]>
Commit | Line | Data |
---|---|---|
f9e3b3cc | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
8b0f5a9d | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995 |
94d4b713 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
5259796b | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
5259796b JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
5259796b | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
5259796b JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 20 | |
8b0f5a9d DE |
21 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ |
22 | ||
bd5635a1 | 23 | #include "defs.h" |
bd5635a1 RP |
24 | #include "frame.h" |
25 | #include "inferior.h" | |
26 | #include "obstack.h" | |
bd5635a1 | 27 | #include "target.h" |
48792545 | 28 | #include "value.h" |
4365c36c | 29 | |
8f86a4e4 JG |
30 | #ifdef USE_PROC_FS |
31 | #include <sys/procfs.h> | |
8f86a4e4 | 32 | #endif |
bd5635a1 | 33 | |
bd5635a1 RP |
34 | #include "gdbcore.h" |
35 | ||
8b0f5a9d DE |
36 | #ifdef GDB_TARGET_IS_SPARC64 |
37 | #define NUM_SPARC_FPREGS 64 | |
38 | #else | |
39 | #define NUM_SPARC_FPREGS 32 | |
40 | #endif | |
41 | ||
42 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) | |
43 | ||
bd5635a1 RP |
44 | /* From infrun.c */ |
45 | extern int stop_after_trap; | |
46 | ||
b38f304c JG |
47 | /* We don't store all registers immediately when requested, since they |
48 | get sent over in large chunks anyway. Instead, we accumulate most | |
49 | of the changes and send them over once. "deferred_stores" keeps | |
50 | track of which sets of registers we have locally-changed copies of, | |
51 | so we only need send the groups that have changed. */ | |
52 | ||
53 | int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ | |
54 | ||
8b0f5a9d DE |
55 | /* Branches with prediction are treated like their non-predicting cousins. */ |
56 | /* FIXME: What about floating point branches? */ | |
57 | ||
ee7b9e92 JK |
58 | /* Macros to extract fields from sparc instructions. */ |
59 | #define X_OP(i) (((i) >> 30) & 0x3) | |
60 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
61 | #define X_A(i) (((i) >> 29) & 1) | |
62 | #define X_COND(i) (((i) >> 25) & 0xf) | |
63 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
64 | #define X_IMM22(i) ((i) & 0x3fffff) | |
65 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
66 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
67 | #define X_I(i) (((i) >> 13) & 1) | |
68 | #define X_IMM13(i) ((i) & 0x1fff) | |
69 | /* Sign extension macros. */ | |
70 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
71 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
8b0f5a9d DE |
72 | #ifdef GDB_TARGET_IS_SPARC64 |
73 | #define X_CC(i) (((i) >> 20) & 3) | |
74 | #define X_P(i) (((i) >> 19) & 1) | |
75 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
76 | #define X_RCOND(i) (((i) >> 25) & 7) | |
77 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
78 | #define X_FCN(i) (((i) >> 25) & 31) | |
79 | #endif | |
ee7b9e92 | 80 | |
bd5635a1 RP |
81 | typedef enum |
82 | { | |
8b0f5a9d DE |
83 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, |
84 | #ifdef GDB_TARGET_IS_SPARC64 | |
85 | done_retry | |
86 | #endif | |
bd5635a1 RP |
87 | } branch_type; |
88 | ||
89 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
90 | Beihl ([email protected]). */ | |
91 | ||
92 | /* npc4 and next_pc describe the situation at the time that the | |
93 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
94 | static CORE_ADDR next_pc, npc4, target; | |
95 | static int brknpc4, brktrg; | |
96 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
97 | static binsn_quantum break_mem[3]; | |
98 | ||
99 | /* Non-zero if we just simulated a single-step ptrace call. This is | |
100 | needed because we cannot remove the breakpoints in the inferior | |
101 | process until after the `wait' in `wait_for_inferior'. Used for | |
102 | sun4. */ | |
103 | ||
104 | int one_stepped; | |
105 | ||
d11c44f1 JG |
106 | /* single_step() is called just before we want to resume the inferior, |
107 | if we want to single-step it but there is no hardware or kernel single-step | |
108 | support (as on all SPARCs). We find all the possible targets of the | |
109 | coming instruction and breakpoint them. | |
110 | ||
111 | single_step is also called just after the inferior stops. If we had | |
112 | set up a simulated single-step, we undo our damage. */ | |
113 | ||
bd5635a1 | 114 | void |
8f86a4e4 JG |
115 | single_step (ignore) |
116 | int ignore; /* pid, but we don't need it */ | |
bd5635a1 | 117 | { |
8b0f5a9d | 118 | branch_type br, isbranch(); |
bd5635a1 RP |
119 | CORE_ADDR pc; |
120 | long pc_instruction; | |
121 | ||
122 | if (!one_stepped) | |
123 | { | |
124 | /* Always set breakpoint for NPC. */ | |
125 | next_pc = read_register (NPC_REGNUM); | |
126 | npc4 = next_pc + 4; /* branch not taken */ | |
127 | ||
128 | target_insert_breakpoint (next_pc, break_mem[0]); | |
f1de67d3 | 129 | /* printf_unfiltered ("set break at %x\n",next_pc); */ |
bd5635a1 RP |
130 | |
131 | pc = read_register (PC_REGNUM); | |
ee7b9e92 | 132 | pc_instruction = read_memory_integer (pc, 4); |
8b0f5a9d | 133 | br = isbranch (pc_instruction, pc, &target); |
bd5635a1 RP |
134 | brknpc4 = brktrg = 0; |
135 | ||
136 | if (br == bicca) | |
137 | { | |
138 | /* Conditional annulled branch will either end up at | |
139 | npc (if taken) or at npc+4 (if not taken). | |
140 | Trap npc+4. */ | |
141 | brknpc4 = 1; | |
142 | target_insert_breakpoint (npc4, break_mem[1]); | |
143 | } | |
144 | else if (br == baa && target != next_pc) | |
145 | { | |
146 | /* Unconditional annulled branch will always end up at | |
147 | the target. */ | |
148 | brktrg = 1; | |
149 | target_insert_breakpoint (target, break_mem[2]); | |
150 | } | |
8b0f5a9d DE |
151 | #ifdef GDB_TARGET_IS_SPARC64 |
152 | else if (br == done_retry) | |
153 | { | |
154 | brktrg = 1; | |
155 | target_insert_breakpoint (target, break_mem[2]); | |
156 | } | |
157 | #endif | |
bd5635a1 | 158 | |
d11c44f1 | 159 | /* We are ready to let it go */ |
bd5635a1 RP |
160 | one_stepped = 1; |
161 | return; | |
162 | } | |
163 | else | |
164 | { | |
165 | /* Remove breakpoints */ | |
166 | target_remove_breakpoint (next_pc, break_mem[0]); | |
167 | ||
168 | if (brknpc4) | |
169 | target_remove_breakpoint (npc4, break_mem[1]); | |
170 | ||
171 | if (brktrg) | |
172 | target_remove_breakpoint (target, break_mem[2]); | |
173 | ||
174 | one_stepped = 0; | |
175 | } | |
176 | } | |
177 | \f | |
84bdfea6 PS |
178 | /* Call this for each newly created frame. For SPARC, we need to calculate |
179 | the bottom of the frame, and do some extra work if the prologue | |
180 | has been generated via the -mflat option to GCC. In particular, | |
181 | we need to know where the previous fp and the pc have been stashed, | |
182 | since their exact position within the frame may vary. */ | |
183 | ||
184 | void | |
185 | sparc_init_extra_frame_info (fromleaf, fi) | |
186 | int fromleaf; | |
187 | struct frame_info *fi; | |
188 | { | |
189 | char *name; | |
190 | CORE_ADDR addr; | |
ee7b9e92 | 191 | int insn; |
84bdfea6 PS |
192 | |
193 | fi->bottom = | |
194 | (fi->next ? | |
195 | (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) : | |
196 | read_register (SP_REGNUM)); | |
197 | ||
ee7b9e92 JK |
198 | /* If fi->next is NULL, then we already set ->frame by passing read_fp() |
199 | to create_new_frame. */ | |
200 | if (fi->next) | |
201 | { | |
202 | char buf[MAX_REGISTER_RAW_SIZE]; | |
203 | int err; | |
204 | ||
205 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
206 | it later. */ | |
207 | /* FIXME: If error reading memory, should just stop backtracing, rather | |
208 | than error(). */ | |
209 | get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); | |
210 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); | |
211 | } | |
212 | ||
84bdfea6 PS |
213 | /* Decide whether this is a function with a ``flat register window'' |
214 | frame. For such functions, the frame pointer is actually in %i7. */ | |
215 | fi->flat = 0; | |
216 | if (find_pc_partial_function (fi->pc, &name, &addr, NULL)) | |
217 | { | |
218 | /* See if the function starts with an add (which will be of a | |
ee7b9e92 JK |
219 | negative number if a flat frame) to the sp. FIXME: Does not |
220 | handle large frames which will need more than one instruction | |
221 | to adjust the sp. */ | |
222 | insn = read_memory_integer (addr, 4); | |
223 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 | |
224 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
84bdfea6 | 225 | { |
ee7b9e92 JK |
226 | int offset = X_SIMM13 (insn); |
227 | ||
84bdfea6 | 228 | /* Then look for a save of %i7 into the frame. */ |
ee7b9e92 JK |
229 | insn = read_memory_integer (addr + 4, 4); |
230 | if (X_OP (insn) == 3 | |
231 | && X_RD (insn) == 31 | |
232 | && X_OP3 (insn) == 4 | |
233 | && X_RS1 (insn) == 14) | |
84bdfea6 | 234 | { |
ee7b9e92 JK |
235 | char buf[MAX_REGISTER_RAW_SIZE]; |
236 | ||
84bdfea6 PS |
237 | /* We definitely have a flat frame now. */ |
238 | fi->flat = 1; | |
ee7b9e92 JK |
239 | |
240 | fi->sp_offset = offset; | |
241 | ||
84bdfea6 | 242 | /* Overwrite the frame's address with the value in %i7. */ |
ee7b9e92 JK |
243 | get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); |
244 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); | |
245 | ||
84bdfea6 | 246 | /* Record where the fp got saved. */ |
ee7b9e92 JK |
247 | fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); |
248 | ||
84bdfea6 PS |
249 | /* Also try to collect where the pc got saved to. */ |
250 | fi->pc_addr = 0; | |
ee7b9e92 JK |
251 | insn = read_memory_integer (addr + 12, 4); |
252 | if (X_OP (insn) == 3 | |
253 | && X_RD (insn) == 15 | |
254 | && X_OP3 (insn) == 4 | |
255 | && X_RS1 (insn) == 14) | |
256 | fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
84bdfea6 PS |
257 | } |
258 | } | |
259 | } | |
ee7b9e92 JK |
260 | if (fi->next && fi->frame == 0) |
261 | { | |
262 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
263 | fi->frame = fi->next->frame; | |
264 | fi->pc = fi->next->pc; | |
265 | } | |
84bdfea6 PS |
266 | } |
267 | ||
d11c44f1 | 268 | CORE_ADDR |
84bdfea6 PS |
269 | sparc_frame_chain (frame) |
270 | struct frame_info *frame; | |
d11c44f1 | 271 | { |
ee7b9e92 JK |
272 | /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain |
273 | value. If it realy is zero, we detect it later in | |
274 | sparc_init_prev_frame. */ | |
275 | return (CORE_ADDR)1; | |
d11c44f1 JG |
276 | } |
277 | ||
278 | CORE_ADDR | |
279 | sparc_extract_struct_value_address (regbuf) | |
280 | char regbuf[REGISTER_BYTES]; | |
281 | { | |
b9e58503 PS |
282 | #ifdef GDB_TARGET_IS_SPARC64 |
283 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
284 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
285 | #else | |
8b0f5a9d | 286 | return read_memory_integer (((int *)(regbuf)) [SP_REGNUM] + (16 * SPARC_INTREG_SIZE), |
f1de67d3 | 287 | TARGET_PTR_BIT / TARGET_CHAR_BIT); |
b9e58503 | 288 | #endif |
d11c44f1 JG |
289 | } |
290 | ||
f9e3b3cc JG |
291 | /* Find the pc saved in frame FRAME. */ |
292 | ||
bd5635a1 | 293 | CORE_ADDR |
8bf94f44 | 294 | sparc_frame_saved_pc (frame) |
84bdfea6 | 295 | struct frame_info *frame; |
bd5635a1 | 296 | { |
f1de67d3 | 297 | char buf[MAX_REGISTER_RAW_SIZE]; |
34df79fc | 298 | CORE_ADDR addr; |
f9e3b3cc | 299 | |
48792545 JK |
300 | if (frame->signal_handler_caller) |
301 | { | |
302 | /* This is the signal trampoline frame. | |
303 | Get the saved PC from the sigcontext structure. */ | |
304 | ||
305 | #ifndef SIGCONTEXT_PC_OFFSET | |
306 | #define SIGCONTEXT_PC_OFFSET 12 | |
307 | #endif | |
308 | ||
309 | CORE_ADDR sigcontext_addr; | |
310 | char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; | |
94d4b713 JK |
311 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
312 | char *name = NULL; | |
313 | ||
314 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext | |
315 | as the third parameter. The offset to the saved pc is 12. */ | |
316 | find_pc_partial_function (frame->pc, &name, | |
317 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
318 | if (name && STREQ (name, "ucbsigvechandler")) | |
319 | saved_pc_offset = 12; | |
48792545 JK |
320 | |
321 | /* The sigcontext address is contained in register O2. */ | |
322 | get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, | |
323 | frame, O0_REGNUM + 2, (enum lval_type *)NULL); | |
8b0f5a9d | 324 | sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); |
48792545 JK |
325 | |
326 | /* Don't cause a memory_error when accessing sigcontext in case the | |
327 | stack layout has changed or the stack is corrupt. */ | |
94d4b713 | 328 | target_read_memory (sigcontext_addr + saved_pc_offset, |
48792545 JK |
329 | scbuf, sizeof (scbuf)); |
330 | return extract_address (scbuf, sizeof (scbuf)); | |
331 | } | |
84bdfea6 PS |
332 | if (frame->flat) |
333 | addr = frame->pc_addr; | |
334 | else | |
335 | addr = frame->bottom + FRAME_SAVED_I0 + | |
8b0f5a9d | 336 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
ee7b9e92 JK |
337 | |
338 | if (addr == 0) | |
339 | /* A flat frame leaf function might not save the PC anywhere, | |
340 | just leave it in %o7. */ | |
341 | return PC_ADJUST (read_register (O7_REGNUM)); | |
342 | ||
8b0f5a9d DE |
343 | read_memory (addr, buf, SPARC_INTREG_SIZE); |
344 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
345 | } |
346 | ||
84bdfea6 PS |
347 | /* Since an individual frame in the frame cache is defined by two |
348 | arguments (a frame pointer and a stack pointer), we need two | |
349 | arguments to get info for an arbitrary stack frame. This routine | |
350 | takes two arguments and makes the cached frames look as if these | |
351 | two arguments defined a frame on the cache. This allows the rest | |
352 | of info frame to extract the important arguments without | |
353 | difficulty. */ | |
354 | ||
355 | struct frame_info * | |
2093fe68 RP |
356 | setup_arbitrary_frame (argc, argv) |
357 | int argc; | |
84bdfea6 | 358 | CORE_ADDR *argv; |
bd5635a1 | 359 | { |
84bdfea6 | 360 | struct frame_info *frame; |
2093fe68 RP |
361 | |
362 | if (argc != 2) | |
363 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
364 | ||
84bdfea6 | 365 | frame = create_new_frame (argv[0], 0); |
bd5635a1 | 366 | |
84bdfea6 PS |
367 | if (!frame) |
368 | fatal ("internal: create_new_frame returned invalid frame"); | |
bd5635a1 | 369 | |
84bdfea6 PS |
370 | frame->bottom = argv[1]; |
371 | frame->pc = FRAME_SAVED_PC (frame); | |
372 | return frame; | |
bd5635a1 RP |
373 | } |
374 | ||
5259796b JG |
375 | /* Given a pc value, skip it forward past the function prologue by |
376 | disassembling instructions that appear to be a prologue. | |
377 | ||
378 | If FRAMELESS_P is set, we are only testing to see if the function | |
379 | is frameless. This allows a quicker answer. | |
380 | ||
381 | This routine should be more specific in its actions; making sure | |
192cbba9 | 382 | that it uses the same register in the initial prologue section. */ |
84bdfea6 | 383 | |
ee7b9e92 JK |
384 | static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *, |
385 | struct frame_saved_regs *)); | |
386 | ||
387 | static CORE_ADDR | |
388 | examine_prologue (start_pc, frameless_p, fi, saved_regs) | |
192cbba9 | 389 | CORE_ADDR start_pc; |
5259796b | 390 | int frameless_p; |
ee7b9e92 JK |
391 | struct frame_info *fi; |
392 | struct frame_saved_regs *saved_regs; | |
bd5635a1 | 393 | { |
ee7b9e92 | 394 | int insn; |
bd5635a1 | 395 | int dest = -1; |
192cbba9 | 396 | CORE_ADDR pc = start_pc; |
84bdfea6 | 397 | int is_flat = 0; |
bd5635a1 | 398 | |
ee7b9e92 | 399 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
400 | |
401 | /* Recognize the `sethi' insn and record its destination. */ | |
ee7b9e92 | 402 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) |
bd5635a1 | 403 | { |
ee7b9e92 | 404 | dest = X_RD (insn); |
bd5635a1 | 405 | pc += 4; |
ee7b9e92 | 406 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
407 | } |
408 | ||
409 | /* Recognize an add immediate value to register to either %g1 or | |
410 | the destination register recorded above. Actually, this might | |
192cbba9 JK |
411 | well recognize several different arithmetic operations. |
412 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
413 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
414 | I imagine any compiler really does that, however). */ | |
ee7b9e92 JK |
415 | if (X_OP (insn) == 2 |
416 | && X_I (insn) | |
417 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
bd5635a1 RP |
418 | { |
419 | pc += 4; | |
ee7b9e92 | 420 | insn = read_memory_integer (pc, 4); |
bd5635a1 RP |
421 | } |
422 | ||
ee7b9e92 JK |
423 | /* Recognize any SAVE insn. */ |
424 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
bd5635a1 RP |
425 | { |
426 | pc += 4; | |
5259796b JG |
427 | if (frameless_p) /* If the save is all we care about, */ |
428 | return pc; /* return before doing more work */ | |
ee7b9e92 | 429 | insn = read_memory_integer (pc, 4); |
bd5635a1 | 430 | } |
ee7b9e92 JK |
431 | /* Recognize add to %sp. */ |
432 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
5259796b | 433 | { |
84bdfea6 PS |
434 | pc += 4; |
435 | if (frameless_p) /* If the add is all we care about, */ | |
436 | return pc; /* return before doing more work */ | |
ee7b9e92 JK |
437 | is_flat = 1; |
438 | insn = read_memory_integer (pc, 4); | |
439 | /* Recognize store of frame pointer (i7). */ | |
440 | if (X_OP (insn) == 3 | |
441 | && X_RD (insn) == 31 | |
442 | && X_OP3 (insn) == 4 | |
443 | && X_RS1 (insn) == 14) | |
444 | { | |
445 | pc += 4; | |
446 | insn = read_memory_integer (pc, 4); | |
447 | ||
448 | /* Recognize sub %sp, <anything>, %i7. */ | |
449 | if (X_OP (insn) == 2 | |
450 | && X_OP3 (insn) == 4 | |
451 | && X_RS1 (insn) == 14 | |
452 | && X_RD (insn) == 31) | |
453 | { | |
454 | pc += 4; | |
455 | insn = read_memory_integer (pc, 4); | |
456 | } | |
457 | else | |
458 | return pc; | |
459 | } | |
460 | else | |
461 | return pc; | |
5259796b | 462 | } |
84bdfea6 PS |
463 | else |
464 | /* Without a save or add instruction, it's not a prologue. */ | |
465 | return start_pc; | |
bd5635a1 | 466 | |
ee7b9e92 | 467 | while (1) |
bd5635a1 | 468 | { |
ee7b9e92 JK |
469 | /* Recognize stores into the frame from the input registers. |
470 | This recognizes all non alternate stores of input register, | |
471 | into a location offset from the frame pointer. */ | |
472 | if ((X_OP (insn) == 3 | |
473 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
474 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
475 | && X_I (insn) /* Immediate mode. */ | |
476 | && X_RS1 (insn) == 30 /* Off of frame pointer. */ | |
477 | /* Into reserved stack space. */ | |
478 | && X_SIMM13 (insn) >= 0x44 | |
479 | && X_SIMM13 (insn) < 0x5b)) | |
480 | ; | |
481 | else if (is_flat | |
482 | && X_OP (insn) == 3 | |
483 | && X_OP3 (insn) == 4 | |
484 | && X_RS1 (insn) == 14 | |
485 | ) | |
486 | { | |
487 | if (saved_regs && X_I (insn)) | |
488 | saved_regs->regs[X_RD (insn)] = | |
489 | fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
490 | } | |
491 | else | |
492 | break; | |
bd5635a1 | 493 | pc += 4; |
ee7b9e92 | 494 | insn = read_memory_integer (pc, 4); |
bd5635a1 | 495 | } |
84bdfea6 | 496 | |
5259796b | 497 | return pc; |
bd5635a1 RP |
498 | } |
499 | ||
ee7b9e92 JK |
500 | CORE_ADDR |
501 | skip_prologue (start_pc, frameless_p) | |
502 | CORE_ADDR start_pc; | |
503 | int frameless_p; | |
504 | { | |
505 | return examine_prologue (start_pc, frameless_p, NULL, NULL); | |
506 | } | |
507 | ||
8b0f5a9d DE |
508 | /* Check instruction at ADDR to see if it is a branch. |
509 | All non-annulled instructions will go to NPC or will trap. | |
510 | Set *TARGET if we find a candidate branch; set to zero if not. | |
511 | ||
512 | This isn't static as it's used by remote-sa.sparc.c. */ | |
513 | ||
bd5635a1 | 514 | branch_type |
8b0f5a9d | 515 | isbranch (instruction, addr, target) |
bd5635a1 RP |
516 | long instruction; |
517 | CORE_ADDR addr, *target; | |
518 | { | |
519 | branch_type val = not_branch; | |
520 | long int offset; /* Must be signed for sign-extend. */ | |
bd5635a1 RP |
521 | |
522 | *target = 0; | |
bd5635a1 | 523 | |
ee7b9e92 JK |
524 | if (X_OP (instruction) == 0 |
525 | && (X_OP2 (instruction) == 2 | |
526 | || X_OP2 (instruction) == 6 | |
8b0f5a9d DE |
527 | #ifdef GDB_TARGET_IS_SPARC64 |
528 | || X_OP2 (instruction) == 1 | |
529 | || X_OP2 (instruction) == 3 | |
530 | || X_OP2 (instruction) == 5 | |
531 | #else | |
532 | || X_OP2 (instruction) == 7 | |
533 | #endif | |
534 | )) | |
bd5635a1 | 535 | { |
ee7b9e92 JK |
536 | if (X_COND (instruction) == 8) |
537 | val = X_A (instruction) ? baa : ba; | |
bd5635a1 | 538 | else |
ee7b9e92 | 539 | val = X_A (instruction) ? bicca : bicc; |
8b0f5a9d DE |
540 | switch (X_OP (instruction)) |
541 | { | |
542 | case 2: | |
543 | case 6: | |
544 | #ifndef GDB_TARGET_IS_SPARC64 | |
545 | case 7: | |
546 | #endif | |
547 | offset = 4 * X_DISP22 (instruction); | |
548 | break; | |
549 | #ifdef GDB_TARGET_IS_SPARC64 | |
550 | case 1: | |
551 | case 5: | |
552 | offset = 4 * X_DISP19 (instruction); | |
553 | break; | |
554 | case 3: | |
555 | offset = 4 * X_DISP16 (instruction); | |
556 | break; | |
557 | #endif | |
558 | } | |
bd5635a1 RP |
559 | *target = addr + offset; |
560 | } | |
8b0f5a9d DE |
561 | #ifdef GDB_TARGET_IS_SPARC64 |
562 | else if (X_OP (instruction) == 2 | |
563 | && X_OP3 (instruction) == 62) | |
564 | { | |
565 | if (X_FCN (instruction) == 0) | |
566 | { | |
567 | /* done */ | |
568 | *target = read_register (TNPC_REGNUM); | |
569 | val = done_retry; | |
570 | } | |
571 | else if (X_FCN (instruction) == 1) | |
572 | { | |
573 | /* retry */ | |
574 | *target = read_register (TPC_REGNUM); | |
575 | val = done_retry; | |
576 | } | |
577 | } | |
578 | #endif | |
bd5635a1 RP |
579 | |
580 | return val; | |
581 | } | |
ee7b9e92 JK |
582 | \f |
583 | /* Find register number REGNUM relative to FRAME and put its | |
584 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
585 | was optimized out (and thus can't be fetched). If the variable | |
586 | was fetched from memory, set *ADDRP to where it was fetched from, | |
587 | otherwise it was fetched from a register. | |
588 | ||
589 | The argument RAW_BUFFER must point to aligned memory. */ | |
590 | ||
591 | void | |
592 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
593 | char *raw_buffer; | |
594 | int *optimized; | |
595 | CORE_ADDR *addrp; | |
596 | struct frame_info *frame; | |
597 | int regnum; | |
598 | enum lval_type *lval; | |
599 | { | |
600 | struct frame_info *frame1; | |
601 | CORE_ADDR addr; | |
602 | ||
888a18ee JK |
603 | if (!target_has_registers) |
604 | error ("No registers."); | |
605 | ||
ee7b9e92 JK |
606 | if (optimized) |
607 | *optimized = 0; | |
608 | ||
609 | addr = 0; | |
610 | frame1 = frame->next; | |
611 | while (frame1 != NULL) | |
612 | { | |
613 | if (frame1->pc >= (frame1->bottom ? frame1->bottom : | |
614 | read_register (SP_REGNUM)) | |
615 | && frame1->pc <= FRAME_FP (frame1)) | |
616 | { | |
617 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
8b0f5a9d | 618 | /* FIXME: The offsets are wrong for sparc64 (eg: 0xa0). */ |
ee7b9e92 | 619 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) |
8b0f5a9d DE |
620 | addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
621 | - (NUM_SPARC_FPREGS * 4 + 8 * SPARC_INTREG_SIZE); | |
ee7b9e92 | 622 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) |
8b0f5a9d DE |
623 | addr = frame1->frame + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
624 | - (NUM_SPARC_FPREGS * 4 + 16 * SPARC_INTREG_SIZE); | |
625 | else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + NUM_SPARC_FPREGS) | |
626 | addr = frame1->frame + (regnum - FP0_REGNUM) * 4 | |
627 | - (NUM_SPARC_FPREGS * 4); | |
ee7b9e92 | 628 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
8b0f5a9d DE |
629 | addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE |
630 | - (NUM_SPARC_FPREGS * 4 + 24 * SPARC_INTREG_SIZE); | |
ee7b9e92 JK |
631 | } |
632 | else if (frame1->flat) | |
633 | { | |
634 | ||
635 | if (regnum == RP_REGNUM) | |
636 | addr = frame1->pc_addr; | |
637 | else if (regnum == I7_REGNUM) | |
638 | addr = frame1->fp_addr; | |
639 | else | |
640 | { | |
641 | CORE_ADDR func_start; | |
642 | struct frame_saved_regs regs; | |
643 | memset (®s, 0, sizeof (regs)); | |
644 | ||
645 | find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); | |
646 | examine_prologue (func_start, 0, frame1, ®s); | |
647 | addr = regs.regs[regnum]; | |
648 | } | |
649 | } | |
650 | else | |
651 | { | |
652 | /* Normal frame. Local and In registers are saved on stack. */ | |
653 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
654 | addr = (frame1->prev->bottom | |
8b0f5a9d | 655 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
656 | + FRAME_SAVED_I0); |
657 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
658 | addr = (frame1->prev->bottom | |
8b0f5a9d | 659 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
660 | + FRAME_SAVED_L0); |
661 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
662 | { | |
663 | /* Outs become ins. */ | |
664 | get_saved_register (raw_buffer, optimized, addrp, frame1, | |
665 | (regnum - O0_REGNUM + I0_REGNUM), lval); | |
666 | return; | |
667 | } | |
668 | } | |
669 | if (addr != 0) | |
670 | break; | |
671 | frame1 = frame1->next; | |
672 | } | |
673 | if (addr != 0) | |
674 | { | |
675 | if (lval != NULL) | |
676 | *lval = lval_memory; | |
677 | if (regnum == SP_REGNUM) | |
678 | { | |
679 | if (raw_buffer != NULL) | |
680 | { | |
681 | /* Put it back in target format. */ | |
682 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
683 | } | |
684 | if (addrp != NULL) | |
685 | *addrp = 0; | |
686 | return; | |
687 | } | |
688 | if (raw_buffer != NULL) | |
689 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
690 | } | |
691 | else | |
692 | { | |
693 | if (lval != NULL) | |
694 | *lval = lval_register; | |
695 | addr = REGISTER_BYTE (regnum); | |
696 | if (raw_buffer != NULL) | |
697 | read_register_gen (regnum, raw_buffer); | |
698 | } | |
699 | if (addrp != NULL) | |
700 | *addrp = addr; | |
701 | } | |
702 | ||
703 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
704 | ||
705 | We save the non-windowed registers and the ins. The locals and outs | |
706 | are new; they don't need to be saved. The i's and l's of | |
707 | the last frame were already saved on the stack. */ | |
708 | ||
709 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
710 | ||
8b0f5a9d DE |
711 | #ifdef GDB_TARGET_IS_SPARC64 |
712 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
713 | #else | |
714 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
715 | #endif | |
716 | ||
717 | /* See tm-sparc.h for how this is calculated. */ | |
718 | #define DUMMY_STACK_REG_BUF_SIZE \ | |
719 | (((8+8+8) * SPARC_INTREG_SIZE) + (32 * REGISTER_RAW_SIZE (FP0_REGNUM))) | |
720 | #define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) | |
721 | ||
ee7b9e92 JK |
722 | void |
723 | sparc_push_dummy_frame () | |
724 | { | |
725 | CORE_ADDR sp, old_sp; | |
8b0f5a9d | 726 | char register_temp[DUMMY_STACK_SIZE]; |
ee7b9e92 JK |
727 | |
728 | old_sp = sp = read_register (SP_REGNUM); | |
729 | ||
8b0f5a9d DE |
730 | #ifdef GDB_TARGET_IS_SPARC64 |
731 | /* FIXME: not sure what needs to be saved here. */ | |
732 | #else | |
ee7b9e92 JK |
733 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ |
734 | read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], | |
735 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
8b0f5a9d | 736 | #endif |
ee7b9e92 | 737 | |
8b0f5a9d DE |
738 | read_register_bytes (REGISTER_BYTE (O0_REGNUM), |
739 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
740 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 741 | |
8b0f5a9d DE |
742 | read_register_bytes (REGISTER_BYTE (G0_REGNUM), |
743 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
744 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 745 | |
8b0f5a9d DE |
746 | /* ??? The 32 here should be NUM_SPARC_FPREGS, but until we decide what |
747 | REGISTER_RAW_SIZE should be for fp regs, it's left as is. */ | |
748 | read_register_bytes (REGISTER_BYTE (FP0_REGNUM), | |
749 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
ee7b9e92 JK |
750 | REGISTER_RAW_SIZE (FP0_REGNUM) * 32); |
751 | ||
8b0f5a9d | 752 | sp -= DUMMY_STACK_SIZE; |
ee7b9e92 JK |
753 | |
754 | write_register (SP_REGNUM, sp); | |
755 | ||
8b0f5a9d DE |
756 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], |
757 | DUMMY_STACK_REG_BUF_SIZE); | |
ee7b9e92 JK |
758 | |
759 | write_register (FP_REGNUM, old_sp); | |
760 | ||
761 | /* Set return address register for the call dummy to the current PC. */ | |
762 | write_register (I7_REGNUM, read_pc() - 8); | |
763 | } | |
bd5635a1 | 764 | |
ee7b9e92 JK |
765 | /* sparc_frame_find_saved_regs (). This function is here only because |
766 | pop_frame uses it. Note there is an interesting corner case which | |
767 | I think few ports of GDB get right--if you are popping a frame | |
768 | which does not save some register that *is* saved by a more inner | |
769 | frame (such a frame will never be a dummy frame because dummy | |
770 | frames save all registers). Rewriting pop_frame to use | |
771 | get_saved_register would solve this problem and also get rid of the | |
772 | ugly duplication between sparc_frame_find_saved_regs and | |
773 | get_saved_register. | |
bd5635a1 RP |
774 | |
775 | Stores, into a struct frame_saved_regs, | |
776 | the addresses of the saved registers of frame described by FRAME_INFO. | |
777 | This includes special registers such as pc and fp saved in special | |
778 | ways in the stack frame. sp is even more special: | |
779 | the address we return for it IS the sp for the next frame. | |
780 | ||
781 | Note that on register window machines, we are currently making the | |
782 | assumption that window registers are being saved somewhere in the | |
783 | frame in which they are being used. If they are stored in an | |
784 | inferior frame, find_saved_register will break. | |
785 | ||
786 | On the Sun 4, the only time all registers are saved is when | |
787 | a dummy frame is involved. Otherwise, the only saved registers | |
788 | are the LOCAL and IN registers which are saved as a result | |
789 | of the "save/restore" opcodes. This condition is determined | |
790 | by address rather than by value. | |
791 | ||
792 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
793 | is a return address minus 8.) sparc_pop_frame knows how to | |
794 | deal with that. Other routines might or might not. | |
795 | ||
796 | See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information | |
797 | about how this works. */ | |
798 | ||
ee7b9e92 JK |
799 | static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *, |
800 | struct frame_saved_regs *)); | |
801 | ||
802 | static void | |
bd5635a1 RP |
803 | sparc_frame_find_saved_regs (fi, saved_regs_addr) |
804 | struct frame_info *fi; | |
805 | struct frame_saved_regs *saved_regs_addr; | |
806 | { | |
807 | register int regnum; | |
84bdfea6 | 808 | CORE_ADDR frame_addr = FRAME_FP (fi); |
bd5635a1 | 809 | |
84bdfea6 | 810 | if (!fi) |
bd5635a1 RP |
811 | fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); |
812 | ||
b38f304c | 813 | memset (saved_regs_addr, 0, sizeof (*saved_regs_addr)); |
bd5635a1 | 814 | |
bd5635a1 RP |
815 | if (fi->pc >= (fi->bottom ? fi->bottom : |
816 | read_register (SP_REGNUM)) | |
817 | && fi->pc <= FRAME_FP(fi)) | |
818 | { | |
819 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
820 | for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) | |
821 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d DE |
822 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
823 | - (NUM_SPARC_FPREGS * 4 + 8 * SPARC_INTREG_SIZE); | |
bd5635a1 RP |
824 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) |
825 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d DE |
826 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
827 | - (NUM_SPARC_FPREGS * 4 + 16 * SPARC_INTREG_SIZE); | |
bd5635a1 RP |
828 | for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) |
829 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d DE |
830 | frame_addr + (regnum - FP0_REGNUM) * 4 |
831 | - (NUM_SPARC_FPREGS * 4); | |
bd5635a1 RP |
832 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) |
833 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d DE |
834 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE - 0xe0; |
835 | - (NUM_SPARC_FPREGS * 4 + 24 * SPARC_INTREG_SIZE); | |
84bdfea6 | 836 | frame_addr = fi->bottom ? |
bd5635a1 RP |
837 | fi->bottom : read_register (SP_REGNUM); |
838 | } | |
84bdfea6 PS |
839 | else if (fi->flat) |
840 | { | |
ee7b9e92 JK |
841 | CORE_ADDR func_start; |
842 | find_pc_partial_function (fi->pc, NULL, &func_start, NULL); | |
843 | examine_prologue (func_start, 0, fi, saved_regs_addr); | |
844 | ||
84bdfea6 PS |
845 | /* Flat register window frame. */ |
846 | saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr; | |
847 | saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr; | |
84bdfea6 | 848 | } |
bd5635a1 RP |
849 | else |
850 | { | |
851 | /* Normal frame. Just Local and In registers */ | |
84bdfea6 | 852 | frame_addr = fi->bottom ? |
bd5635a1 | 853 | fi->bottom : read_register (SP_REGNUM); |
84bdfea6 | 854 | for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++) |
16726dd1 | 855 | saved_regs_addr->regs[regnum] = |
8b0f5a9d | 856 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
857 | + FRAME_SAVED_L0); |
858 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) | |
859 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 860 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 | 861 | + FRAME_SAVED_I0); |
bd5635a1 RP |
862 | } |
863 | if (fi->next) | |
864 | { | |
84bdfea6 PS |
865 | if (fi->flat) |
866 | { | |
867 | saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr; | |
868 | } | |
869 | else | |
870 | { | |
871 | /* Pull off either the next frame pointer or the stack pointer */ | |
872 | CORE_ADDR next_next_frame_addr = | |
873 | (fi->next->bottom ? | |
874 | fi->next->bottom : | |
875 | read_register (SP_REGNUM)); | |
876 | for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) | |
877 | saved_regs_addr->regs[regnum] = | |
878 | (next_next_frame_addr | |
8b0f5a9d | 879 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
880 | + FRAME_SAVED_I0); |
881 | } | |
bd5635a1 RP |
882 | } |
883 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
884 | saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); | |
885 | } | |
886 | ||
bd5635a1 RP |
887 | /* Discard from the stack the innermost frame, restoring all saved registers. |
888 | ||
889 | Note that the values stored in fsr by get_frame_saved_regs are *in | |
890 | the context of the called frame*. What this means is that the i | |
891 | regs of fsr must be restored into the o regs of the (calling) frame that | |
892 | we pop into. We don't care about the output regs of the calling frame, | |
893 | since unless it's a dummy frame, it won't have any output regs in it. | |
894 | ||
895 | We never have to bother with %l (local) regs, since the called routine's | |
896 | locals get tossed, and the calling routine's locals are already saved | |
897 | on its stack. */ | |
898 | ||
899 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
900 | ||
901 | void | |
902 | sparc_pop_frame () | |
903 | { | |
84bdfea6 | 904 | register struct frame_info *frame = get_current_frame (); |
bd5635a1 RP |
905 | register CORE_ADDR pc; |
906 | struct frame_saved_regs fsr; | |
bd5635a1 | 907 | char raw_buffer[REGISTER_BYTES]; |
84bdfea6 | 908 | int regnum; |
bd5635a1 | 909 | |
ee7b9e92 | 910 | sparc_frame_find_saved_regs (frame, &fsr); |
bd5635a1 RP |
911 | if (fsr.regs[FP0_REGNUM]) |
912 | { | |
8b0f5a9d DE |
913 | read_memory (fsr.regs[FP0_REGNUM], raw_buffer, NUM_SPARC_FPREGS * 4); |
914 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM), | |
915 | raw_buffer, NUM_SPARC_FPREGS * 4); | |
bd5635a1 | 916 | } |
8b0f5a9d | 917 | #ifndef GDB_TARGET_IS_SPARC64 |
f1de67d3 PS |
918 | if (fsr.regs[FPS_REGNUM]) |
919 | { | |
920 | read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4); | |
921 | write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4); | |
922 | } | |
923 | if (fsr.regs[CPS_REGNUM]) | |
924 | { | |
925 | read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4); | |
926 | write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4); | |
927 | } | |
8b0f5a9d | 928 | #endif |
bd5635a1 RP |
929 | if (fsr.regs[G1_REGNUM]) |
930 | { | |
8b0f5a9d DE |
931 | read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
932 | write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, | |
933 | 7 * SPARC_INTREG_SIZE); | |
bd5635a1 | 934 | } |
84bdfea6 PS |
935 | |
936 | if (frame->flat) | |
937 | { | |
938 | /* Each register might or might not have been saved, need to test | |
939 | individually. */ | |
940 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) | |
941 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
942 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
943 | SPARC_INTREG_SIZE)); | |
84bdfea6 PS |
944 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) |
945 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
946 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
947 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
948 | |
949 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
950 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
84bdfea6 | 951 | if (fsr.regs[regnum]) |
8b0f5a9d DE |
952 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
953 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
954 | if (fsr.regs[O0_REGNUM + 7]) |
955 | write_register (O0_REGNUM + 7, | |
8b0f5a9d DE |
956 | read_memory_integer (fsr.regs[O0_REGNUM + 7], |
957 | SPARC_INTREG_SIZE)); | |
ee7b9e92 | 958 | |
6cb4e9e0 | 959 | write_register (SP_REGNUM, frame->frame); |
84bdfea6 PS |
960 | } |
961 | else if (fsr.regs[I0_REGNUM]) | |
bd5635a1 | 962 | { |
dd99f8e4 JK |
963 | CORE_ADDR sp; |
964 | ||
965 | char reg_temp[REGISTER_BYTES]; | |
966 | ||
8b0f5a9d | 967 | read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
dd99f8e4 JK |
968 | |
969 | /* Get the ins and locals which we are about to restore. Just | |
970 | moving the stack pointer is all that is really needed, except | |
971 | store_inferior_registers is then going to write the ins and | |
972 | locals from the registers array, so we need to muck with the | |
973 | registers array. */ | |
974 | sp = fsr.regs[SP_REGNUM]; | |
8b0f5a9d | 975 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
dd99f8e4 JK |
976 | |
977 | /* Restore the out registers. | |
978 | Among other things this writes the new stack pointer. */ | |
979 | write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, | |
8b0f5a9d | 980 | SPARC_INTREG_SIZE * 8); |
dd99f8e4 JK |
981 | |
982 | write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, | |
8b0f5a9d | 983 | SPARC_INTREG_SIZE * 16); |
bd5635a1 | 984 | } |
8b0f5a9d | 985 | #ifndef GDB_TARGET_IS_SPARC64 |
bd5635a1 RP |
986 | if (fsr.regs[PS_REGNUM]) |
987 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
8b0f5a9d | 988 | #endif |
bd5635a1 | 989 | if (fsr.regs[Y_REGNUM]) |
8b0f5a9d | 990 | write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM))); |
bd5635a1 RP |
991 | if (fsr.regs[PC_REGNUM]) |
992 | { | |
993 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
8b0f5a9d DE |
994 | write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], |
995 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
bd5635a1 RP |
996 | if (fsr.regs[NPC_REGNUM]) |
997 | write_register (NPC_REGNUM, | |
8b0f5a9d DE |
998 | read_memory_integer (fsr.regs[NPC_REGNUM], |
999 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
bd5635a1 | 1000 | } |
ee7b9e92 | 1001 | else if (frame->flat) |
84bdfea6 | 1002 | { |
ee7b9e92 | 1003 | if (frame->pc_addr) |
8b0f5a9d DE |
1004 | pc = PC_ADJUST ((CORE_ADDR) |
1005 | read_memory_integer (frame->pc_addr, | |
1006 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
ee7b9e92 JK |
1007 | else |
1008 | { | |
1009 | /* I think this happens only in the innermost frame, if so then | |
1010 | it is a complicated way of saying | |
1011 | "pc = read_register (O7_REGNUM);". */ | |
1012 | char buf[MAX_REGISTER_RAW_SIZE]; | |
1013 | get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); | |
1014 | pc = PC_ADJUST (extract_address | |
1015 | (buf, REGISTER_RAW_SIZE (O7_REGNUM))); | |
1016 | } | |
1017 | ||
84bdfea6 PS |
1018 | write_register (PC_REGNUM, pc); |
1019 | write_register (NPC_REGNUM, pc + 4); | |
1020 | } | |
bd5635a1 RP |
1021 | else if (fsr.regs[I7_REGNUM]) |
1022 | { | |
1023 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
8b0f5a9d DE |
1024 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM], |
1025 | SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
1026 | write_register (PC_REGNUM, pc); |
1027 | write_register (NPC_REGNUM, pc + 4); | |
1028 | } | |
1029 | flush_cached_frames (); | |
bd5635a1 RP |
1030 | } |
1031 | ||
5e5215eb JG |
1032 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which |
1033 | encodes the structure size being returned. If we detect such | |
1034 | a fake insn, step past it. */ | |
1035 | ||
1036 | CORE_ADDR | |
1037 | sparc_pc_adjust(pc) | |
1038 | CORE_ADDR pc; | |
1039 | { | |
34df79fc JK |
1040 | unsigned long insn; |
1041 | char buf[4]; | |
5e5215eb JG |
1042 | int err; |
1043 | ||
34df79fc JK |
1044 | err = target_read_memory (pc + 8, buf, sizeof(long)); |
1045 | insn = extract_unsigned_integer (buf, 4); | |
5e5215eb JG |
1046 | if ((err == 0) && (insn & 0xfffffe00) == 0) |
1047 | return pc+12; | |
1048 | else | |
1049 | return pc+8; | |
1050 | } | |
84bdfea6 PS |
1051 | |
1052 | /* If pc is in a shared library trampoline, return its target. | |
1053 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1054 | compiled modules in the main executable to bypass the dynamic linker | |
1055 | with jumps of the form | |
1056 | sethi %hi(addr),%g1 | |
1057 | jmp %g1+%lo(addr) | |
1058 | and removes the corresponding jump table relocation entry in the | |
1059 | dynamic relocations. | |
1060 | find_solib_trampoline_target relies on the presence of the jump | |
1061 | table relocation entry, so we have to detect these jump instructions | |
1062 | by hand. */ | |
1063 | ||
1064 | CORE_ADDR | |
1065 | sunos4_skip_trampoline_code (pc) | |
1066 | CORE_ADDR pc; | |
1067 | { | |
1068 | unsigned long insn1; | |
1069 | char buf[4]; | |
1070 | int err; | |
1071 | ||
1072 | err = target_read_memory (pc, buf, 4); | |
1073 | insn1 = extract_unsigned_integer (buf, 4); | |
1074 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1075 | { | |
1076 | unsigned long insn2; | |
1077 | ||
1078 | err = target_read_memory (pc + 4, buf, 4); | |
1079 | insn2 = extract_unsigned_integer (buf, 4); | |
1080 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1081 | { | |
1082 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1083 | int delta = insn2 & 0x1fff; | |
1084 | ||
1085 | /* Sign extend the displacement. */ | |
1086 | if (delta & 0x1000) | |
1087 | delta |= ~0x1fff; | |
1088 | return target_pc + delta; | |
1089 | } | |
1090 | } | |
1091 | return find_solib_trampoline_target (pc); | |
1092 | } | |
8f86a4e4 JG |
1093 | \f |
1094 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ | |
1095 | ||
1096 | /* The /proc interface divides the target machine's register set up into | |
1097 | two different sets, the general register set (gregset) and the floating | |
1098 | point register set (fpregset). For each set, there is an ioctl to get | |
1099 | the current register set and another ioctl to set the current values. | |
1100 | ||
1101 | The actual structure passed through the ioctl interface is, of course, | |
1102 | naturally machine dependent, and is different for each set of registers. | |
1103 | For the sparc for example, the general register set is typically defined | |
1104 | by: | |
1105 | ||
1106 | typedef int gregset_t[38]; | |
1107 | ||
1108 | #define R_G0 0 | |
1109 | ... | |
1110 | #define R_TBR 37 | |
1111 | ||
1112 | and the floating point set by: | |
1113 | ||
1114 | typedef struct prfpregset { | |
1115 | union { | |
1116 | u_long pr_regs[32]; | |
1117 | double pr_dregs[16]; | |
1118 | } pr_fr; | |
1119 | void * pr_filler; | |
1120 | u_long pr_fsr; | |
1121 | u_char pr_qcnt; | |
1122 | u_char pr_q_entrysize; | |
1123 | u_char pr_en; | |
1124 | u_long pr_q[64]; | |
1125 | } prfpregset_t; | |
1126 | ||
1127 | These routines provide the packing and unpacking of gregset_t and | |
1128 | fpregset_t formatted data. | |
1129 | ||
1130 | */ | |
1131 | ||
8b0f5a9d DE |
1132 | /* Given a pointer to a general register set in /proc format (gregset_t *), |
1133 | unpack the register contents and supply them as gdb's idea of the current | |
1134 | register values. */ | |
8f86a4e4 JG |
1135 | |
1136 | void | |
1137 | supply_gregset (gregsetp) | |
1138 | prgregset_t *gregsetp; | |
1139 | { | |
b38f304c | 1140 | register int regi; |
8f86a4e4 JG |
1141 | register prgreg_t *regp = (prgreg_t *) gregsetp; |
1142 | ||
1143 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
b38f304c | 1144 | for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++) |
8f86a4e4 | 1145 | { |
b38f304c | 1146 | supply_register (regi, (char *) (regp + regi)); |
8f86a4e4 JG |
1147 | } |
1148 | ||
1149 | /* These require a bit more care. */ | |
1150 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
1151 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
1152 | supply_register (NPC_REGNUM,(char *) (regp + R_nPC)); | |
1153 | supply_register (Y_REGNUM, (char *) (regp + R_Y)); | |
1154 | } | |
1155 | ||
1156 | void | |
1157 | fill_gregset (gregsetp, regno) | |
1158 | prgregset_t *gregsetp; | |
1159 | int regno; | |
1160 | { | |
1161 | int regi; | |
1162 | register prgreg_t *regp = (prgreg_t *) gregsetp; | |
8f86a4e4 JG |
1163 | |
1164 | for (regi = 0 ; regi <= R_I7 ; regi++) | |
1165 | { | |
1166 | if ((regno == -1) || (regno == regi)) | |
1167 | { | |
b38f304c | 1168 | *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; |
8f86a4e4 JG |
1169 | } |
1170 | } | |
1171 | if ((regno == -1) || (regno == PS_REGNUM)) | |
1172 | { | |
1173 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
1174 | } | |
1175 | if ((regno == -1) || (regno == PC_REGNUM)) | |
1176 | { | |
1177 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
1178 | } | |
1179 | if ((regno == -1) || (regno == NPC_REGNUM)) | |
1180 | { | |
1181 | *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)]; | |
1182 | } | |
1183 | if ((regno == -1) || (regno == Y_REGNUM)) | |
1184 | { | |
1185 | *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)]; | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | #if defined (FP0_REGNUM) | |
1190 | ||
1191 | /* Given a pointer to a floating point register set in /proc format | |
1192 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
1193 | idea of the current floating point register values. */ | |
1194 | ||
1195 | void | |
1196 | supply_fpregset (fpregsetp) | |
1197 | prfpregset_t *fpregsetp; | |
1198 | { | |
1199 | register int regi; | |
1200 | char *from; | |
1201 | ||
1202 | for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++) | |
1203 | { | |
1204 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
1205 | supply_register (regi, from); | |
1206 | } | |
1207 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1208 | } | |
1209 | ||
1210 | /* Given a pointer to a floating point register set in /proc format | |
1211 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
1212 | of the current floating point register set. If REGNO is -1, update | |
1213 | them all. */ | |
8b0f5a9d | 1214 | /* ??? This will probably need some changes for sparc64. */ |
8f86a4e4 JG |
1215 | |
1216 | void | |
1217 | fill_fpregset (fpregsetp, regno) | |
1218 | prfpregset_t *fpregsetp; | |
1219 | int regno; | |
1220 | { | |
1221 | int regi; | |
1222 | char *to; | |
1223 | char *from; | |
8f86a4e4 | 1224 | |
8b0f5a9d DE |
1225 | /* ??? The 32 should probably be NUM_SPARC_FPREGS, but again we're |
1226 | waiting on what REGISTER_RAW_SIZE should be for fp regs. */ | |
1227 | for (regi = FP0_REGNUM ; regi < FP0_REGNUM + 32 ; regi++) | |
8f86a4e4 JG |
1228 | { |
1229 | if ((regno == -1) || (regno == regi)) | |
1230 | { | |
1231 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
1232 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
b38f304c | 1233 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
8f86a4e4 JG |
1234 | } |
1235 | } | |
1236 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1237 | { | |
1238 | fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
1239 | } | |
1240 | } | |
1241 | ||
1242 | #endif /* defined (FP0_REGNUM) */ | |
1243 | ||
1244 | #endif /* USE_PROC_FS */ | |
1245 | ||
1246 | ||
1247 | #ifdef GET_LONGJMP_TARGET | |
f9e3b3cc JG |
1248 | |
1249 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1250 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1251 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1252 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1253 | This routine returns true on success */ | |
1254 | ||
1255 | int | |
84bdfea6 | 1256 | get_longjmp_target (pc) |
f9e3b3cc JG |
1257 | CORE_ADDR *pc; |
1258 | { | |
1259 | CORE_ADDR jb_addr; | |
34df79fc JK |
1260 | #define LONGJMP_TARGET_SIZE 4 |
1261 | char buf[LONGJMP_TARGET_SIZE]; | |
f9e3b3cc | 1262 | |
84bdfea6 | 1263 | jb_addr = read_register (O0_REGNUM); |
f9e3b3cc | 1264 | |
84bdfea6 PS |
1265 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, |
1266 | LONGJMP_TARGET_SIZE)) | |
f9e3b3cc JG |
1267 | return 0; |
1268 | ||
34df79fc | 1269 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); |
f9e3b3cc JG |
1270 | |
1271 | return 1; | |
1272 | } | |
8f86a4e4 | 1273 | #endif /* GET_LONGJMP_TARGET */ |
8b0f5a9d DE |
1274 | \f |
1275 | #ifdef STATIC_TRANSFORM_NAME | |
1276 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1277 | related to C++ mangling, it is done for C too. */ | |
1278 | ||
1279 | char * | |
b9e58503 | 1280 | sunpro_static_transform_name (name) |
8b0f5a9d DE |
1281 | char *name; |
1282 | { | |
1283 | char *p; | |
1284 | if (name[0] == '$') | |
1285 | { | |
1286 | /* For file-local statics there will be a dollar sign, a bunch | |
1287 | of junk (the contents of which match a string given in the | |
1288 | N_OPT), a period and the name. For function-local statics | |
1289 | there will be a bunch of junk (which seems to change the | |
1290 | second character from 'A' to 'B'), a period, the name of the | |
1291 | function, and the name. So just skip everything before the | |
1292 | last period. */ | |
1293 | p = strrchr (name, '.'); | |
1294 | if (p != NULL) | |
1295 | name = p + 1; | |
1296 | } | |
1297 | return name; | |
1298 | } | |
1299 | #endif /* STATIC_TRANSFORM_NAME */ | |
1300 | \f | |
1301 | #ifdef GDB_TARGET_IS_SPARC64 | |
1302 | ||
8b0f5a9d DE |
1303 | /* Utilities for printing registers. |
1304 | Page numbers refer to the SPARC Architecture Manual. */ | |
1305 | ||
b9e58503 PS |
1306 | static void dump_ccreg PARAMS ((char *, int)); |
1307 | ||
8b0f5a9d DE |
1308 | static void |
1309 | dump_ccreg (reg, val) | |
1310 | char *reg; | |
1311 | int val; | |
1312 | { | |
1313 | /* page 41 */ | |
1314 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
1315 | val & 8 ? "N" : "NN", | |
1316 | val & 4 ? "Z" : "NZ", | |
1317 | val & 2 ? "O" : "NO", | |
1318 | val & 1 ? "C" : "NC" | |
1319 | ); | |
1320 | } | |
1321 | ||
1322 | static char * | |
1323 | decode_asi (val) | |
1324 | int val; | |
1325 | { | |
1326 | /* page 72 */ | |
1327 | switch (val) | |
1328 | { | |
1329 | case 4 : return "ASI_NUCLEUS"; | |
1330 | case 0x0c : return "ASI_NUCLEUS_LITTLE"; | |
1331 | case 0x10 : return "ASI_AS_IF_USER_PRIMARY"; | |
1332 | case 0x11 : return "ASI_AS_IF_USER_SECONDARY"; | |
1333 | case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1334 | case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1335 | case 0x80 : return "ASI_PRIMARY"; | |
1336 | case 0x81 : return "ASI_SECONDARY"; | |
1337 | case 0x82 : return "ASI_PRIMARY_NOFAULT"; | |
1338 | case 0x83 : return "ASI_SECONDARY_NOFAULT"; | |
1339 | case 0x88 : return "ASI_PRIMARY_LITTLE"; | |
1340 | case 0x89 : return "ASI_SECONDARY_LITTLE"; | |
1341 | case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1342 | case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1343 | default : return NULL; | |
1344 | } | |
1345 | } | |
1346 | ||
1347 | /* PRINT_REGISTER_HOOK routine. | |
1348 | Pretty print various registers. */ | |
1349 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ | |
1350 | ||
1351 | void | |
1352 | sparc_print_register_hook (regno) | |
1353 | int regno; | |
1354 | { | |
1355 | unsigned LONGEST val; | |
1356 | ||
1357 | if (((unsigned) (regno) - FP0_REGNUM < FP_MAX_REGNUM - FP0_REGNUM) | |
1358 | && ((regno) & 1) == 0) | |
1359 | { | |
1360 | char doublereg[8]; /* two float regs */ | |
1361 | if (!read_relative_register_raw_bytes ((regno), doublereg)) | |
1362 | { | |
1363 | printf_unfiltered("\t"); | |
1364 | print_floating (doublereg, builtin_type_double, gdb_stdout); | |
1365 | } | |
1366 | return; | |
1367 | } | |
1368 | ||
1369 | /* FIXME: Some of these are priviledged registers. | |
1370 | Not sure how they should be handled. */ | |
1371 | ||
1372 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1373 | ||
1374 | val = read_register (regno); | |
1375 | ||
1376 | /* pages 40 - 60 */ | |
1377 | switch (regno) | |
1378 | { | |
1379 | case CCR_REGNUM : | |
1380 | printf_unfiltered("\t"); | |
1381 | dump_ccreg ("xcc", val >> 4); | |
1382 | printf_unfiltered(", "); | |
1383 | dump_ccreg ("icc", val & 15); | |
1384 | break; | |
1385 | case FPRS_REGNUM : | |
1386 | printf ("\tfef:%d, du:%d, dl:%d", | |
1387 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
1388 | break; | |
1389 | case FSR_REGNUM : | |
1390 | { | |
1391 | static char *fcc[4] = { "=", "<", ">", "?" }; | |
1392 | static char *rd[4] = { "N", "0", "+", "-" }; | |
1393 | /* Long, yes, but I'd rather leave it as is and use a wide screen. */ | |
1394 | printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1395 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1396 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1397 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
1398 | BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1399 | break; | |
1400 | } | |
1401 | case ASI_REGNUM : | |
1402 | { | |
1403 | char *asi = decode_asi (val); | |
1404 | if (asi != NULL) | |
1405 | printf ("\t%s", asi); | |
1406 | break; | |
1407 | } | |
1408 | case VER_REGNUM : | |
1409 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1410 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1411 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1412 | break; | |
1413 | case PSTATE_REGNUM : | |
1414 | { | |
1415 | static char *mm[4] = { "tso", "pso", "rso", "?" }; | |
1416 | printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
1417 | BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1), | |
1418 | BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1), | |
1419 | BITS (0, 1)); | |
1420 | break; | |
1421 | } | |
1422 | case TSTATE_REGNUM : | |
1423 | /* FIXME: print all 4? */ | |
1424 | break; | |
1425 | case TT_REGNUM : | |
1426 | /* FIXME: print all 4? */ | |
1427 | break; | |
1428 | case TPC_REGNUM : | |
1429 | /* FIXME: print all 4? */ | |
1430 | break; | |
1431 | case TNPC_REGNUM : | |
1432 | /* FIXME: print all 4? */ | |
1433 | break; | |
1434 | case WSTATE_REGNUM : | |
1435 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
1436 | break; | |
1437 | case CWP_REGNUM : | |
1438 | printf ("\t%d", BITS (0, 31)); | |
1439 | break; | |
1440 | case CANSAVE_REGNUM : | |
1441 | printf ("\t%-2d before spill", BITS (0, 31)); | |
1442 | break; | |
1443 | case CANRESTORE_REGNUM : | |
1444 | printf ("\t%-2d before fill", BITS (0, 31)); | |
1445 | break; | |
1446 | case CLEANWIN_REGNUM : | |
1447 | printf ("\t%-2d before clean", BITS (0, 31)); | |
1448 | break; | |
1449 | case OTHERWIN_REGNUM : | |
1450 | printf ("\t%d", BITS (0, 31)); | |
1451 | break; | |
1452 | } | |
1453 | ||
1454 | #undef BITS | |
1455 | } | |
1456 | ||
1457 | #endif | |
1458 | \f | |
1459 | void | |
1460 | _initialize_sparc_tdep () | |
1461 | { | |
1462 | tm_print_insn = print_insn_sparc; | |
1463 | } |