 | if (sec1->vma < sec2->vma) |
1924 | return -1; | |
1925 | else if (sec1->vma > sec2->vma) | |
1926 | return 1; | |
ede4eed4 | 1927 | |
cdb88e87 ILT |
1928 | /* Sort by LMA. Normally the LMA and the VMA will be the same, and |
1929 | this will do nothing. */ | |
1930 | if (sec1->lma < sec2->lma) | |
1931 | return -1; | |
1932 | else if (sec1->lma > sec2->lma) | |
1933 | return 1; | |
1934 | ||
fd0198f0 | 1935 | /* Put !SEC_LOAD sections after SEC_LOAD ones. */ |
ede4eed4 | 1936 | |
fd0198f0 | 1937 | #define TOEND(x) (((x)->flags & SEC_LOAD) == 0) |
ede4eed4 | 1938 | |
fd0198f0 ILT |
1939 | if (TOEND (sec1)) |
1940 | if (TOEND (sec2)) | |
1941 | return sec1->target_index - sec2->target_index; | |
1942 | else | |
1943 | return 1; | |
ede4eed4 | 1944 | |
fd0198f0 ILT |
1945 | if (TOEND (sec2)) |
1946 | return -1; | |
ede4eed4 | 1947 | |
fd0198f0 | 1948 | #undef TOEND |
ede4eed4 | 1949 | |
fd0198f0 ILT |
1950 | /* Sort by size, to put zero sized sections before others at the |
1951 | same address. */ | |
ede4eed4 | 1952 | |
fd0198f0 ILT |
1953 | if (sec1->_raw_size < sec2->_raw_size) |
1954 | return -1; | |
1955 | if (sec1->_raw_size > sec2->_raw_size) | |
1956 | return 1; | |
ede4eed4 | 1957 | |
fd0198f0 ILT |
1958 | return sec1->target_index - sec2->target_index; |
1959 | } | |
ede4eed4 | 1960 | |
fd0198f0 ILT |
1961 | /* Assign file positions to the sections based on the mapping from |
1962 | sections to segments. This function also sets up some fields in | |
1963 | the file header, and writes out the program headers. */ | |
ede4eed4 | 1964 | |
fd0198f0 ILT |
1965 | static boolean |
1966 | assign_file_positions_for_segments (abfd) | |
1967 | bfd *abfd; | |
1968 | { | |
1969 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1970 | unsigned int count; | |
1971 | struct elf_segment_map *m; | |
1972 | unsigned int alloc; | |
1973 | Elf_Internal_Phdr *phdrs; | |
64f808f9 | 1974 | file_ptr off, voff; |
6933148a ILT |
1975 | bfd_vma filehdr_vaddr, filehdr_paddr; |
1976 | bfd_vma phdrs_vaddr, phdrs_paddr; | |
fd0198f0 ILT |
1977 | Elf_Internal_Phdr *p; |
1978 | ||
1979 | if (elf_tdata (abfd)->segment_map == NULL) | |
1980 | { | |
1981 | if (! map_sections_to_segments (abfd)) | |
1982 | return false; | |
1983 | } | |
ede4eed4 | 1984 | |
5b3b9ff6 ILT |
1985 | if (bed->elf_backend_modify_segment_map) |
1986 | { | |
1987 | if (! (*bed->elf_backend_modify_segment_map) (abfd)) | |
1988 | return false; | |
1989 | } | |
1990 | ||
fd0198f0 ILT |
1991 | count = 0; |
1992 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
1993 | ++count; | |
ede4eed4 | 1994 | |
fd0198f0 ILT |
1995 | elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; |
1996 | elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; | |
1997 | elf_elfheader (abfd)->e_phnum = count; | |
ede4eed4 | 1998 | |
fd0198f0 ILT |
1999 | if (count == 0) |
2000 | return true; | |
ede4eed4 | 2001 | |
fd0198f0 ILT |
2002 | /* If we already counted the number of program segments, make sure |
2003 | that we allocated enough space. This happens when SIZEOF_HEADERS | |
2004 | is used in a linker script. */ | |
2005 | alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr; | |
2006 | if (alloc != 0 && count > alloc) | |
2007 | { | |
2008 | ((*_bfd_error_handler) | |
2009 | ("%s: Not enough room for program headers (allocated %u, need %u)", | |
2010 | bfd_get_filename (abfd), alloc, count)); | |
2011 | bfd_set_error (bfd_error_bad_value); | |
2012 | return false; | |
ede4eed4 KR |
2013 | } |
2014 | ||
fd0198f0 ILT |
2015 | if (alloc == 0) |
2016 | alloc = count; | |
2017 | ||
2018 | phdrs = ((Elf_Internal_Phdr *) | |
2019 | bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr))); | |
2020 | if (phdrs == NULL) | |
a9713b91 | 2021 | return false; |
ede4eed4 | 2022 | |
fd0198f0 ILT |
2023 | off = bed->s->sizeof_ehdr; |
2024 | off += alloc * bed->s->sizeof_phdr; | |
ede4eed4 | 2025 | |
6933148a ILT |
2026 | filehdr_vaddr = 0; |
2027 | filehdr_paddr = 0; | |
2028 | phdrs_vaddr = 0; | |
2029 | phdrs_paddr = 0; | |
fd0198f0 ILT |
2030 | for (m = elf_tdata (abfd)->segment_map, p = phdrs; |
2031 | m != NULL; | |
2032 | m = m->next, p++) | |
2033 | { | |
2034 | unsigned int i; | |
2035 | asection **secpp; | |
fd0198f0 | 2036 | |
3b950780 ILT |
2037 | /* If elf_segment_map is not from map_sections_to_segments, the |
2038 | sections may not be correctly ordered. */ | |
2039 | if (m->count > 0) | |
2040 | qsort (m->sections, (size_t) m->count, sizeof (asection *), | |
2041 | elf_sort_sections); | |
2042 | ||
fd0198f0 ILT |
2043 | p->p_type = m->p_type; |
2044 | ||
2045 | if (m->p_flags_valid) | |
2046 | p->p_flags = m->p_flags; | |
14899eb7 ILT |
2047 | else |
2048 | p->p_flags = 0; | |
fd0198f0 | 2049 | |
d49ddb85 ILT |
2050 | if (p->p_type == PT_LOAD |
2051 | && m->count > 0 | |
d7775b43 | 2052 | && (m->sections[0]->flags & SEC_ALLOC) != 0) |
cdb88e87 ILT |
2053 | { |
2054 | if ((abfd->flags & D_PAGED) != 0) | |
2055 | off += (m->sections[0]->vma - off) % bed->maxpagesize; | |
2056 | else | |
2057 | off += ((m->sections[0]->vma - off) | |
2058 | % (1 << bfd_get_section_alignment (abfd, m->sections[0]))); | |
2059 | } | |
44ef8897 | 2060 | |
fd0198f0 ILT |
2061 | if (m->count == 0) |
2062 | p->p_vaddr = 0; | |
2063 | else | |
2064 | p->p_vaddr = m->sections[0]->vma; | |
ede4eed4 | 2065 | |
fd0198f0 ILT |
2066 | if (m->p_paddr_valid) |
2067 | p->p_paddr = m->p_paddr; | |
2068 | else if (m->count == 0) | |
2069 | p->p_paddr = 0; | |
2070 | else | |
2071 | p->p_paddr = m->sections[0]->lma; | |
2072 | ||
cdb88e87 ILT |
2073 | if (p->p_type == PT_LOAD |
2074 | && (abfd->flags & D_PAGED) != 0) | |
fd0198f0 ILT |
2075 | p->p_align = bed->maxpagesize; |
2076 | else if (m->count == 0) | |
2077 | p->p_align = bed->s->file_align; | |
2078 | else | |
2079 | p->p_align = 0; | |
2080 | ||
6933148a | 2081 | p->p_offset = 0; |
fd0198f0 ILT |
2082 | p->p_filesz = 0; |
2083 | p->p_memsz = 0; | |
2084 | ||
6933148a | 2085 | if (m->includes_filehdr) |
ede4eed4 | 2086 | { |
14899eb7 ILT |
2087 | if (! m->p_flags_valid) |
2088 | p->p_flags |= PF_R; | |
6933148a ILT |
2089 | p->p_offset = 0; |
2090 | p->p_filesz = bed->s->sizeof_ehdr; | |
2091 | p->p_memsz = bed->s->sizeof_ehdr; | |
2092 | if (m->count > 0) | |
2093 | { | |
2094 | BFD_ASSERT (p->p_type == PT_LOAD); | |
2095 | p->p_vaddr -= off; | |
2096 | if (! m->p_paddr_valid) | |
2097 | p->p_paddr -= off; | |
2098 | } | |
2099 | if (p->p_type == PT_LOAD) | |
2100 | { | |
2101 | filehdr_vaddr = p->p_vaddr; | |
2102 | filehdr_paddr = p->p_paddr; | |
2103 | } | |
2104 | } | |
fd0198f0 | 2105 | |
6933148a ILT |
2106 | if (m->includes_phdrs) |
2107 | { | |
14899eb7 ILT |
2108 | if (! m->p_flags_valid) |
2109 | p->p_flags |= PF_R; | |
6933148a | 2110 | if (m->includes_filehdr) |
fd0198f0 | 2111 | { |
6933148a | 2112 | if (p->p_type == PT_LOAD) |
fd0198f0 | 2113 | { |
6933148a ILT |
2114 | phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr; |
2115 | phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr; | |
fd0198f0 | 2116 | } |
6933148a ILT |
2117 | } |
2118 | else | |
2119 | { | |
2120 | p->p_offset = bed->s->sizeof_ehdr; | |
2121 | if (m->count > 0) | |
2122 | { | |
2123 | BFD_ASSERT (p->p_type == PT_LOAD); | |
2124 | p->p_vaddr -= off - p->p_offset; | |
2125 | if (! m->p_paddr_valid) | |
2126 | p->p_paddr -= off - p->p_offset; | |
2127 | } | |
2128 | if (p->p_type == PT_LOAD) | |
fd0198f0 | 2129 | { |
6933148a ILT |
2130 | phdrs_vaddr = p->p_vaddr; |
2131 | phdrs_paddr = p->p_paddr; | |
fd0198f0 | 2132 | } |
6933148a ILT |
2133 | } |
2134 | p->p_filesz += alloc * bed->s->sizeof_phdr; | |
2135 | p->p_memsz += alloc * bed->s->sizeof_phdr; | |
2136 | } | |
2137 | ||
2138 | if (p->p_type == PT_LOAD) | |
2139 | { | |
2140 | if (! m->includes_filehdr && ! m->includes_phdrs) | |
2141 | p->p_offset = off; | |
2142 | else | |
2143 | { | |
2144 | file_ptr adjust; | |
fd0198f0 | 2145 | |
6933148a ILT |
2146 | adjust = off - (p->p_offset + p->p_filesz); |
2147 | p->p_filesz += adjust; | |
2148 | p->p_memsz += adjust; | |
fd0198f0 | 2149 | } |
ede4eed4 KR |
2150 | } |
2151 | ||
64f808f9 | 2152 | voff = off; |
fd0198f0 | 2153 | for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) |
ede4eed4 | 2154 | { |
fd0198f0 ILT |
2155 | asection *sec; |
2156 | flagword flags; | |
2157 | bfd_size_type align; | |
2158 | ||
2159 | sec = *secpp; | |
2160 | flags = sec->flags; | |
cdb88e87 | 2161 | align = 1 << bfd_get_section_alignment (abfd, sec); |
fd0198f0 ILT |
2162 | |
2163 | if (p->p_type == PT_LOAD) | |
2164 | { | |
2165 | bfd_vma adjust; | |
2166 | ||
2167 | /* The section VMA must equal the file position modulo | |
2168 | the page size. */ | |
09609415 | 2169 | if ((flags & SEC_ALLOC) != 0) |
fd0198f0 | 2170 | { |
cdb88e87 ILT |
2171 | if ((abfd->flags & D_PAGED) != 0) |
2172 | adjust = (sec->vma - voff) % bed->maxpagesize; | |
2173 | else | |
2174 | adjust = (sec->vma - voff) % align; | |
d49ddb85 ILT |
2175 | if (adjust != 0) |
2176 | { | |
2177 | if (i == 0) | |
2178 | abort (); | |
2179 | p->p_memsz += adjust; | |
19bfbcbe | 2180 | off += adjust; |
64f808f9 | 2181 | voff += adjust; |
d49ddb85 | 2182 | if ((flags & SEC_LOAD) != 0) |
19bfbcbe | 2183 | p->p_filesz += adjust; |
d49ddb85 | 2184 | } |
fd0198f0 ILT |
2185 | } |
2186 | ||
2187 | sec->filepos = off; | |
2188 | ||
2189 | if ((flags & SEC_LOAD) != 0) | |
2190 | off += sec->_raw_size; | |
64f808f9 ILT |
2191 | if ((flags & SEC_ALLOC) != 0) |
2192 | voff += sec->_raw_size; | |
fd0198f0 ILT |
2193 | } |
2194 | ||
2195 | p->p_memsz += sec->_raw_size; | |
2196 | ||
2197 | if ((flags & SEC_LOAD) != 0) | |
2198 | p->p_filesz += sec->_raw_size; | |
2199 | ||
fd0198f0 ILT |
2200 | if (align > p->p_align) |
2201 | p->p_align = align; | |
2202 | ||
2203 | if (! m->p_flags_valid) | |
2204 | { | |
14899eb7 | 2205 | p->p_flags |= PF_R; |
fd0198f0 ILT |
2206 | if ((flags & SEC_CODE) != 0) |
2207 | p->p_flags |= PF_X; | |
2208 | if ((flags & SEC_READONLY) == 0) | |
2209 | p->p_flags |= PF_W; | |
2210 | } | |
ede4eed4 | 2211 | } |
fd0198f0 | 2212 | } |
ede4eed4 | 2213 | |
fd0198f0 ILT |
2214 | /* Now that we have set the section file positions, we can set up |
2215 | the file positions for the non PT_LOAD segments. */ | |
2216 | for (m = elf_tdata (abfd)->segment_map, p = phdrs; | |
2217 | m != NULL; | |
2218 | m = m->next, p++) | |
2219 | { | |
2220 | if (p->p_type != PT_LOAD && m->count > 0) | |
ede4eed4 | 2221 | { |
6933148a ILT |
2222 | BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs); |
2223 | p->p_offset = m->sections[0]->filepos; | |
2224 | } | |
2225 | if (m->count == 0) | |
2226 | { | |
2227 | if (m->includes_filehdr) | |
2228 | { | |
2229 | p->p_vaddr = filehdr_vaddr; | |
2230 | if (! m->p_paddr_valid) | |
2231 | p->p_paddr = filehdr_paddr; | |
2232 | } | |
2233 | else if (m->includes_phdrs) | |
2234 | { | |
2235 | p->p_vaddr = phdrs_vaddr; | |
2236 | if (! m->p_paddr_valid) | |
2237 | p->p_paddr = phdrs_paddr; | |
2238 | } | |
ede4eed4 | 2239 | } |
ede4eed4 KR |
2240 | } |
2241 | ||
fd0198f0 ILT |
2242 | /* Clear out any program headers we allocated but did not use. */ |
2243 | for (; count < alloc; count++, p++) | |
ede4eed4 | 2244 | { |
fd0198f0 ILT |
2245 | memset (p, 0, sizeof *p); |
2246 | p->p_type = PT_NULL; | |
ede4eed4 KR |
2247 | } |
2248 | ||
fd0198f0 | 2249 | elf_tdata (abfd)->phdr = phdrs; |
ede4eed4 | 2250 | |
fd0198f0 | 2251 | elf_tdata (abfd)->next_file_pos = off; |
ede4eed4 | 2252 | |
fd0198f0 ILT |
2253 | /* Write out the program headers. */ |
2254 | if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0 | |
2255 | || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0) | |
2256 | return false; | |
2257 | ||
2258 | return true; | |
2259 | } | |
2260 | ||
2261 | /* Get the size of the program header. | |
2262 | ||
2263 | If this is called by the linker before any of the section VMA's are set, it | |
2264 | can't calculate the correct value for a strange memory layout. This only | |
2265 | happens when SIZEOF_HEADERS is used in a linker script. In this case, | |
2266 | SORTED_HDRS is NULL and we assume the normal scenario of one text and one | |
2267 | data segment (exclusive of .interp and .dynamic). | |
2268 | ||
2269 | ??? User written scripts must either not use SIZEOF_HEADERS, or assume there | |
2270 | will be two segments. */ | |
2271 | ||
2272 | static bfd_size_type | |
2273 | get_program_header_size (abfd) | |
2274 | bfd *abfd; | |
2275 | { | |
2276 | size_t segs; | |
2277 | asection *s; | |
2278 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2279 | ||
2280 | /* We can't return a different result each time we're called. */ | |
2281 | if (elf_tdata (abfd)->program_header_size != 0) | |
2282 | return elf_tdata (abfd)->program_header_size; | |
ae115e51 | 2283 | |
3b950780 ILT |
2284 | if (elf_tdata (abfd)->segment_map != NULL) |
2285 | { | |
2286 | struct elf_segment_map *m; | |
2287 | ||
2288 | segs = 0; | |
2289 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2290 | ++segs; | |
2291 | elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; | |
2292 | return elf_tdata (abfd)->program_header_size; | |
2293 | } | |
2294 | ||
fd0198f0 ILT |
2295 | /* Assume we will need exactly two PT_LOAD segments: one for text |
2296 | and one for data. */ | |
2297 | segs = 2; | |
2298 | ||
2299 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2300 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
ede4eed4 | 2301 | { |
fd0198f0 ILT |
2302 | /* If we have a loadable interpreter section, we need a |
2303 | PT_INTERP segment. In this case, assume we also need a | |
2304 | PT_PHDR segment, although that may not be true for all | |
2305 | targets. */ | |
2306 | segs += 2; | |
ede4eed4 KR |
2307 | } |
2308 | ||
fd0198f0 | 2309 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) |
ede4eed4 | 2310 | { |
fd0198f0 ILT |
2311 | /* We need a PT_DYNAMIC segment. */ |
2312 | ++segs; | |
ede4eed4 | 2313 | } |
ede4eed4 | 2314 | |
fd0198f0 | 2315 | /* Let the backend count up any program headers it might need. */ |
5b3b9ff6 ILT |
2316 | if (bed->elf_backend_additional_program_headers) |
2317 | { | |
2318 | int a; | |
2319 | ||
2320 | a = (*bed->elf_backend_additional_program_headers) (abfd); | |
2321 | if (a == -1) | |
2322 | abort (); | |
2323 | segs += a; | |
2324 | } | |
ede4eed4 | 2325 | |
fd0198f0 ILT |
2326 | elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; |
2327 | return elf_tdata (abfd)->program_header_size; | |
ede4eed4 KR |
2328 | } |
2329 | ||
2330 | /* Work out the file positions of all the sections. This is called by | |
2331 | _bfd_elf_compute_section_file_positions. All the section sizes and | |
2332 | VMAs must be known before this is called. | |
2333 | ||
2334 | We do not consider reloc sections at this point, unless they form | |
2335 | part of the loadable image. Reloc sections are assigned file | |
2336 | positions in assign_file_positions_for_relocs, which is called by | |
2337 | write_object_contents and final_link. | |
2338 | ||
fd0198f0 | 2339 | We also don't set the positions of the .symtab and .strtab here. */ |
ede4eed4 KR |
2340 | |
2341 | static boolean | |
fd0198f0 | 2342 | assign_file_positions_except_relocs (abfd) |
ede4eed4 | 2343 | bfd *abfd; |
ede4eed4 KR |
2344 | { |
2345 | struct elf_obj_tdata * const tdata = elf_tdata (abfd); | |
2346 | Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); | |
2347 | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); | |
2348 | file_ptr off; | |
2349 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2350 | ||
ede4eed4 KR |
2351 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) |
2352 | { | |
2353 | Elf_Internal_Shdr **hdrpp; | |
2354 | unsigned int i; | |
2355 | ||
fd0198f0 ILT |
2356 | /* Start after the ELF header. */ |
2357 | off = i_ehdrp->e_ehsize; | |
2358 | ||
ede4eed4 KR |
2359 | /* We are not creating an executable, which means that we are |
2360 | not creating a program header, and that the actual order of | |
2361 | the sections in the file is unimportant. */ | |
2362 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
2363 | { | |
2364 | Elf_Internal_Shdr *hdr; | |
2365 | ||
2366 | hdr = *hdrpp; | |
2367 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | |
2368 | { | |
2369 | hdr->sh_offset = -1; | |
2370 | continue; | |
2371 | } | |
fd0198f0 ILT |
2372 | if (i == tdata->symtab_section |
2373 | || i == tdata->strtab_section) | |
ede4eed4 KR |
2374 | { |
2375 | hdr->sh_offset = -1; | |
2376 | continue; | |
2377 | } | |
2378 | ||
5fe14a9f | 2379 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
ede4eed4 KR |
2380 | } |
2381 | } | |
2382 | else | |
2383 | { | |
ede4eed4 | 2384 | unsigned int i; |
fd0198f0 | 2385 | Elf_Internal_Shdr **hdrpp; |
ede4eed4 | 2386 | |
fd0198f0 ILT |
2387 | /* Assign file positions for the loaded sections based on the |
2388 | assignment of sections to segments. */ | |
2389 | if (! assign_file_positions_for_segments (abfd)) | |
ede4eed4 KR |
2390 | return false; |
2391 | ||
fd0198f0 ILT |
2392 | /* Assign file positions for the other sections. */ |
2393 | ||
2394 | off = elf_tdata (abfd)->next_file_pos; | |
2395 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
ede4eed4 KR |
2396 | { |
2397 | Elf_Internal_Shdr *hdr; | |
2398 | ||
2399 | hdr = *hdrpp; | |
fd0198f0 ILT |
2400 | if (hdr->bfd_section != NULL |
2401 | && hdr->bfd_section->filepos != 0) | |
2402 | hdr->sh_offset = hdr->bfd_section->filepos; | |
2403 | else if ((hdr->sh_flags & SHF_ALLOC) != 0) | |
ede4eed4 | 2404 | { |
fd0198f0 ILT |
2405 | ((*_bfd_error_handler) |
2406 | ("%s: warning: allocated section `%s' not in segment", | |
2407 | bfd_get_filename (abfd), | |
2408 | (hdr->bfd_section == NULL | |
2409 | ? "*unknown*" | |
2410 | : hdr->bfd_section->name))); | |
cdb88e87 ILT |
2411 | if ((abfd->flags & D_PAGED) != 0) |
2412 | off += (hdr->sh_addr - off) % bed->maxpagesize; | |
2413 | else | |
2414 | off += (hdr->sh_addr - off) % hdr->sh_addralign; | |
5fe14a9f ILT |
2415 | off = _bfd_elf_assign_file_position_for_section (hdr, off, |
2416 | false); | |
ede4eed4 | 2417 | } |
fd0198f0 ILT |
2418 | else if (hdr->sh_type == SHT_REL |
2419 | || hdr->sh_type == SHT_RELA | |
2420 | || hdr == i_shdrpp[tdata->symtab_section] | |
2421 | || hdr == i_shdrpp[tdata->strtab_section]) | |
2422 | hdr->sh_offset = -1; | |
2423 | else | |
2424 | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | |
2425 | } | |
ede4eed4 KR |
2426 | } |
2427 | ||
2428 | /* Place the section headers. */ | |
2429 | off = align_file_position (off, bed->s->file_align); | |
2430 | i_ehdrp->e_shoff = off; | |
2431 | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; | |
2432 | ||
2433 | elf_tdata (abfd)->next_file_pos = off; | |
2434 | ||
2435 | return true; | |
2436 | } | |
2437 | ||
ede4eed4 KR |
2438 | static boolean |
2439 | prep_headers (abfd) | |
2440 | bfd *abfd; | |
2441 | { | |
2442 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
2443 | Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ | |
2444 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ | |
2445 | int count; | |
2446 | struct bfd_strtab_hash *shstrtab; | |
2447 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2448 | ||
2449 | i_ehdrp = elf_elfheader (abfd); | |
2450 | i_shdrp = elf_elfsections (abfd); | |
2451 | ||
2452 | shstrtab = _bfd_elf_stringtab_init (); | |
2453 | if (shstrtab == NULL) | |
2454 | return false; | |
2455 | ||
2456 | elf_shstrtab (abfd) = shstrtab; | |
2457 | ||
2458 | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; | |
2459 | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; | |
2460 | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; | |
2461 | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; | |
2462 | ||
2463 | i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; | |
2464 | i_ehdrp->e_ident[EI_DATA] = | |
86587dd4 | 2465 | bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; |
ede4eed4 KR |
2466 | i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; |
2467 | ||
2468 | for (count = EI_PAD; count < EI_NIDENT; count++) | |
2469 | i_ehdrp->e_ident[count] = 0; | |
2470 | ||
2471 | if ((abfd->flags & DYNAMIC) != 0) | |
2472 | i_ehdrp->e_type = ET_DYN; | |
2473 | else if ((abfd->flags & EXEC_P) != 0) | |
2474 | i_ehdrp->e_type = ET_EXEC; | |
2475 | else | |
2476 | i_ehdrp->e_type = ET_REL; | |
2477 | ||
2478 | switch (bfd_get_arch (abfd)) | |
2479 | { | |
2480 | case bfd_arch_unknown: | |
2481 | i_ehdrp->e_machine = EM_NONE; | |
2482 | break; | |
2483 | case bfd_arch_sparc: | |
2484 | if (bed->s->arch_size == 64) | |
2485 | i_ehdrp->e_machine = EM_SPARC64; | |
2486 | else | |
2487 | i_ehdrp->e_machine = EM_SPARC; | |
2488 | break; | |
2489 | case bfd_arch_i386: | |
2490 | i_ehdrp->e_machine = EM_386; | |
2491 | break; | |
2492 | case bfd_arch_m68k: | |
2493 | i_ehdrp->e_machine = EM_68K; | |
2494 | break; | |
2495 | case bfd_arch_m88k: | |
2496 | i_ehdrp->e_machine = EM_88K; | |
2497 | break; | |
2498 | case bfd_arch_i860: | |
2499 | i_ehdrp->e_machine = EM_860; | |
2500 | break; | |
2501 | case bfd_arch_mips: /* MIPS Rxxxx */ | |
2502 | i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ | |
2503 | break; | |
2504 | case bfd_arch_hppa: | |
2505 | i_ehdrp->e_machine = EM_PARISC; | |
2506 | break; | |
2507 | case bfd_arch_powerpc: | |
2508 | i_ehdrp->e_machine = EM_PPC; | |
2509 | break; | |
50bd50d4 MH |
2510 | case bfd_arch_alpha: |
2511 | i_ehdrp->e_machine = EM_ALPHA; | |
2512 | break; | |
f0c12b73 DE |
2513 | case bfd_arch_sh: |
2514 | i_ehdrp->e_machine = EM_SH; | |
2515 | break; | |
50bd50d4 MH |
2516 | /* start-sanitize-d10v */ |
2517 | case bfd_arch_d10v: | |
2518 | i_ehdrp->e_machine = EM_CYGNUS_D10V; | |
2519 | break; | |
2520 | /* end-sanitize-d10v */ | |
f0c12b73 DE |
2521 | /* start-sanitize-v850 */ |
2522 | case bfd_arch_v850: | |
2523 | i_ehdrp->e_machine = EM_CYGNUS_V850; | |
2524 | break; | |
2525 | /* end-sanitize-v850 */ | |
ede4eed4 KR |
2526 | /* start-sanitize-arc */ |
2527 | case bfd_arch_arc: | |
2528 | i_ehdrp->e_machine = EM_CYGNUS_ARC; | |
2529 | break; | |
2530 | /* end-sanitize-arc */ | |
f0c12b73 DE |
2531 | /* start-sanitize-m32r */ |
2532 | case bfd_arch_m32r: | |
2533 | i_ehdrp->e_machine = EM_CYGNUS_M32R; | |
2534 | break; | |
2535 | /* end-sanitize-m32r */ | |
80be821d ILT |
2536 | case bfd_arch_mn10200: |
2537 | i_ehdrp->e_machine = EM_CYGNUS_MN10200; | |
2538 | break; | |
2539 | case bfd_arch_mn10300: | |
2540 | i_ehdrp->e_machine = EM_CYGNUS_MN10300; | |
efc2b064 | 2541 | break; |
ede4eed4 KR |
2542 | /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ |
2543 | default: | |
2544 | i_ehdrp->e_machine = EM_NONE; | |
2545 | } | |
2546 | i_ehdrp->e_version = bed->s->ev_current; | |
2547 | i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; | |
2548 | ||
2549 | /* no program header, for now. */ | |
2550 | i_ehdrp->e_phoff = 0; | |
2551 | i_ehdrp->e_phentsize = 0; | |
2552 | i_ehdrp->e_phnum = 0; | |
2553 | ||
2554 | /* each bfd section is section header entry */ | |
2555 | i_ehdrp->e_entry = bfd_get_start_address (abfd); | |
2556 | i_ehdrp->e_shentsize = bed->s->sizeof_shdr; | |
2557 | ||
2558 | /* if we're building an executable, we'll need a program header table */ | |
2559 | if (abfd->flags & EXEC_P) | |
2560 | { | |
2561 | /* it all happens later */ | |
2562 | #if 0 | |
2563 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
2564 | ||
2565 | /* elf_build_phdrs() returns a (NULL-terminated) array of | |
2566 | Elf_Internal_Phdrs */ | |
2567 | i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); | |
2568 | i_ehdrp->e_phoff = outbase; | |
2569 | outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; | |
2570 | #endif | |
2571 | } | |
2572 | else | |
2573 | { | |
2574 | i_ehdrp->e_phentsize = 0; | |
2575 | i_phdrp = 0; | |
2576 | i_ehdrp->e_phoff = 0; | |
2577 | } | |
2578 | ||
2579 | elf_tdata (abfd)->symtab_hdr.sh_name = | |
2580 | (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); | |
2581 | elf_tdata (abfd)->strtab_hdr.sh_name = | |
2582 | (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); | |
2583 | elf_tdata (abfd)->shstrtab_hdr.sh_name = | |
2584 | (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); | |
2585 | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | |
2586 | || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | |
2587 | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) | |
2588 | return false; | |
2589 | ||
2590 | return true; | |
2591 | } | |
2592 | ||
2593 | /* Assign file positions for all the reloc sections which are not part | |
2594 | of the loadable file image. */ | |
2595 | ||
2596 | void | |
2597 | _bfd_elf_assign_file_positions_for_relocs (abfd) | |
2598 | bfd *abfd; | |
2599 | { | |
2600 | file_ptr off; | |
2601 | unsigned int i; | |
2602 | Elf_Internal_Shdr **shdrpp; | |
2603 | ||
2604 | off = elf_tdata (abfd)->next_file_pos; | |
2605 | ||
2606 | for (i = 1, shdrpp = elf_elfsections (abfd) + 1; | |
2607 | i < elf_elfheader (abfd)->e_shnum; | |
2608 | i++, shdrpp++) | |
2609 | { | |
2610 | Elf_Internal_Shdr *shdrp; | |
2611 | ||
2612 | shdrp = *shdrpp; | |
2613 | if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) | |
2614 | && shdrp->sh_offset == -1) | |
5fe14a9f | 2615 | off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); |
ede4eed4 KR |
2616 | } |
2617 | ||
2618 | elf_tdata (abfd)->next_file_pos = off; | |
2619 | } | |
2620 | ||
2621 | boolean | |
2622 | _bfd_elf_write_object_contents (abfd) | |
2623 | bfd *abfd; | |
2624 | { | |
2625 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2626 | Elf_Internal_Ehdr *i_ehdrp; | |
2627 | Elf_Internal_Shdr **i_shdrp; | |
2628 | boolean failed; | |
2629 | unsigned int count; | |
2630 | ||
2631 | if (! abfd->output_has_begun | |
2632 | && ! _bfd_elf_compute_section_file_positions (abfd, | |
2633 | (struct bfd_link_info *) NULL)) | |
2634 | return false; | |
2635 | ||
2636 | i_shdrp = elf_elfsections (abfd); | |
2637 | i_ehdrp = elf_elfheader (abfd); | |
2638 | ||
2639 | failed = false; | |
2640 | bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); | |
2641 | if (failed) | |
2642 | return false; | |
2643 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
2644 | ||
2645 | /* After writing the headers, we need to write the sections too... */ | |
2646 | for (count = 1; count < i_ehdrp->e_shnum; count++) | |
2647 | { | |
2648 | if (bed->elf_backend_section_processing) | |
2649 | (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); | |
2650 | if (i_shdrp[count]->contents) | |
2651 | { | |
2652 | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 | |
2653 | || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, | |
2654 | 1, abfd) | |
2655 | != i_shdrp[count]->sh_size)) | |
2656 | return false; | |
2657 | } | |
2658 | } | |
2659 | ||
2660 | /* Write out the section header names. */ | |
2661 | if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 | |
2662 | || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) | |
2663 | return false; | |
2664 | ||
2665 | if (bed->elf_backend_final_write_processing) | |
2666 | (*bed->elf_backend_final_write_processing) (abfd, | |
2667 | elf_tdata (abfd)->linker); | |
2668 | ||
2669 | return bed->s->write_shdrs_and_ehdr (abfd); | |
2670 | } | |
2671 | ||
2672 | /* given a section, search the header to find them... */ | |
2673 | int | |
2674 | _bfd_elf_section_from_bfd_section (abfd, asect) | |
2675 | bfd *abfd; | |
2676 | struct sec *asect; | |
2677 | { | |
2678 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2679 | Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); | |
2680 | int index; | |
2681 | Elf_Internal_Shdr *hdr; | |
2682 | int maxindex = elf_elfheader (abfd)->e_shnum; | |
2683 | ||
2684 | for (index = 0; index < maxindex; index++) | |
2685 | { | |
2686 | hdr = i_shdrp[index]; | |
2687 | if (hdr->bfd_section == asect) | |
2688 | return index; | |
2689 | } | |
2690 | ||
2691 | if (bed->elf_backend_section_from_bfd_section) | |
2692 | { | |
2693 | for (index = 0; index < maxindex; index++) | |
2694 | { | |
2695 | int retval; | |
2696 | ||
2697 | hdr = i_shdrp[index]; | |
2698 | retval = index; | |
2699 | if ((*bed->elf_backend_section_from_bfd_section) | |
2700 | (abfd, hdr, asect, &retval)) | |
2701 | return retval; | |
2702 | } | |
2703 | } | |
2704 | ||
2705 | if (bfd_is_abs_section (asect)) | |
2706 | return SHN_ABS; | |
2707 | if (bfd_is_com_section (asect)) | |
2708 | return SHN_COMMON; | |
2709 | if (bfd_is_und_section (asect)) | |
2710 | return SHN_UNDEF; | |
2711 | ||
2712 | return -1; | |
2713 | } | |
2714 | ||
cb84f028 ILT |
2715 | /* Given a BFD symbol, return the index in the ELF symbol table, or -1 |
2716 | on error. */ | |
2717 | ||
2718 | int | |
ede4eed4 KR |
2719 | _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) |
2720 | bfd *abfd; | |
7fc6a16a | 2721 | asymbol **asym_ptr_ptr; |
ede4eed4 | 2722 | { |
7fc6a16a | 2723 | asymbol *asym_ptr = *asym_ptr_ptr; |
ede4eed4 KR |
2724 | int idx; |
2725 | flagword flags = asym_ptr->flags; | |
2726 | ||
2727 | /* When gas creates relocations against local labels, it creates its | |
2728 | own symbol for the section, but does put the symbol into the | |
2729 | symbol chain, so udata is 0. When the linker is generating | |
2730 | relocatable output, this section symbol may be for one of the | |
2731 | input sections rather than the output section. */ | |
2732 | if (asym_ptr->udata.i == 0 | |
2733 | && (flags & BSF_SECTION_SYM) | |
2734 | && asym_ptr->section) | |
2735 | { | |
2736 | int indx; | |
2737 | ||
2738 | if (asym_ptr->section->output_section != NULL) | |
2739 | indx = asym_ptr->section->output_section->index; | |
2740 | else | |
2741 | indx = asym_ptr->section->index; | |
2742 | if (elf_section_syms (abfd)[indx]) | |
2743 | asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; | |
2744 | } | |
2745 | ||
2746 | idx = asym_ptr->udata.i; | |
cb84f028 ILT |
2747 | |
2748 | if (idx == 0) | |
2749 | { | |
2750 | /* This case can occur when using --strip-symbol on a symbol | |
2751 | which is used in a relocation entry. */ | |
2752 | (*_bfd_error_handler) | |
2753 | ("%s: symbol `%s' required but not present", | |
2754 | bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr)); | |
2755 | bfd_set_error (bfd_error_no_symbols); | |
2756 | return -1; | |
2757 | } | |
ede4eed4 KR |
2758 | |
2759 | #if DEBUG & 4 | |
2760 | { | |
2761 | fprintf (stderr, | |
2762 | "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n", | |
cb84f028 ILT |
2763 | (long) asym_ptr, asym_ptr->name, idx, flags, |
2764 | elf_symbol_flags (flags)); | |
ede4eed4 KR |
2765 | fflush (stderr); |
2766 | } | |
2767 | #endif | |
2768 | ||
2769 | return idx; | |
2770 | } | |
2771 | ||
3dbf33ee ILT |
2772 | /* Copy private BFD data. This copies any program header information. */ |
2773 | ||
2774 | static boolean | |
2775 | copy_private_bfd_data (ibfd, obfd) | |
2776 | bfd *ibfd; | |
2777 | bfd *obfd; | |
2778 | { | |
6933148a | 2779 | Elf_Internal_Ehdr *iehdr; |
3dbf33ee ILT |
2780 | struct elf_segment_map *mfirst; |
2781 | struct elf_segment_map **pm; | |
2782 | Elf_Internal_Phdr *p; | |
2783 | unsigned int i, c; | |
2784 | ||
2785 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2786 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2787 | return true; | |
2788 | ||
2789 | if (elf_tdata (ibfd)->phdr == NULL) | |
2790 | return true; | |
2791 | ||
6933148a ILT |
2792 | iehdr = elf_elfheader (ibfd); |
2793 | ||
3dbf33ee ILT |
2794 | mfirst = NULL; |
2795 | pm = &mfirst; | |
2796 | ||
2797 | c = elf_elfheader (ibfd)->e_phnum; | |
2798 | for (i = 0, p = elf_tdata (ibfd)->phdr; i < c; i++, p++) | |
2799 | { | |
3dbf33ee | 2800 | unsigned int csecs; |
6933148a ILT |
2801 | asection *s; |
2802 | struct elf_segment_map *m; | |
2803 | unsigned int isec; | |
3dbf33ee ILT |
2804 | |
2805 | csecs = 0; | |
3dbf33ee | 2806 | |
6933148a ILT |
2807 | /* The complicated case when p_vaddr is 0 is to handle the |
2808 | Solaris linker, which generates a PT_INTERP section with | |
2809 | p_vaddr and p_memsz set to 0. */ | |
2810 | for (s = ibfd->sections; s != NULL; s = s->next) | |
2811 | if (((s->vma >= p->p_vaddr | |
2812 | && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz | |
2813 | || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz)) | |
2814 | || (p->p_vaddr == 0 | |
2815 | && p->p_filesz > 0 | |
2816 | && (s->flags & SEC_HAS_CONTENTS) != 0 | |
2817 | && (bfd_vma) s->filepos >= p->p_offset | |
2818 | && ((bfd_vma) s->filepos + s->_raw_size | |
2819 | <= p->p_offset + p->p_filesz))) | |
86587dd4 | 2820 | && (s->flags & SEC_ALLOC) != 0 |
6933148a ILT |
2821 | && s->output_section != NULL) |
2822 | ++csecs; | |
3dbf33ee ILT |
2823 | |
2824 | m = ((struct elf_segment_map *) | |
2825 | bfd_alloc (obfd, | |
2826 | (sizeof (struct elf_segment_map) | |
2827 | + (csecs - 1) * sizeof (asection *)))); | |
2828 | if (m == NULL) | |
a9713b91 | 2829 | return false; |
3dbf33ee ILT |
2830 | |
2831 | m->next = NULL; | |
2832 | m->p_type = p->p_type; | |
2833 | m->p_flags = p->p_flags; | |
2834 | m->p_flags_valid = 1; | |
2835 | m->p_paddr = p->p_paddr; | |
2836 | m->p_paddr_valid = 1; | |
2837 | ||
6933148a ILT |
2838 | m->includes_filehdr = (p->p_offset == 0 |
2839 | && p->p_filesz >= iehdr->e_ehsize); | |
2840 | ||
2841 | m->includes_phdrs = (p->p_offset <= (bfd_vma) iehdr->e_phoff | |
2842 | && (p->p_offset + p->p_filesz | |
2843 | >= ((bfd_vma) iehdr->e_phoff | |
2844 | + iehdr->e_phnum * iehdr->e_phentsize))); | |
3dbf33ee | 2845 | |
6933148a ILT |
2846 | isec = 0; |
2847 | for (s = ibfd->sections; s != NULL; s = s->next) | |
2848 | { | |
2849 | if (((s->vma >= p->p_vaddr | |
2850 | && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz | |
2851 | || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz)) | |
2852 | || (p->p_vaddr == 0 | |
2853 | && p->p_filesz > 0 | |
2854 | && (s->flags & SEC_HAS_CONTENTS) != 0 | |
2855 | && (bfd_vma) s->filepos >= p->p_offset | |
2856 | && ((bfd_vma) s->filepos + s->_raw_size | |
2857 | <= p->p_offset + p->p_filesz))) | |
86587dd4 | 2858 | && (s->flags & SEC_ALLOC) != 0 |
6933148a | 2859 | && s->output_section != NULL) |
3dbf33ee | 2860 | { |
6933148a ILT |
2861 | m->sections[isec] = s->output_section; |
2862 | ++isec; | |
3dbf33ee | 2863 | } |
3dbf33ee | 2864 | } |
6933148a | 2865 | BFD_ASSERT (isec == csecs); |
6933148a | 2866 | m->count = csecs; |
3dbf33ee ILT |
2867 | |
2868 | *pm = m; | |
2869 | pm = &m->next; | |
2870 | } | |
2871 | ||
2872 | elf_tdata (obfd)->segment_map = mfirst; | |
2873 | ||
2874 | return true; | |
2875 | } | |
2876 | ||
fd0198f0 ILT |
2877 | /* Copy private section information. This copies over the entsize |
2878 | field, and sometimes the info field. */ | |
2879 | ||
2880 | boolean | |
2881 | _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec) | |
2882 | bfd *ibfd; | |
2883 | asection *isec; | |
2884 | bfd *obfd; | |
2885 | asection *osec; | |
2886 | { | |
2887 | Elf_Internal_Shdr *ihdr, *ohdr; | |
2888 | ||
2889 | if (ibfd->xvec->flavour != bfd_target_elf_flavour | |
2890 | || obfd->xvec->flavour != bfd_target_elf_flavour) | |
2891 | return true; | |
2892 | ||
3dbf33ee ILT |
2893 | /* Copy over private BFD data if it has not already been copied. |
2894 | This must be done here, rather than in the copy_private_bfd_data | |
2895 | entry point, because the latter is called after the section | |
2896 | contents have been set, which means that the program headers have | |
2897 | already been worked out. */ | |
2898 | if (elf_tdata (obfd)->segment_map == NULL | |
2899 | && elf_tdata (ibfd)->phdr != NULL) | |
2900 | { | |
2901 | asection *s; | |
2902 | ||
2903 | /* Only set up the segments when all the sections have been set | |
2904 | up. */ | |
2905 | for (s = ibfd->sections; s != NULL; s = s->next) | |
2906 | if (s->output_section == NULL) | |
2907 | break; | |
2908 | if (s == NULL) | |
2909 | { | |
2910 | if (! copy_private_bfd_data (ibfd, obfd)) | |
2911 | return false; | |
2912 | } | |
2913 | } | |
2914 | ||
fd0198f0 ILT |
2915 | ihdr = &elf_section_data (isec)->this_hdr; |
2916 | ohdr = &elf_section_data (osec)->this_hdr; | |
2917 | ||
2918 | ohdr->sh_entsize = ihdr->sh_entsize; | |
2919 | ||
2920 | if (ihdr->sh_type == SHT_SYMTAB | |
2921 | || ihdr->sh_type == SHT_DYNSYM) | |
2922 | ohdr->sh_info = ihdr->sh_info; | |
2923 | ||
2924 | return true; | |
2925 | } | |
2926 | ||
2927 | /* Copy private symbol information. If this symbol is in a section | |
2928 | which we did not map into a BFD section, try to map the section | |
2929 | index correctly. We use special macro definitions for the mapped | |
2930 | section indices; these definitions are interpreted by the | |
2931 | swap_out_syms function. */ | |
2932 | ||
2933 | #define MAP_ONESYMTAB (SHN_LORESERVE - 1) | |
2934 | #define MAP_DYNSYMTAB (SHN_LORESERVE - 2) | |
2935 | #define MAP_STRTAB (SHN_LORESERVE - 3) | |
2936 | #define MAP_SHSTRTAB (SHN_LORESERVE - 4) | |
2937 | ||
2938 | boolean | |
2939 | _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg) | |
2940 | bfd *ibfd; | |
2941 | asymbol *isymarg; | |
2942 | bfd *obfd; | |
2943 | asymbol *osymarg; | |
2944 | { | |
2945 | elf_symbol_type *isym, *osym; | |
2946 | ||
efc2b064 JL |
2947 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
2948 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2949 | return true; | |
2950 | ||
fd0198f0 ILT |
2951 | isym = elf_symbol_from (ibfd, isymarg); |
2952 | osym = elf_symbol_from (obfd, osymarg); | |
2953 | ||
2954 | if (isym != NULL | |
2955 | && osym != NULL | |
2956 | && bfd_is_abs_section (isym->symbol.section)) | |
2957 | { | |
2958 | unsigned int shndx; | |
2959 | ||
2960 | shndx = isym->internal_elf_sym.st_shndx; | |
2961 | if (shndx == elf_onesymtab (ibfd)) | |
2962 | shndx = MAP_ONESYMTAB; | |
2963 | else if (shndx == elf_dynsymtab (ibfd)) | |
2964 | shndx = MAP_DYNSYMTAB; | |
2965 | else if (shndx == elf_tdata (ibfd)->strtab_section) | |
2966 | shndx = MAP_STRTAB; | |
2967 | else if (shndx == elf_tdata (ibfd)->shstrtab_section) | |
2968 | shndx = MAP_SHSTRTAB; | |
2969 | osym->internal_elf_sym.st_shndx = shndx; | |
2970 | } | |
2971 | ||
2972 | return true; | |
2973 | } | |
2974 | ||
2975 | /* Swap out the symbols. */ | |
2976 | ||
ede4eed4 KR |
2977 | static boolean |
2978 | swap_out_syms (abfd, sttp) | |
2979 | bfd *abfd; | |
2980 | struct bfd_strtab_hash **sttp; | |
2981 | { | |
2982 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2983 | ||
2984 | if (!elf_map_symbols (abfd)) | |
2985 | return false; | |
2986 | ||
2987 | /* Dump out the symtabs. */ | |
2988 | { | |
2989 | int symcount = bfd_get_symcount (abfd); | |
2990 | asymbol **syms = bfd_get_outsymbols (abfd); | |
2991 | struct bfd_strtab_hash *stt; | |
2992 | Elf_Internal_Shdr *symtab_hdr; | |
2993 | Elf_Internal_Shdr *symstrtab_hdr; | |
2994 | char *outbound_syms; | |
2995 | int idx; | |
2996 | ||
2997 | stt = _bfd_elf_stringtab_init (); | |
2998 | if (stt == NULL) | |
2999 | return false; | |
3000 | ||
3001 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
3002 | symtab_hdr->sh_type = SHT_SYMTAB; | |
3003 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | |
3004 | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); | |
3005 | symtab_hdr->sh_info = elf_num_locals (abfd) + 1; | |
3006 | symtab_hdr->sh_addralign = bed->s->file_align; | |
3007 | ||
3008 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
3009 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
3010 | ||
3011 | outbound_syms = bfd_alloc (abfd, | |
3012 | (1 + symcount) * bed->s->sizeof_sym); | |
3013 | if (outbound_syms == NULL) | |
a9713b91 | 3014 | return false; |
ede4eed4 KR |
3015 | symtab_hdr->contents = (PTR) outbound_syms; |
3016 | ||
3017 | /* now generate the data (for "contents") */ | |
3018 | { | |
3019 | /* Fill in zeroth symbol and swap it out. */ | |
3020 | Elf_Internal_Sym sym; | |
3021 | sym.st_name = 0; | |
3022 | sym.st_value = 0; | |
3023 | sym.st_size = 0; | |
3024 | sym.st_info = 0; | |
3025 | sym.st_other = 0; | |
3026 | sym.st_shndx = SHN_UNDEF; | |
cf9fb9f2 | 3027 | bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); |
ede4eed4 KR |
3028 | outbound_syms += bed->s->sizeof_sym; |
3029 | } | |
3030 | for (idx = 0; idx < symcount; idx++) | |
3031 | { | |
3032 | Elf_Internal_Sym sym; | |
3033 | bfd_vma value = syms[idx]->value; | |
3034 | elf_symbol_type *type_ptr; | |
3035 | flagword flags = syms[idx]->flags; | |
052b35d2 | 3036 | int type; |
ede4eed4 KR |
3037 | |
3038 | if (flags & BSF_SECTION_SYM) | |
3039 | /* Section symbols have no names. */ | |
3040 | sym.st_name = 0; | |
3041 | else | |
3042 | { | |
3043 | sym.st_name = (unsigned long) _bfd_stringtab_add (stt, | |
3044 | syms[idx]->name, | |
3045 | true, false); | |
3046 | if (sym.st_name == (unsigned long) -1) | |
3047 | return false; | |
3048 | } | |
3049 | ||
3050 | type_ptr = elf_symbol_from (abfd, syms[idx]); | |
3051 | ||
3052 | if (bfd_is_com_section (syms[idx]->section)) | |
3053 | { | |
3054 | /* ELF common symbols put the alignment into the `value' field, | |
3055 | and the size into the `size' field. This is backwards from | |
3056 | how BFD handles it, so reverse it here. */ | |
3057 | sym.st_size = value; | |
3058 | if (type_ptr == NULL | |
3059 | || type_ptr->internal_elf_sym.st_value == 0) | |
3060 | sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); | |
3061 | else | |
3062 | sym.st_value = type_ptr->internal_elf_sym.st_value; | |
3063 | sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd, | |
3064 | syms[idx]->section); | |
3065 | } | |
3066 | else | |
3067 | { | |
3068 | asection *sec = syms[idx]->section; | |
3069 | int shndx; | |
3070 | ||
3071 | if (sec->output_section) | |
3072 | { | |
3073 | value += sec->output_offset; | |
3074 | sec = sec->output_section; | |
3075 | } | |
3076 | value += sec->vma; | |
3077 | sym.st_value = value; | |
3078 | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; | |
fd0198f0 ILT |
3079 | |
3080 | if (bfd_is_abs_section (sec) | |
3081 | && type_ptr != NULL | |
3082 | && type_ptr->internal_elf_sym.st_shndx != 0) | |
ede4eed4 | 3083 | { |
fd0198f0 ILT |
3084 | /* This symbol is in a real ELF section which we did |
3085 | not create as a BFD section. Undo the mapping done | |
3086 | by copy_private_symbol_data. */ | |
3087 | shndx = type_ptr->internal_elf_sym.st_shndx; | |
3088 | switch (shndx) | |
3089 | { | |
3090 | case MAP_ONESYMTAB: | |
3091 | shndx = elf_onesymtab (abfd); | |
3092 | break; | |
3093 | case MAP_DYNSYMTAB: | |
3094 | shndx = elf_dynsymtab (abfd); | |
3095 | break; | |
3096 | case MAP_STRTAB: | |
3097 | shndx = elf_tdata (abfd)->strtab_section; | |
3098 | break; | |
3099 | case MAP_SHSTRTAB: | |
3100 | shndx = elf_tdata (abfd)->shstrtab_section; | |
3101 | break; | |
3102 | default: | |
3103 | break; | |
3104 | } | |
3105 | } | |
3106 | else | |
3107 | { | |
3108 | shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
3109 | ||
3110 | if (shndx == -1) | |
3111 | { | |
3112 | asection *sec2; | |
3113 | ||
3114 | /* Writing this would be a hell of a lot easier if | |
3115 | we had some decent documentation on bfd, and | |
3116 | knew what to expect of the library, and what to | |
3117 | demand of applications. For example, it | |
3118 | appears that `objcopy' might not set the | |
3119 | section of a symbol to be a section that is | |
3120 | actually in the output file. */ | |
3121 | sec2 = bfd_get_section_by_name (abfd, sec->name); | |
3122 | BFD_ASSERT (sec2 != 0); | |
3123 | shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); | |
3124 | BFD_ASSERT (shndx != -1); | |
3125 | } | |
ede4eed4 | 3126 | } |
fd0198f0 ILT |
3127 | |
3128 | sym.st_shndx = shndx; | |
ede4eed4 KR |
3129 | } |
3130 | ||
052b35d2 ILT |
3131 | if ((flags & BSF_FUNCTION) != 0) |
3132 | type = STT_FUNC; | |
3133 | else if ((flags & BSF_OBJECT) != 0) | |
3134 | type = STT_OBJECT; | |
3135 | else | |
3136 | type = STT_NOTYPE; | |
3137 | ||
ede4eed4 | 3138 | if (bfd_is_com_section (syms[idx]->section)) |
052b35d2 | 3139 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); |
ede4eed4 KR |
3140 | else if (bfd_is_und_section (syms[idx]->section)) |
3141 | sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) | |
3142 | ? STB_WEAK | |
3143 | : STB_GLOBAL), | |
052b35d2 | 3144 | type); |
ede4eed4 KR |
3145 | else if (flags & BSF_SECTION_SYM) |
3146 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
3147 | else if (flags & BSF_FILE) | |
3148 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
3149 | else | |
3150 | { | |
3151 | int bind = STB_LOCAL; | |
ede4eed4 KR |
3152 | |
3153 | if (flags & BSF_LOCAL) | |
3154 | bind = STB_LOCAL; | |
3155 | else if (flags & BSF_WEAK) | |
3156 | bind = STB_WEAK; | |
3157 | else if (flags & BSF_GLOBAL) | |
3158 | bind = STB_GLOBAL; | |
3159 | ||
ede4eed4 KR |
3160 | sym.st_info = ELF_ST_INFO (bind, type); |
3161 | } | |
3162 | ||
80be821d ILT |
3163 | if (type_ptr != NULL) |
3164 | sym.st_other = type_ptr->internal_elf_sym.st_other; | |
3165 | else | |
3166 | sym.st_other = 0; | |
3167 | ||
cf9fb9f2 | 3168 | bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); |
ede4eed4 KR |
3169 | outbound_syms += bed->s->sizeof_sym; |
3170 | } | |
3171 | ||
3172 | *sttp = stt; | |
3173 | symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); | |
3174 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
3175 | ||
3176 | symstrtab_hdr->sh_flags = 0; | |
3177 | symstrtab_hdr->sh_addr = 0; | |
3178 | symstrtab_hdr->sh_entsize = 0; | |
3179 | symstrtab_hdr->sh_link = 0; | |
3180 | symstrtab_hdr->sh_info = 0; | |
3181 | symstrtab_hdr->sh_addralign = 1; | |
3182 | } | |
3183 | ||
3184 | return true; | |
3185 | } | |
3186 | ||
3187 | /* Return the number of bytes required to hold the symtab vector. | |
3188 | ||
3189 | Note that we base it on the count plus 1, since we will null terminate | |
3190 | the vector allocated based on this size. However, the ELF symbol table | |
3191 | always has a dummy entry as symbol #0, so it ends up even. */ | |
3192 | ||
3193 | long | |
3194 | _bfd_elf_get_symtab_upper_bound (abfd) | |
3195 | bfd *abfd; | |
3196 | { | |
3197 | long symcount; | |
3198 | long symtab_size; | |
3199 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; | |
3200 | ||
3201 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
3202 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); | |
3203 | ||
3204 | return symtab_size; | |
3205 | } | |
3206 | ||
3207 | long | |
3208 | _bfd_elf_get_dynamic_symtab_upper_bound (abfd) | |
3209 | bfd *abfd; | |
3210 | { | |
3211 | long symcount; | |
3212 | long symtab_size; | |
3213 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3214 | ||
3215 | if (elf_dynsymtab (abfd) == 0) | |
3216 | { | |
3217 | bfd_set_error (bfd_error_invalid_operation); | |
3218 | return -1; | |
3219 | } | |
3220 | ||
3221 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
3222 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); | |
3223 | ||
3224 | return symtab_size; | |
3225 | } | |
3226 | ||
3227 | long | |
3228 | _bfd_elf_get_reloc_upper_bound (abfd, asect) | |
3229 | bfd *abfd; | |
3230 | sec_ptr asect; | |
3231 | { | |
3232 | return (asect->reloc_count + 1) * sizeof (arelent *); | |
3233 | } | |
3234 | ||
3235 | /* Canonicalize the relocs. */ | |
3236 | ||
3237 | long | |
3238 | _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols) | |
3239 | bfd *abfd; | |
3240 | sec_ptr section; | |
3241 | arelent **relptr; | |
3242 | asymbol **symbols; | |
3243 | { | |
3244 | arelent *tblptr; | |
3245 | unsigned int i; | |
3246 | ||
e35765a9 ILT |
3247 | if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd, |
3248 | section, | |
3249 | symbols, | |
3250 | false)) | |
ede4eed4 KR |
3251 | return -1; |
3252 | ||
3253 | tblptr = section->relocation; | |
3254 | for (i = 0; i < section->reloc_count; i++) | |
3255 | *relptr++ = tblptr++; | |
3256 | ||
3257 | *relptr = NULL; | |
3258 | ||
3259 | return section->reloc_count; | |
3260 | } | |
3261 | ||
3262 | long | |
3263 | _bfd_elf_get_symtab (abfd, alocation) | |
3264 | bfd *abfd; | |
3265 | asymbol **alocation; | |
3266 | { | |
3267 | long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, false); | |
3268 | ||
3269 | if (symcount >= 0) | |
3270 | bfd_get_symcount (abfd) = symcount; | |
3271 | return symcount; | |
3272 | } | |
3273 | ||
3274 | long | |
3275 | _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation) | |
3276 | bfd *abfd; | |
3277 | asymbol **alocation; | |
3278 | { | |
3279 | return get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, true); | |
3280 | } | |
3281 | ||
e35765a9 ILT |
3282 | /* Return the size required for the dynamic reloc entries. Any |
3283 | section that was actually installed in the BFD, and has type | |
3284 | SHT_REL or SHT_RELA, and uses the dynamic symbol table, is | |
3285 | considered to be a dynamic reloc section. */ | |
3286 | ||
3287 | long | |
3288 | _bfd_elf_get_dynamic_reloc_upper_bound (abfd) | |
3289 | bfd *abfd; | |
3290 | { | |
3291 | long ret; | |
3292 | asection *s; | |
3293 | ||
3294 | if (elf_dynsymtab (abfd) == 0) | |
3295 | { | |
3296 | bfd_set_error (bfd_error_invalid_operation); | |
3297 | return -1; | |
3298 | } | |
3299 | ||
3300 | ret = sizeof (arelent *); | |
3301 | for (s = abfd->sections; s != NULL; s = s->next) | |
3302 | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) | |
3303 | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL | |
3304 | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) | |
3305 | ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize) | |
3306 | * sizeof (arelent *)); | |
3307 | ||
3308 | return ret; | |
3309 | } | |
3310 | ||
3311 | /* Canonicalize the dynamic relocation entries. Note that we return | |
3312 | the dynamic relocations as a single block, although they are | |
3313 | actually associated with particular sections; the interface, which | |
3314 | was designed for SunOS style shared libraries, expects that there | |
3315 | is only one set of dynamic relocs. Any section that was actually | |
3316 | installed in the BFD, and has type SHT_REL or SHT_RELA, and uses | |
3317 | the dynamic symbol table, is considered to be a dynamic reloc | |
3318 | section. */ | |
3319 | ||
3320 | long | |
3321 | _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms) | |
3322 | bfd *abfd; | |
3323 | arelent **storage; | |
3324 | asymbol **syms; | |
3325 | { | |
3326 | boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean)); | |
3327 | asection *s; | |
3328 | long ret; | |
3329 | ||
3330 | if (elf_dynsymtab (abfd) == 0) | |
3331 | { | |
3332 | bfd_set_error (bfd_error_invalid_operation); | |
3333 | return -1; | |
3334 | } | |
3335 | ||
3336 | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | |
3337 | ret = 0; | |
3338 | for (s = abfd->sections; s != NULL; s = s->next) | |
3339 | { | |
3340 | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) | |
3341 | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL | |
3342 | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) | |
3343 | { | |
3344 | arelent *p; | |
3345 | long count, i; | |
3346 | ||
3347 | if (! (*slurp_relocs) (abfd, s, syms, true)) | |
3348 | return -1; | |
3349 | count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize; | |
3350 | p = s->relocation; | |
3351 | for (i = 0; i < count; i++) | |
3352 | *storage++ = p++; | |
3353 | ret += count; | |
3354 | } | |
3355 | } | |
3356 | ||
3357 | *storage = NULL; | |
3358 | ||
3359 | return ret; | |
3360 | } | |
3361 | ||
ede4eed4 KR |
3362 | asymbol * |
3363 | _bfd_elf_make_empty_symbol (abfd) | |
3364 | bfd *abfd; | |
3365 | { | |
3366 | elf_symbol_type *newsym; | |
3367 | ||
3368 | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); | |
3369 | if (!newsym) | |
a9713b91 | 3370 | return NULL; |
ede4eed4 KR |
3371 | else |
3372 | { | |
3373 | newsym->symbol.the_bfd = abfd; | |
3374 | return &newsym->symbol; | |
3375 | } | |
3376 | } | |
3377 | ||
3378 | void | |
3379 | _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret) | |
3380 | bfd *ignore_abfd; | |
3381 | asymbol *symbol; | |
3382 | symbol_info *ret; | |
3383 | { | |
3384 | bfd_symbol_info (symbol, ret); | |
3385 | } | |
3386 | ||
3387 | alent * | |
3388 | _bfd_elf_get_lineno (ignore_abfd, symbol) | |
3389 | bfd *ignore_abfd; | |
3390 | asymbol *symbol; | |
3391 | { | |
8cd2f4fe | 3392 | abort (); |
ede4eed4 KR |
3393 | return NULL; |
3394 | } | |
3395 | ||
3396 | boolean | |
3397 | _bfd_elf_set_arch_mach (abfd, arch, machine) | |
3398 | bfd *abfd; | |
3399 | enum bfd_architecture arch; | |
3400 | unsigned long machine; | |
3401 | { | |
3402 | /* If this isn't the right architecture for this backend, and this | |
3403 | isn't the generic backend, fail. */ | |
3404 | if (arch != get_elf_backend_data (abfd)->arch | |
3405 | && arch != bfd_arch_unknown | |
3406 | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) | |
3407 | return false; | |
3408 | ||
3409 | return bfd_default_set_arch_mach (abfd, arch, machine); | |
3410 | } | |
3411 | ||
6f904fce ILT |
3412 | /* Find the nearest line to a particular section and offset, for error |
3413 | reporting. */ | |
3414 | ||
ede4eed4 KR |
3415 | boolean |
3416 | _bfd_elf_find_nearest_line (abfd, | |
6f904fce ILT |
3417 | section, |
3418 | symbols, | |
3419 | offset, | |
3420 | filename_ptr, | |
3421 | functionname_ptr, | |
3422 | line_ptr) | |
ede4eed4 KR |
3423 | bfd *abfd; |
3424 | asection *section; | |
3425 | asymbol **symbols; | |
3426 | bfd_vma offset; | |
3427 | CONST char **filename_ptr; | |
3428 | CONST char **functionname_ptr; | |
3429 | unsigned int *line_ptr; | |
3430 | { | |
86aac8ea | 3431 | boolean found; |
6f904fce ILT |
3432 | const char *filename; |
3433 | asymbol *func; | |
86aac8ea | 3434 | bfd_vma low_func; |
6f904fce ILT |
3435 | asymbol **p; |
3436 | ||
86aac8ea ILT |
3437 | if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, |
3438 | &found, filename_ptr, | |
3439 | functionname_ptr, line_ptr, | |
3440 | &elf_tdata (abfd)->line_info)) | |
3441 | return false; | |
3442 | if (found) | |
3443 | return true; | |
3444 | ||
6f904fce ILT |
3445 | if (symbols == NULL) |
3446 | return false; | |
3447 | ||
3448 | filename = NULL; | |
3449 | func = NULL; | |
86aac8ea | 3450 | low_func = 0; |
6f904fce ILT |
3451 | |
3452 | for (p = symbols; *p != NULL; p++) | |
3453 | { | |
3454 | elf_symbol_type *q; | |
3455 | ||
3456 | q = (elf_symbol_type *) *p; | |
3457 | ||
3458 | if (bfd_get_section (&q->symbol) != section) | |
3459 | continue; | |
3460 | ||
3461 | switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) | |
3462 | { | |
3463 | default: | |
3464 | break; | |
3465 | case STT_FILE: | |
3466 | filename = bfd_asymbol_name (&q->symbol); | |
3467 | break; | |
3468 | case STT_FUNC: | |
86aac8ea ILT |
3469 | if (q->symbol.section == section |
3470 | && q->symbol.value >= low_func | |
3471 | && q->symbol.value <= offset) | |
3472 | { | |
3473 | func = (asymbol *) q; | |
3474 | low_func = q->symbol.value; | |
3475 | } | |
6f904fce ILT |
3476 | break; |
3477 | } | |
3478 | } | |
3479 | ||
3480 | if (func == NULL) | |
3481 | return false; | |
3482 | ||
3483 | *filename_ptr = filename; | |
3484 | *functionname_ptr = bfd_asymbol_name (func); | |
3485 | *line_ptr = 0; | |
3486 | return true; | |
ede4eed4 KR |
3487 | } |
3488 | ||
3489 | int | |
3490 | _bfd_elf_sizeof_headers (abfd, reloc) | |
3491 | bfd *abfd; | |
3492 | boolean reloc; | |
3493 | { | |
3494 | int ret; | |
3495 | ||
3496 | ret = get_elf_backend_data (abfd)->s->sizeof_ehdr; | |
3497 | if (! reloc) | |
fd0198f0 | 3498 | ret += get_program_header_size (abfd); |
ede4eed4 KR |
3499 | return ret; |
3500 | } | |
3501 | ||
3502 | boolean | |
3503 | _bfd_elf_set_section_contents (abfd, section, location, offset, count) | |
3504 | bfd *abfd; | |
3505 | sec_ptr section; | |
3506 | PTR location; | |
3507 | file_ptr offset; | |
3508 | bfd_size_type count; | |
3509 | { | |
3510 | Elf_Internal_Shdr *hdr; | |
3511 | ||
3512 | if (! abfd->output_has_begun | |
3513 | && ! _bfd_elf_compute_section_file_positions (abfd, | |
3514 | (struct bfd_link_info *) NULL)) | |
3515 | return false; | |
3516 | ||
3517 | hdr = &elf_section_data (section)->this_hdr; | |
3518 | ||
3519 | if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) | |
3520 | return false; | |
3521 | if (bfd_write (location, 1, count, abfd) != count) | |
3522 | return false; | |
3523 | ||
3524 | return true; | |
3525 | } | |
3526 | ||
3527 | void | |
3528 | _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst) | |
3529 | bfd *abfd; | |
3530 | arelent *cache_ptr; | |
3531 | Elf_Internal_Rela *dst; | |
3532 | { | |
8cd2f4fe | 3533 | abort (); |
ede4eed4 KR |
3534 | } |
3535 | ||
3536 | #if 0 | |
3537 | void | |
3538 | _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst) | |
3539 | bfd *abfd; | |
3540 | arelent *cache_ptr; | |
3541 | Elf_Internal_Rel *dst; | |
3542 | { | |
8cd2f4fe | 3543 | abort (); |
ede4eed4 KR |
3544 | } |
3545 | #endif | |
7fc6a16a ILT |
3546 | |
3547 | /* Try to convert a non-ELF reloc into an ELF one. */ | |
3548 | ||
3549 | boolean | |
3550 | _bfd_elf_validate_reloc (abfd, areloc) | |
3551 | bfd *abfd; | |
3552 | arelent *areloc; | |
3553 | { | |
3554 | /* Check whether we really have an ELF howto. */ | |
3555 | ||
3556 | if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) | |
3557 | { | |
3558 | bfd_reloc_code_real_type code; | |
3559 | reloc_howto_type *howto; | |
3560 | ||
3561 | /* Alien reloc: Try to determine its type to replace it with an | |
3562 | equivalent ELF reloc. */ | |
3563 | ||
3564 | if (areloc->howto->pc_relative) | |
3565 | { | |
3566 | switch (areloc->howto->bitsize) | |
3567 | { | |
3568 | case 8: | |
3569 | code = BFD_RELOC_8_PCREL; | |
3570 | break; | |
3571 | case 12: | |
3572 | code = BFD_RELOC_12_PCREL; | |
3573 | break; | |
3574 | case 16: | |
3575 | code = BFD_RELOC_16_PCREL; | |
3576 | break; | |
3577 | case 24: | |
3578 | code = BFD_RELOC_24_PCREL; | |
3579 | break; | |
3580 | case 32: | |
3581 | code = BFD_RELOC_32_PCREL; | |
3582 | break; | |
3583 | case 64: | |
3584 | code = BFD_RELOC_64_PCREL; | |
3585 | break; | |
3586 | default: | |
3587 | goto fail; | |
3588 | } | |
3589 | ||
3590 | howto = bfd_reloc_type_lookup (abfd, code); | |
3591 | ||
3592 | if (areloc->howto->pcrel_offset != howto->pcrel_offset) | |
3593 | { | |
3594 | if (howto->pcrel_offset) | |
3595 | areloc->addend += areloc->address; | |
3596 | else | |
3597 | areloc->addend -= areloc->address; /* addend is unsigned!! */ | |
3598 | } | |
3599 | } | |
3600 | else | |
3601 | { | |
3602 | switch (areloc->howto->bitsize) | |
3603 | { | |
3604 | case 8: | |
3605 | code = BFD_RELOC_8; | |
3606 | break; | |
3607 | case 14: | |
3608 | code = BFD_RELOC_14; | |
3609 | break; | |
3610 | case 16: | |
3611 | code = BFD_RELOC_16; | |
3612 | break; | |
3613 | case 26: | |
3614 | code = BFD_RELOC_26; | |
3615 | break; | |
3616 | case 32: | |
3617 | code = BFD_RELOC_32; | |
3618 | break; | |
3619 | case 64: | |
3620 | code = BFD_RELOC_64; | |
3621 | break; | |
3622 | default: | |
3623 | goto fail; | |
3624 | } | |
3625 | ||
3626 | howto = bfd_reloc_type_lookup (abfd, code); | |
3627 | } | |
3628 | ||
3629 | if (howto) | |
3630 | areloc->howto = howto; | |
3631 | else | |
3632 | goto fail; | |
3633 | } | |
3634 | ||
3635 | return true; | |
3636 | ||
3637 | fail: | |
3638 | (*_bfd_error_handler) | |
3639 | ("%s: unsupported relocation type %s", | |
3640 | bfd_get_filename (abfd), areloc->howto->name); | |
3641 | bfd_set_error (bfd_error_bad_value); | |
3642 | return false; | |
3643 | } |